八年级数学下册期末测试卷及答案(北师大版)
北师大版八年级下期末数学试题6套(含答案)

CBEDA CB E ACF B北师大版八下学期期末考试题1一、选择题(5³3=15分)1、不等到式032≥-x 的解集是( ) A 、23≥x B 、x >23 C 、32<x D 、32<x 2、如图,线段AB:BC=1:2,那么AC:BC 等于( )A 、1:3B 、2:3C 、3:1D 、3:2 3、如图,ΔABC 中,DE ∥BC,如果AD=1,DB=2,那么BCDE的值为( ) A 、32 B 、41 C 、31 D 、214、若229y mxy x ++是一个完全平方式,则=m ( )A、6 B、12 C、6± D、12±5、调查某班级的 的对数学老师的喜欢程度,下列最具有代表性的样本是( ) A 、调查单数学号的学生 B 、调查所有的班级干部 C 、调查全体女生 D 、调查数学兴趣小组的学生 二、填空题(8³3=24分)6、对于分式392+-x x ,当x ________时,分式有意义, 当x ________ 时,分式的值为0.7、不等式722≤-x 的正整数解分别是_________.8、已知53=y x ,则yyx -2=______.9、如图,在ΔABC 中,EF ∥BC,AE =2BE,则ΔAEF 与梯形BCFE 的面积比_______. 10、分解因式:=-+-)(4)(22x y n y x m ___________________________.11、下列调查中,____适宜使用抽样调查方式, _____ 适宜使用普查方式.(只填相应的序号) ①张伯想了解他承包的鱼塘中的鱼生长情况;②了解全国患非典性肺炎的人数;③评价八年级十班本次期末数学考试的成绩;④张红想了解妈妈煲的一锅汤的味道. 12、把命题“对顶角相等”改写成:如果_________________________________________,那么_____________________________________________。
北师大版八年级下册数学期末考试试题有答案

北师大版八年级下册数学期末考试试卷一、单选题1.在 ABC中,D、E分别是AB、AC的中点,若DE=3,则BC的值()A.3B.4C.6D.242.如图所示,在 ABCD中,AC,BD相交于点O,则下列结论中错误的是()A.OA=OC B.∠ABC=∠ADC C.AB=CD D.AC=BD3.不等式组1112xx+≤-⎧⎪⎨->-⎪⎩,的解集在数轴上表示正确的()A .B .C.D.4.解分式方程21xx-﹣21xx--=12时,去分母后得到的方程正确的是()A.2x﹣(x﹣2)=x﹣1B.4x﹣2(x﹣2)=x﹣1C.4x+2(x﹣2)=x﹣1D.2x+(x﹣2)=x﹣15.下列命题的逆命题是假命题的是()A.等腰三角形的两底角相等B.全等三角形的对应角相等C.角平分线上的点到角两边的距离相等D.平行四边形的对角线互相平分6.下列图形既是轴对称图形,又是中心对称图形的是()A .B.C .D .7.如图,一次函数y=ax和y=kx+4的图象相交于点(1,3),则不等式ax>kx+4的解集为()A .x >1B .x <1C .x >3D .x <38.某单位为响应政府号召,需要购买分类垃圾桶6个,市场上有A 型和B 型两种分类垃圾桶,A 型分类垃圾桶500元/个,B 型分类垃圾桶550元/个,总费用不超过3100元,则不同的购买方式有()A .2种B .3种C .4种D .5种9.如图,在平面直角坐标系中,将边长为1的正六边形OABCDE 绕点O 顺时针旋转i 个45°,得到正六边形OAiBiCiDiEi ,则正六边形OAiBiCiDiEi (i =4)的顶点Ci 的坐标是()A .(13B .(13C .(1,﹣2)D .(2,1)10.因式分解x 2﹣9y 2的正确结果是()A .(x+9y )(x ﹣9y )B .(x+3y )(x ﹣3y )C .(x ﹣3y )2D .(x ﹣9y )2二、填空题11.分解因式x 3y ﹣16xy 的结果为________________.12.一个多边形的内角和是它的外角和的4.5倍,这个多边形的边数是________.13.用反证方法证明“在ABC 中,AB AC =,则B Ð必为锐角”的第一步是假设______.14.化简(1x﹣1y )÷23y xx -的结果是_________________.15.如图,在△ABC 中,AB =AC ,∠BAC =120°,AB 的垂直平分线交AB 于点E ,交BC于点F ,若BF =2,则CF 的长为____.16.到2020年末,我国高铁运营里程约为3.8万公里,超过世界高铁总里程的60%,现有某高铁平均速度提升50km/h 后,行驶700km 用时和提速前行驶600km 用时相同,求提速后该高铁的平均速度_________km/h .17.如图,已知△ABC 中,AB =AC =5,BC =8,将△ABC 沿射线BC 方向平移m 个单位得到△DEF ,顶点A ,B ,C 分别与D ,E ,F 对应,若以A ,D ,E 为顶点的三角形满足AD =AE 时,则m 的值为__________________.18.如图所示,已知点D 为等腰直角三角形ABC 内一点,∠CAD=∠CBD=15°,E 为AD 延长线上的一点,且CE=CA ,则∠DCE 的度数是_______________.三、解答题19.解分式方程:241244x x x x -=--+.20.如图,在△ABC 中,AD 是∠BAC 的角平分线,DE ⊥AB ,DF ⊥AC ,D 是BC 的中点,证明:∠B =∠C .21.如图,在平面直角坐标系中,已知△ABC的三个顶点坐标分别是A(1,1),B(4,1),C(3,3).(1)画出△ABC关于原点O的中心对称图形△A1B1C1;(2)将△ABC绕原点O顺时针旋转90°后得到△A2B2C2,请画出△A2B2C2.22.已知A=(1+311xx-+)÷21xx-.(1)直接写出当x取什么值时,A有意义;(2)化简A;(3)当x是不等式组20112xxx+>⎧⎪⎨--->⎪⎩的整数解时,求A的值.23.已知a、b、c是△ABC的三边的长,(1)若满足(a﹣b)b﹣(b﹣a)c=0,试判断此三角形的形状.(2)若满足a2+2b2+c2﹣2b(a+c)=0,试判断此三角形的形状.24.如图,在平行四边形ABCD中,F是AD的中点,延长BC到点E,使CE=1BC,连2接DE,CF.(1)求证:四边形CEDF是平行四边形;(2)已知:CD=6,∠A=120°,求△DCE的底边CE上的高.25.某科技公司研发出一款多型号的智能手表,一家代理商出售该公司的A型智能手表,去年销售总额为80000元,今年A型智能手表的售价每只比去年降了400元,若售出的数量与去年相同,销售总额将比去年减少25%.(1)请问今年A型智能手表每只售价多少元?(2)今年这家代理商准备新进一批A型智能手表和B型智能手表共100只,它们的进货价与销售价格如表,若B型智能手表进货量不超过A型智能手表数量的3倍,所进智能手表可全部售完,请你设计出进货方案,使这批智能手表获利最多,并求出最大利润是多少元?A型智能手表B型智能手表进价800元/只1000元/只售价今年的售价1500元/只26.如图1,在Rt△ABC中,∠ACB=90°,AC=BC,点D为AB边上一点,连接CD,∠ADC△(旋转后点C、D的对应点分别为C'、D¢),=120°,把△ADC绕点A逆时针旋转得到AD C''设旋转的度数为m(0°≤m≤360°).(1)当m=30°时,如图2,连接C C'并延长,交AB于点E.请直接写出∠AC C'的度数;(2)在(1)的条件下,请判断△DCE的形状,并说明理由;(3)①小明在探究的过程中发现:当m=90°时,如图3,四边形ACB C'为平行四边形,请证明小明的结论的正确性;②请你再探究:在△ADC绕点A逆时针旋转过程中,是否存在其他的情形,使以A、B、C、C'四点组成的四边形为平行四边形?若存在,请在备用图中画出旋转后的图形,并请直接写出m的值;若不能,请说明理由.参考答案1.C【解析】根据三角形中位线定理三角形的中位线平行于第三边,并且等于第三边的一半可知,ED=1BC,进而由DE的值求得BC.2【详解】解:∵D,E分别是△ABC的边AB和AC的中点,∴DE是△ABC的中位线,∵DE=3,∴BC=2DE=6.故选:C.【点睛】此题主要考查了三角形中位线的性质,熟练掌握三角形中位线的性质是解题的关键.2.D【解析】根据平行四边形的性质逐项进行判断即可.【详解】A、∵四边形ABCD是平行四边形,∴OA=OC(平行四边形的对角线互相平分),正确,不符合题意;B、∵四边形ABCD是平行四边形,∴∠ABC=∠ADC,正确,不符合题意;C、∵四边形ABCD是平行四边形,∴CD=AB,正确,不符合题意;D、根据四边形ABCD是平行四边形不能推出AC=BD,错误,符合题意,故选D.【点睛】本题考查了平行四边形的性质,熟练掌握平行四边形的性质是解题的关键.注意:平行四边形的性质是:①平行四边形的对边平行且相等,②平行四边形的对角相等,③平行四边形的对角线互相平分.3.B 【解析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【详解】解:1112x x+≤-⎧⎪⎨->-⎪⎩①②解不等式①得:2x -≤解不等式②得:2x <则不等式组的解集为2x -≤故选B .【点睛】本题主要考查了解一元一次不等式组,解题的关键在于能够熟练掌握解一元一次不等式组的方法.4.C 【解析】由去分母的运算法则,方程两边同时乘以()21x -,即可求出答案.【详解】解:∵221112x x x x --=--,方程两边同时乘以()21x -去分母得:()4221x x x +-=-;故选C .【点睛】本题考查分式方程,解题的关键是熟练运用分式方程的解法,本题属于基础题型.5.B 【解析】【分析】分别写出各个命题的逆命题,根据全等三角形的判定、等腰三角形的判定、角平分线的性质和平行四边形的判定定理判断即可.解:A、等腰三角形的两底角相等的逆命题是两角相等的三角形是等腰三角形,逆命题是真命题;B、全等三角形的对应角相等的逆命题是对应角相等的三角形全等,逆命题是假命题;C、角平分线上的点到角两边的距离相等的逆命题是到角两边的距离相等的点在角平分线上,逆命题是真命题;D、平行四边形的对角线互相平分的逆命题是对角线互相平分的四边形是平行四边形,逆命题是真命题;故选B.【点睛】本题主要考查真假命题的判定,解决本题的关键是要熟练掌握等腰三角形,全等三角形,角平分线,平行四边形的性质.6.D【解析】【详解】根据轴对称图形与中心对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合;中心对称图形是图形沿对称中心旋转180度后与原图重合.因此,A、不是轴对称图形,是中心对称图形,故本选项错误;B、是轴对称图形,但不是中心对称图形,故本选项错误;C、是轴对称图形,但不是中心对称图形,故本选项错误;D、既是轴对称图形,又是中心对称图形,故本选项正确.故选D.7.A【解析】【分析】观察函数图象得到,当x>1时,直线y=ax都在直线y=kx+4的上方,于是可得到不等式ax>kx+4的解集.【详解】解:由图象可知,当x>1时,直线y=ax都在直线y=kx+4的上方即不等式ax>kx+4的解集为x>1.【点睛】本题主要考查了利用一次函数的图像的交点求不等式的解集,解题的关键在于能够熟练掌握一次函数图像的性质.8.B【解析】【分析】设购买A型分类垃圾桶x个,则购买B型垃圾桶(6-x),然后根据题意列出不等式组,确定不等式组整数解的个数即可.【详解】解:设购买A型分类垃圾桶x个,则购买B型垃圾桶(6-x)个由题意得:500550(6)31006x xx+-≤⎧⎨≤⎩,解得4≤x≤6则x可取4、5、6,即有三种不同的购买方式.故答案为B.【点睛】本题考查了一元一次方程组的应用,弄清题意、列出不等式组并确定不等式组的整数解是解答本题的关键.9.A【解析】【分析】由于正六边形旋转4次,每次转45°,所以点C与C4关于原点对称,可以直接把的C4坐标写出来.【详解】解:∵正六边形旋转4次,即45°×4=180°,∴点C与C4关于原点对称,∵C的坐标为(﹣1,∴C4的坐标为(1.故选:A.【点睛】本题考查正多边形与圆,中心对称,解题的关键是读懂正六边形OABCDE 绕点O 每次顺时针旋转45°.10.B【解析】【分析】原式利用平方差公式分解即可【详解】解:x 2-9y 2=(x+3y )(x-3y ),故选B .【点睛】此题考查了因式分解-运用公式法,熟练掌握完全平方公式是解本题的关键.11.xy (x +4)(x ﹣4)【解析】【分析】先提公因式xy ,再用平方差公式分解因式即可【详解】解:316x y xy-()216xy x =-()()44xy x x =+-故答案为:()()44xy x x +-.【点睛】本题主要考查了用提公因式法和公式法进行因式分解,解题的关键在于能够熟练掌握因式分解的方法.12.11【解析】【分析】由题意知一个多边形的内角和是外角和的4.5倍,可设这个多边形是n 边形,由多边形的内角和公式得n 边形的内角和为180°(n -2),多边形的外角和是360°,从而列出一元一次方程180°(n -2)=4.5×360°,解出n 即可.【详解】解:设这个多边形是n 边形,则这个多边形的内角和是180°(n -2),外角和是360°,由题意得:180°(n -2)=4.5×360°,解得:n =11,这个多边形的边数是11.故答案为:11.【点睛】本题考查多边形的内角和与外角和,解题的关键是熟练运用多边形的性质,本题属于基础题型.13.90B ∠≥︒【解析】【分析】根据反证法的定义,找出结论的即可得出结论.【详解】解:“B Ð必为锐角”的反面为90B ∠≥︒故答案为:90B ∠≥︒.【点睛】此题考查的是反证法,找出“B Ð必为锐角”的反面是解决此题的关键.14.3xy【解析】【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分即可得到结果.【详解】解:原式=y x xy -•23x y x-=3x y.故答案为:3x y【点睛】此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.15.4【解析】【分析】连接AF,根据三角形的内角和定理及等腰三角形的性质可求解∠B=∠C=30°,利用线段垂直平分线的性质可求解∠BAF=30°,即可求解∠FAC=90°,再利用含30°角的直角三角形的性质可求解CF的长.【详解】解:连接AF,∵AB=AC,∠BAC=120°,∴∠B=∠C=30°,∵EF垂直平分AB,∴BF=AF,∴∠BAF=∠B=30°,∴∠CAF=120°﹣30°=90°,∴CF=2AF=2BF,∵BF=2,∴CF=4.故答案为4.【点睛】本题主要考查等腰三角形的性质和含30°角直角三角形的性质,解决本题的关键是要熟练掌握等腰三角形和含30°角直角三角形的性质.16.350【解析】【分析】设这次列车提速后的平均速度为km/h x ,利用行驶700km 用时和提速前行驶600km 用时相同,列方程即可求出答案.【详解】解:设这次列车提速后的平均速度为km/h x ,则列车提速前的平均速度为(-50)km/h x ,.由题意列方程得60070050x x=-,解得350x =,经检验得350x =是原方程的解.∴这次列车提速后的平均速度为350km/h .故答案为:350.【点睛】此题主要考查了由实际问题抽象出分式方程,根据题意得出正确等量关系是解题关键.17.258【解析】【分析】过点A 作AN ⊥BC 于N ,根据等腰三角形的性质求得BN =4,AN =3,由平移的性质得到BE =AD =m ,由勾股定理列方程即可得到结论.【详解】解:过点A 作AN ⊥BC 于N ,∵AB =AC =5,BC =8,∴BN =CN =4,∴AN =3,∵将△ABC 沿射线BC 方向平移m 个单位得到△DEF ,∴BE =AD =m ,∴NE =m ﹣4,在Rt △ANE 中,由勾股定理得:AN 2+NE 2=AE 2,∴32+(m ﹣4)2=m 2,∴m =258.故答案为:258.【点睛】本题考查等腰三角形的性质、平移性质、勾股定理,熟练掌握等腰三角形的性质和平移性质是解答的关键.18.105°.【解析】【详解】试题分析:根据等腰直角△ABC 和∠CAD=∠CBD=15°可得∠BAD=∠ABD=30°,根据等角对等边可得BD=AD ,即可得CD 是AB 的垂直平分线,根据等腰三角形合一的性质可得∠ACD=∠BCD=45°.根据CE=CA ,∠CAD=15°,求出∠ACE=150°,所以∠DCE=∠ECA ﹣∠ACD=150°﹣45°=105°.考点:全等三角形的判定与性质;等腰三角形的性质.19.x =4【解析】【分析】先将分式方程去分母转化为整式方程,求出整式方程的解,得到x 的值,经检验即可得到分式方程的解.【详解】解:241244x x x x -=--+,方程两边乘2(2)x -得:2(2)(2)4x x x ---=,解得:x =4,检验:当x =4时,220x ≠(﹣).所以原方程的解为x =4.【点睛】本题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.20.见解析【解析】【分析】通过角平分线上点的性质、D 为BC 中点、DE ⊥AB 、DF ⊥AC 证明出BDE CDF ≌,从而证明∠B =∠C .【详解】∵AD 是AD 是∠BAC 的角平分线,DE ⊥AB ,DF ⊥AC ,∴DE =DF ,∵D 是BC 的中点,∴BD =CD∵△BDE 与△CDF 是直角三角形∴BDE CDF≌∴∠B =∠C .【点睛】本题考查了全等三角形的判定和性质以及角平分线上点的性质,正确证明全等三角形并得出各角之间的关系是本题的关键.21.(1)见解析;(2)见解析【解析】【分析】(1)利用中心对称的性质,分别作出A ,B ,C 的对应点A 1,B 1,C 1即可.(2)利用旋转变换的性质,分别作出A ,B ,C 的对应点A 2,B 2,C 2即可.【详解】解:(1)如图,△A 1B 1C 1即为所求作.(2)如图,△A 2B 2C 2即为所求作.【点睛】本题考查作图-旋转变换,解题的关键是熟练掌握旋转变换的性质,正确作出图形是解题的关键.22.(1)x≠0,±1;(2)4x﹣4;(3)4【解析】【分析】(1)根据分式有意义的条件,可知x2﹣1≠0,x≠0,然后即可求得x的取值范围;(2)根据分式的加法和除法可以化简题目中的式子;(3)根据x是不等式组20112xxx+>⎧⎪⎨--->⎪⎩的整数解和(1)中的结果,可以得到x的值,然后将x的值代入(2)中化简后的式子即可解答本题.【详解】解:(1)∵A=(1+311xx-+)÷21xx-,∴x2﹣1≠0,x≠0,∴x≠0,±1,即x≠0,x≠±1时,A有意义;(2)A=(1+311xx-+)÷21xx-=131(1)(1)1x x x xx x++-+-⋅+=4(1)(1) 1x x xx x+-⋅+=4(x﹣1)=4x﹣4;(3)由不等式组20112xxx+>⎧⎪⎨--->⎪⎩,得﹣2<x<3,∵x是不等式组20112xxx+>⎧⎪⎨--->⎪⎩的整数解,∴x=﹣1,0,1,2,由(1)知,x≠0,±1,∴x=2,当x=2时,原式=4×2﹣4=4.【点睛】本题考查分式的化简求值、解一元一次不等式组,解答本题的关键是明确分式化简求值的方法和解一元一次不等式的方法.23.(1)等腰三角形;(2)等边三角形【解析】【分析】把所给的等式能进行因式分解的要因式分解,整理为非负数相加得0的形式,求出三角形三边的关系,进而判断三角形的形状.【详解】解:(1)∵(a﹣b)b﹣(b﹣a)c=0,∴(a﹣b)(b+c)=0,∵a、b、c是△ABC的三边的长,∴b+c≠0,∴a﹣b=0,∴a=b,∴△ABC是等腰三角形;(2)∵a2+2b2+c2﹣2b(a+c)=0,∴(a﹣b)2+(b﹣c)2=0,∴a=b,b=c,∴a=b=c,∴△ABC是等边三角形.【点睛】本题考查了三角形的形状判定,非负数的性质,根据几个非负数的和等于0,则每一个算式都等于0列式是解题的关键.24.(1)见解析;(2)【解析】【分析】(1)由平行四边形的性质可得AD∥BC,AD=BC,由线段关系可证FD=CE,可得结论;(2)由平行四边形的性质可得AB∥CD,∠A+∠ADC=180°,∠DCE=∠ADC,由∠A=120°,得到∠CDG=30°,由含30°角的直角三角形的性质和勾股定理可求解.【详解】证明:(1)∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∵F是AD的中点,∴FD=12 AD,∵CE=12 BC,∴FD=CE,∵FD∥CE,∴四边形CEDF是平行四边形;(2)过点D作DG⊥CE于点G,∵四边形ABCD是平行四边形,∴AB∥CD,AD∥BC,∴∠A+∠ADC=180°,∠DCE=∠ADC,∵∠A=120°,∴∠DCE=∠ADC=180°﹣∠A=60°,在Rt△DGC中,∠DGC=90°,∠DCE=60°,∴∠CDG=30°,∵CD=6,∴CG=12CD=3,故△CDE的底边CE上的高DG=.【点睛】本题主要考查平行四边形的判定和性质,勾股定理,解决本题的关键是要熟练掌握平行四边形的判定和性质.25.(1)1200元;(2)新进A型手表25只,新进B型手表75只,获利最多,并求出最大利润是47500元【解析】【分析】(1)设今年A型智能手表每只售价x元,则去年售价每只为(x+400)元,由卖出的数量相同建立方程求出其解即可;(2)设今年新进A型a只,则B型(100﹣a)只,获利W元,由条件表示出W与a之间的关系式,由a的取值范围就可以求出W的最大值.【详解】解:(1)今年A型智能手表每只售价x元,去年售价每只为(x+400)元,根据题意得8000080000(125%)400x x⨯-=+,解得:x=1200,经检验,x=1200是原方程的根,答:今年A型智能手表每只售价1200元;(2)设新进A型手表a只,全部售完利润是W元,则新进B型手表(100﹣a)只,根据题意得,W=(1200﹣800)a+(1500﹣1000)(100﹣a)=﹣100a+50000,∵100﹣a≤3a,∴a≥25,∵﹣100<0,W随a的增大而减小,∴当a =25时,W 有最大值,即为﹣100×25+50000=47500元,此时,进货方案为新进A 型手表25只,新进B 型手表75只,答:进货方案为新进A 型手表25只,新进B 型手表75只,这批智能手表获利最多,并求出最大利润是47500元.【点睛】本题考查了列分式方程解实际问题的运用,分式方程的解法的运用、一次函数的解析式的运用,解答时由销售问题的数量关系求出一次函数的解析式是关键.26.(1)75°;(2)等边三角形,理由见解析;(3)①见解析;②存在,画图见解析,m =90°或m =270°【解析】【分析】(1)由旋转知AC =A C ',根据∠CA C '=30°得∠AC C '=1802CAC ︒'-∠=75°;(2)在Rt △ABC 中,∠ACB =90°,AB =AC 知∠ABC =∠BAC =45°,结合∠AC C '=75°知∠BCE =90°﹣∠AC C '=15°,继而知∠AEC =∠ABC +∠BCE =60°,根据∠ADC +∠CDE =180°,∠ADC =120°得∠CDE =60°,继而知∠CDE =∠DEC =∠ECD =60°,即可得证;(3)①m =90°时,由∠ACB =90°,∠BA C '=90°知∠ACB +∠BA C '=180°,据此得//AC BC ',再由A C '=AC ,AC =BC 知A C '=BC ,即可得四边形ACB C '为平行四边形;②m =270°时,由∠C 'AC =90°知∠C 'AC =∠ACB ,从而得A C '=BC ,结合A C '=CB 证得四边形A C 'CB 为平行四边形.【详解】解:(1)由旋转知AC =A C ',∵∠CA C '=30°,∴∠AC C '=1802CAC ︒'-∠=75°;(2)△DCE 是等边三角形,理由:在Rt △ABC 中,∠ACB =90°,AB =AC ,∴∠ABC =∠BAC =45°,由(1)知,∠AC C '=75°,∴∠BCE =90°﹣∠AC C '=15°,∴∠AEC =∠ABC +∠BCE =60°,∵∠ADC +∠CDE =180°,∠ADC =120°,∴∠CDE =60°,∴∠CDE =∠DEC =∠ECD =60°,∴△DCE 是等边三角形;(3)①当m =90°时,四边形ACB C '为平行四边形,如图3所示:∵∠ACB =90°,∠BA C '=90°,∴∠ACB +∠BA C '=180°,∴//AC BC ',∵A C '=AC ,AC =BC ,∴A C '=BC ,∴四边形ACB C '为平行四边形;②当m =270°时,四边形ACBC ′为平行四边形,如图4所示:当m =270°时,∠C 'AC =90°,∴∠C 'AC =∠ACB ,∴A C '=BC ,∵A C '=CB ,∴四边形A C 'CB 为平行四边形,综上所述,当m=90°或m=270°时,以A、B、C、C 四点组成的四边形为平行四边形.【点睛】本题属于四边形综合题,考查了旋转的性质、平行四边形的判定定理、等腰直角三角形的性质、等腰三角形的性质,解题的关键是灵活运用所学知识解决问题,学会用分类讨论的思想思考问题,属于中考压轴题.。
北师大版数学八年级下册期末考试试卷附答案

北师大版数学八年级下册期末考试试题一.选择题(每小题3分,共36分)1.若x<y,则下列式子不成立的是()A.x﹣1<y﹣1B.﹣2x<﹣2y C.x+3<y+3D.2.下列各式从左到右的变形中,是因式分解的为()A.a(x+y)=ax+ayB.y2﹣4y+4=(y﹣2)2C.t2﹣16+3t=(t+4)(t﹣4)+3tD.6x3y2=2x2y•3xy3.若分式有意义,则x的取值应该该满足()A.x=B.x=C.x≠D.x≠4.如图,在△ABC中,点D,E分别是边AB,AC的中点,已知DE=3,则BC的长为()A.3B.4C.6D.55.下列条件中,不能判定四边形ABCD是平行四边形的是()A.AB∥CD,AB=CD B.AB=CD,AD=BCC.AB∥CD,∠B=∠D D.AB∥CD,AD=BC6.剪纸是中国古老的汉族传统民间艺术之一.下面是制作剪纸的简单流程,展开后的剪纸图案从对称性来判断()A.是轴对称图形但不是中心对称图形B.是中心对称图形但不是轴对称图形C.既是轴对称图形也是中心对称图形D.既不是轴对称图形也不是中心对称图形7.如果一个等腰三角形的两边长为4、9,则它的周长为()A.17B.22C.17或22D.无法计算8.如图,四边形ABCD是边长为5cm的菱形,其中对角线BD与AC交于点O,BD=6cm,则对角线AC的长度是()A.8cm B.4cm C.3cm D.6cm9.关于x的方程=有增根,则k的值是()A.2B.3C.0D.﹣310.如图,在△ABC中,AB=AC,∠BAC=130°,AB的垂直平分线交AB于点E,交BC 于点F,连接AF,则∠FAB的度数()A.50°B.35°C.30°D.25°11.如图,已知正方形ABCD与正方形AEFG的边长分别为4cm、1cm,若将正方形AEFG 绕点A旋转,则在旋转过程中,点C、F之间的最小距离为()cm.A.3B.2C.4﹣1D.312.如图1,在平面直角坐标系中,将▱ABCD放置在第一象限,且AB∥x轴.直线y=﹣x从原点出发沿x轴正方向平移,在平移过程中直线被平行四边形截得的线段长度l与直线在x轴上平移的距离m的函数图象如图2,那么ABCD面积为()A.4B.4C.8D.8二.填空题(共6小题)13.分式的值为0,那么x的值为.14.在△ABC中,已知∠A=∠B=45°,BC=3,则AB=.15.正十边形的每个外角都等于度.16.如图,已知一次函数和y=ax﹣2的图象交于点P(﹣1,2),则根据图象可得不等式>ax﹣2的解集是.17.如图,正方形ABCD和正方形CEFG中,点D在CG上,BC=2,CE=6,H是AF的中点,那么CH的长是.18.把一副三角板如图1放置,其中∠ACB=∠DEC=90°,斜边AB=6,DC=7,把三角板DCE绕着点C顺时针旋转使CD边恰好过AB的中点O,得到△D1C1E1,如图2,则线段AD1的长度为.三.解答题19.将下列各式因式分解:(1)m3n﹣9mn(2)a3+a﹣2a220.解不等式组:,并把解集在数轴上表示出来.21.先化简(1﹣)÷,再从0,1,2中选择一个合适的x值代入求值.22.阅读下列题目的解题过程:已知a、b、c为△ABC的三边,且满足a2c2﹣b2c2=a4﹣b4,试判断△ABC的形状.解:∵a2c2﹣b2c2=a4﹣b4(A)∴c2(a2﹣b2)=(a2+b2)(a2﹣b2)(B)∴c2=a2+b2(C)∴△ABC是直角三角形问:(1)上述解题过程,从哪一步开始出现错误?请写出该步的代号:;(2)错误的原因为:;(3)本题正确的结论为:.23.已知(如图),在四边形ABCD中AB=CD,过A作AE⊥BD交BD于点E,过C作CF⊥BD交BD于F,且AE=CF.求证:四边形ABCD是平行四边形.24.如图,在平面直角坐标系中,已知△ABC的三个顶点坐标分别是A(2,﹣1)、B(1,﹣2)、C(3,﹣3).(1)将△ABC向上平移4个单位长度得到△A1B1C1,请画出△A1B1C1;(2)请画出与△ABC关于原点的中心对称的△A2B2C2;(3)请写出A1、A2的坐标.25.某体育用品商店用4000元购进一批足球,全部售完后,又用3600元再次购进同样的足球,但这次每个足球的进价是第一次进价的1.2倍,且数量比第一次少了10个.求第一次每个足球的进价是多少元?26.如图1,在平面直角坐标系中,直线y=﹣x+3与x轴、y轴相交于A、B两点,点C在线段OA上,将线段CB绕着点C顺时针旋转90°得到CD,此时点D恰好落在直线AB 上,过点D作DE⊥x轴于点E.(1)求证:△BOC≌△CED;(2)如图2,将△BCD沿x轴正方向平移得△B'C'D',当B'C'经过点D时,求△BCD平移的距离及点D的坐标;(3)若点P在y轴上,点Q在直线AB上,是否存在以C、D、P、Q为顶点的四边形是平行四边形?若存在,直接写出所有满足条件的P点的坐标;若不存在,请说明理由.27.如图,四边形ABCD、BEFG均为正方形,(1)如图1,连接AG、CE,试判断AG和CE的数量关系和位置关系并证明;(2)将正方形BEFG绕点B顺时针旋转β角(0°<β<180°),如图2,连接AG、CE相交于点M,连接MB,当角β发生变化时,∠EMB的度数是否发生变化?若不变化,求出∠EMB的度数;若发生变化,请说明理由.(3)在(2)的条件下,过点A作AN⊥MB交MB的延长线于点N,请直接写出线段CM 与BN的数量关系:.参考答案与试题解析一.选择题(共12小题)1.若x<y,则下列式子不成立的是()A.x﹣1<y﹣1B.﹣2x<﹣2y C.x+3<y+3D.【分析】各项利用不等式的基本性质判断即可得到结果.【解答】解:由x<y,可得:x﹣1<y﹣1,﹣2x>﹣2y,x+3<y+3,,故选:B.2.下列各式从左到右的变形中,是因式分解的为()A.a(x+y)=ax+ayB.y2﹣4y+4=(y﹣2)2C.t2﹣16+3t=(t+4)(t﹣4)+3tD.6x3y2=2x2y•3xy【分析】根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.【解答】解:y2﹣4y+4=(y﹣2)2,故B正确,故选:B.3.若分式有意义,则x的取值应该该满足()A.x=B.x=C.x≠D.x≠【分析】根据分式有意义的条件是分母不等于零列出不等式,解不等式得到答案.【解答】解:分式有意义,则2x﹣3≠0,解得,x≠,故选:C.4.如图,在△ABC中,点D,E分别是边AB,AC的中点,已知DE=3,则BC的长为()A.3B.4C.6D.5【分析】根据三角形的中位线定理“三角形的中位线等于第三边的一半”,有DE=BC,从而求出BC.【解答】解:∵D、E分别是AB、AC的中点.∴DE是△ABC的中位线,∴BC=2DE,∵DE=3,∴BC=2×3=6.故选:C.5.下列条件中,不能判定四边形ABCD是平行四边形的是()A.AB∥CD,AB=CD B.AB=CD,AD=BCC.AB∥CD,∠B=∠D D.AB∥CD,AD=BC【分析】根据平行四边形的判定定理分别进行分析即可.【解答】解:A、∵AB∥CD,AB=CD,∴四边形ABCD是平行四边形,故此选项不合题意;B、∵AB=CD,AD=BC,∴四边形ABCD是平行四边形,故此选项不合题意;C、∵AB∥CD,∠B=∠D,∴四边形ABCD是平行四边形,故此选项不合题意;D、∵AB∥CD,AD=BC,不能得出四边形ABCD是平行四边形,故此选项符合题意;故选:D.6.剪纸是中国古老的汉族传统民间艺术之一.下面是制作剪纸的简单流程,展开后的剪纸图案从对称性来判断()A.是轴对称图形但不是中心对称图形B.是中心对称图形但不是轴对称图形C.既是轴对称图形也是中心对称图形D.既不是轴对称图形也不是中心对称图形【分析】根据轴对称图形的概念对各选项分析判断即可得解.【解答】解:既是轴对称图形也是中心对称图形,故选:C.7.如果一个等腰三角形的两边长为4、9,则它的周长为()A.17B.22C.17或22D.无法计算【分析】求等腰三角形的周长,即是确定等腰三角形的腰与底的长求周长;题目给出等腰三角形有两条边长为4和9,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【解答】解:(1)若4为腰长,9为底边长,由于4+4<9,则三角形不存在;(2)若9为腰长,则符合三角形的两边之和大于第三边.所以这个三角形的周长为9+9+4=22.故选:B.8.如图,四边形ABCD是边长为5cm的菱形,其中对角线BD与AC交于点O,BD=6cm,则对角线AC的长度是()A.8cm B.4cm C.3cm D.6cm【分析】首先根据菱形的性质可得BO=DO,AC⊥DB,AO=CO,然后再根据勾股定理计算出AO长,进而得到答案.【解答】解:∵四边形ABCD是菱形,∴BO=DO,AC⊥DB,AO=CO,∵BD=6cm,∴BO=3cm,∵AB=5cm,∴AO==4(cm),∴AC=8cm.故选:A.9.关于x的方程=有增根,则k的值是()A.2B.3C.0D.﹣3【分析】依据分式方程有增根可求得x=3,将x=3代入去分母后的整式方程从而可求得k的值.【解答】解:∵方程有增根,∴x﹣3=0.解得:x=3.方程=两边同时乘以(x﹣3)得:x﹣1=k,将x=3代入得:k=3﹣1=2.故选:A.10.如图,在△ABC中,AB=AC,∠BAC=130°,AB的垂直平分线交AB于点E,交BC 于点F,连接AF,则∠FAB的度数()A.50°B.35°C.30°D.25°【分析】先由等腰三角形的性质求出∠B的度数,再由垂直平分线的性质可得出∠BAF =∠B,进而可得出结论.【解答】解:∵AB=AC,∠BAC=130°,∴∠B=(180°﹣130°)÷2=25°,∵EF垂直平分AB,∴BF=AF,∴∠BAF=∠B=25°,故选:D.11.如图,已知正方形ABCD与正方形AEFG的边长分别为4cm、1cm,若将正方形AEFG 绕点A旋转,则在旋转过程中,点C、F之间的最小距离为()cm.A.3B.2C.4﹣1D.3【分析】如图,连接AF,CF,AC.利用勾股定理求出AF,AC即可解决问题.【解答】解:如图,连接AF,CF,AC.∵正方形ABCD与正方形AEFG的边长分别为4cm、1cm,∴∠B=∠G=90°,AB=BC=4cm,AG=GF=1cm,∴AF===,AC===4,∵CF≥AC﹣AF,∴CF≥3,∴CF的最小值为3,故选:D.12.如图1,在平面直角坐标系中,将▱ABCD放置在第一象限,且AB∥x轴.直线y=﹣x 从原点出发沿x轴正方向平移,在平移过程中直线被平行四边形截得的线段长度l与直线在x轴上平移的距离m的函数图象如图2,那么ABCD面积为()A.4B.4C.8D.8【分析】根据图象可以得到当移动的距离是4时,直线经过点A,当移动距离是7时,直线经过D,在移动距离是8时经过B,则AB=8﹣4=4,当直线经过D点,设交AB与N,则DN=2,作DM⊥AB于点M.利用三角函数即可求得DM即平行四边形的高,然后利用平行四边形的面积公式即可求解.【解答】解:根据图象可以得到当移动的距离是4时,直线经过点A,当移动距离是7时,直线经过D,在移动距离是8时经过B,则AB=8﹣4=4,如图1,当直线经过D点,设交AB与N,则DN=2,作DM⊥AB于点M.∵y=﹣x与x轴形成的角是45°,又∵AB∥x轴,∴∠DNM=45°,∴DM=DN•sin45°=2×=2,则平行四边形的面积是:AB•DM=4×2=8.故选:C.二.填空题(共6小题)13.分式的值为0,那么x的值为3.【分析】分式的值为0的条件是:(1)分子为0;(2)分母不为0.两个条件需同时具备,缺一不可.据此可以解答本题.【解答】解:由题意可得:x2﹣9=0且x+3≠0,解得x=3.故答案为:3.14.在△ABC中,已知∠A=∠B=45°,BC=3,则AB=3.【分析】利用勾股定理求解即可.【解答】解:∵∠A=∠B=45°,∴AC=BC=3,∠C=90°,∴AB===3,故答案为3.15.正十边形的每个外角都等于36度.【分析】直接用360°除以10即可求出外角的度数.【解答】解:360°÷10=36°.故答案为:36.16.如图,已知一次函数和y=ax﹣2的图象交于点P(﹣1,2),则根据图象可得不等式>ax﹣2的解集是x>﹣1.【分析】根据一次函数的图象和两函数的交点坐标即可得出答案.【解答】解:∵一次函数和y=ax﹣2的图象交于点P(﹣1,2),∴不等式>ax﹣2的解集是x>﹣1,故答案为:x>﹣1.17.如图,正方形ABCD和正方形CEFG中,点D在CG上,BC=2,CE=6,H是AF的中点,那么CH的长是2.【分析】连接AC、CF,根据正方形的性质求出AC、CF,并判断出△ACF是直角三角形,再利用勾股定理列式求出AF,然后根据直角三角形斜边上的中线等于斜边的一半解答.【解答】解:如图,连接AC、CF,在正方形ABCD和正方形CEFG中,AC=BC=2,CF=CE=6,∠ACD=∠GCF=45°,所以,∠ACF=45°+45°=90°,所以,△ACF是直角三角形,由勾股定理得,AF===4,∵H是AF的中点,∴CH=AF=×4=2.故答案为:2.18.把一副三角板如图1放置,其中∠ACB=∠DEC=90°,斜边AB=6,DC=7,把三角板DCE绕着点C顺时针旋转使CD边恰好过AB的中点O,得到△D1C1E1,如图2,则线段AD1的长度为5.【分析】如图2中,作D1H⊥CA交CA的延长线于H.在Rt△AHD1中,求出AH,HD1利用勾股定理即可解决问题.【解答】解:如图2中,作D1H⊥CA交CA的延长线于H.∵CA=CB,∠ACB=90°,AO=OB,∴OC⊥AB,OC=OA=OB=3,∴AC=3,∵D1H⊥CH,∴∠HCD1=90°,∵∠HCD1=∠ACB=45°,CD1=7,∴CH=HD1=,∴AH=CH﹣AC=,在Rt△AHD1中,AD1===5,故答案为5.三.解答题19.将下列各式因式分解:(1)m3n﹣9mn(2)a3+a﹣2a2【考点】55:提公因式法与公式法的综合运用.【专题】44:因式分解;66:运算能力.【分析】(1)原式提取公因式,再利用平方差公式分解即可;(2)原式提取公因式,再利用完全平方公式分解即可.【解答】解:(1)原式=mn(m2﹣9)=mn(m+3)(m﹣3);(2)原式=a(a2﹣2a+1)=a(a﹣1)2.20.解不等式组:,并把解集在数轴上表示出来.【考点】C4:在数轴上表示不等式的解集;CB:解一元一次不等式组.【专题】524:一元一次不等式(组)及应用.【分析】分别求出不等式组中两不等式的解集,找出解集的公共部分即可.【解答】解:,解不等式①,得x>﹣1,解不等式②,得x≤3,所以,原不等式组的解集为﹣1<x≤3,在数轴上表示为:.21.先化简(1﹣)÷,再从0,1,2中选择一个合适的x值代入求值.【考点】6D:分式的化简求值.【专题】513:分式;66:运算能力.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把x的值代入计算即可求出值.【解答】解:原式=•=•=,当x=0时,原式=.22.阅读下列题目的解题过程:已知a、b、c为△ABC的三边,且满足a2c2﹣b2c2=a4﹣b4,试判断△ABC的形状.解:∵a2c2﹣b2c2=a4﹣b4(A)∴c2(a2﹣b2)=(a2+b2)(a2﹣b2)(B)∴c2=a2+b2(C)∴△ABC是直角三角形问:(1)上述解题过程,从哪一步开始出现错误?请写出该步的代号:C;(2)错误的原因为:没有考虑a=b的情况;(3)本题正确的结论为:△ABC是等腰三角形或直角三角形或等腰直角三角形.【考点】59:因式分解的应用;KS:勾股定理的逆定理.【专题】1:常规题型.【分析】(1)根据题目中的书写步骤可以解答本题;(2)根据题目中B到C可知没有考虑a=b的情况;(3)根据题意可以写出正确的结论.【解答】解:(1)由题目中的解答步骤可得,错误步骤的代号为:C,故答案为:C;(2)错误的原因为:没有考虑a=b的情况,故答案为:没有考虑a=b的情况;(3)本题正确的结论为:△ABC是等腰三角形或直角三角形或等腰直角三角形,故答案为:△ABC是等腰三角形或直角三角形或等腰直角三角形.23.已知(如图),在四边形ABCD中AB=CD,过A作AE⊥BD交BD于点E,过C作CF⊥BD交BD于F,且AE=CF.求证:四边形ABCD是平行四边形.【考点】KD:全等三角形的判定与性质;L6:平行四边形的判定.【专题】555:多边形与平行四边形.【分析】只要证明AB∥CD即可解决问题.【解答】证明:∵AE⊥BD,CF⊥BD,∴∠AEB=∠CFD=90°,在Rt△ABE和Rt△CDF中,,∴Rt△ABE≌Rt△CDF,∴∠ABE=∠CDF,∴AB∥CD,∵AB=CD,∴四边形ABCD是平行四边形.24.如图,在平面直角坐标系中,已知△ABC的三个顶点坐标分别是A(2,﹣1)、B(1,﹣2)、C(3,﹣3).(1)将△ABC向上平移4个单位长度得到△A1B1C1,请画出△A1B1C1;(2)请画出与△ABC关于原点的中心对称的△A2B2C2;(3)请写出A1、A2的坐标.【考点】Q4:作图﹣平移变换;R8:作图﹣旋转变换.【专题】558:平移、旋转与对称;69:应用意识.【分析】(1)利用点平移的坐标变换规律写出A1、B1、C1的坐标,然后描点即可;(2)利用关于原点对称的点的坐标特征写出A2、B2、C2的坐标,然后描点即可;(3)由(1)、(2)得到A1、A2的坐标.【解答】解:(1)如图,△A1B1C1;为所作;(2)如图,△A2B2C2为所作;(3)A1的坐标为(2,3),A2的坐标(﹣2,1).25.某体育用品商店用4000元购进一批足球,全部售完后,又用3600元再次购进同样的足球,但这次每个足球的进价是第一次进价的1.2倍,且数量比第一次少了10个.求第一次每个足球的进价是多少元?【考点】B7:分式方程的应用.【专题】513:分式.【分析】设第一次每个足球的进价是x元,则第二次每个足球的进价是1.2x元,根据数量关系:第一次购进足球的数量﹣10个=第二次购进足球的数量,可得分式方程,然后求解即可.【解答】解:设第一次每个足球的进价是x元,则第二次每个足球的进价是1.2x元,根据题意得,﹣=10,解得:x=100,经检验:x=100是原方程的根,答:第一次每个足球的进价是100元.26.如图1,在平面直角坐标系中,直线y=﹣x+3与x轴、y轴相交于A、B两点,点C在线段OA上,将线段CB绕着点C顺时针旋转90°得到CD,此时点D恰好落在直线AB 上,过点D作DE⊥x轴于点E.(1)求证:△BOC≌△CED;(2)如图2,将△BCD沿x轴正方向平移得△B'C'D',当B'C'经过点D时,求△BCD平移的距离及点D的坐标;(3)若点P在y轴上,点Q在直线AB上,是否存在以C、D、P、Q为顶点的四边形是平行四边形?若存在,直接写出所有满足条件的P点的坐标;若不存在,请说明理由.【考点】FI:一次函数综合题.【专题】537:函数的综合应用.【分析】(1)利用同角的余角相等可得出∠OBC=∠ECD,由旋转的性质可得出BC=CD,结合∠BOC=∠CED=90°即可证出△BOC≌△CED(AAS);(2)利用一次函数图象上点的坐标特征可求出点B的坐标,设OC=m,则点D的坐标为(m+3,m),利用一次函数图象上点的坐标特征可求出m值,进而可得出点C,D的坐标,由点B,C的坐标,利用待定系数法可求出直线BC的解析式,结合B′C′∥BC及点D在直线B′C′上可求出直线B′C′的解析式,再利用一次函数图象上点的坐标特征可求出点C′的坐标,结合点C的坐标即可得出△BCD平移的距离;(3)设点P的坐标为(0,m),点Q的坐标为(n,﹣n+3),分CD为边及CD为对角线两种情况考虑,利用平行四边形的对角线互相平分,即可得出关于m,n的二元一次方程组,解之即可得出点P的坐标.【解答】(1)证明:∵∠BOC=∠BCD=∠CED=90°,∴∠OCB+∠OBC=90°,∠OCB+∠ECD=90°,∴∠OBC=∠ECD.∵将线段CB绕着点C顺时针旋转90°得到CD,∴BC=CD.在△BOC和△CED中,,∴△BOC≌△CED(AAS).(2)解:∵直线y=﹣x+3与x轴、y轴相交于A、B两点,∴点B的坐标为(0,3),点A的坐标为(6,0).设OC=m,∵△BOC≌△CED,∴OC=ED=m,BO=CE=3,∴点D的坐标为(m+3,m).∵点D在直线y=﹣x+3上,∴m=﹣(m+3)+3,解得:m=1,∴点D的坐标为(4,1),点C的坐标为(1,0).∵点B的坐标为(0,3),点C的坐标为(1,0),∴直线BC的解析式为y=﹣3x+3.设直线B′C′的解析式为y=﹣3x+b,将D(4,1)代入y=﹣3x+b,得:1=﹣3×4+b,解得:b=13,∴直线B′C′的解析式为y=﹣3x+13,∴点C′的坐标为(,0),∴CC′=﹣1=,∴△BCD平移的距离为.(3)解:设点P的坐标为(0,m),点Q的坐标为(n,﹣n+3).分两种情况考虑,如图3所示:①若CD为边,当四边形CDQP为平行四边形时,∵C(1,0),D(4,1),P(0,m),Q(n,﹣n+3),∴,解得:,∴点P1的坐标为(0,);当四边形CDPQ为平行四边形时,∵C(1,0),D(4,1),P(0,m),Q(n,﹣n+3),∴,解得:,∴点P2的坐标为(0,);②若CD为对角线,∵C(1,0),D(4,1),P(0,m),Q(n,﹣n+3),∴,解得:,∴点P的坐标为(0,).综上所述:存在,点P的坐标为(0,)或(0,).27.如图,四边形ABCD、BEFG均为正方形,(1)如图1,连接AG、CE,试判断AG和CE的数量关系和位置关系并证明;(2)将正方形BEFG绕点B顺时针旋转β角(0°<β<180°),如图2,连接AG、CE相交于点M,连接MB,当角β发生变化时,∠EMB的度数是否发生变化?若不变化,求出∠EMB的度数;若发生变化,请说明理由.(3)在(2)的条件下,过点A作AN⊥MB交MB的延长线于点N,请直接写出线段CM 与BN的数量关系:CM=BN.【考点】KD:全等三角形的判定与性质;LE:正方形的性质.【专题】15:综合题.【分析】(1)AG=EC,AG⊥EC,理由为:由正方形BEFG与正方形ABCD,利用正方形的性质得到两对边相等,一对直角相等,利用SAS得出三角形ABG与三角形CBE全等,利用全等三角形的对应边相等,对应角相等得到CE=AG,∠BCE=∠BAG,再利用同角的余角相等即可得证;(2)∠EMB的度数为45°,理由为:过B作BP⊥EC,BH⊥AM,利用SAS得出三角形ABG与三角形BEC全等,由全等三角形的面积相等得到两三角形面积相等,而AG=EC,可得出BP=BH,利用到角两边距离相等的点在角的平分线上得到BM为角平分线,再由∠BAG=∠BCE,及一对对顶角相等,得到∠AMC为直角,即∠AME为直角,利用角平分线定义即可得证;(3)CM=BN,在AN上截取NQ=NB,可得出三角形BNQ为等腰直角三角形,利用等腰直角三角形的性质得到BQ=BN,接下来证明BQ=CM,即要证明三角形ABQ 与三角形BCM全等,利用同角的余角相等得到一对角相等,再由三角形ANM为等腰直角三角形得到NA=NM,利用等式的性质得到AQ=BM,利用SAS可得出全等,根据全等三角形的对应边相等即可得证.【解答】解:(1)AG=EC,AG⊥EC,理由为:∵正方形BEFG,正方形ABCD,∴GB=BE,∠ABG=90°,AB=BC,∠ABC=90°,在△ABG和△BEC中,,∴△ABG≌△BEC(SAS),∴CE=AG,∠BCE=∠BAG,延长CE交AG于点M,∴∠BEC=∠AEM,∴∠ABC=∠AME=90°,∴AG=EC,AG⊥EC;(2)∠EMB的度数不发生变化,∠EMB的度数为45°理由为:过B作BP⊥EC,BH⊥AM,在△ABG和△CEB中,,∴△ABG≌△CEB(SAS),=S△EBC,AG=EC,∴S△ABG∴EC•BP=AG•BH,∴BP=BH,∴MB为∠EMG的平分线,∵∠AMC=∠ABC=90°,∴∠EMB=∠EMG=×90°=45°;(3)CM=BN,理由为:在NA上截取NQ=NB,连接BQ,∴△BNQ为等腰直角三角形,即BQ=BN,∵∠AMN=45°,∠N=90°,∴△AMN为等腰直角三角形,即AN=MN,∴MN﹣BN=AN﹣NQ,即AQ=BM,∵∠MBC+∠ABN=90°,∠BAN+∠ABN=90°,∴∠MBC=∠BAN,在△ABQ和△BCM中,,∴△ABQ≌△BCM(SAS),∴CM=BQ,则CM=BN.故答案为:CM=BN。
北师大版八年级下学期数学期末试卷含答案(共5套)

北师大版八年级下学期期末调研测试题一、选择题(本大题共12小题,每小题4分,共48分)1.“抛一枚均匀的硬币,落地后正面朝上”这一事件是()A.必然事件B.随机事件C.确定事件D.不可能事件2.下列条件中不能判断四边形是平行四边形的是()A.AB=CD,AD=BC B.AB=CD,AB∥CDC.AB=CD,AD∥BC D.AB∥CD,AD∥BC3.方程x(x+3)=0的根是()A.x=0B.x=-3C.x1=0,x2=3D.x1=0,x2=-34.某几何体的三视图如图所示,则这个几何体是()A.圆柱B.正方形C.球D.圆锥5.如图,在口ABCD中,过点C的直线CE⊥AB,垂足为E,∠EAD=53°,则∠BCE的度数为()A.37°B.47°C.53°D.127°EDAB C6.关于x的一元二次方程kx2+2x-1=0有两个不相等的实数根,则k的取值范围是()A.k>-1B.k≥-1C.k≠0D.k>-1且k≠07.同一时刻,小明在阳光下的影长为2米,与他邻近的旗杆的影长为6米,小明的身高为1.6米,则旗杆的高为()A.3.2米B.4.8米C.5.2米D.5.6米8.若菱形的周长为8cm,高为1cm,则菱形两邻角的度数比为()A.3∶1B.4∶1C.5∶1D.6∶19.下列各组图形可能不相似的是( )A .各有一个角是45°的两个等腰三角形B .各有一个角是60°的两个等腰三角形C .各有一个角是105°的两个等腰三角形D .两个等腰直角三角形10.如图,P 为口ABCD 的边AD 上的一点,E 、F 分别是PB 、PC 的中点,△PEF 、△PDC 、△P AB 的面积分别为S 、S 1、S 2,若S =3,则S 1+S 2的值是( ) A .3 B .6 C .12 D .2411.如图,正方形ABCD 的边长为3,点E 、F 分别在边BC 、CD 上,将AB 、AD 分别沿AE 、AF 折叠,点B 、D 恰好都落在点G 处,已知BE =1,则EF 的长为( )A .32B .52C .94D .312.如图,已知在Rt △ABC 中,AB =AC =2,在△ABC 内作第一个内接正方形DEFG ;然后取GF 的中点P ,连接PD 、PE ,在△PDE 内作第二个内接正方形HIKJ ,再取线段KJ 的中点Q ,在△QHI 内作第三个内接正方形……依次进行下去,则第n 个内接正方形的边长为( )A .23×(12)n -1B .223×(12)n -1C .23×(12)nD .223×(12)n二、填空题(本大题共6小题,每小题4分,共24分)13.一个多边形图案在一个有放大功能的复印机上复印出来,它的一条边由原来的1cm 变成了2cm ,那么它的面积会由原来的6cm 2变为___________.14.有一个正多边形的每一个外角都是60°,则这个多边形的边数是_______________.15.如图所示,直线a经过正方形ABCD的顶点A,分别过此正方形的顶点B、D作BF⊥a于点F、DE⊥a于点E,若DE=4,BF=3,则EF的长为____________.16.如图,已知菱形ABCD的对角线AC、BD的长分别为6cm、8cm,AE⊥BC于点E,则AE的长为____________.17.设a,b是方程x2+x-2017=0的两个不相等的实数根,则a2+2a+b的值为_________________.18.如图,菱形ABCD和菱形ECGF的边长分别为2和3,∠A=120°,则图中阴影部分的面积是___________________.三、解答题(本大题共9小题,共78分)19.解方程:(1)x2-2x-3=0; (2)x2-4x+1=020.如图,在口ABCD中,∠ABC的平分线交CD于点E,∠ADC的平分线交AB于点F.求证:BF=DE.21.小玲用下面的方法来测量学校教学大楼AB的高度:如图,在水平面上放一面平面镜,镜子与教学楼的距离EA=12米,当她与镜子的距离CE=2米时,她刚好能从镜子中看到教学楼的顶端B.已知她的眼睛距地面的高度DC=1.5米.请你帮助小玲计算出教学楼的高度AB是多少米(根据光的反射定律:反射角等于入射角.)22.某市为改善生态环境,积极开展向雾霾宣战,还碧水蓝天专项整治活动.已知2014年共投资1000万元,2016年共投资1210万元.(1)求2014年到2016年的平均增长率;(2)该市预计2017年的投资增长率与前两年相同,则2017年的投资预算是多少万元?23.小明和小丽用形状大小相同,面值不同的5张邮票设计了一个游戏,将面值1元、2元、3元的邮票各一张装入一个信封,面值4元、5元的邮票各一张装入另一个信封,游戏规定:分别从两个信封中各抽取1张邮票,若它们的面值和是偶数,则小明赢;若它们的面值之和是奇数,则小丽赢.请你判断这个游戏是否公平,并说明理由.24.如图1,将矩形ABCD沿DE折叠,使顶点A落在DC上的点A′处,然后将矩形展平,沿EF折叠,使顶点A落在折痕DE上的点G处,再将矩形ABCD沿CE折叠,此时顶点B恰好落在DE上的点H处,如图2.(1)求证:EG=CH;(2)已知AF=2,求AD和AB的长.25. 如图,在萎形ABCD中,F为边BC的中点,DF与对角线AC交于点M,过M作ME⊥CD于点E,∠1=∠2.(1)若CE=1,求BC的长;(2)求证:AM=DF+ME.26. 如图,在Rt△ABC中,∠B=90°,AC=60cm,∠A=60°,点D从点C出发沿CA方向以4cm/秒的速度匀速运动,同时点E从点A出发沿AB方向以2cm/秒的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D、E运动的时间是t(0<t≤15).过点D作DE⊥BC于点F,连接DE、EF.(1)求证:AE=DF;(2)四边形AEFD能够成为菱形吗?如果能,求出相应的t值;如果不能,说明理由;(3)当t为何值时,△DEF为直角三角形?请说明理由.27. 如图1,四边形ABHC与四边形ADEF是正方形,D、F分别在AB、AC边上,此时BD=CF,BD⊥CF成立.(1)当正方形ADEF绕点A逆时针旋转θ(0°<θ<90°)时,如图2,BD=CF成立吗?若成立,请证明;若不成立,请说明理由;(2)当正方形ADEF绕点A逆时针旋转45°时,如图3,延长BD交CF于点G,交AC于点M,求证:BD⊥CF;(3)在(2)的条件下,当AB=4,AD=2时,求线段CM的长.参考答案八年级第二学期期末考试数学试卷(北师大版)考试时间90分钟 满分100分一、选择题(每小题3分,共24分) 1.下列关于的方程:①;②;③;④();⑤1x =-1,其中一元二次方程的个数是( ) A .1 B .2 C .3 D .42.已知α为锐角,且sin(α-10°)=22,则α等于( )A .45°B .55°C .60°D .65°3.如图,是由6个棱长为1个单位的正方体摆放而成的,将正方体A 向右平移2个单位,向后平移1个单位后,所得几何体的视图( ) A.主视图改变,俯视图改变 B.主视图不变,俯视图不变 C.主视图不变,俯视图改变 D.主视图改变,俯视图不变4.二次函数y=ax 2+bx 的图象如图所示,若一元二次方程ax 2+bx+m=0有两个不相等的实数根,则整数m 的最小值为( )A .﹣3B .﹣2C .﹣1D .2(第4题图) (第5题图) (第6题图)5.如图,点A ,B ,C ,D 的坐标分别是(1,7),(1,1),(4,1),(6,1),以点C ,D ,E 为顶点的三角形与△ABC 相似,则点E 的坐标不可能是( )A .(6,0)B .(6,3)C .(6,5)D .(4,2) 6.如图,将一个长为,宽为 的矩形纸片先按照从左向右对折,再按照从下向上的方向对折,沿所得矩形两邻边中点的连线(虚线)剪下(如图(1)),再打开,得到如图(2)所示的小菱形的面积为( ) A. B. C. D.DCBA7.如图,平面直角坐标系中,直线y=﹣x+a与x、y轴的正半轴分别交于点B和点A,与反比例函数y=﹣的图象交于点C,若BA:AC=2:1,则a的值为( )A.2 B.﹣2 C.3 D.﹣38.观察二次函数y=ax2+bx+c(a≠0)的图象,下列四个结论:①4ac﹣b2>0;②4a+c<2b;③b+c<0;④n(an+b)﹣b<a(n≠1).正确结论的个数是()A. 4个 B. 3个 C. 2个 D. 1个(第7题图) (第8题图) (第12题图) (第13题图)二、填空题(每小题3分,共21分)9.计算:﹣14+﹣4cos30°= .10.在同一平面直角坐标系中,若一个反比例函数的图象与一次函数=-2+6y x 的图象无.公共点,则这个反比例函数的表达式是(只写出符合条件的一个即可).11.若关于x的一元二次方程..(m-2)x²+2x-1=0有实数根,求m的取值范围。
北师大版数学八年级下册期末考试试卷及答案

北师大版数学八年级下册期末考试试题一、选择题(每小题3分,共36分)1.下列图标中,可以看作既是轴对称图形又是中心对称图形的是( )A .B .C .D .2.使分式3x x -有意义的x 的取值范围是( )A .3x >B .3x ≠C .3x <D .0x ≠3.已知a b <,下列运用不等式基本性质变形不正确的是( )A .33a b -<-B .11++33a b <C .33a b <D .33a b-<-4.下列各式从左到右的变形中,属于因式分解的是( )A .()a m n am an+=+B .2221(1)x x x +-=-C .21055(21)x x x x -=-D .216+6(+4)(4)+6x x x x x-=-5.已知长方形的长和宽分别为a 和b ,其周长为4,则222a ab b ++的值为( )A .2B .4C .8D .166.如图,Rt △ABC 沿直角边所在直线向右平移12BC 的长度得到△DEF ,DE 交AC 于点G ,若AB =6,BC =8,则EG =( )A .3B .4C .4.5D .57.如图,在以BC 为底边的等腰△ABC 中,∠A =30°,AC =8,则△ABC 的面积是( )A .12B .16C .20D .248.如图,在等腰Rt △ABC 中,∠C =90°,AC =7,∠BAC 的角平分线AD 交BC 于点D ,则点D 到AB 的距离是( )A .3B .4C .7(21)-D .7(21)+9.有下列命题:①有一个角为60°的等腰三角形是等边三角形;②形三个顶点的距离相等;④平行四边形的对角线相等;⑤顺次连结任意四边形各边的中点组成的新四边形是平行四边形.正确的个数有( )A .4个B .3个C .2个D .1个10.如图是一次函数1y kx b =+与2y x a =+的图象,则不等式kx b x a ++<的解集是( )A .0x >B .0x <C .3x >D .3x <11.小明坐滴滴打车前去火车高铁站,小明可以选择两条不同线路:路线A 的全程是25千米,但交通比较拥堵,路线B 的全程比路线A 的全程多7千米,但平均车速比走路线A 时能提高60%,若走路线B 的全程能比走路线A 少用15分钟,若设走路线A 时的平均速度为x 千米/小时,根据题意,可列分式方程( )A .2532151.6x x-=B .3225151.6x x -=C .322511.64x x -=D .253211.64x x -=12.如图,□ABCD 中,点E 是AD 上一点,BE ⊥AB ,△ABE 沿BE 对折得到△BEG ,过点D 作DF ∥EG 交BC 于点F ,△DFC 沿DF 对折,点C 恰好与点G 重合,则AB AD 的值为( )A .12B .33C .22D .32二、填空题(每小题3分,共12分)13.因式分解:24x -=________.14.正五边形的每一个外角是________度.15.如图,在□ABCD 中,CD =2,∠B =60°,BE ∶EC =2∶1,依据尺规作图的痕迹,则□ABCD的面积为________.16.如图,在△ABC 中,∠BAC =90°,点D 是BC 的中点,点E 、F 分别是AB 、AC 上的动点,∠EDF =90°,M 、N 分别是MN 、AC 的中点,连结AM 、MN ,若AC =6,AB =5,则AM -MN 的最大值为________.三、解答题(共52分)17.(6分)解不等式组:313112123x x x x +-⎧⎪++⎨+⎪⎩<≤,并把解集表示在数轴上.18.(6分)解分式方程:21133x x x x -=--.19.(6分)先化简,再求值:22241a a a a a---÷+请从﹣2,﹣1,0,1,2中选择一个合适的数,求此分式的值.20.(7分)在平面直角坐标系中,△ABC 的位置如图所示(每个小方格都是边长为1个单位长度的正方形).(1)将△ABC 沿x 轴方向向左平移6个单位,画出平移后得到的△A 1B 1C 1;(2)将△ABC 绕着点A 顺时针旋转90°,画出旋转后得到的△AB 2C 2,并直接写出点B 2、C 2的坐标;(3)在平面内有一动点P,使得以P、A、B、C为顶点的四边形是平行四边形,满足条件的点P的个数为_______.21.(9分)为应对新冠疫情,某药店到厂家选购A、B两种品牌的医用外科口罩,B品牌口罩每个进价比A品牌口罩每个进价多0.7元,若用7200元购进A品牌数量是用5000元购进B品牌数量的2倍.(1)求A、B两种品牌的口罩每个进价分别为多少元?(2)若A品牌口罩每个售价为2元,B品牌口罩每个售价为3元,药店老板决定一次性购进A、B两种品牌口罩共6000个,在这批口罩全部出售后所获利润不低于1800元.则最少购进B品牌口罩多少个?22.(9分)如图,四边形ABCD中,BE⊥AC交AD于点G,DF⊥AC于点F,已知AF=CE,AB=CD.(1)求证:四边形ABCD是平行四边形;(2)如果∠GBC=∠BCD,AG=6,GE=2,求AB的长.23.(9分)如图,已知点A(﹣3,2),点B是x轴正半轴上一个动点,连接AB,以AB 为斜边在AB的上方构造等腰直角△ABC,连结DC.(1)当点B的坐标为(4,0)时,点C的坐标是_______;(2)当点B在x轴正半轴上运动的时候,点C是否在一直线上运动,如果是,请求出点C 所在直线的解析式;如果不是,请说明理由;(3)在B点的运动过程中,猜想DC与DB有怎样的数量关系,并证明你的结论.参考答案一、选择题:题号123456789101112选项A B D C B A B C B B D B二、填空题:题号13141516答案(2)(2)-+72335x x2三、解答题17.解集为:52-≤<-x18.x =3219.化简为12a +,当x =1时,原式=1320.(1)画图略(2)B 2(4,2-),C 2(1,3-)(3)321.(1)A 品牌口罩每个进价为1.8元,B 品牌口罩每个进价为2.5元(2)最少购进B 品牌口罩2000个22.(1)证△CFD ≌△AEB (HL ),证明略(2)运用勾股定理,AB=923.(1)过点C 作CF ⊥DA 交DA 延长线于F ,过B 作BE ⊥FC 交FC 延长线于E ,证△AFC ≌△CEB (AAS ),C (32,92)(2)点C 所在直线的解析式为:3y x =+(3)数量关系:2224BD CD =+。
北师大版八年级下册数学期末考试试卷及答案

北师大版八年级下册数学期末考试试题一、单选题1.下列图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.2.a、b 都是实数,且a<b,则下列不等式正确的是()A.a+x >b+x B.1-a<1-b C.5a <5b D.2a >2b 3.在平面直角坐标系内,将点M(3,1)先向上平移2个单位长度,再向右平移3个单位长度,则移动后的点的坐标是()A.(6,3)B.(6,﹣1)C.(0,3)D.(0,﹣1)有意义的x 的取值范围是()A.3x >B.3x <C.3x ≥D.3x ≤5.若()234a m a +-+能用完全平方公式进行因式分解,则常数m 的值是()A.1或5B.1C.-1D.7或1-6.如图,l∥m,等边三角形ABC 的顶点B 在直线m 上,∠1=20°,则∠2的度数为()A.60°B.45°C.40°D.30°7.函数y kx b =+的图象如图所示,则关于x 的不等式0kx b +≥的解集是()A.2x ≤B.2x ≥C.0x ≤D.0x ≥8.化简22a b a b a b ---的结果为()A.-a b B.a b +C.a ba b +-D.a ba b-+9.如图,点P 在∠AOB 的平分线上,PC⊥OA 于点C,∠AOB=30°,点D 在边OB 上,且OD=DP=2.则线段PC 的长度为()A.3B.2C.1D.1210.如图,边长为a ,b 的长方形,它的周长为14,面积为10,则22a b ab ab +-的值为()A.70B.60C.130D.14011.若正多边形的一个外角是72 ,则该正多边形的内角和为()A.360 B.540 C.720 D.90012.如图,E 是▱ABCD 的边DC 的延长线上一点,连接AE ,且AE DE =,若46E ∠=︒,则B Ð的度数为()A.65︒B.66︒C.67︒D.68︒二、填空题13.如图,在△ABC 中,EF 是△ABC 的中位线,且EF=5,则AC 等于________.14.把多项式x 2+ax +b 分解因式得(x+1)(x﹣3),则a-b 的值是_____.15.在ABCD 中,:3:5AB BC =,它的周长是32,则BC =______.16.关于x 的分式方程21122mx x x +-=--有增根,则m =______.三、解答题17.解不等式组:102332x x x ->⎧⎨-<-⎩18.先化简,再求值:22131369x xx x x -⎛⎫-÷ ⎪--+⎝⎭,其中2x =19.因式分解:(1)2222416a x a y -;(2)()2(21)6219x x ---+.20.如图,ABC 和BDE 是等边三角形,连接AD 、CE .求证:ABD △≌CBE △.21.如图,已知平行四边形ABCD 的对角线AC 和BD 交于点O ,且28AC BD +=,12BC =,求AOD ∆的周长.22.如图,在ABC 中,4AB =,7BC =,60B ∠=︒,将ABC 绕点A 顺时针旋转一定角度得到ADE ,当点B 的对应点D 恰好落在BC 边上时,求CD 的长.23.如图,等腰ABC 中,AB AC =,120BAC ∠=︒,AD AB ⊥交BC 于点D ,2AD =,求BC 的长.24.△ABC 在平面直角坐标系中的位置如图所示,其中每个小正方形的边长为1个单位长度.(1)画出△ABC关于原点O的中心对称图形△A1B1C1;(2)写出中心对称图形△A1B1C1的顶点坐标.25.已知:如图A、C是▱DEBF的对角线EF所在直线上的两点,且AE=CF.求证:四边形ABCD是平行四边形.26.为满足防护新冠疫情需要,现有甲乙两种机器同时开工制造口罩.甲加工90个口罩所用的时间与乙加工120个口罩所用的时间相等,已知甲乙两种机器每秒钟共加工35个口罩,求甲乙两种机器每秒各加工多少个口罩?27.某校为了开展“阳光体育运动”,计划购买篮球、足球共60个,已知每个篮球的价格为70元,每个足球的价格为80元.(1)若购买这两类球的总金额为4600元,求篮球、足球各买了多少个?(2)若购买篮球的总金额不超过购买足球的总金额,求最多可购买多少个篮球?28.如图,ABCD 的对角线,AC BD 相交于点,,6,10O AB AC AB cm BC cm ⊥==,点P 从点A 出发,沿AD 方向以每秒1cm 的速度向终点D 运动,连接PO ,并延长交BC 于点Q .设点P 的运动时间为t 秒.(1)求BQ 的长(用含t 的代数式表示);(2)当四边形ABQP 是平行四边形时,求t 的值;(3)当325t =时,点O 是否在线段AP 的垂直平分线上?请说明理由.参考答案1.C【详解】解:A、不是轴对称图形,是中心对称图形,故本选项不符合题意;B、是轴对称图形,不是中心对称图形,故本选项不符合题意;C、既是轴对称图形,又是中心对称图形,故本选项符合题意;D、不是轴对称图形,是中心对称图形(不考虑颜色),故本选项不符合题意;故选:C.2.C【详解】解:A.∵a<b,∴a+x<b+x,计算错误;B.∵a<b,∴-a>-b,∴1-a>1-b,计算错误;C.∵a<b,∴5a<5b,计算正确;D.∵a<b,∴22a b <,计算错误.故答案为:C.【点睛】本题主要考查不等式的基本性质,熟练掌握不等式得基本性质是解题的关键.3.A【解析】【分析】横坐标右移加,左移减;纵坐标上移加,下移减;依此即可求解.【详解】解:3+3=6,1+2=3.故点M 平移后的坐标为(6,3).故选:A.【点睛】本题主要考查坐标与图形变化-平移.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.4.A【解析】【分析】根据二次根式有意义的条件和分式有意义的条件,由被开方数大于等于0,分母不等于0即可求解.【详解】解:根据二次根式的性质,被开方数x-3≥0,解得x≥3,≠,即x-3≠0,解得x≠3有意义的x的取值范围是3x>.故选A.【点睛】本题主要考查了二次根式有意义的条件和分式有意义的条件.二次根式中被开方数必须是非负数,否则二次根式无意义,当二次根式在分母上时,还要考虑分母不等于零.5.D【解析】【分析】直接利用完全平方公式进而分解因式得出答案.【详解】解:∵a2+(m-3)a+4能用完全平方公式进行因式分解,∴m-3=±4,解得:m=-1或7.故选:D.【点睛】本题考查了公式法分解因式,熟练掌握完全平方公式的结构特点是解题的关键.6.C【详解】解:过C作CM∥直线l,∵△ABC是等边三角形,∴∠ACB=60°,过C作CM∥直线l,∵直线l∥直线m,∴直线l∥直线m∥CM,∵∠ACB=60°,∠1=20°,∴∠1=∠MCB=20°,∴∠2=∠ACM=∠ACB-∠MCB=60°-20°=40°.故选:C.【点睛】本题考查的是平行线的性质,用到的知识点为:两直线平行,内错角相等.7.A【详解】解:由图可知,当x≤2时,kx+b≥0.故选:A.8.B【详解】解:22a b a b a b---22a b a b-=-()()a b a b a b+-=-a b =+,故选:B .9.C【详解】解:如图,过点P 作PE⊥OB 于E,∵∠AOB=30°,点P 在∠AOB 的平分线上,∴∠AOP=∠POB=15°,∵OD=DP=2,∴∠OPD=∠POB=15°,∴∠PDE=30°,∴PE=12PD=1,∵OP 平分∠AOB,PC⊥OA,PE⊥OB,∴PC=PE=1,故选:C.【点睛】此题考查的是角平分线的性质和直角三角形30°所对的边等于斜边的一半的应用、等腰三角形的性质,掌握角平分线上的点到角的两边距离相等和直角三角形30°所对的边是斜边的一半是解题关键.10.B【解析】【分析】先根据长方形的周长和面积得出a+b 和ab 的值,再将22a b ab ab +-的前两项提出ab,然后代入求出即可.【详解】解:∵边长为a ,b 的长方形,它的周长为14,面积为10,∴a+b=7,ab=10,∴()22=+a b ab ab ab a b ab+--=10710⨯-=60故选:B【点睛】本题既考查了对因式分解方法的掌握,又考查了代数式求值的方法,同时还隐含了数学整体思想和正确运算的能力.11.B【解析】【分析】先根据正多边形的外角和为360°求出边数,然后再运用多边形的内角和公式解答即可.【详解】解:多边形的边数为360°÷72°=5则多边形的内角和为:(5-2)×180°=540°.故答案为B.【点睛】本题考查了正多边形的每一个外角都相等、多边形的外角和为360°以及多边形的内角和公式,求得正多边形的边数和掌握多边形内角和公式是解答本题的关键.12.C【解析】【分析】根据平行四边形的性质得到∠B=∠D,再由等腰三角形的性质与三角形的内角和定理求出∠D 即可得到答案.【详解】解:∵四边形ABCD 是平行四边形,∴∠B=∠D,∵AE=DE,∴∠D=∠DAE,∵∠E=46°,∠E+∠D+∠DAE=180°,∴()1=180=672D E ∠-∠ ∴∠B=67°.故选C.【点睛】本题主要考查了平行四边形的性质,等腰三角形的性质,三角形内角和定理,解题的关键在于能够熟练掌握相关知识进行求解.13.10【解析】【分析】根据三角形中位线定理即可求出AC.【详解】解:在△ABC中,∵EF是△ABC的中位线,∴EF=12 AC,∴AC=2EF,∵EF=5,∴AC=2×5=10,故答案为:10.【点睛】本题主要考查了三角形中位线定理,熟记三角形的中位线等于第三边的一半是解决问题的关键.14.1【解析】【分析】把因式分解后的式子展开即可得出答案.【详解】∵()()21323x x x x +-=--又()()213x x x ax b+-=++∴23a b ,=-=-∴1a b -=故答案为1.【点睛】本题考查的是因式分解,属于基础题型,解题关键是因式分解后的式子展开后与原式对应项系数相等.15.10【解析】【分析】设3,5AB x BC x ==,然后根据周长等于32列方程.【详解】解:设3,5AB x BC x==由题意得,()23532x x +=解得2x =所以BC=10.故答案为10.【点睛】本题主要考查了运用方程解决实际问题,利用平行四边形的周长,求边长.16.5【解析】【分析】根据已知有增根,即使分式方程分母为0的根,即满足x-2=0;解题中分式方程,先通分,再去分母,化成整式方程后,用x 表示出未知参数m,最后将x 的值代入即可求得m 的值.【详解】解:分式方程有增根20x ∴-=得:x=221122m x x x +-=--通分得:()2112m x x -+=-去分母得:212m x x --=-化简得:31m x =-将x=2代入得m=5故答案为5.【点睛】这道题考察的是分式方程增根的概念和分式方程未知参数的解法.解决这类题的关键在于:确定增根,化分为整,增根代入.17.1x >【解析】【分析】分别把两个不等式的解集求出来,再借助数轴求出两个解集的公共部分,即得不等式组的解集.【详解】解不等式(1)得:1x >解不等式(2)得:1x >-两个解集在数轴上表示如下:∴不等式组的解集为:1x >【点睛】本题考查了解不等式组及利用数轴求不等式组的解集.18.4xx -,1【解析】【分析】先根据分式的混合运算法则进行化简,再把x【详解】解:原式()213(3)33x x x x x -+-=⋅--4xx-=当x =时,原式1=.【点睛】本题考查了分式的化简求值以及分母有理化,熟练掌握运算法则是解题的关键19.(1)()()2422ax y x y -+;(2)()242x -【解析】【分析】(1)先提取公因式,再用平方差公式分解即可;(2)先用完全平方公式分解,再提取公因式即可.【详解】解:(1)2222416a x a y-=()22246ax y -=()()2422a x y x y -+;(2)()2(21)6219x x ---+=2(213)x --=()242x -.【点睛】本题考查了因式分解,解题关键是熟练运用提取公因式和公式法进行因式分解,注意:因式分解要彻底.20.见解析.【解析】【分析】由等边三角形性质得到AB=BC,BD=BE,∠ABC=∠DBE=60°,从而有∠ABD=∠CBE ,即可得到结论【详解】证明:∵ABC 和BDE 是等边三角形∴60ABC DBE ∠=∠=︒∴ABC DBC DBE DBC∠-∠=∠-∠∴ABD CBE∠=∠又∵AB BC =,BD BE =,∴在ABD △和CBE △中AB BC ABD CBE BD BE =⎧⎪∠=∠⎨⎪=⎩∴ABD △≌CBE △()SAS 【点睛】本题考查了全等三角形的判定,以及等边三角形的性质,熟练掌握全等三角形的判定定理是解题关键.21.26【解析】【分析】根据平行四边形对角线互相平分的性质,由28AC BD +=,得到14AO OD +=,再根据平行四边形对边相等得到12AD BC ==,最后算出AOD ∆的周长.【详解】解:∵四边形ABCD是平行四边形,∴AO CO =,BO DO =,∵28AC BD +=,∴14AO OD +=,∵12AD BC ==,∴AOD ∆的周长141226AO OD AD =++=+=.本题考查平行四边形的性质,解题的关键是熟练掌握平行四边形的性质.22.3【解析】【分析】由旋转的性质可证得ABD △是等边三角形,则可求得BD 的长,再利用线段的和差即可求得答案.【详解】解:∵将ABC 绕点A 顺时针旋转一定角度得到ADE ,∴4AD AB ==.∵60B ∠=︒,∴ABD △是等边三角形,∴4BD AD AB ===,∴743CD BC AD =-=-=.【点睛】本题考查了旋转的性质、等边三角形的判定和性质、线段的和差等,证得ABD △是等边三角形是解题的关键.23.6BC =【解析】【分析】由题意易得∠B=∠C=30°,进而可得∠CAD=∠C=30°,则有2CD AD ==,由含30°的直角三角形的性质可得BD=4,进而问题可求解.解:∵AB AC =,120BAC ∠=︒,∴()1180302B C BAC ∠=∠=︒-∠=︒,∵AD AB ⊥,∴90BAD ∠=︒,∴1209030CAD BAC BAD C ∠=∠-∠=︒-︒=︒=∠,∴2CD AD ==,在Rt BAD 中,30B ∠=︒,∴24BD AD ==,∴426BC BD CD =+=+=.【点睛】本题主要考查等腰三角形的性质与判定及含30°的直角三角形的性质,熟练掌握等腰三角形的性质与判定及含30°的直角三角形的性质是解题的关键.24.(1)画图见解析;(2)A 1(1,-2),B 1(3,-3),C 1(4,0)【解析】【分析】(1)依据中心对称的性质,即可得到△ABC 关于原点O 的中心对称图形△A 1B 1C 1;(2)根据图象可得各点坐标.【详解】解:(1)如图所示:(2)由图可知:A 1(1,-2),B 1(3,-3),C 1(4,0).【点睛】本题主要考查了作图—中心对称,掌握中心对称的性质是解决问题的关键.25.证明见解析【解析】【分析】根据平行四边形和平行线的性质,推导得DEA BFC ∠=∠,DFC BEA ∠=∠;根据全等三角形的判定和性质,证明DEA BFC △≌△、DFC BEA △≌△,得AD BC =、CD AB =,即可完成证明.【详解】证明:∵平行四边形DEBF,∴//DE BF ,//DF BE ,∴DEF BFE ∠=∠,DFE BEF ∠=∠,∵180DEF DEA ∠+∠=︒,180BFE BFC ∠+∠=︒,180DFE DFC ∠+∠=︒,180BEF BEA ∠+∠=︒,∴DEA BFC ∠=∠,DFC BEA ∠=∠,∵平行四边形DEBF,∴DE BF =,DF BE =,在DEA △和BFC △中,DE BF DEA BFC AE CF =⎧⎪∠=∠⎨⎪=⎩∴DEA BFC △≌△,∴AD BC =,在DFC △和BEA △中,DF BE DFC BEA AE CF =⎧⎪∠=∠⎨⎪=⎩∴DFC BEA △≌△,∴CD AB =,∴四边形ABCD 是平行四边形.【点睛】本题考查了平行四边形、平行线、全等三角形的知识;解题的关键是熟练掌握平行四边形、全等三角形的判定和性质,从而完成求解.26.甲每秒加工口罩15个,乙每秒加工口罩20个.【解析】【分析】设甲每秒加工口罩x 个,则乙每秒加工口罩35-x 个.再根据题意可列出关于x 的分式方程,求解即可.【详解】设甲每秒加工口罩x 个,则乙每秒加工口罩35-x 个.根据题意可列方程9012035x x=-.解得:15x =,经检验15x =是原方程的解.故甲每秒加工口罩15个,乙每秒加工口罩35-15=20个.【点睛】本题考查分式方程的实际应用.根据题意列出等量关系式是解答本题的关键.27.(1)篮球、足球各买了20个,40个;(2)最多可购买篮球32个.【解析】【分析】(1)设篮球、足球各买了x ,y 个,根据等量关系:篮球、足球共60个,篮球、足球共用4600元,列出方程组,解方程组即可得;(2)设购买了a 个篮球,根据购买篮球的总金额不超过购买足球的总金额,列出不等式进行求解即可.【详解】(1)设篮球、足球各买了x ,y 个,根据题意,得6070804600x y x y +=⎧⎨+=⎩,解得2040 xy=⎧⎨=⎩,答:篮球、足球各买了20个,40个;(2)设购买了a个篮球,根据题意,得()708060a a≤-,解得32a≤,∴最多可购买篮球32个.【点睛】本题考查了二元一次方程组的应用,一元一次不等式的应用,弄清题意,找准等量关系或不等关系列出方程或不等式是解题的关键.28.(1)10-t;(2)5秒;(3)见解析【解析】【分析】(1)先证明△APO≌△CQO,可得出AP=CQ=t,则BQ即可用t表示;(2)由题意知AP∥BQ,根据AP=BQ,列出方程即可得解;(3)过点O作直线EF⊥AP,垂足为E,与BC交于F,利用三角形面积公式求出EF,得到OE,利用勾股定理求出AE,再说明AP=2AE即可.【详解】解:(1)∵四边形ABCD是平行四边形,∴OA=OC,AD∥BC,∴∠PAO=∠QCO,∵∠AOP=∠COQ,∴△APO≌△CQO(ASA),∴AP=CQ=t,∵BC=10,∴BQ=10-t;(2)∵AP∥BQ,当AP=BQ时,四边形ABQP是平行四边形,即t=10-t,解得:t=5,∴当t为5秒时,四边形ABQP是平行四边形;(3)过点O作直线EF⊥AP,垂足为E,与BC交于F,在Rt△ABC中,∵AB=6,BC=10,,∴AO=CO=12AC=4,∵S△ABC=12AB AC⋅=12BC EF⋅,∴AB•AC=BC•EF,∴6×8=10×EF,∴EF=24 5,∴OE=125,165,当325t=时,AP=325,∴2AE=AP,即点E是AP中点,∴点O在线段AP的垂直平分线上.【点睛】本题考查了平行四边形的性质、全等三角形的判定与性质、勾股定理,垂直平分线的判定等知识,解题的关键是灵活运用所学知识解决问题,学会利用参数解决问题.。
北师大版八年级下册数学期末考试试题含答案

北师大版八年级下册数学期末考试试卷一、选择题,每小题2分,共24分.1.(2分)下列各式由左边到右边的变形,属于因式分解的是()A.(x+1)(x﹣1)=x2﹣1B.x2+2x+1=x(x+2)+1C.a2﹣4b2=(a+2b)(a﹣2b)D.a(x﹣y)=ax﹣ay2.(2分)如图,在平行四边形ABCD中,下列结论中错误的是()A.∠1=∠2B.∠BAD=∠BCD C.AB=CD D.AC⊥BD3.(2分)当x=2时,下列各式的值为0的是()A.B.C.D.4.(2分)下列图形是中心对称图形的是()A.B.C.D.5.(2分)不等式组的解表示在数轴上,正确的是()A.B.C.D.6.(2分)若将中的字母x、y的值分别扩大为原来的4倍,则分式的值()A.扩大为原来的4倍B.缩小为原来的C.缩小为原来的D.不变7.(2分)如图,平行四边形ABCD中,∠A的平分线AE交CD于E,AB=6,BC=4,则EC的长()A.1B.1.5C.2D.38.(2分)解关于x的方程:=+3会产生增根,则常数m的值等于()A.5B.﹣1C.1D.69.(2分)如图,已知直线y1=ax+b与y2=mx+n相交于点A(2,﹣1),若y1>y2,则x的取值范围是()A.x<2B.x>2C.x<﹣1D.x>﹣110.(2分)如图△ABC是等腰直角三角形,BC是斜边,将△ABP绕点A逆时针旋转后,能与△ACP′重合,已知AP=3,则PP′的长度是()A.3B.C.D.411.(2分)如图,在△ABC中,∠C=90°,AD平分∠BAC,DE⊥AB于E,有下列结论:①CD=ED;②AC+BE=AB;③∠BDE=∠BAC;④AD平分∠CDE;其中正确的是()个.A.1B.2C.3D.412.(2分)已知关于x的不等式组的整数解共有6个,则a的取值范围是()A.﹣6<a<﹣5B.﹣6≤a<﹣5C.﹣6<a≤﹣5D.﹣6≤a≤﹣5二、填空题(共5小题,每小题3分,满分15分)13.(3分)因式分解:a3﹣a=.14.(3分)计算:(ab﹣b2)÷=.15.(3分)已知x2﹣(m﹣2)x+49是完全平方式,则m=.16.(3分)如图,已知∠AOB=60°,点P在边OA上,OP=12,点M,N在边OB上,PM=PN,若MN=2,则OM=.17.(3分)有一张一个角为30°,最小变长为4的直角三角形纸片,沿图中所示的中位线剪开后,将两部分拼成一个四边形,所得四边形的周长是.三、解答题18.(10分)(1)解不等式3(x﹣1)<5x+2,并在数轴上表示解集.(2)解方程:=﹣.19.(6分)先化简再求值:,其中.20.(6分)在如图所示的方格纸中,△ABC,△A1B1C1,△A2B2C2的顶点及O、P、Q都在格点上(每个小方格的顶点叫格点)(1)△ABC经过一种变换可以得到△A1B1C1;(填“平移”或“旋转”或“轴对称”)(2)△A2B2C2可由△A1B1C1经过一次旋转变换得到的,其旋转中心是(填:“O”或“P”或“Q”)旋转角是度;(3)画出△ABC绕点O逆时针旋转90°后的△A3B3C3.21.(6分)如图,已知四边形ABCD是平行四边形,AE⊥BD于点E,CF⊥BD于点F,连接AF、CE,试判断四边形AECF是什么样的四边形?写出你的结论并予以证明.22.(8分)阅读理解:把多项式am+an+bm+bn分解因式.解法一:am+an+bm+bn=(am+an)+(bm+bn)=a(m+n)+b(m+n)=(m+n)(a+b)解法二:am+an+bm+bn=(am+bm)+(an+bn)=m(a+b)+n(a+b)=(m+n)(a+b)观察上述因式分解的过程,回答下列问题:(1)分解因式:m2x﹣3m+mnx﹣3n;(2)已知:a,b,c为△ABC的三边,且a3﹣a2b+5ac﹣5bc=0,试判断△ABC的形状.23.(7分)如图,在△ABC中,∠BAC的平分线是AP,PQ是线段BC的垂直平分线,PN⊥AB于N,PM⊥AC于M.求证:BN=CM.24.(8分)由于受金融危机的影响,某店经销的甲型号手机今年的售价比去年每台降价500元.如果卖出相同数量的手机,那么去年销售额为8万元,今年销售额只有6万元.(1)今年甲型号手机每台售价为多少元?(2)为了提高利润,该店计划购进乙型号手机销售,已知甲型号手机每台进价为1000元,乙型号手机每台进价为800元,预计用不多于1.84万元且不少于1.76万元的资金购进这两种手机共20台,请问有几种进货方案?25.(10分)已知△ABC是等边三角形,D是BC边上的一个动点(点D不与B,C重合)△ADF是以AD为边的等边三角形过点F作BC的平行线交射线AC于点E,连接BF (1)如图1,若△ABC的边长是2,求△ADF的最小面积;(2)如图1,求证:△AFB≌△ADC';(3)如图2,若D点在BC边的延长线上,其它条件不变,请判断四边形BCEF的形状,并说明理由.参考答案与试题解析一、选择题,每小题2分,共24分.1.(2分)(2016春•市北区期末)下列各式由左边到右边的变形,属于因式分解的是()A.(x+1)(x﹣1)=x2﹣1B.x2+2x+1=x(x+2)+1C.a2﹣4b2=(a+2b)(a﹣2b)D.a(x﹣y)=ax﹣ay【分析】依据因式分解的定义判断即可.【解答】解:A、(x+1)(x﹣1)=x2﹣1,从左边到右边的变形属于整式的乘法,故A错误;B、x2+2x+1=x(x+2)+1,右边不是几个因式的积的形式,故B错误;C、a2﹣4b2=(a+2b)(a﹣2b)是因式分解,故C正确;D、(x﹣y)=ax﹣ay,从左边到右边的变形属于整式的乘法,故D错误.故选:C.【点评】本题主要考查的是因式分解的意义,掌握因式分解的定义是解题的关键.2.(2分)(2013•益阳)如图,在平行四边形ABCD中,下列结论中错误的是()A.∠1=∠2B.∠BAD=∠BCD C.AB=CD D.AC⊥BD【分析】根据平行四边形的性质,平行四边形对边平行以及对边相等和对角相等分别判断得出即可.【解答】解:∵在平行四边形ABCD中,∴AB∥CD,∴∠1=∠2,(故A选项正确,不合题意);∵四边形ABCD是平行四边形,∴∠BAD=∠BCD,(故B选项正确,不合题意);AB=CD,(故C选项正确,不合题意);无法得出AC⊥BD,(故D选项错误,符合题意).故选:D.【点评】此题主要考查了平行四边形的性质,熟练掌握相关的性质是解题关键.3.(2分)(2010•开县校级模拟)当x=2时,下列各式的值为0的是()A.B.C.D.【分析】根据分式的值为零的条件进行判断.【解答】解:A、当x=2时,x2﹣3x+2=0,由于分式的分母不能为0,故A错误;B、当x=2时,x﹣2=0,分式的分母为0,故B错误;C、当x=2时,2x﹣4=0,且x﹣9≠0;故C正确;D、当x=2时,原式=4≠0,故D错误;故选C.【点评】若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.4.(2分)(2016春•雅安期末)下列图形是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、不是中心对称图形;B、是中心对称图形;C、不是中心对称图形;D、不是中心对称图形.故选:B.【点评】本题考查的是中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.5.(2分)(2016春•雅安期末)不等式组的解表示在数轴上,正确的是()A.B.C.D.【分析】先解不等式组求得解集,再在数轴上表示出来.【解答】解:解不等式组得﹣1<x≤2,所以在数轴上表示为故选D.【点评】不等式组解集在数轴上的表示方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.6.(2分)(2016春•雅安期末)若将中的字母x、y的值分别扩大为原来的4倍,则分式的值()A.扩大为原来的4倍B.缩小为原来的C.缩小为原来的D.不变【分析】根据分式的分子分母都乘或除以同一个不为零的整式,分式的值不变,可得答案.【解答】解:将中的字母x、y的值分别扩大为原来的4倍,则分式的值缩小为原来的,故选:C.【点评】本题考查了分式的性质,分式的分子分母都乘以或除以同一个不为零的数或者整式,分式的值不变.7.(2分)(2016春•雅安期末)如图,平行四边形ABCD中,∠A的平分线AE交CD于E,AB=6,BC=4,则EC的长()A.1B.1.5C.2D.3【分析】根据平行四边形的性质及AE为角平分线可知:BC=AD=DE=4,又有CD=AB=6,可求EC的长.【解答】解:根据平行四边形的对边相等,得:CD=AB=6,AD=BC=4.根据平行四边形的对边平行,得:CD∥AB,∴∠AED=∠BAE,又∠DAE=∠BAE,∴∠DAE=∠AED.∴ED=AD=4,∴EC=CD﹣ED=6﹣4=2.故选C.【点评】本题主要考查了平行四边形的性质,在平行四边形中,当出现角平分线时,一般可构造等腰三角形,进而利用等腰三角形的性质解题.8.(2分)(2016春•雅安期末)解关于x的方程:=+3会产生增根,则常数m的值等于()A.5B.﹣1C.1D.6【分析】分式方程去分母转化为整式方程,由分式方程有增根,得到x﹣1=0,求出x的值,代入整式方程求出m的值即可.【解答】解:去分母得:x+5=m+3x﹣3,由分式方程有增根,得到x﹣1=0,即x=1,把x=1代入整式方程得:6=m+3﹣3,解得:m=6,故选D【点评】此题考查了分式方程的增根,增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.9.(2分)(2016春•雅安期末)如图,已知直线y1=ax+b与y2=mx+n相交于点A(2,﹣1),若y1>y2,则x的取值范围是()A.x<2B.x>2C.x<﹣1D.x>﹣1【分析】观察函数图象得到当x>2时,直线y1=ax+b都在直线y2=mx+n的上方,即有y1>y2.【解答】解:根据题意当x>2时,若y1>y2.故选B.【点评】本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=ax+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.10.(2分)(2016春•龙岗区期末)如图△ABC是等腰直角三角形,BC是斜边,将△ABP 绕点A逆时针旋转后,能与△ACP′重合,已知AP=3,则PP′的长度是()A.3B.C.D.4【分析】根据旋转前后的图形全等,即可得出△APP'等腰直角三角形,再根据等腰直角三角形的性质,进行计算即可.【解答】解:∵△ACP′是由△ABP绕点A逆时针旋转后得到的,∴△ACP′≌△ABP,∴AP=AP′,∠BAP=∠CAP′.∵∠BAC=90°,∴∠PAP′=90°,故可得出△APP'是等腰直角三角形,又∵AP=3,∴PP′=3.故选B.【点评】此题考查了旋转的性质,解答本题的关键是掌握旋转前后对应边相等、对应角相等,另外要掌握等腰三角形的性质,难度一般.11.(2分)(2016春•雅安期末)如图,在△ABC中,∠C=90°,AD平分∠BAC,DE⊥AB 于E,有下列结论:①CD=ED;②AC+BE=AB;③∠BDE=∠BAC;④AD平分∠CDE;其中正确的是()个.A.1B.2C.3D.4【分析】根据角平分线上的点到角的两边距离相等可得CD=DE,再利用“HL”证明Rt△ACD 和Rt△AED全等,根据全等三角形对应边相等可得AC=AE,∠ADC=∠ADE,然后对各小题分析判断即可得解.【解答】解:∵∠C=90°,AD平分∠BAC,DE⊥AB,∴CD=DE,故①正确;在Rt△ACD和Rt△AED中,,∴Rt△ACD≌Rt△AED(HL),∴AC=AE,∠ADC=∠ADE,∴AC+BE=AE+BE=AB,故②正确;AD平分∠CDE,故④正确;∵∠B+∠BAC=90°,∠B+∠BDE=90°,∴∠BDE=∠BAC,故③正确;综上所述,结论正确的是①②③④共4个.故选D.【点评】本题考查了角平分线上的点到角的两边距离相等的性质,全等三角形的判定与性质,熟记性质并确定出全等三角形是解题的关键.12.(2分)(2016春•雅安期末)已知关于x的不等式组的整数解共有6个,则a的取值范围是()A.﹣6<a<﹣5B.﹣6≤a<﹣5C.﹣6<a≤﹣5D.﹣6≤a≤﹣5【分析】先解不等式组,然后根据有6个整数解,求出a的取值范围.【解答】解:解不等式x﹣a>0得:x>a,解不等式2﹣2x>0得,x<1,则不等式组的解集为a<x<1,∵不等式组有6个整数解,∴﹣6≤a<5.故选B.【点评】此题考查的是一元一次不等式的解法,求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.二、填空题(共5小题,每小题3分,满分15分)13.(3分)(2016•安徽)因式分解:a3﹣a=a(a+1)(a﹣1).【分析】原式提取a,再利用平方差公式分解即可.【解答】解:原式=a(a2﹣1)=a(a+1)(a﹣1),故答案为:a(a+1)(a﹣1)【点评】此题考查了提公因式与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.14.(3分)(2016春•雅安期末)计算:(ab﹣b2)÷=ab2.【分析】原式利用除法法则变形,约分即可得到结果.【解答】解:原式=b(a﹣b)•=ab2.故答案为:ab2.【点评】此题考查了分式的乘除法,熟练掌握运算法则是解本题的关键.15.(3分)(2016春•雅安期末)已知x2﹣(m﹣2)x+49是完全平方式,则m=16或﹣12.【分析】先根据两平方项确定出这两个数,再根据完全平方公式的乘积二倍项即可确定m 的值.【解答】解:∵x2﹣(m﹣2)x+49=x2﹣(m﹣2)x+72,∴﹣(m﹣2)x=±2x•7,解得m=16或m=﹣12.故答案为:16或﹣12.【点评】本题主要考查了完全平方式,根据平方项确定出这两个数是解题的关键,也是难点,熟记完全平方公式对解题非常重要.16.(3分)(2015•澄海区一模)如图,已知∠AOB=60°,点P在边OA上,OP=12,点M,N在边OB上,PM=PN,若MN=2,则OM=5.【分析】过P作PD⊥OB,交OB于点D,在直角三角形POD中,利用锐角三角函数定义求出OD的长,再由PM=PN,利用三线合一得到D为MN中点,根据MN求出MD的长,由OD﹣MD即可求出OM的长.【解答】解:过P作PD⊥OB,交OB于点D,在Rt△OPD中,cos60°==,OP=12,∴OD=6,∵PM=PN,PD⊥MN,MN=2,∴MD=ND=MN=1,∴OM=OD﹣MD=6﹣1=5.故答案为:5.【点评】此题考查的是勾股定理,含30度直角三角形的性质,等腰三角形的性质等知识,熟练掌握直角三角形的性质是解本题的关键.17.(3分)(2016春•雅安期末)有一张一个角为30°,最小变长为4的直角三角形纸片,沿图中所示的中位线剪开后,将两部分拼成一个四边形,所得四边形的周长是8+4或16.【分析】根据三角函数可以计算出BC=8,AC=4,再根据中位线的性质可得CD=AD=,CF=BF=4,DF=2,然后拼图,出现两种情况,一种是拼成一个矩形,另一种拼成一个平行四边形,进而算出周长即可.【解答】解:由题意可得:AB=4,∵∠C=30°,∴BC=8,AC=4,∵图中所示的中位线剪开,∴CD=AD=2,CF=BF=4,DF=2,如图1所示:拼成一个矩形,矩形周长为:2+2+4+2+2=8+4;如图2所示,可以拼成一个平行四边形,周长为:4+4+4+4=16,故答案为:8+4或16.【点评】此题主要考查了图形的剪拼,关键是根据画出图形,要考虑全面,不要漏解.三、解答题18.(10分)(2016春•雅安期末)(1)解不等式3(x﹣1)<5x+2,并在数轴上表示解集.(2)解方程:=﹣.【分析】(1)不等式去括号,移项合并,把x系数化为1,求出解集,表示在数轴上即可;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)去括号得:3x﹣3<5x+2,移项合并得:2x>﹣5,解得:x>﹣2.5,;(2)去分母得:15x﹣12=4x+10﹣3x+6,移项合并得:14x=28,解得:x=2,经检验x=2是增根,分式方程无解.【点评】此题考查了解分式方程,以及解一元一次不等式,熟练掌握运算法则是解本题的关键.19.(6分)(2016春•雅安期末)先化简再求值:,其中.【分析】先把分子分母因式分解,再约分得到原式=x﹣1,然后把x的值代入计算即可.【解答】解:原式=•﹣1=x﹣1,当x=+1时,原式=+1﹣1=.【点评】本题考查了分式的化简求值:先把分式化简后,再把分式中未知数对应的值代入求出分式的值.在化简的过程中要注意运算顺序和分式的化简.化简的最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.20.(6分)(2016春•雅安期末)在如图所示的方格纸中,△ABC,△A1B1C1,△A2B2C2的顶点及O、P、Q都在格点上(每个小方格的顶点叫格点)(1)△ABC经过一种平移变换可以得到△A1B1C1;(填“平移”或“旋转”或“轴对称”)(2)△A2B2C2可由△A1B1C1经过一次旋转变换得到的,其旋转中心是O(填:“O”或“P”或“Q”)旋转角是90度;(3)画出△ABC绕点O逆时针旋转90°后的△A3B3C3.【分析】(1)根据图形结合平移变换的性质解答;(2)根据旋转的性质,对应点的连线的垂直平分线的交点即为旋转中心;(3)根据网格结构找出点A、B、C绕点O逆时针旋转90°后的对应点A3、B3、C3的位置,然后顺次连接即可.【解答】解:(1)△ABC经过一种平移变换可以得到△A1B1C1;(2)△A2B2C2可由△A1B1C1经过一次旋转变换得到的,其旋转中心是O,旋转角是90度;(3)如图所示△A3B3C3.故答案为:(1)平移;(2)O,90.【点评】本题考查了利用旋转变换作图,平移变换的性质,以及旋转变换的性质熟练掌握各性质是解题的关键.21.(6分)(2016春•雅安期末)如图,已知四边形ABCD是平行四边形,AE⊥BD于点E,CF⊥BD于点F,连接AF、CE,试判断四边形AECF是什么样的四边形?写出你的结论并予以证明.【分析】根据垂直的定义得出∠AEF=∠CFE=90°,利用内错角相等两直线平行可得AE∥CF,再根据平行四边形的性质证明△ABE≌△CDF,根据全等三角形对应边相等可得AE=CF,然后根据有一组对边平行且相等的四边形是平行四边形即可证明.【解答】解:四边形AECF是平行四边形.理由如下:∵AE⊥BD于点E,CF⊥BD于点F,∴∠AEF=∠CFE=90°,∴AE∥CF(内错角相等,两直线平行),在平行四边形ABCD中,AB=CD,AB∥CD,∴∠ABE=∠CDF,在△ABE与△CDF中,,∴△ABE≌△CDF(AAS),∴AE=CF,∴四边形AECF是平行四边形(有一组对边平行且相等的四边形是平行四边形).【点评】本题考查了平行四边形的性质与判定,全等三角形的判定与性质,利用三角形全等证明得到AE=CF是解题的关键.22.(8分)(2016春•雅安期末)阅读理解:把多项式am+an+bm+bn分解因式.解法一:am+an+bm+bn=(am+an)+(bm+bn)=a(m+n)+b(m+n)=(m+n)(a+b)解法二:am+an+bm+bn=(am+bm)+(an+bn)=m(a+b)+n(a+b)=(m+n)(a+b)观察上述因式分解的过程,回答下列问题:(1)分解因式:m2x﹣3m+mnx﹣3n;(2)已知:a,b,c为△ABC的三边,且a3﹣a2b+5ac﹣5bc=0,试判断△ABC的形状.【分析】(1)首先将原式前两项和后两项分组,进而提取公因式分解因式即可得出答案;(2)首先将原式前两项和后两项分组,进而提取公因式分解因式即可得出a,b关系,进而得出△ABC的形状.【解答】解:(1)m2x﹣3m+mnx﹣3n=m(mx﹣3)+n(mx﹣3)=(mx﹣3)(m+n);(2)∵a3﹣a2b+5ac﹣5bc=0,∴a2(a﹣b)+5c(a﹣b)=0,∴(a﹣b)(a2+5c)=0,∵a,b,c为△ABC的三边,∴a2+5c≠0,∴a﹣b=0,∴a=b,∴△ABC是等腰三角形.【点评】此题主要考查了分组分解法的应用,正确将原式分组是解题关键.23.(7分)(2016春•雅安期末)如图,在△ABC中,∠BAC的平分线是AP,PQ是线段BC的垂直平分线,PN⊥AB于N,PM⊥AC于M.求证:BN=CM.【分析】连接PB、PC,根据角平分线上的点到角的两边距离相等可得PM=PN,再根据线段垂直平分线上的点到线段两端点的距离相等可得PB=PC,然后利用“HL”证明Rt△PMC和Rt△PNB全等,最后根据全等三角形对应边相等证明即可.【解答】证明:如图,连接PB、PC,∵AP是∠BAC的平分线,PN⊥AB于N,PM⊥AC于M,∴PM=PN,∠PMC=∠PNB=90°,∵PQ是线段BC的垂直平分线,∴PB=PC,在Rt△PMC和Rt△PNB中,,∴Rt△PMC≌Rt△PNB(HL),∴BN=CM.【点评】本题考查了全等三角形的判定与性质,角平分线上的点到角的两边距离相等的性质,线段垂直平分线上的点到线段两端点的距离相等的性质,熟记各性质并作辅助线构造出全等三角形是解题的关键.24.(8分)(2012•淮安模拟)由于受金融危机的影响,某店经销的甲型号手机今年的售价比去年每台降价500元.如果卖出相同数量的手机,那么去年销售额为8万元,今年销售额只有6万元.(1)今年甲型号手机每台售价为多少元?(2)为了提高利润,该店计划购进乙型号手机销售,已知甲型号手机每台进价为1000元,乙型号手机每台进价为800元,预计用不多于1.84万元且不少于1.76万元的资金购进这两种手机共20台,请问有几种进货方案?【分析】(1)先设今年甲型号手机每台售价为x元,根据题意列出方程,解出x的值,再进行检验,即可得出答案;(2)先设购进甲型号手机m台,根据题意列出不等式组,求出m的取值范围,即可得出进货方案.【解答】解:(1)设今年甲型号手机每台售价为x元,由题意得,=,解得x=1500,经检验x=1500是方程的解,答:今年甲型号手机每台售价为1500元.(2)设购进甲型号手机m台,则乙型号手机(20﹣m)台,由题意得,,解得:8≤m≤12,因为m只能取整数,所以m取8、9、10、11、12,共有5种进货方案,方案1:购进甲型号手机8台,乙型号手机12台;方案2:购进甲型号手机9台,乙型号手机11台;方案3:购进甲型号手机10台,乙型号手机10台;方案4:购进甲型号手机11台,乙型号手机9台;方案5:购进甲型号手机12台,乙型号手机8台.【点评】此题考查了一元一次不等式组的应用,要能根据题意列出不等式组,关键是根据不等式组的解集求出所有的进货方案,注意解分式方程要检验,是一道实际问题.25.(10分)(2016春•雅安期末)已知△ABC是等边三角形,D是BC边上的一个动点(点D不与B,C重合)△ADF是以AD为边的等边三角形过点F作BC的平行线交射线AC于点E,连接BF(1)如图1,若△ABC的边长是2,求△ADF的最小面积;(2)如图1,求证:△AFB≌△ADC';(3)如图2,若D点在BC边的延长线上,其它条件不变,请判断四边形BCEF的形状,并说明理由.【分析】(1)根据题意得到当AD⊥BC时,△ADF的面积最小,根据等边三角形的性质得到AD=,然后根据三角形的面积公式即可得到结论;(2)利用有两条边对应相等并且夹角相等的两个三角形全等即可证明△AFB≌△ADC;(3)根据等边三角形的性质得到AF=AD,AB=AC,∠FAD=∠BAC=60°,可得∠FAB=∠DAC,根据全等三角形的性质得到∠ABF=∠ADC,进而求得∠AFB=∠EAF,求得BF∥AE,又BC∥EF,从而证得四边形BCEF是平行四边形.【解答】解:(1)由题意得当AD⊥BC时,AD最小,即△ADF的面积最小,∵△ABC是等边三角形,∴BC=2,BD=CD=1,∴AD=,∵△ADF是等边三角形,∴△ADF的最小面积=;(2)∵△ABC和△ADF都是等边三角形,∴AF=AD,AB=AC,∠FAD=∠BAC=60°,又∵∠FAB=∠FAD﹣∠BAD,∠DAC=∠BAC﹣∠BAD,∴∠FAB=∠DAC,在△AFB和△ADC中,,∴△AFB≌△ADC(SAS);(3)∵△ABC和△ADE都是等边三角形,∴AF=AD,AB=AC,∠FAD=∠BAC=60°,又∵∠FAB=∠FAD﹣∠BAD,∠DAC=∠BAC﹣∠BAD,∴∠FAB=∠DAC,在△AFB和△ADC中,,∴△AFB≌△ADC(SAS);∴∠AFB=∠ADC.又∵∠ADC+∠DAC=60°,∠EAF+∠DAC=60°,∴∠ADC=∠EAF,∴∠AFB=∠EAF,∴BF∥AE,又∵BC∥EF,∴四边形BCEF是平行四边形.【点评】本题考查了等边三角形的性质、全等三角形的判定和性质以及平行四边形的判定,熟练掌握性质、定理是解题的关键.。
八年级数学下册期末考试卷附答案(北师大版)

八年级数学下册期末考试卷附答案(北师大版)(满分:120分;考试时间:120分钟)一.单选题。
(每小题4分,共40分)1.下列图形中,既是轴对称图形,又是中心对称图形的是( )2.若x >y ,则下列不等式一定成立的是( )A.x+4>y+6B.x -8<y -8C.x9>y9 D.﹣a >﹣b 3.下列各式:①3x ;②a+b 4;③y 3y ;④xyπ+2,其中是分式的是( )A.①③B.③④C.①②D.①②③④ 4.关于x 的方程5x x -2=ax -2+1有增根,则a 的值是( )A.0B.2或3C.2D.3 5.如果把5a a+b中的a ,b 同时扩大10倍,那么这个代数式的值( )A.不变B.扩大50倍C.扩大10倍D.缩小大原来的1106.如图,在四边形ABCD 中,AB ∥CD ,要使四边形ABCD 是平行四边形,下列添加的条件不正确的是( )A.AB=CDB.BC=ADC.∠A=∠CD.BC ∥AD(第6题图) (第7题图) (第8题图) 7.如图,正五边形ABCDE 中,连接BE ,则∠ABE 的度数为( ) A.30° B.36° C.54° D.72°8.如图,一个长为2,宽为1的长方形以所示姿态从直线l的左侧水平平移至右侧(图中的虚线是水平线),其中,平移的距离是()A.1B.2C.3D.2√29.若不等式组{x<1x<a的解集是x<a,则a的取值范围是()A.a≤1B.a=1C.a≥1D.a<1二.填空题。
(每小题4分,共24分)11.因式分解:a2-6a= .12.若分式x+1x-1的值为0,则x的值是 .13.如图,正方形AMNP的边AM在正五边形ABCDE的边AB上,则∠PAE等于 .(第13题图)(第15题图)(第16题图)14.若不等式(a-4)x>1的解集是x<1a-4,则m的取值范围是 .15.如图,在平行四边形ABCD中,CE平分∠BCD,若CD=5,BC=3,则AE的长是 .16.如图,点A的坐标为(1,3),点B在x轴上,把△OAB沿x轴向右平移到△ECD,若四边形ABDC的面积为15,则点C的坐标为 .三.解答题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级数学下册期末测试卷及答案(北师大版)
(满分:120分;考试时间:120分钟)
一.单选题。
(每小题4分,共40分)
1.下列图形的设计中,属于中心对称图形的是( )
2.下列因式分解正确的是( )
A.x 2-4=(x -4)(x+4)
B.2x 3-2xy 2=2x (x+y )(x -y )
C.x 2+y 2=(x+y )2
D.x 2-2x+1=x (x -2)+1 3.若分式x
x+7有意义,则x 的取值范围是( )
A.x ≠7
B.x ≠0
C.x ≠﹣1
7 D.x ≠﹣7 4.如图,在平行四边形ABCD 中,∠B=60°,则∠D 等于( ) A.60° B.120° C.140° D.30°
(第4题图) (第7题图) 5.不等式组{
2-x ≤1
2x +3>x +6
的解集在数轴上表示正确的是( )
6.计算
m 2
m -1
-
2m -1m -1
的结果是( )
A.m+1
B.m -1
C.m -2
D.﹣m -2
7.如图,OP 平分∠MON ,PA ⊥ON 于点A ,点Q 是射线OM 上的一个动点,若PA=4,则PQ 的最
小值是()
A.2√3
B.2
C.4
D.4√3
8.不能判定四边形是平行四边形的条件是()
A.两组对边分别平行
B.一组对边平行另一组对边相等
C.一组对边平行且相等
D.两组对边分别相等
(第9题图)(第10题图)
A.3√2
B.4
C.5
D.√31
二.填空题。
(每小题4分,共24分)
11.因式分解:2x2-2y2 .
12.点A(﹣2,3)与点B(a,b)关于坐标原点对称,则a+b= .
13.如图,在平面直角坐标系中,若直线y
1=﹣2x+a与直线y
2
=bx-4相交于点P(1,﹣3),则
关于x的不等式﹣2x+a<bx-4的解集是 .
(第13题图)(第16题图)
14.关于x的方程x2-2x+m有实数根,则m的取值范围是 .
15.已知1x -1y =3,则
2x+7xy -2y x -2xy -y
的值为 .
16.如图,在△ABC 中,∠C=90°,AC=6,BC=8,点D 在边AB 上,DE ⊥AC ,DF ⊥BC ,垂足分别为E ,F ,连接EF ,则线段EF 的最小值等于 . 三.解答题。
17.(6分)(1)解不等式:
1-2x 3
<
4-3x 6
,并把它的解集表示在数轴上.
(2)解不等式组:{x -1
2>﹣13(x -1)<x +1
,并写出不等式组的整数解.
18.(6分)因式分解
(1)4a 2-36 (2)2x 2
y -8xy+8y
19.(6分)先化简再求值:(1+1x -2
)÷
x 2-2x+1x 2-4
,然后从﹣2,﹣1,0,1,2中选择一个你喜
欢的数代入求值.
20.(8分)解方程:3x -2
-
1-x 2-x
=1
21.(8分)如图,在平行四边形ABCD中,E,F是对角线BD上的点,且BE=DF,求证:四边形AECF是平行四边形.
参考答案
一.单选题。
(每小题4分,共40分)
1.【答案】C
2.【答案】B
3.【答案】D
4.【答案】A
5.【答案】B
6.【答案】B
7.【答案】C
8.【答案】B
9.【答案】D 10.【答案】C 二.填空题。
(每小题4分,共24分)
11.【答案】2(x+y)(x -y). 12.【答案】﹣1. 13.【答案】x >1. 14.【答案】m ≤1. 15.【答案】﹣1
5. 1
6.【答案】4.8. 三.解答题。
17.(6分)(1)解不等式:
1-2x 3
<
4-3x 6
,并把它的解集表示在数轴上.
解:2-4x <4-3x x >﹣2
(2)解不等式组:{x -1
2>﹣1①3(x -1)<x +1②
,并写出不等式组的整数解.
解不等式①得x >﹣1 解不等式②得x <2
不等式组解集为﹣1<x <2 整数解:0,1
18.(6分)因式分解
(1)4a 2-36 (2)2x 2y -8xy+8y =4(a 2-9) =2y (x 2-4x+4) =4(a+3)(a -3) =2y (x -2)2
19.(6分)先化简再求值:(1+1x -2
)÷
x 2-2x+1x 2-4
,然后从﹣2,﹣1,0,1,2中选择一个你喜
欢的数代入求值. 解原式=x -1x -2×(x+2)(x -2)(x -1)
2
=
x+2x -1
将x=0代入得﹣2
20.(8分)解方程:
3x -2
-
1-x 2-x
=1
解:3+1-x=x -2 x=3
经检验x=3是原方程的解
21.(8分)如图,在平行四边形ABCD 中,E ,F 是对角线BD 上的点,且BE=DF ,求证:四边形AECF 是平行四边形.
证明:∵四边形ABCD 是平行四边形 ∴AB=CD ,AB ∥CD ∴∠ABE=∠CDF ∵BE=DF
∴△ABE ≌△CDF ∴AE=CF
同理可得AF=CE
∴四边形AECF 是平行四边形
(1)(﹣1,4)
(2)(4,﹣2)
(3)(﹣4,﹣4)
(1)解设B类足球单价为x元,则A类足球的单价为1.5x元
3000 x -3000
1.5x
=20
x=50
经检验x=50是原方程的根
1.5x=75元
(2)设A类足球购买a个,则B类足球购买(200-a)个50(200-a)+75a≤12000
a≤80
最多购买80个
(1)∵AE∥BC
∴∠B=∠DAE,∠C=∠CAE ∵AE平分∠DAC
∴∠DAE=∠CAE
∴∠B=∠C AB=AC
∴△ABC是等腰三角形(2)32
(1)∵AF∥BC
∴∠AFE=∠DBE
∵E是AD的中点
∴AE=DE
∵∠FEA=∠BED
∴△AEF≌△DEB
(2)∵△AEF≌△DEB
∴AF=BD
第 11 页 共 11 页 ∵D 是BC 的中点
∴BD=CD
∴AF=CD
∵AF ∥BC
四边形ADCF 是平行四边形 ∵∠BAC=90°,D 是BC 中点 ∴AD=CD
∴四边形ADCF 是菱形
(3)10
(1)∵四边形ABCD 是平行四边形 ∴AD ∥BC ,OA=OC
∴∠PAO=∠QCO ,∠APO=∠CQP 所以△APO ≌△CQO
∴AP=CQ
(2)3
(3)92或32或3√32。