三重积分的计算方法
三重积分的几种计算方法

z z=1
解:先对 z 积分,将
向 xy 平面投影.
z= x2+y2
z= x2+y2
x2+y2=1
z=1
z=1
y
0
1
x
Dxy
D: x2+y2≤1
z z=1
z= x2+y2
y
0
1
x
Dxy
f(x,y,z)dxdydz
1 1d x1 1 xx 22d yx 1 2y2f(x,y,z)d z
其中 ={(x, y, z) | x2+y2+z2≤1, z≥0}.
解:x2+y2+z2=1 r=1
z
用 = 截 得 D()
而 0≤ ≤2 故
0
x
y
原积分
rc o s r2sid n rd d
*
02dr3cossindrd D()
x
0
dxdy02xycoxs(z)dz
y y y x
D
0 2d x0xd y0 2 xyco x sz)d (z
D
x
0
2
2 1
16 2
z
Dxz
y=y1(x, z) y=y2(x, z)
0
x
y
f(x,y,z)dxdydz
dxdzy2(x,z)f(x,y,z)dy
与三个坐标面所围闭区域.
解: D(x): 0≤ y ≤1–x, 0≤ z ≤ 1xy
z
1
0
x1
x:0≤x≤1
xdxdydz01xdxD(x
三重积分计算法

如图,将 设 如图 将 向xoy面投影, 面投影 得 D xy ,以 D xy 的边界为准 以 线母线平行于z轴的柱面 线母线平行于 轴的柱面 分为下上两个边界: 把 分为下上两个边界:
O
z
z = z2 ( x, y) z2 S2
z = z1 ( x , y ) , z = z2 ( x , y )
0
xdz
= ∫ dx ∫
0
1 0
D 1
= ∫ xdx ∫
1 x 2 0 1 x 2 0
dy ∫
1 x 2 y
0
xdz
(1 x 2 y )dy
1 1 1 2 3 = ∫ ( x 2 x + x )dx = 4 0 48
例2 将 ∫∫∫ f (x, y, z)dv 化为直角坐标系下的
三次积分, 三次积分,其中 是由平面 x+y+z=1, + += , x+y=1,x=0,y=0,z=1围成的区域。 + = , = , = , = 围成的区域 围成的区域。 解 , 的投影 Dxy 是x+y=1, y
Dρθ
1(
2 ( ρ,θ )
, )
f (ρ cosθ, ρ sinθ, z)dz
若 Dρθ : ρ1 (θ ) ≤ ρ ≤ ρ2 (θ ) , α ≤ θ ≤ β 则三重积分化为柱面坐标的三次积分:
∫∫∫ f ( x, y, z )dv
= ∫ dθ ∫
α
β
ρ 2 (θ ) ρ1 (θ )
ρd ρ ∫
∫∫∫ f ( x , y, z )dv = ∫∫ [∫
Dxy
z2 ( x , y ) z1 ( x , y )
f ( x , y , z )dz ]dxdy
三重积分的计算

f (x, y, z)dxdydz
b
dx
y2 ( x)dy
z2 ( x, y) f ( x, y, z)dz
a y1 ( x) z1 ( x, y)
上式是先对 z,次对 y,最后对 x 的三次积分.
注: 类似地,空间区域 还有 yz 型和 zx 型的.
当 是 xy 型或 yz 型或 zx 型空间区域时,都 可以把三重积分按先“定积分”后“二重积分” 的步骤来计算.
y, z)dV
lim
0
i
1
f(
i
,
i
,
i)
Vi
其中dV 称为体积元素.
若 f ( x, y,z) 在有界闭区域上连续,则 f ( x, y,z) 在上 的
三重积分必定存在.
注: 1. f ( x, y, z)dV f ( x, y, z) dxdydz ,
直角坐标系下的体积元素
2. dxdydz 的体积 ( f ( x, y, z) 1 ).
xdxdydz
0
dx 0
2
dy 0
xdz
1
xdx
0
1 x
2 (1
0
x 2 y)dy
1 4
1
(x
2x2
x3
)dx
0
1. 48
例 2. 计算三重积分 I ycos( x z)dxdydz ,
其中 是由抛物柱面 y
x z 所围成的区域.
2
x 及平面 y 0, z 0,
z
2
n
m
lim
0
i
( i
1
,i
,
i
)Vi
三重积分的定义
三重积分及其计算

三重积分及其计算三重积分是对三维空间内的函数进行积分运算。
它在物理、工程、计算机图形学等领域中有广泛的应用。
本文将介绍三重积分的概念、计算方法以及一些常见的应用。
一、三重积分的定义在直角坐标系中,设函数f(x,y,z)在体积为V的闭区域D上连续,将V分割成许多小体积ΔV,取P_i(x_i,y_i,z_i)为小体积ΔV中的任一点,使ΔV_i=f(P_i)ΔV,其中f(P_i)是P_i点上的函数值。
三重积分的定义为:\[\iiint\limits_{V} f(x, y, z) dV = \lim_{\,\Delta V_i\,\to 0}\sum\limits_{i=1}^{n} f(P_i) \Delta V_i \]其中,\(\Delta V_i\)表示小体积的体积,n为分割的小体积数量。
二、三重积分的计算方法根据三重积分的定义,可以推导出以下三种计算方法:直接计算、分离变量法和坐标变换法。
1.直接计算法直接计算法较为繁琐,适用于函数f(x,y,z)的表达式较简单的情况。
将积分区域V分成若干个小区域,然后对每个小区域使用定积分的计算方法进行计算,最后将所有小区域的积分值相加即可。
2.分离变量法当函数f(x,y,z)具有可分离变量性质时,可以使用分离变量法来简化积分计算。
即假设有f(x,y,z)=g(x)h(y)k(z),则有:\[\int\int\int f(x, y, z) dV = \int g(x)dx \int h(y)dy \int k(z)dz\]3.坐标变换法当函数f(x,y,z)在直角坐标系中表达较为复杂时,可以通过坐标变换将其转换为其他坐标系,从而简化积分计算。
常用的坐标变换方法包括球坐标、柱坐标和三角代换等。
具体的变换公式可参考相关数学教材。
三、常见的应用三重积分在物理、工程和计算机图形学等领域中有广泛的应用。
以下列举几个常见的应用。
1.物理学在物理学中,三重积分常用于计算物体的质量、质心和转动惯量等。
三重积分的计算

方法2. 切片法 (“先二后一”)
设空间闭区域 ( x, y, z ) ( x, y ) D( z ), c1 z c2 ,
z
其中 D ( z ) 是用平面 z=z 截闭区域
所得的平面闭区域,则有
c2 dz c1
c2
z
c1
Dz
c1
f ( x, y, z)dv
D( z )
f ( x, y, z)dxdy.
o
x
y
(先二后一法) (切片法)
例1.计算 xdxdydz , 其中为三个坐标面
及平面x y z 1所围成的闭区域。
z
1
o
1
1
y
x
2 2 2 2 求由两个旋转抛物面 z 3 x y 和 z 5 x y 例2 的 x 0, y 0 部分所围成的立体区域 的体积.
2 2
点到 z 轴的距离 成正比,求其 质量 m 。
解:密度函数 ( x, y, z ) k x 2 y 2 (k 0) ,则
m k x 2 y 2 dxdydz 。
z
y z 4
x y 16
在 xoy 平面上的投影区域为
2
2
4
o x
Dxy {( x, y) x 2 y 2 16} ,
z1 ( x, y ) z z 2 ( x, y ) : ( x, y ) D 细长柱体微元的质量为
z2 ( x, y ) z ( x, y ) f ( x, y, z )d z d xd y 1 该物体的质量为
z z2 ( x, y )
三重积分

知识结构图1、三重积分概念理解三重积分的概念是要注意⑴若1),,(=z y x f 时,则⎰⎰⎰=vv dv z y x f ),,(,其中|v|为V 的体积。
例:利用三重积分计算下列由曲面所围成的立体体积:1) 226y x z --=及)(22y x z +=;2)az z y x 2222=++(a>0)及222z y x =+(含有Z 轴的部分) 3) )(22y x z +=及22y x z += 4))5(22y x z --=及z y x 422=+⑵三重积分的物理意义:若V 是某物体所占有的空间闭区域,连续函数),,(z y x f 为该物体的密度函数,则三重积分⎰⎰⎰vdv z y x f ),,(的值等与该物体的质量。
例1:设有一物体,占有空间闭区域}10,10,10|),,{(≤≤≤≤≤≤=Ωz y x z y x ,在点),,(z y x 处的密度为z y x z y x ++=),,(ρ,计算该物体的质量。
例2:球心在原点、半径为R 的球体,在任意一点的密度的大小与这点到球心的距离成正比,求这球体的质量。
2、三重积分的计算方法一、利用直角坐标进行三重积分 投影法步骤为:以平行与坐标轴的直线穿过区域V 的边界曲面而定,先穿过的为下限后穿过的为上限,确定的积分限,完成“先一”这一步(定积分);进而按二重积分的计算步骤计算投影域D 上的二重积分,完成“后二”这一步。
围成的闭区域。
例:计算三重积分⎰⎰⎰Ω=zdxdydz I,其中Ω为平面1=++z y x 与三个坐标面0,0,0===z y x解:画出Ω及在xoy 面投影域D.“穿线”y x z --≤≤10X 型D :xy x -≤≤≤≤1010 ∴Ω:yx z xy x --≤≤-≤≤≤≤10101三重积分概念三重积分 存在性三重积分 计算利用球面坐标计算三重积分利用直角坐标计算三重积分利用柱面坐标计算三重积⎰⎰⎰⎰⎰⎰⎰⎰⎰-----Ω+---=--===101032210101010102]31)1()1[(21)1(21dx y y x y x dy y x dx zdz dydx zdxdydz I x x y x x241]4123[61)1(6110410323=-+-=-=⎰x x x x dx x截面法步骤为:计算区域上的二重积分 ,完成“先二”这一步(二重积分);进而计算定积分,完成“后一”这一步。
三重积分的几种计算方法

例5. 计算 zdxdydz,
其中 ={(x, y, z) | x2+y2+z2≤1, z≥0}.
解:x2+y2+z2=1 r=1
z
用 = 截 得 D()
而 0≤ ≤2 故
0
x
y
原积分
r cos r 2sindrdd
*
2
0 d
r 3cos sin drd
D ( )
z x 0
2
0 d
z
z=z2(x, y)
f (x, y, z)dxdydz
y
[ z2 (x,y) f (x, y, z)dz]dxdy
z=z1(x, y)
D z1 ( x, y)
D
y=y2(x)
0
a y=y1(x) b
x
设 D 为 在 xy 平面上投影区域.
dxdy z2 (x,y) f (x, y, z)dz
z
x2 y2
.
4
y 原积分
a
r 2 r 2 sin drdd *
2
0 d
r 4sindrd
D( )
z
y
a
x
2
0 d
r 4sindrd
D( )
2
0
d
4
0
sin d
0ar
4dr
z
1a5 (2 2)
r=a
5
4
例7. 计算 f (x, y, z)dxdydz,表为球坐标系中的三 次积分,其中 为x2+y2+(z1)2≤1.
0
y= OPsin = rsin sin
yy
z= r cos
三重积分的计算及重积分的应用

三重积分的计算及重积分的应用三重积分是在三维空间中计算一些函数在一个有界区域内的体积的方法。
它是对二重积分的一种扩展,可以应用于多种问题中,包括物理、工程和数学等领域。
本文将从三重积分的计算方法开始,然后介绍一些三重积分的应用,以及如何解决这些应用问题。
一、三重积分的计算方法要计算三重积分,首先需要定义积分的坐标系和被积函数。
常用的坐标系有直角坐标系、柱坐标系和球坐标系。
选择合适的坐标系可以简化计算过程。
被积函数通常是一个连续函数或分段连续函数,也可以是具有一些特殊性质的函数,如奇函数或偶函数。
在直角坐标系中,三重积分的一般形式为∭f(x,y,z)dV,其中f(x,y,z)是被积函数,dV表示元体积元素。
元体积元素可以表示为dx dy dz,也可以写成其他坐标系对应的形式。
根据积分的定义,三重积分可以分解为对三个变量的依次积分。
具体方法为,先对z进行积分,然后再对y进行积分,最后对x进行积分。
以直角坐标系为例,三重积分可以表示为∭f(x,y,z)dxdydz。
其中,积分范围为对每个变量的积分范围进行限定。
对被积函数的积分范围的限定可以通过对空间区域的几何性质进行分析得到。
常见的限定方式有矩形区域和曲线边界。
根据具体问题,可以采用不同的方法来确定积分限定条件。
计算三重积分时,可以选择适当的计算工具,如数值积分、符号计算软件或计算机程序,并利用计算机进行数值计算。
三重积分在许多领域都有广泛的应用。
以下将介绍几个常见的应用以及解决这些应用问题的方法。
1.计算物体体积三重积分可以用于计算复杂形状的物体的体积。
通过将物体分解为无穷小的体积元素,然后对每个体积元素进行积分,最后将所有体积元素的积分结果相加,就可以得到整个物体的体积。
例如,计算一个以球面为上下界的圆锥体的体积。
首先可以选择球坐标系,然后确定积分限定条件,如半径和角度范围。
然后将球坐标系下的体积元素转换为直角坐标系下的体积元素进行积分。
最后将所有体积元素的积分结果相加,即可得到圆锥体的体积。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三重积分的计算方法
计算三重积分的方法主要包括直接计算、分离变量法和曲面边界法。
下面将对这些方法逐一介绍。
1. 直接计算法:
首先要确定积分的积分区域,并将其表示为三个变量的范围。
然后,可以选择合适的坐标系来描述该区域,并将被积函数转化为所选坐标系中的函数表达式。
下一步,可以将积分区域分成小块,对每一个小块进行积分。
当小块足够小的时候,可以近似将积分区域看作是直角坐标系中的长方体,这样就可以直接应用三重积分的定义式进行计算。
2. 分离变量法:
分离变量法适用于被积函数可以分离成三个变量的乘积形式
的情况。
首先,将被积函数分别对三个变量进行积分,得到三个独立的一重积分。
然后,将这些一重积分结果相乘,即可得到三重积分的值。
3. 曲面边界法:
曲面边界法适用于积分区域可以被曲面围成的情况。
首先,
需要找到这个曲面,然后对其进行参数化描述。
接下来,可以通过对参数化曲面的法向量和被积函数进行点乘,来得到被积函数在曲面上的投影。
最后,对该投影在参数域内的面积进行二重积分,即可得到三重积分的值。
以上是三重积分的计算方法的简要介绍。
具体的计算步骤和技
巧会因具体问题的不同而有所变化。
需要根据具体问题的要求和特点,选择适合的方法进行计算。