斐波那契与黄金分割
斐波那契散列法黄金分割数

斐波那契散列法黄金分割数一、斐波那契散列法简介斐波那契散列法是一种基于斐波那契数列的散列算法,它利用了黄金分割数的特性来实现散列值的均匀分布。
在计算机科学领域,散列算法常用于数据存储和查找等操作,而斐波那契散列法则是其中一种常见的散列算法。
二、黄金分割数的定义与特性黄金分割数是指一个数与其前一项的比值等于其后一项与其的比值,即a/b =(a+b)/a = φ(phi),其中φ是黄金分割数,约等于1.6180339887。
黄金分割数在数学、自然界和艺术中具有广泛的应用,其特性包括:1.黄金分割数是一个无理数,不能表示为两个整数的比值。
2.黄金分割数具有对称性,即1/φ = φ-1。
3.黄金分割数是一个连分数,可以通过递归公式计算得到。
三、斐波那契散列法的原理斐波那契散列法利用了黄金分割数的特性来实现散列值的均匀分布。
其原理如下:1.初始化两个初始散列值:h1 = floor(k/φ)和h2 = k - h1,其中k为输入键值。
2.如果发生散列冲突,则通过增加h1并减小h2的方式,重新计算散列值。
3.重复步骤2,直到找到一个空闲的槽位。
斐波那契散列法的关键在于选择合适的初始散列值,以及在发生冲突时如何调整散列值。
通过利用黄金分割数的比例关系,可以有效地减少冲突的概率,提高散列算法的性能。
四、斐波那契散列法的应用场景斐波那契散列法在实际应用中具有广泛的用途,特别是在哈希表和散列表的实现中。
以下是一些常见的应用场景:1.数据存储:斐波那契散列法可以用于将数据存储到散列表中,通过散列值来快速查找和访问数据。
2.缓存管理:斐波那契散列法可以用于缓存管理系统中,通过散列值来确定数据在缓存中的位置,提高数据的访问效率。
3.数据分片:斐波那契散列法可以用于将大规模数据分片存储到不同的服务器上,通过散列值来确定数据所在的服务器,实现数据的分布式存储和访问。
五、斐波那契散列法的优缺点斐波那契散列法作为一种散列算法,具有一些优点和缺点:优点:1.散列值均匀分布:斐波那契散列法利用黄金分割数的特性,可以实现散列值的均匀分布,减少冲突的概率。
黄金分割法和斐波那契法的区别

黄金分割法和斐波那契法的区别黄金分割法和斐波那契法是两种在数学、艺术和自然界中被广泛运用的概念,它们都具有独特而重要的意义。
今天,我们将深入探讨这两种方法的区别,并且探讨它们在不同领域的应用。
黄金分割法,也称为黄金比例,是指一种在美学和艺术中被广泛运用的比例原则。
它的数学定义是:将一条线段分成两部分,在使得整体和较大部分之间的比值等于较大部分和较小部分之间的比值。
这种比例约等于1:1.618,被认为是最具美感和和谐的比例之一。
黄金分割法在建筑、绘画、雕塑等艺术领域中被广泛运用,也被认为是大自然之美的来源之一。
相对的,斐波那契法是一种数学上的数列,以及由这种数列所构成的图形和比例。
具体来说,这个数列的特点是一个数等于前两个数的和,即0、1、1、2、3、5、8、13、21……以此类推。
这个数列的性质非常有趣,它包含了许多有趣的数学特性,并且在计算机科学和自然界的模式中被广泛应用。
那么,黄金分割法和斐波那契法有什么区别呢?黄金分割法更多的是一种比例和比例的原则,它强调的是对称、和谐和美感。
而斐波那契法更多的是一种数列和数学规律,它强调的是数学的严谨性和递推关系。
黄金分割法更多的是在艺术和美学领域中被应用,而斐波那契法更多的是在数学和科学领域中被应用。
在我看来,这两种方法都具有重要的意义。
黄金分割法是一种对称和和谐的原则,它可以帮助人们创造出更美感的作品。
而斐波那契法则是一种严谨和有趣的数学规律,它可以帮助人们理解和描述自然界中的一些模式和现象。
这两种方法虽然有着不同的特点和应用领域,但它们都展示了人类对美感和数学的追求和探索。
黄金分割法和斐波那契法都是非常有价值的概念,它们在艺术、数学和自然界中都有着重要的应用。
希望通过今天的探讨,你能更全面、深刻和灵活地理解这两种方法,并且对它们的意义有更深刻的理解。
希望你能继续探索并运用这些方法,创造出更美感和有趣的作品。
黄金分割法和斐波那契法是两种在数学、艺术和自然界中被广泛运用且具有独特而重要的意义的概念。
斐波那契数列与黄金分割 ppt课件

F1 1 F2 1
第三个月兔子数
F 3F 1F 2 1 12
随着时间不断流逝。。。。。。
第n个月兔子 数
Fn Fn1Fn2
按照递推公式计算,得到 1,1,2,3,5,8,13,21,34,55,89,144,• • •
从第三项起每一项都等于前两项之和。19世纪法国数 学家路卡斯给这个数列起了一个颇适合的名字:“斐波那契数 列”,数列中的每一个数称为斐波那契数.
数学家们已经发现了许多关于斐波那契数列的特性。例如:
1 , 1 , 2 , 3 , 5 , 8 , 13 , 21 , 34 , 55 , 89 , 144 , …
• 从第二项开始,每个奇数项的平方都比前后两项之积多1, 每个偶数项的平方都比前后两项之积少1
• 第3、第6、第9、第12项的数字,能夠被 2整除
古希腊的数学家不必说了,中世纪的意 大利数学家裴波那契(Fibonacci, 约1170— 1240), 文艺复兴时代的德国天文学家开普勒 (Kepler, 1571—1630),以及当代的一些著名 科学家都对它十分关注,并投入了大量的精 力。
意大利的数学家列昂 那多·斐波那契在1202 年提出这样一个问题
1,1,2,3,5,8,13,21,34,55,89,144,• • •
21个花瓣的紫菀
34个花瓣的雏菊 1,1,2,3,5,8,13,21,34,55,89,144,• • •
斐波那契数有时也称松果数,因为连续的 斐波那契数会出现在松果的左和右的两种 螺旋形走向的数目之中
1,1,2,3,5,8,13,21,34,55,89,144,• • •
斐波那契(Leonardo Pisano
F ibonacci ; 1170 1250 )
斐波那契数列与黄金分割

数学文化
主讲教师 李令斗
斐波那契数列与黄金分割
一、兔子问题和斐波那契数列
二、数学的统一美
三、 斐波那契协会和《斐波那契季刊》
一、兔子问题和斐波那契数列
1. 兔子问题
1) 问题 ——取自意大利数学家 斐波那契的《算盘书》 (1202年)
(L.Fibonacci,1170-1250)
D (DB)
AC AB
交A D于 E ,
5 1 2
再作 A ( A E ) 交 A B于 C
,则
D
C , 即
为 A B 的黄金分割点。
5
E
1
A
C
B
2
25
证:不妨令
AD 2 1
2
BD 1
,则
5 1 2
AB 2
,
5 1,
5
, AE
AC AB
AD ED
AC AE
un vn
19
对照
x 1 1
1 1 1 1 1 1
可算得
u1
1 u2 , v1 1 v2
1 1
1 u3 , 1 2 v3 1
1 1 1 1 1 1
2 u4 , 3 v4
1 1 1 1 1 1 1 1
3 5
20
发现规律后可以改一种方法算,
un vn 1
3
兔子问题
假设一对初生兔子要一个月才到成熟期, 而一对成熟兔子每月会生一对兔子,那么, 由一对初生兔子开始,12 个月后会有多少 对兔子呢?
4
解答
1 月 1 对
5
解答
斐波那契-黄金分割

斐波那契-黄⾦分割斐波那契数列普通递推F0=0,F1=1,F n=F n−1+F n−2快速倍增递推F2n=F n(2F n+1−F n)F2n=F n(F n+1+F n−1)F2n+1=F2n+1+F2n 矩阵递推1 1 1 0F n−1F n−2=F nF n−1通项公式及其推导令ϕ=1+√52,ˆϕ=1−√52∵F_n = \dfrac{1}{\sqrt{5}}(\phi^n-\hat\phi^n)=\lfloor \dfrac{\phi^i}{\sqrt{5}} + \dfrac{1}{2} \rfloor所以、斐波那契以指数形式增长1.母函数法$ \digamma(x)=\sum\limits_{\infin} F_nx n\ \digamma(x)=x2\digamma(x)+x\digamma(x)+x\ \digamma(x)=\dfrac{1-x-x2} $母函数进⾏展开,⾸先我们要知道⽜顿⼆项式定理、⽜顿⼴义⼆项式定理、⼆项式定理的推⼴⽜顿⼆项式定理(n \in N^{+})(x+y)^n = \sum\limits_{i=0}^{n} C_{n}^{i} x^{n-i}y^{i}**⼆项式定理推⼴⾄(n \in N) **(1+x)^n=\sum\limits_{i=0}^{\infin} C_{n}^{i} x^i~~~~(n>0)(1+x)^{-n} = \sum\limits_{i=0}^{\infin} C_{-n}^{i} x^i=\sum\limits_{i=0}^{\infin}(-1)^i C_{n+i-1}^{i} x^i⽜顿⼴义⼆项式定理(\alpha \in R)(x+y)^{\alpha}=\sum\limits_{i=0}^{\infin}\tbinom{\alpha}{i} x^{\alpha-i}y^k其中\tbinom{\alpha}{i}类似组合数\tbinom{\alpha}{i}=\dfrac{\alpha(\alpha-1)\cdots(\alpha-i+1)}{i!}特殊形式(1+x)^n = (1-x)^{-n} = \sum\limits_{i=0}^{\infin} C_{n}^{i}x^i推导开始:设~\digamma(x)=\frac{x}{1-x-x^2}=\frac{A}{1-\alpha x}+\frac{B}{1-\beta x} \\=\frac{A+B-x(A\beta+B\alpha)}{1-(\alpha+\beta)x+\alpha\beta x^2}\\ \left\{ \begin{matrix} A+B=0\\A\beta+B\alpha=-1\\ \alpha+\beta=1\\ \alpha\beta=-1 \end{matrix} \right. \Rightarrow \left\{ \begin{matrix} A=\frac{1}{\sqrt{5}}\\ B=-\frac{1}{\sqrt{5}}\\ \alpha=\phi\\ \beta=\hat\phi\end{matrix} \right.\\ \therefore \digamma(x)=\frac{1}{\sqrt{5}}(\frac{1}{1-\phi x}-\frac{1}{1-\hat\phi x})\\ \because\frac{1}{1-x}=\sum\limits_{n=0}^{\infin}x^n\\ \digamma(x)=\frac{1}{\sqrt{5}}\sum\limits_{n=0}^{\infin}(\phi^n-\hat\phi^n) x^n2.数列待定系数法类似于求解a_n = pa_{n-1}+q性质1.卡西尼性质F_{n-1}F_{n+1}-F_n^2=(-1)^n证:F_{n-1}F_{n+1}-F_n^2\\ =det \left( \left[ \begin{matrix} F_{n+1}~~F_{n}\\ F_{n}~~F_{n-1} \end{matrix} \right] \right) =det \left( \left[ \begin{matrix} 1~~~~1\\ 1~~~~0 \end{matrix} \right] \right)^n = \left( det \left( \left[ \begin{matrix} 1~~~~1\\ 1~~~~0 \end{matrix} \right] \right) \right)^n=(-1)^n2.附加性质F_{n+m}=F_m F_{n+1}+F_{m-1}F_{n}证:\because \left[ \begin{matrix} F_{n}~~~F_{n-1}\\ F_{n-1}~~~F_{n-2} \end{matrix} \right] = \left[ \begin{matrix} 1~~~~1\\ 1~~~~0 \end{matrix} \right]^{n-1}\\ \therefore \left[ \begin{matrix} F_{n+m}~~~F_{n+m-1}\\ F_{n+m-1}~~~F_{n+m-2} \end{matrix} \right] = \left[ \begin{matrix} 1~~~~1\\ 1~~~~0 \end{matrix} \right]^{n+m-1}=\left[ \begin{matrix} 1~~~~1\\ 1~~~~0\end{matrix} \right]^{n} \left[ \begin{matrix} 1~~~~1\\ 1~~~~0 \end{matrix} \right]^{m-1}= \left[ \begin{matrix} F_{n+1}~~~F_{n}\\ F_{n}~~~F_{n-1} \end{matrix} \right] \left[ \begin{matrix} F_{m}~~~F_{m-1}\\ F_{m-1}~~~F_{m-2} \end{matrix} \right]\\ \therefore F_{n+m}=F_{n+1}F_{m}+F_nF_{m-1}变形:F_{2n} = F_n(F_{n+1}+F_{n-1}) .3.整除与GCD性质\forall a,b \in N,F_a|F_b\Leftrightarrow a|b[][][](F_n,F_m) = F_{(n,m)}证:设~n>m~~则~(F_n,F_m)=(F_{n-km},F_m)\\ 设~r=n-km~,r<m~则~(F_r,F_m)=(F_r,F_{m-kr})\\ 这就类似于欧⼏⾥德算法的过程\\ \therefore~(F_n,F_m)=F_{(n,m)}4.求和公式奇数项:\sum\limits_{i=1}^{2n-1}[2\nmid i] F_{i}= F_{2n}偶数项:\sum\limits_{i=2}^{2n}[2\mid i] F_{i}= F_{2n+1}-1平⽅项:\sum\limits_{i=1}^{n}F_i^2=F_n F_{n+1}证:画图推⼴1.⼴义斐波那契数列当n<0时F_n=F_{n+2}-F_{n+1}F_{-n}=(-1)^{n-1}F_n2 .类斐波那契数列⼜称斐波那契—卢卡斯数列对于数列G,若G_0=a,G_1=b,且数列满⾜递推关系式,则称G是类斐波那契数列G_n =a F_{n-1} + b F_{n}⽤矩阵可证类斐波那契数列也有部分斐波那契数列的性质任意两个或两个以上斐波那契—卢卡斯数列之和或差仍然是斐波那契—卢卡斯数列3. Lucas数列与Fibonacci数列Lucas数列为a=2,b=1的类斐波那契数列,记为LL_n = (\dfrac{1+\sqrt{5}}{2})^n+(\dfrac{1-\sqrt{5}}{2})^n~~~~(n\ge 2)Lucas数列能够辅助写出看似很困难的等式2L_{n+m}=5 F_n F_m+L_n L_m\\ 2F_{n+m}=5 F_n L_m+L_n F_m\\ L_{2n}=L_n^2-2(-1)^n\\ F_{2n}=F_n L_n\\ L_n=F_{n+1}+F_{n-1}4.编码(齐肯多夫定理)齐肯多夫表述法表⽰任何正整数都可以表⽰成若⼲个不连续的斐波那契数之和证:若~m~为斐波那契数,成⽴\\ 否则考虑最⼤~n1~满⾜~F_{n1}< m<F_{n1+1}\\ 继续考虑最⼤~n2~满⾜~F_{n2} < m-F_{n1}<F_{n2+1}\\ 反证:\\ 若~F_{n1}~和~F_{n2}~为连续斐波那契数\\ 则~F_{n1+1}<m~与~F_{n1+1}>m~⽭盾模意义下的循环对于任意整数n , 数列为F_i~(mod~n)周期数列. ⽪萨诺周期\pi(n)记为该数列的周期.例如,模3的斐波那契数列前若⼲项为:0, 1, 1, 2, 0, 2, 2, 1, 0, 1, 1, 2, 0, 2, 2, 1, 0, 1, 1, 2, 0, 2, 2, 1, 0\cdots\therefore \pi(3) = 8.性质:1.~~\pi(n)\le 6 n且只有满⾜n=2*5^k的形式时才取得到等号2.~~\forall a,b\in N~且~(a,b)=1,\pi(a)\pi(b)=\pi(ab)Loading [MathJax]/jax/element/mml/optable/MathOperators.js。
黄金分割比和斐波那契数列

黄金分割比和斐波那契数列1. 黄金分割比:自然中的奇妙比例1.1 什么是黄金分割比好啦,先聊聊黄金分割比吧。
这个比率听起来像个高深的数学名词,但实际上,它非常简单:黄金分割比大约是1.618。
这是什么意思呢?假如你有一条线段,把它分成两部分,其中一部分和整条线段的比例,等于另一部分和较长部分的比例。
这种比例就是黄金分割比。
有没有觉得很神奇?就像大自然中的秘密一样,几乎无处不在。
1.2 黄金分割比在生活中的应用你可能没注意到,但黄金分割比在生活中随处可见。
比如,我们的脸部比例、一些著名建筑的设计,甚至你最喜欢的艺术作品中,都有这个比率的影子。
它就像是一种神秘的美学标准,让一切看起来更加和谐自然。
就连《蒙娜丽莎》这样的经典画作也都蕴含了这个比例。
2. 斐波那契数列:数学中的魔法2.1 什么是斐波那契数列接下来,咱们聊聊斐波那契数列。
这是一串非常特别的数字序列,开头的两个数字是0和1,从第三个数字开始,每个数字都是前两个数字的和。
例如,0,1,1,2,3,5,8,13……以此类推。
听起来是不是有点像魔法?这种数列不仅在数学中有趣,而且在自然界里也经常出现。
2.2 斐波那契数列与黄金分割比的关系现在,你可能会好奇,斐波那契数列和黄金分割比到底有啥关系。
其实,它们之间有着密不可分的联系。
随着斐波那契数列不断增长,数列中的数字比值会越来越接近黄金分割比。
这就像数学中的一个小秘密,揭示了自然界和艺术作品的深层美学。
3. 黄金分割比和斐波那契数列的奇妙结合。
3.1 自然界中的应用大自然里可真是黄金分割比和斐波那契数列的“大舞台”。
比如,向日葵的种子排布、松果的鳞片、甚至某些贝壳的螺旋形状,都是按照这些数学法则排列的。
试着观察一下,你会发现这些自然界的奇迹,竟然都遵循着这样一种神秘的规律。
3.2 艺术和建筑中的体现不仅在自然界,黄金分割比和斐波那契数列在艺术和建筑中也有广泛应用。
古希腊的帕台农神庙、文艺复兴时期的画作,甚至现代建筑设计中,都可以找到它们的身影。
斐波那契数列与黄金分割

我们可以在鹦鹉螺的外壳发现这样的螺线
所谓黄金三角形是一个 等腰三角形其底与腰的长 度比为黄金比值。我们若 以底边为一腰作一等腰三 角形则此三角形亦为一黄 金三角形,如下图。图中 三种不同长度的线段,其 中次长的线段(蓝色)与 最长的线段(红色)比是 黄金比例,最短的线段 (绿色)与次长线段(蓝 色)也是黄金比例。
1 5 ,其正根为 x 2
5 1 x 0.6180339 0.618 2 A B
小段 大段
3.黄金矩形
定义:一个矩形,如果从中裁去 一个最大的正方形,剩下的矩形的宽与长 之比,与原矩形的一样(即剩下的矩形与 原矩形相似),则称具有这种宽与长之比 的矩形为黄金矩形。黄金矩形可以用上述 方法无限地分割下去。
Fn Fn1 Fn2 , n 2.
每月大兔对数 Fn 排成数列为: 0,1,1,2,3,5,8,13,21,34,55,89,144,
•••
4
定义:若一个数列,前两项均等于1,而从 第三项起每一项是其前两项之和,则称该数列
为斐波那契数列。即:
1 , 1 , 2 , 3 , 5 , 8 , 13 , … …
(1)人体各部分的比Fra bibliotek肚 脐:
印堂穴:
(头—脚)
(口—头顶)
肘关节: (肩—中指尖) 膝 盖: (髋关节—足尖)
(2)著名建筑物中各部分的比
如埃及的金字塔,高(137米)与底边长 (227米)之比为0.629
雅典的帕德侬神庙 (Parthenon at Athens) 庄严、宏伟,被认为 是古希腊最伟大的建筑之一。有 人认为它之所以显得那么和谐, 是因为这个建筑符合黄金比。
Field daisies have 34 petals
斐波那契数字和黄金分割率

斐波那契数字和黄金分割率
一、斐波那契数字对股市提前预示和警示周期:
斐波那契数字1、1、2、3、5、8、13、21、34、55、89、144......前面两数相加得后面一个数。
1,斐波那契数字在日循环周期中最大上升天数为55天,34天,21天。
2,斐波那契数字在周循环周期中最大上升周数为34周,21周,13周。
3,斐波那契数字在月循环周期中最大上升月数为13月,8月,5月,3月。
涨跌幅度与空间的高低快慢对波段走势时间长短有制约作用。
推测出的变盘日期如果与周的日期重叠,应视为重要的时间之窗。
再与月的相吻合市场就会发生重大转折!
对一个完整小周期:低点---高点---低点;高点---低点---高点。
在分析周期时,只有这两种循环周期与斐波那契数字时间周期相对应。
二、黄金分割位数字的计算是:
1、相邻的两个数互除,得数约等于0.618(记住是相邻的)。
2、相隔的两个数互除,得数约等于0.382和2.618(记住是相隔的)。
3、高位数除相邻的低位数,得数约等于1.618。
4、0.382 X 0.618 = 0.236。
5、通常所用的黄金分割率为:
0.236、0.382、0.5、0.618、0.809、1.236、1.382、1.618、2、2.618、3.236、4.236、5.236、6.854。
黄金分割率的演算同斐波那契数字密不可分。
斐波那契数字同黄金分割位是相互印证的关系。
斐波那契数字表现的是时间的长短,黄金分割位提示的是空间上升下降的幅度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
斐波那契比萨的列奥纳多,又称斐波那契(Leonardo Pisano ,Fibonacci, Leonardo Bigollo,1175年-1250年),意大利数学家,西方第一个研究斐波那契数,并将现代书写数和乘数的位值表示法系统引入欧洲。
目录1人物背景2数列3质数4重要作品1人物背景家庭列奥纳多的父亲Guilielmo(威廉),外号Bonacci(意即「好、自然」或「简单」)。
因此列奥纳多就得到了外号斐波那契 (Fibonacci,意即filius Bonacci,Bonacci之子)。
威廉是商人,在北非一带工作(今阿尔及利亚Bejaia),当时仍是小伙子的列奥纳多已经开始协助父亲工作。
于是他就学会了阿拉伯数字。
学习有感使用阿拉伯数字比罗马数字更有效,列奥纳多前往地中海一带向当时著名的阿拉伯数学家学习,约于1200年回国。
1202年,27岁的他将其所学写进计算之书(Liber Abaci)。
这本书通过在记帐、重量计算、利息、汇率和其他的应用,显示了新的数字系统的实用价值。
这本书大大影响了欧洲人的思想,可是在三世纪后印制术发明之前,十进制数字并不流行。
(例子:1482年,Ptolemaeus世界地图,Lienhart Holle在Ulm印制)成就列奥纳多曾成为热爱数学和科学的腓特烈二世 (神圣罗马帝国)的坐上客。
欧洲数学在希腊文明衰落之后长期处于停滞状态,直到12世纪才有复苏的迹象。
这种复苏开始是受了翻译、传播希腊、阿拉伯著作的刺激。
对希腊与东方古典数学成就的发掘、探讨,最终导致了文艺复兴时期(15~16世纪)欧洲数学的高涨。
文艺复兴的前哨意大利,由于其特殊地理位置与贸易联系而成为东西方文化的熔炉。
意大利学者早在12~13世纪就开始翻译、介绍希腊与阿拉伯的数学文献。
欧洲,黑暗时代以后第一位有影响的数学家斐波那契(约1175~1240),其拉丁文代表著作《算经》、《几何实践》等也是根据阿拉伯文与希腊文材料编译而成的,斐波那契,即比萨的列昂纳多(Leonardo of Pisa),早年随父在北非从师阿拉伯人习算,后又游历地中海沿岸诸国,回意大利后即写成《算经》(Liber Abac·1202,亦译作《算盘书》)。
《算经》最大的功绩是系统介绍印度记数法,影响并改变了欧洲数学的面貌。
现传《算经》是1228年的修订版,其中还引进了著名的“斐波那契数列”。
《几何实践》(Practica Geometriae, 1220)则着重叙述希腊几何与三角术。
斐波那契其他数学著作还有《平方数书VLiberQuadratorum, 1225)、《花朵》(Flos, 1225)等,前者专论二次丢番图方程,后者内容多为菲德里克(Frederick)二世宫廷数学竞赛问题,其中包含一个三次方程/十2x2十10x~-20求解,斐波那契论证其根不能用尺规作出(即不可能是欧几里得的无理量),他还未加说明地给出了该方程的近似解(J一1. 36880810785)。
微积分的创立与解析几何的发明一起,标志着文艺复兴后欧洲近代数学的兴起。
微积分的思想根源部分(尤其是积分学)可以追溯到古代希腊、中国和印度人的著作。
在牛顿和莱布尼茨最终制定微积分以前,又经过了近一个世纪的酝酿。
在这个酝酿时期对微积分有直接贡献的先驱者包括开普勒、卡瓦列里、费马、笛卡)U、沃利斯和巴罗(1.Barrow,1630~1677)等一大批数学家。
2数列斐波那契在《算盘书》中提出了一个有趣的兔子问题:一般而言,兔子在出生两个月后,就有繁殖能力,一对兔子每个月能生出一对小兔子来。
如果所有兔都不死,那么一年以后可以繁殖多少对兔子?我们不妨拿新出生的一对小兔子分析一下:第一个月小兔子没有繁殖能力,所以还是一对;两个月后,生下一对小兔总数共有两对;三个月以后,老兔子又生下一对,因为小兔子还没有繁殖能力,所以一共是三对;……依次类推可以列出下表:经过月数0 1 2 3 4 5 6 7 8 9 10 11 12幼仔对数1 0 1 1 2 3 5 8 13 21 34 55 89成兔对数0 1 1 2 3 5 8 13 21 34 55 89 144总体对数1 1 2 3 5 8 13 21 34 55 89 144 233表中数字1,1,2,3,5,8---构成了一个序列。
这个数列有关十分明显的特点,那是:前面相邻两项之和,构成了后一项。
这个数列是意大利中世纪数学家斐波那契在《算盘书》中提出的,这个级数的通项公式,除了具有an+2=an+an+1的性质外,还可以证明通项公式为:an=1/√5 [(1/2+√5/2)^ n-(1/2-√5/2)^n](n=1,2,3.....)(√5表示根号 5)这个通项公式中虽然所有的an都是正整数,可是它们却是由一些无理数表示出来的。
即在较高的序列,两个连续的“斐波纳契数”的序列相互分割将接近黄金比例(1.618:1或1:0.618)。
例如:233/144,987/610、、、、斐波那契数列还有两个有趣的性质⒈斐波那契数列中任一项的平方数都等于兔子问题跟它相邻的前后两项的乘积加1或减1;⒉任取相邻的四个斐波那契数,中间两数之积(内积)与两边两数之积(外积)相差1.同样我们还可以有t阶斐波那契数列,通过递推数列a(n+t)=a(n+t-1)+a(n+t-2)+...+a(n),其中a⑴=a⑵=1,以及对于3-t<=n<=0,有a(n)=0.给出了t阶斐波那契数列的通项公式:[r^(n-1)(r-1)/((t+1)r-2t)],其中r是方程x^{t+1}-2x^t+1=0的唯一一个大于1的正数根(可以看出r非常接近2)3质数斐波那契质数由斐波那契序列中的质数组成,是整数质数序列.第一组质数序列是:2,3,5,13,89,233,1597,28657,514229,433494437,2971215073,....4重要作品Liber Abaci(算盘全书,1202年)。
Practica Geometriae(1220年),几何学和三角学概论Flos(1225年),Johannes of Palermo提出的问题的答案Liber quadratorum,关于丢番图方程的问题on Diophantine problems,that is,problems involving Diophantine equations.Di minor guisa(关于商业运算;己佚)《几何原本》第十卷的注释(已佚)华罗庚的优选法优选法,是指研究如何用较少的试验次数,迅速找到最优方案的一种科学方法。
例如:在现代体育实践的科学实验中,怎样选取最合适的配方、配比;寻找最好的操作和工艺条件;找出产品的最合理的设计参数,使产品的质量最好,产量最多,或在一定条件下使成本最低,消耗原料最少,生产周期最短等。
把这种最合适、最好、最合理的方案,一般总称为最优;把选取最合适的配方、配比,寻找最好的操作和工艺条件,给出产品最合理的设计参数,叫做优选。
也就是根据问题的性质在一定条件下选取最优方案。
最简单的最优化问题是极值问题,这样问题用微分学的知识即可解决。
实际工作中的优选问题,即最优化问题,大体上有两类:一类是求函数的极值;另一类是求泛函的极值。
如果目标函数有明显的表达式,一般可用微分法、变分法、极大值原理或动态规划等分析方法求解(间接选优);如果目标函数的表达式过于复杂或根本没有明显的表达式,则可用数值方法或试验最优化等直接方法求解(直接选优)。
优选法是尽可能少做试验,尽快地找到生产和科研的最优方案的方法,优选法的应用在我国从70年代初开始,首先由我们数学家华罗庚等推广并大量应用,优选法也叫最优化方法。
黄金分割黄金分割又称黄金律,是指事物各部分间一定的数学比例关系,即将整体一分为二,较大部分与较小部分之比等于整体与较大部分之比,其比值约为1∶0.618或0.618∶1,即长段为全段的0.618。
0.618被公认为最具有审美意义的比例数字。
上述比例是最能引起人的美感的比例,因此被称为黄金分割。
概念把一条线段分割为两部分,使其中一部分与全长之比等于另一部分与这部分之比。
其比值是(√5-1):2,取其小数点后三位的近似值是0.618。
由于按此比例设计的造型十分美丽柔和,因此称为黄金分割,也称为中外比。
这是一个十分有趣的数字,我们以0.618来近似,通过简单的计算就可以发现:1÷0.618≈1.618或(1-0.618)÷0.618≈0.618 或1÷﹙1+0.618﹚≈0.6185或开平方根之后减一的差除以二这个数值的作用不仅仅体现在诸如绘画、雕塑、音乐、建筑等艺术领域,而且在管理、工程设计等方面也有着不可忽视的作用。
在我们生活中比比皆是。
2历史毕达哥拉斯黄金分割在建筑中的应用建筑物中某些线段的比就科学采用了黄金分割,希腊雅典的巴特农神庙就是一个很好的例子,古希腊巴特农神庙是举世闻名的完美建筑,它的高和宽的比是0.618。
建筑师们发现,按这样的比例来设计殿堂,殿堂更加雄伟、美丽;去设计别墅,别墅将更加舒适、漂亮.连一扇门窗若设计为黄金矩形都会显得更加协调和令人赏心悦目. 建筑师们对数学0.618…特别偏爱,无论是古埃及的金字塔,还是巴黎的圣母院,或者是近世纪的法国埃菲尔铁塔,都有与0.618…有关的数据。
科学家和艺术家普遍认为,黄金律是建筑艺术必须遵循的规律。
因此古代的建筑大师和雕塑家们就巧妙地利用黄金分割比创造出了雄伟壮观的建筑杰作和令人倾倒的艺术珍品:公元前3000年建造的胡夫大金字塔,其原高度与底部边长约为1:1.6,公元前五世纪建造的庄严肃穆的雅典巴特农神殿(Parthenon at Athens),建筑于古希腊数学繁荣的年代,并且它的美丽就是建立在严格的数学法则上的.如果我们在神庙周围描一个矩形,那么发现,它的长是宽的大约1.6倍,这种矩形称为黄金矩形。
当今世界最高建筑之一的加拿大多伦多电视塔,塔高553.3m, 而其七层的工作厅建与340m的半空,其比为340:553≈0.615。
无独有偶,这三座具有历史意义的不同时期的建筑,都不约而同地用到了黄金比。