基于热敏电阻高温报警器)

基于热敏电阻高温报警器)
基于热敏电阻高温报警器)

成绩评定:

传感器技术

课程设计

题目基于热敏电阻高温报警器

摘要

温度是一个十分重要的物理量,对它的测量与控制有十分重要的意义。随着现代工农业技术的发展及人们对生活坏境的要求的提高,人们也迫切需要检测与控制温度。

温度控制电路在工农业生产中有着广泛的应用,日常生活中业可以见到,如电冰箱的自动制冷,空调的自动控制等等,利用热名电阻制作一个温度报警器,可通过调节微调电位器的阻值,改变电压比较器正向输入的参考电压,可以改变电路报警时的温度。

关键字:AT89C51单片机、热敏电阻PT100温度检测电路、AD0801转换器、单刀双掷继电器、报警电路

目录

一、设计目的------------------------- 1

二、设计任务与要求--------------------- 1

2.1设计任务------------------------- 1

2.2设计要求------------------------- 1

三、设计步骤及原理分析 ----------------- 2

3.1设计方法------------------------- 2 3.2设计步骤------------------------- 3

3.3设计原理分析---------------------- 3

四、课程设计小结与体会 ----------------- 6

五、参考文献-------------------------- 7

一、设计目的

本文通过采用热敏电阻作为敏感原件的温度报警器的设计与制作,阐明了该装置进行设计与制作的具体过程及方法。这种温度报警器结构简单,由温度控制部件和报警器两部分组成,可操作性强,应用广泛。工作时,温度测量范围为20oC~100oC.当温度达到预定值30度时,利用热敏电阻的特性,采用电压信号,驱动报警装置,立刻发出报警信号,从而防止因温度升高而带来的不必要的损失。

二、设计任务及要求

2.1设计任务

(1)设计出由热敏电阻构成的测温电路,包括信号调理电路。(2)有运算放大器构成的比较器比较实测温度与设定温度,超限报警。

(3)设计报警电路,电源供电电路。

2.2设计要求

基于AT89C51单片机设计温度检测报警,可以实现采集周围温度信息进行显示,并且可以根据应用环境不同设定不同的报警上下限。本文介绍的温度报警器以STC89S52单片机为控制中心,再配合热敏电阻PT100温度检测电路、AD0801转换器、单刀双掷继电器、报警电路、复位电路、晶振电路以及2个LED数码管来对环境温度的实时监测,并能在预设的温度范围内用LED显示,同时在超过预设范围是产生报警信号。本文分析了温度传感器的工作原理,系统硬件

图1

及软件部分的设计如上图1

三、设计步骤及原理分析

3.1设计方法

(1)通过PT100热敏电阻对温度进行采用,随着温度的变化,PT100的阻值也会随着变化,则通过自制的桥式测温电路的分压也会发生变化,由于变化的分压不是很大,所以采用UA741放大器将变化的电压进行放大,放大到AD0801模数转换器能够处理的范围之内。经模数转化后的温度信号传入到STC89S52单片机,再由单片机控制继电器,蜂鸣器和数码管来实现温度控制报警,显示功能。当温度在18度至70度之间时,系统正确显示温度,当温度超出这个范围是系统在显示温度的同时发出报警声。

(2)主电路有NTC测温电阻,可调温度电位器,低频振荡器和音

频振荡器四部分组成。工作原理如下:由电位器设定设定好温度值,当温度升高时,测温电阻NTC的电阻值降低,达到CD4011输入高平值,导致低频振荡器工作。

3.2设计步骤

1、对各个模块的功能进行调试,主要调试个模块能否实现指定的功能。

2、将调试好的硬件和软件进行联调,主要调试系统的实现功能。热敏电阻采集到温度后经A/D转换成信号送入单片机,经过数码管显示出温度,同时判断是否超出了18度至79度的范围,超出了则断开开关启动蜂鸣器发出报警声,若没有超出自然显示温度。

3.3设计原理

采用R1、R2、VR2、Pt100构成测量电桥(其中R1=R2,VR2为100欧姆精密电阻),当Pt100的电阻值和VR2电阻值不相等时,电桥输出一个mV级的压差信号,这个压差信号经过运放UA741放大狗输出期望大小的电压信号,该信号可直接连AD转换芯片。差动放大电路中R3=R4、R5=R6、放大倍数=R5/R3,运放采用单一5V供电。

金属的电阻值随植度的升高而增大,但半导体则相反,它的电阻值随温度的升高而急剧减小,并呈现非线性,如下图所示。

图2

由图可知,在温度变化相同时,热敏电阻器的阻值变化约为铅热电阻的10倍,因此可以说,热敏电阻器对温度的变化特别敏感。

半导体的这种温度特性.是因为半导体的导电方式是载流子(电子、空穴)导电。由于半导体中载流子的数目远比金属中的自由电子少得多,所以它的电阻率很大。随着温度的升高,半导体中参加导电的载流子数目就会增多,故半导体导电率就增加,它的电阻率也就降低了。

热敏电阻器正是利用半导体的电阻值随温度显著变化这一特性制成的热敏元件。它是由某些金属氧化物按不同的配方制成的。在一定的温度范围内,根据测量热敏电阻阻值的变化,便可知被测介质的温度变化。热敏电阻也可作为电子线路元件用于仪表线路温度补偿和温差电偶冷锻端温度补偿等。利用热敏电阻的自热特性可实现自动增

益控制,构成RC振荡器稳幅电路,延迟电路和保护电路。在自热温度远大于环境温度是阻值还与环境的散热条件有关,因此在流速计、流量计、气体分析仪、热导分析中常利用热敏电阻这一特性,制成专用的检测元件,PTC热敏电阻主要用于电器设备的过热保护、无触点继电器、恒温、自动增益控制、电机启动、时间延迟、彩色电视自动消磁、火灾报警和温度补偿等方面。

四、课程设计小结与体会

一个星期的课程设计又快告一段落了,在这短短的一个星期里,却留下了很多难忘的回忆,同学们相互帮助研究问题,老师诲人不倦的教导,都是我们大学生活中美好的回忆。

虽然这些东西以前也接触过,但是真正又重新来一次还是感觉不同。但是为了课程设计我们还是需要将以前的心态撇开,重新接受它,将它作为一个新的任务展开。

论文一直是我的弱项,我也想借这个机会学习一下论文的编写,毕竟以后的学习还是离不开这个论文的书写的,所以还是需要老师的孜孜不倦的教导!

最后,再次向所有关心支持指导帮助过我完成论文的老师和同学,表示最诚挚的谢意。

五、参考文献

(1)单成祥,传感器的理论与设计基础及应用。北京:国防工业出版社,1999.8

(2)李英顺.现代传感器检测技术.北京:中国水利水电出版社,2009

(3)何希才,传感器及其应用电路.北京:电子工业出版社

火灾自动报警系统课程设计

目录 目录 (1) 摘要 (3) 1引言 (1) 2火灾自动报警系统概述 (2) 3建筑概况 (3) 3.1建筑物概况 (3) 3.2系统保护对象分级 (3) 3.3报警区域和探测区域的划分 (4) 4火灾自动报警系统设计 (6) 4.1火灾自动报警系统基本形式选择 (6) 4.2火灾报警控制器的确定 (6) 4.3火灾探测器的确定及布置 (7) 4.4火灾自动报警系统的线制 (8) 4.5火灾自动报警系统的配套设备 (10) 4.5.1手动报警按钮 (10) 4.5.2火灾事故广播 (10) 4.5.3消防专用电话设置 (11) 4.5.4火灾自动报警系统常用模块 (11) 4.6消防联动系统 (12) 4.7供电与接地 (12)

5主要设备清单 (14) 6总结 (15) 参考文献 (16) 附录 (17)

摘要 火灾自动报警系统是人们为了早期发现通报火灾,并及时采取有效措施,控火和扑灭火灾,而设置在建筑物中或其它场所的一种自动消防设施,是人们同火灾作斗争的有力工具。为建筑物的安全提供了有力的保证。 本文对沈阳市某酒店进行了火灾自动报警系统设计。首先介绍了建筑概况,划分防火分区,根据规范进行了系统保护对象分级,划分了报警区域和探测区域,然后选择了火灾自动报警系统基本形式,确定了火灾报警控制器的型号,通过计算与校验,合理的布置了火灾探测器,确定了火灾自动报警系统的线制,进行了火灾自动报警系统的配套设备的选择,然后介绍了消防联动系统,确定了系统供电与接地装置,最后绘制了火灾自动报警系统平面图。 关键词:探测器;探测区域;火灾探测器;火灾报警控制器

热敏电阻温度传感器

热敏电阻温度传感器电气与电子测量技术 ?

热敏电阻(Thermistor) ?材料:半导体 ?陶瓷材料 ?金属氧化物 ?高分子材料 ?测量范围 ?-100 —+300℃ ?热敏电阻分类 ?NTC: 负温度系数热敏电阻 ?PTC: 正温度系数热敏电阻 ?CTR: 临界温度系数热敏电阻

?温度-电阻特性 热敏电阻工作原理和基本特性 R(T)=Ae B T或R T=R0e B(1 T ?1 T0 ) ?NTC的R-T关系式 A、B——与热敏电阻尺寸、形式及其半导体物理性能有关的常数; T——绝对温度 U/V I/mA U U a I a Im a b c d ?NTC的伏安特性 (热敏电阻两端电压与稳定电流的关系)

?灵敏度 热敏电阻的特点 2 t B T α=- 优点 灵敏度比热电阻高1-2个数量级 常温下阻值大,可忽略引线电阻 响应时间快(时间常数1-10ms) 成本低,易于维护 ?灵敏度 缺点 分散性大,互换性不好 非线性严重 长期稳定性差体积可以做得很小

家用电器 电熨斗、电冰箱、电饭煲、洗衣机、电暖壶、烘干机、电 烤箱、空调机、电热毯、热水器、热得快、电磁炉、汽车电子电子喷油嘴、空调机、发电机防热装置、电热座椅 测量仪器 流量计、风速表、真空计、浓度计、湿度计、空气传感器、 环境监测仪、 办公设备复印机、传真机、打印机、扫描仪 农业园艺温室控制、人工气候箱、烘干系统、 医疗器具体温计、人工透析、散热系统 热敏电阻的应用 温度测量(NTC或PTC)

Page .6热敏电阻的应用 其他相关应用 材料用途举例 NTC温度补偿带温度补偿的石英晶体振荡器 NTC浪涌抑制 抑制开关电源、电动机、白炽灯接通瞬间的浪涌电流 PTC恒温加热元件自控温电热器、恒温电烙铁 PTC过载保护自恢复保险丝 NTC浪涌抑制 自恢复保险丝

热敏电阻温度特性的研究

热敏电阻温度特性的研究 一、实验目的:了解和测量热敏电阻阻值与温度的关系 二、实验仪器:YJ-RZ-4A 数字智能化热学综合实验仪、NTC 热敏电阻传感器、Pt100传感器、万用表 三、实验原理 热敏电阻是其电阻值随温度显著变化的一种热敏元件。热敏电阻按其电阻随温度变化的典型特性可分为三类,即负温度系数(NTC )热敏电阻,正温度系数(PTC )热敏电阻和临界温度电阻器(CTR )。PTC 和CTR 型热敏电阻在某些温度范围内,其电阻值会产生急剧变化。适用于某些狭窄温度范围内的一些特殊应用,而NTC 热敏电阻可用于较宽温度范围的测量。热敏电阻的电阻-温度特性曲线如图1所示。 图1 NTC 半导体热敏电阻是由一些金属氧化物,如钴、锰、镍、铜等过渡金属的氧化物,采用不同比例的配方,经高温烧结而成,然后采用不同的封装形式制成珠状、片状、杠状、垫圈状等各种形状。与金属导热电阻比较,NTC 半导体热敏电阻具有以下特点: 1.有很大的负电阻温度系数,因此其温度测量的灵敏度也比较高; 2.体积小,目前最小的珠状热敏电阻的尺寸可达mm 2.0φ,故热容量很小可作为点温或表面温度以及快速变化温度的测量; 3.具有很大的电阻值(Ω-521010),因此可以忽略线路导线电阻和接触电阻等的影响,特别适 用于远距离的温度测量和控制; 4.制造工艺比较简单,价格便宜。半导体热敏电阻的缺点是温度测量范围较窄。 NTC 半导体热敏电阻具有负温度系数,其电阻值随温度升高而减小,电阻与温度的关系可以用下面的经验公式表示 )/exp(T B A R T = (1) 式中,T R 为在温度为T 时的电阻值,T 为绝对温度(以K 为单位),A 和B 分别为具有电阻量纲和温度量纲,并且与热敏电阻的材料和结构有关的常数。由式(1)可得到当温度为0T 时的电阻值0R , 即 )/exp(00T B A R = (2) 比较式(1)和式(2),可得 )]1 1(exp[0 0T T B A R R T -= (3) 由式(3)可以看出,只要知道常数B 和在温度为 0T 时的电阻值0R ,就可以利用式(3)计算在

火警报警器课程设计

综述 “ 火灾”,是指在时间或空间上失去控制的燃烧所造成的灾害。在各种灾害中,火灾是最经常、最普遍地威胁公众安全和社会发展的主要灾害之一。人类能够对火进行利用和控制,是文明进步的一个重要标志。火,给人类带来文明进步、光明和温暖。但是,失去控制的火,就会给人类造成灾难。所以说人类使用火的历史与同火灾作斗争的历史是相伴相生的,人们在用火的同时,不断总结火灾发生的规律,尽可能地减少火灾及其对人类造成的危害。 在我国,火灾危害之烈,损失之巨,不亚于地震和洪水的危害。近年来,我国城市火灾频频,深圳、广州、上海、长沙、石河子、吉林、浙江等地发生的特大火灾所造成的危害及后果,给人们留下了极其深刻的印象,火灾给国家和人民的生命财产造成了巨大的损失。 火灾自动报警系统能在火灾的初期,将燃烧产生的烟雾,热量和光辐射等物理量通过温度传感器和感光探测器转换成电信号传到火灾报警控制器并能迅速监测火情,通知人们及时疏散。火灾自动报警系统可作为城市消防系统的单元,通过城市消防专用网与城市消防报警中心联网,及时将报警信息传递到消防报警中心,城市消防报警中心会自动查找到火灾发生的位置,并为消防队员制定消防路线图,以便消防队员可以迅速抵达火灾地点。火灾自动报警系统能对火灾进行实时监测和准确报警,有着防止和减少火灾危害、保护人身安全和财产安全的重要意义,有着很大的经济效益和社会效益。 随着电子产品在人类生活中的使用越来越广泛,由此引起的火灾也越来越多,在我们生活的四周到处潜伏着火灾隐患。智能化火灾报警系统已并非传统意义上的简单的报警设备,而是融入了计算机技术、电子技术、自动控制技术、传感器的应用等各领域知识。伴随着科学技术的不断进步,火灾报警系统必将得到更快的发展。

NTC热敏电阻原理及应用.

NTC热敏电阻原理及应用 NTC热敏电阻是指具有负温度系数的热敏电阻。是使用单一高纯度材料、具有接近理论密度结构的高性能陶瓷。因此,在实现小型化的同时,还具有电阻值、温度特性波动小、对各种温度变化响应快的特点,可进行高灵敏度、高精度的检测。本公司提供各种形状、特性的小型、高可靠性产品,可满足广大客户的应用需求。 NTC负温度系数热敏电阻工作原理 NTC是Negative Temperature Coefficient 的缩写,意思是负的温度系数,泛指负温度系数很大的半导体材料或元器件,所谓NTC热敏电阻器就是负温度系数热敏电阻器。它是以锰、钴、镍和铜等金属氧化物为主要材料,采用陶瓷工艺制造而成的。这些金属氧化物材料都具有半导体性质,因为在导电方式上完全类似锗、硅等半导体材料。温度低时,这些氧化物材料的载流子(电子和孔穴)数目少,所以其电阻值较高;随着温度的升高,载流子数目增加,所以电阻值降低。NTC热敏电阻器在室温下的变化范围在10O~1000000欧姆,温度系数-2%~-6.5%。NTC热敏电阻器可广泛应用于温度测量、温度补偿、抑制浪涌电流等场合。 NTC负温度系数热敏电阻专业术语 零功率电阻值 RT(Ω) RT指在规定温度 T 时,采用引起电阻值变化相对于总的测量误差来说可以忽略不计的测量功率测得的电阻值。 电阻值和温度变化的关系式为: RT = RN expB(1/T – 1/TN) RT :在温度 T ( K )时的 NTC 热敏电阻阻值。 RN :在额定温度 TN ( K )时的 NTC 热敏电阻阻值。 T :规定温度( K )。 B : NT C 热敏电阻的材料常数,又叫热敏指数。 exp :以自然数 e 为底的指数( e = 2.71828 …)。 该关系式是经验公式,只在额定温度 TN 或额定电阻阻值 RN 的有限范围内才具有一定的精确度,因为材料常数 B 本身也是温度 T 的函数。 额定零功率电阻值 R25 (Ω) 根据国标规定,额定零功率电阻值是 NTC 热敏电阻在基准温度25 ℃ 时测得的电阻值 R25,这个电阻值就是 NTC 热敏电阻的标称电阻值。通常所说 NTC 热敏电阻多少阻值,亦指该值。 材料常数(热敏指数) B 值( K )

常用温度传感器解析,温度传感器的原理、分类及应用

常用温度传感器解析,温度传感器的原理、分类及应用 温度传感器(temperature transducer)是指能感受温度并转换成可用输出信号的传感器。温度传感器是温度测量仪表的核心部分,品种繁多。按测量方式可分为接触式和非接触式两大类,按照传感器材料及电子元件特性分为热电阻和热电偶两类。 温度传感器的分类接触式 接触式温度传感器的检测部分与被测对象有良好的接触,又称温度计。 温度计通过传导或对流达到热平衡,从而使温度计的示值能直接表示被测对象的温度。一般测量精度较高。在一定的测温范围内,温度计也可测量物体内部的温度分布。但对于运动体、小目标或热容量很小的对象则会产生较大的测量误差,常用的温度计有双金属温度计、玻璃液体温度计、压力式温度计、电阻温度计、热敏电阻和温差电偶等。它们广泛应用于工业、农业、商业等部门。在日常生活中人们也常常使用这些温度计。 随着低温技术在国防工程、空间技术、冶金、电子、食品、医药和石油化工等部门的广泛应用和超导技术的研究,测量120K以下温度的低温温度计得到了发展,如低温气体温度计、蒸汽压温度计、声学温度计、顺磁盐温度计、量子温度计、低温热电阻和低温温差电偶等。低温温度计要求感温元件体积小、准确度高、复现性和稳定性好。利用多孔高硅氧玻璃渗碳烧结而成的渗碳玻璃热电阻就是低温温度计的一种感温元件,可用于测量 1.6~300K范围内的温度。 非接触式 它的敏感元件与被测对象互不接触,又称非接触式测温仪表。这种仪表可用来测量运动物体、小目标和热容量小或温度变化迅速(瞬变)对象的表面温度,也可用于测量温度场的温度分布。 最常用的非接触式测温仪表基于黑体辐射的基本定律,称为辐射测温仪表。辐射测温法包括亮度法(见光学高温计)、辐射法(见辐射高温计)和比色法(见比色温度计)。各类辐

热敏电阻的温度特性的研究

实验 项 目: 实验 目 的: 1、测定负温度系数热敏电阻的电阻—温度特性,并利用直线拟合的数据处理方法,求其材料常数。 2、了解以热敏电阻为检测元件的温度传感器的电路结构及电路参数的选择原则。 3、学习运用线性电路和运放电路理论分析温度传感器电压—温度特性的基本方法。 4、掌握以叠代法为基础的温度传感器电路参数的数值计算技术。 5、训练温度传感器的实验研究能力。 实验 仪 器: 热敏电阻的温度特性的研究
1. TS—B3 型温度传感综合技术实验仪; 2. 磁力搅拌电热器; 3. ZX21 型电阻箱; 4. 数字万用表; 5. 水银温度计(0-100℃); 6. 烧杯;7. 变压器油
实验 原 理: 具有负温度系数的热敏电阻广泛的应用于温度测量和温度控制技术中。这类热敏电阻大多数是由一些过度金属氧化物(主要有 Mn、Co、Ni、Fe 等氧化物)在一定的烧结条件下形成的半导体金属氧化物作为基本材料制作而成,它们具有 P 型半导体的特性。对于一般半导体材料,电阻率随 温度变化主要依赖于载流子浓度,而迁移率随温度的变化相对来说可以忽略。但对上述过渡金属氧化物则有所不同,在室温范围内基本上已全部 电离,即载流子浓度基本与温度无关,此时主要考虑迁移率与温度的关系,随着温度升高,迁移率增加,所以这类金属氧化物半导体的电阻率下 降,根据理论分析,对于这类热敏电阻的电阻—温度特性的数学表达式通常可以表示为: Rt=R25?exp[Bn(1/T - 1/298)] (1)
其中 Rt 和 R25 分别表示环境为温度 t℃和 25℃时热敏电阻的阻值;T=273+t ;Bn 为材料常数,其大小随制作热敏电阻时选用的材料和配方而异, 对于某一确定的热敏电阻元件,它可由实验上测得的电阻—温度曲线的实验数据,用适当的数据处理方法求得。 下面对以这种热敏电阻作为检测元件的温度传感器的电路结构、工作原理、电压—温度特性的线性化、电路参数的选择和非线性误差等问题论述 如下: 一、电路结构及工作原理 电路结构如图 1a 示,它是由含 Rt 的桥式电路及差分运算放大电路两个主要部分组成。当热敏电阻 Rt 所在环境温度变化时,差分放大器的输入 信号及其输出电压 V0 均要发生变化。传感器输出电压 V0 随检测元件 Rt 环境温度变化的关系称温度传感器的电压—温度特性。为了定量分析这 一特征,可利用电路理论中的戴维南定理把图 1a 示的电路等效变换成图 1b 示的电路,在图 1b 中:
图1
电路原理图及其等效电路
(2) 它们均与温度有关,而
(3) 与温度无关。根据电路理论中的叠加原理,差分运算放大器输出电压 V0 可表示为:
(4)

温度传感器的常见分类 温度传感器应用大全

温度传感器的常见分类温度传感器应用大全 温度传感器在我们的日常生活中扮演着十分重要的角色,同时它也是使用范围最广,数量最多的传感器。关于它你了解多少呢?本文主要介绍的就是各种温度传感器的分类及其原理,温度传感器的应用电路。 温度传感器从17世纪温度传感器首次应用以来,依次诞生了接触式温度传感器,非接触式温度传感器,集成温度传感器,近年来在智能温度传感器在半导体技术,材料技术等新技术的支持下,温度传感器发展迅速,由于智能温度传感器的软件和硬件的合理配合既可以大大增强传感器的功能、提高传感器的精度,又可以使温度传感器的结构更为简单和紧凑,使用也更加方便。 1、热电偶传感器: 两种不同导体或半导体的组合称为热电偶。热电势EAB(T,T0)是由接触电势和温差电势合成的,接触电势是指两种不同的导体或半导体在接触处产生的电势,此电势与两种导体或半导体的性质及在接触点的温度有关,当有两种不同的导体和半导体A和B组成一个回路,其相互连接时,只要两结点处的温度不同,一端温度为T,称为工作端,另一端温度为TO,称为自由端,则回路中就有电流产生,即回路中存在的电动势称为热电动势,这种由于温度不同而产生电动势的现象称为塞贝克效应。 2、热敏电阻传感器: 热敏电阻是敏感元件的一类,热敏电阻的电阻值会随着温度的变化而改变,与一般的固定电阻不同,属于可变电阻的一类,广泛应用于各种电子元器件中,不同于电阻温度计使用纯金属,在热敏电阻器中使用的材料通常是陶瓷或聚合物,正温度系数热敏电阻器在温度越高时电阻值越大,负温度系数热敏电阻器在温度越高时电阻值越低,它们同属于半导体器件,热敏电阻通常在有限的温度范围内实现较高的精度,通常是-90℃?130℃。 3、模拟温度传感器: HTG3515CH是一款电压输出型温度传感器,输出电流1~3.6V,精度为±3%RH,0~100%RH相对湿度范围,工作温度范围-40~110℃,5s响应时间,0±1%RH迟滞,是一个带

光电报警器课程设计

一绪论 (2) 二设计要求 (2) 四设计原理及电路图 (4) 4.1报警电路原理图 (4) 4.2数码管显示原理图 (4) 4.3光电转换设计原理图 (5) 五器件清单及简单介绍 (5) 5.1光耦 (5) 5.2 555芯片 (6) 5.2.1 555芯片连线图 (6) 5.2.2 555芯片工作表 (7) 5.3 74LS32译码器 (7) 5.3.1 ;74LS32译码器译码表 (7) 5.3.2 ;74LS32引脚接线图 (7) 5.4 74LS48译码器 (8) 5.4.1电路接线图 (8) 5.4.2 74LS48引脚图 (8) 5.4.3 74LS48译码表 (8) 六控制系统实现 (9) 七proteus仿真电路图 (10) 7.1无光遮挡的情况下数码管显示状态 (10) 7.2当通道1被遮挡时,数码管的显示状态 (10) 7.3当通道2被遮挡时,数码管的显示状态 (11) 7.4当通道全部被遮挡时,数码管的显示状态 (11) 八设计心得 (12) 九参考资料 (12)

一绪论 随着社会科学技术的迅速发展,人们对报警器的性能提出了越来越高的要求。传统的报警器通常采用触摸式、开关报警器等。这类报警器具有性能稳定、实用性强等特点,但是也具有应用范围窄等缺点。而且安全性能也不是很好。光电报警就很好的改善了这点。如今,光电报警器已经广泛应用到工农业生产、自动化仪表、医疗电子设备等领域本实验的设计借助于模拟电路和数字逻辑电路,采用模块化的设计思想,使设计变得简单、方便、灵活性强。电路简单容易实现,工作稳定,因此得到了广泛的应用。 本文设计了一种光电式报警器,该报警器通过感光器件组成的光电转换电路,可以探测出光线是否被阻挡的信息,并通过把光信号转换成电信号来把这种信息传递至后面的数码显示电路以及声光报警电路以实现控制数码管显示与报警器报警的功能。其中声光报警部分通过555定时器组成的多谐振荡器来控制蜂鸣器发出鸣叫声和发光二极管发出光亮来代替报警效果。整个设计利用了部分数字逻辑电路,能实现在报警过程中同时显示对应路数的功能。且该报警器的设计采用模块化结构,即:光电转换模块、报警模块和显示模块。各单元电路功能结构相对独立,可扩充性强,具有很高的经济利用价值。 二设计要求 1设计一个光电传感器,采用光耦电阻,当有物体遮挡光电传感器所设置的通道时,报警器会自动发出声音,数码管并显示相应遮挡的通道位置(设通道代码分别为1,2,3),当所设计的光电传感器通道一被遮挡时,报警器发出响声,数码管显示1,当所设计的光电传感器通道二被遮挡时,报警器发出声响,同时数码管显示2,当通道三被遮挡时也一样,当光电传感器没有物体遮挡所设计的通道时,报警器不发出声响,数码管不显示。 2设计主要材料 光耦,555芯片,74LS32译码器,74LS48译码器

NTC负温度系数热敏电阻专业术语.

NTC负温度系数热敏电阻专业术语 ?零功率电阻值RT (Q) RT指在规定温度T时,采用引起电阻值变化相对于总的测量误差来说可以忽略不计的测量功率测得的电阻值。 电阻值和温度变化的关系式为: RT = RN expB(1/T - 1/TN) RT :在温度T (K )时的NTC热敏电阻阻值。 RN :在额定温度TN (K )时的NTC热敏电阻阻值。 T :规定温度(K )。 B : NTC热敏电阻的材料常数,又叫热敏指数。 exp :以自然数e为底的指数(e = 2.71828…)。 该关系式是经验公式,只在额定温度TN或额定电阻阻值RN的有限范围内才具有一定的精确度,因为材料常数B本身也是温度T的函数。 ?额定零功率电阻值R25 (Q) 根据国标规定,额定零功率电阻值是NTC热敏电阻在基准温度25 C时测得的电阻值R25,这个电阻值就是NTC热敏电阻的标称电阻值。通常所说NTC 热敏电阻多少阻值,亦指该值。 ?材料常数(热敏指数)B值(K ) B值被定义为: TiTj Rn RT1 :温度T1 (K )时的零功率电阻值。 RT2 :温度T2 (K )时的零功率电阻值。 T1,T2 :两个被指定的温度(K )。 对于常用的NTC热敏电阻,B值范围一般在2000K?6000K之间。?零功率电阻温度系数(a T ) 在规定温度下,NTC热敏电阻零动功率电阻值的相对变化与引起该变化的温度变化值之比值。 B R dT

a T :温度T (K )时的零功率电阻温度系数 RT :温度T (K )时的零功率电阻值。 T :温度(T )。 B :材料常数。 ?耗散系数(S) 在规定环境温度下,NTC热敏电阻耗散系数是电阻中耗散的功率变化与电阻体相应的温度变化之比值。 - AP S: NTC热敏电阻耗散系数,(mW/ K)。 △ P : NTC热敏电阻消耗的功率(mW)。 △ T : NTC热敏电阻消耗功率△ P时,电阻体相应的温度变化(K )0?热时间常数(T) 在零功率条件下,当温度突变时,热敏电阻的温度变化了始未两个温度差的63.2%时所需的时间,热时间常数与NTC热敏电阻的热容量成正比,与其耗散系数成反比。 C T ------------- 6 T:热时间常数(S )。 C: NTC热敏电阻的热容量。 S: NTC热敏电阻的耗散系数。 ?额定功率Pn 在规定的技术条件下,热敏电阻器长期连续工作所允许消耗的功率。在此功率下,电阻体自身温度不超过其最高工作温度。 ?最高工作温度Tmax 在规定的技术条件下,热敏电阻器能长期连续工作所允许的最高温度。即: 丁max - 丁0士f T0-环境温度。 ?测量功率Pm

热敏电阻温度传感器

热敏电阻温度传感器 词条简介 热敏电阻温度传感器(Thermistor Temperature Probe)是根据周围环境温度变化而改变自身电阻的温度传感装置。由于热敏电阻的电阻很容易测得,所以通常用作温度传感器使用。热敏电阻的电阻和温度之间的关系是高度非线性的。 目录 热敏电阻温度传感器的特点>热敏电阻温度传感器的参数>热敏电阻温度传感器的型号规格>热敏电阻温度传感器在水壶中的应用原理>热敏电阻温度传感器的选择要点 热敏电阻温度传感器的特点 ·宽温度范围 · 0.35°C 精确度 ·卓越的长期稳定性 ·可更换传感器 ·适用于多种媒介的传感器 ·可选单位显示 ·快速响应 ·小巧的尺寸>热敏电阻温度传感器的参数 测量温度范围:-50℃~120℃-50℃~250℃; R25电阻值:3K, 5K, 10K, 20K, 100K 等; B值:3435K,3950K,3270K,4537K等; R25电阻值和B值精度:分别可达±1%~5%; 采用日本热敏电阻芯片; 采用双层密封工艺,具有良好的绝缘和抗机械碰撞、抗折弯能力; 保护管直径:Φ4,Φ5; 外引线采用PVC绝缘电缆或高温电缆; 安装方式:直管式,螺纹式,螺丝压接式等;>热敏电阻温度传感器的型号规格 热敏电阻温度传感器的型号与规格:

用途:家用空调、汽车空调、冰箱、冷柜、热水器、饮水机、暖风机、咖啡机,烘干机以及中低温干燥箱、恒温箱等场合的温度测量与控制。>热敏电阻温度传感器在水壶中的应用原理 热敏电阻温度传感器在水壶中的应用时的温控器原理: 将热敏电阻放在电热水壶某一位置,通过热敏电阻进行温度采样,并将此处的温度相关信息传送给MCU处理;根据此处温度与壶内水的温度的规律关系,MCU将计算出的水温与用户设定的温度进行比较,如果水的温度大于或等于设定的温度,则MCU控制断开加热电路,使电路停止加热发热盘。同样,如果热敏电阻读取到的发热盘温度大于110℃(即发生干烧时),对发热盘的加热电路也将立即断开。>热敏电阻温度传感器的选择要点热敏电阻温度传感器的选择要考虑如下问题: (1)被测对象的温度是否需记录、报警和自动控制,是否需要远距离测量和传送。 (2)测温范围的大小和精度要求。 (3)测温元件大小是否适当。 (4)在被测对象温度随时间变化的场合,测温元件的滞后能否适应测温要求。 (5)被测对象的环境条件对测温元件是否有损害。 (6)价格如何,使用是否方便。

热敏电阻温度特性的研究带实验数据处理

本科实验报告 实验名称:热敏电阻温度特性的研究 (略写) 实验15热敏电阻温度特性的研究 【实验目的和要求】 1. 研究热敏电阻的温度特性。 2. 用作图法和回归法处理数据。 【实验原理】 1. 金属导体电阻 金属导体的电阻随温度的升高而增加,电阻值t R 与温度t 间的关系常用以下经验公式表示: )1(320 ++++=ct bt t R R t α (1) 式中t R 是温度为t 时的电阻,0R 为00=t C 时的电阻,c b ,,α为常系数。 在很多情况下,可只取前三项: )1(20bt t R R t ++=α (2) 因为常数b 比α小很多,在不太大的温度范围内,b 可以略去,于是上式可近似

写成: )1(0t R R t α+= (3) 式中α称为该金属电阻的温度系数。 2. 半导体热敏电阻 热敏电阻由半导体材料制成,是一种敏感元件。其特点是在一定的温度范围内,它的电阻率T ρ随温度T 的变化而显著地变化,因而能直接将温度的变化转换为电量的变化。一般半导体热敏电阻随温度升高电阻率下降,称为负温度系数热敏电阻,其电阻率T ρ随热力学温度T 的关系为 T B T e A /0=ρ (4) 式中0A 与B 为常数,由材料的物理性质决定。 也有些半导体热敏电阻,例如钛酸钡掺入微量稀土元素,采用陶瓷制造工艺烧结而成的热敏电阻在温度升高到某特定范围(居里点)时,电阻率会急剧上升,称为正温度系数热敏电阻。其电阻率的温度特性为: T B T e A ?'=ρρ (5) 式中A '、 ρ B 为常数,由材料物理性质决定。 对(5)式两边取对数,得 A T B R T ln 1 ln += (6) 可见T R ln 与T 1 成线性关系,若从实验中测得若干个T R 和对应的T 值,通过作图法可求出A (由截距A ln 求出)和B (即斜率)。 3. 实验原理图

触摸式报警器课程设计

触摸式报警器 摘要:本实验针对触摸报警器选择用NE555芯片组成单稳态触摸报警器,并选择了一种相对来说较简单的设计方案,进行由上而下层次化的设计,先定义和规定各个模块的结构,再对模块内部进行详细设计。最后将设计好的模块组合调试,并在Protel 99软件上仿真通过。 关键词:NE555芯片 Protel 99软件单稳态输出高电平有效 Abstract:This experiment in touch alarm with NE555 chip composition choice single state touch alarm, and choose a relatively more simple design, by go up and down the hierarchical structure design, first definition and regulations of each module structure, and then within the detailed design module. Finally the design good modules, and debugging in 99 software simulation through Protel Keywords:NE555 chipProtel 99software single state output high level effective

目录 1前言 (3) 2总体方案设计 (4) 2.1方案一 (2) 2.2方案二 (3) 2.3方案比较 (5) 3实现方案 (6) 3.1总体方案分析 (6) 3.2实验原理图分析 (6) 4主要元器件的基本介绍 (7) 4.1NE555芯片引脚及功能 (7) 5 proteus与protel的仿真 (10) 5.1protel的软件简述 (10) 5.2protues的软件简述 (10) 5.3protues软件仿真 (11) 5.4实验调节 (11) 5.5实验结果分析 (12) 6组装与调试 (13) 7心得体会 (14) 8谢辞 (15) 9 参考文献 (16) 10附录 (17)

热敏电阻包括正温度系数和负温度系数热敏电阻

热敏电阻包括正温度系数和负温度系数热敏电阻。 新晨阳电子- 热敏电阻 的主要特性是:1.锐敏度比拟高,其电阻感温系数要比非金属大10~100倍之上;2.任务感温范畴宽,常温机件实用于-55℃~315℃,低温机件实用感温高于315℃(眼前最高可到达2000℃)高温机件实用于-273℃~55℃; 3.容积小,可以丈量其余温度表无奈丈量的空儿、腔体及生物体内血脉的感温;4.运用便当,电阻值可正在0.1~100kΩ间恣意取舍;5.易加工成简单的外形,可少量量消费; 6.稳固性好、超载威力强. 因为半超导体热敏电阻有共同的功能,因为正在使用范围它能够作为丈量组件(如丈量感温、流量、液位等),还能够作为掌握组件(如感温电门、限流器)和通路弥补组件。热敏电阻宽泛用来家用电器、风力轻工业、通信、军事迷信、宇航等各个畛域,发展前途极端宽广。 一、PTC热敏电阻 PTC(Positive Temperature Coeff1Cient)是指在某一温度下电阻急剧增加、具有正温度系数的热敏电阻现象或材料,可专门用作温度传感器。该材料是以BaTiO3或SrTiO3或PbTiO3为主要成分的烧结体,其中掺入微量的Nb、Ta、Bi、Sb、Y、La等氧化物进行原子价控制而使之半导化,常将这种半导体化的BaTiO3等材料简称为半导(体)瓷;同时还添加增大其正电阻温度系数的Mn、Fe、Cu、Cr的氧化物和起其他作用的添加物,采用一般陶瓷工艺成形、高温烧结而使钛酸铂等及其固溶体半导化,从而得到正温度的热敏电阻材料.其温度系数及居里点温度随组分及烧结条件(尤其是冷却温度)不同而变化。 钛酸钡晶体属于钙钛矿型结构,它是一种铁电材料,纯钛酸钡是一种绝缘材料。在钛酸钡材料中加入微量稀土元素,进行适当热处理后,在居里温度附近,电阻率陡增几个数量级,产生PTC效应,此效应与BaTiO3晶体的铁电性及其在居里温度附近材料的相变有关。钛酸钡半导瓷是一种多晶材料,晶粒之间存在着晶粒间接口。该半导瓷当达到某一特定温度或电压,晶体粒界就发生变化,从而电阻急剧变化。 钛酸钡半导瓷的PTC效应起因于粒界(晶粒间界)。对于导电电子来说,晶粒间接口相当于一个势垒。温度低时,由于钛酸钡内电场的作用,导致电子极容易越过势垒,则电阻值较小。当温度升高到居里点温度(即临界温度)附近时,内电场受到破坏,它不能说明导电电子越过势垒。这相当于势垒升高,电阻值突然增大,产生PTC效应。钛酸钡半导瓷的PTC效应的物理模型有海望表面势垒模型、丹尼尔斯等人的钡缺位模型和迭加势垒模型,它们分别从不同方面对PTC 效应作出了合理解释。 PTC热敏电阻于1950年出现,随后1954年出现了以钛酸钡为主要材料的PTC

温度传感器

温度传感器 一、简介 温度传感器是指能感受温度并转换成可用输出信号的传感器。温度传感器是温度测量仪表的核心部分,品种繁多。 二、主要分类 1、接触式 接触式温度传感器的检测部分与被测对象有良好的接触,又称温度计。 温度计通过传导或对流达到热平衡,从而使温度计的示值能直接表示被测对象的温度。一般测量精度较高。在一定的测量范围内,温度计也可测量物体内部的温度分布。但对于运动体、小目标或热容量很小的对象则会产生较大的测量误差,常用的温度计有双金属温度计、玻璃液体温度计、压力式温度计、电阻温度计、热敏电阻和温差电偶等。它们广泛应用于工业、农业、商业等部门。在日常生活中人们也常常使用这些温度计。随着低温技术在国防工程、空间技术、冶金、电子、食品、医药和石油化工等部门的广泛应用和超导技术的研究,测量120K以下温度的低温温度计得到了发展,如低温气体温度计、蒸气压温度计、声学温度计、顺磁盐温度计、量子温度计、低温热电阻和低温温差热电偶等。低温温度计要求感温元件体积小、精确度高、复现性和稳定性好。利用多孔高硅氧玻璃渗碳少杰而成的渗碳玻璃热电阻就是低温温度计的一种感温元件,可用于测量1.6-300K范围内的温度。 2、非接触式 它的敏感元件与被测对象互不接触,又称非接触式测温仪表。这种仪表可用来测量运动物体、小目标和热容量小或温度变化迅速(瞬变)对象的表面温度,也可用于测量温度场的温度分布。 最常用的非接触式测温仪表基于黑体辐射的基本定律,称为辐射测温仪表。辐射测温法包括亮度法(见光学高温计)、辐射法(见辐射高温计)和比色法(见比色温度计)。各类辐射测温方法只能测出对应的光度温度、辐射温度或比色温度。只有对黑体(吸收全部辐射并不反射光的物体)所测温度才是真实温度。如欲测定物体的真实温度,则必须进行材料表面发射率的修正。而材料表面发射率不仅取决于温度和波长,而且还与表面状态、涂膜和微

温度报警器 课程设计

一、任务技术指标 设计一个环境温度监测报警电路,通过对温度报警电路的设计、安装和调试,掌握温度报警电路的工作原理和运算放大器在实际电子电路中的应用。 基本要求: 1.当温度在15℃~30℃范围内(允许误差±1℃)时,报警器不发声。 2.当温度高于30℃时,报警器发出两种频率交替的“滴—嘟、滴—嘟”声响。 3.当温度低于15℃时,报警器发出间歇式声响。 4.可用5~15V 直流稳压电源供电。 5.在保证性能的前提下,尽量减少功耗,降低成本。 二、总体设计思想 1.基本原理 温度报警器是通过对温度有一定的感应的电阻的阻值的变化,转变为相应的电压的变化,从而通过一系列的电路产生相应信号,输入报警器,从而报警器发出不同的声响。 设计电路的时候,首先要有一个能够测外界温度的电路,测温电路用电阻组成,其中有一个就是对环境温度有感应的热敏电阻(要知道它的温度系数),它和其他电阻组成一个支路,另外还要有两个支路,都是用定值电阻组成的,事先就把相应的温度转换相应的电压,从而用不同阻值的电阻分压,这样就可以产生两个固定的温度,可以作为温度的上下限。 然后,把它们的比较结果作为输入进差动放大电路,进行一定倍数的电压放大,在把差动电路的输出作为滞回比较器的输入,这是为了稳定以下输出,把稳定的信号输入报警器中。这样就可以制作出来一个完整的温度报警器。 温度报警器由感知外部温度的桥式测温电路,差动放大电路,滞回比较器及报警器组成。测温电路由电阻组成,其中有一个就是对环境温度有感应的热敏电阻,它和其他电阻组成一个支路,另外还要有两个支路,都是用定值电阻组成的,事先就把相应的温度转换相应的电压,从而用不同阻值的电阻分压,这样就可以产生两个固定的温度,可以作为温度的上下限。然后,把它们的比较结果作为输入进差动放大电路,进行一定倍数的电压放大,在把差动电路的输出作为滞回比较器的输入,这是为了稳定输出,把稳定的信号输入报警器中。这就是一个完整的温度报警电路。 2.系统框图

测量热敏电阻的温度系数

3.5.2 用热敏电阻测量温度 (本文内容选自高等教育出版社《大学物理实验》) 热敏电阻是由对温度非常敏感的半导体陶瓷质工作体构成的元件。与一般常用的金属电阻相比,它有大得多的电阻温度系数值。根据所具有电阻温度系数的不同,热敏电阻可分三类:1.正电阻温度系数热敏电阻;2.临界电阻温度系数热敏电阻;3.普通负电阻温度系数热敏电阻。前两类的电阻急变区的温度范围窄,故适宜用在特定温度范围作为控制和报警的传感器。第三类在温度测量领域应用较广,是本实验所用的热敏元件。热敏电阻作为温度传感器具有用料省、成本低、体积小、结构简易,电阻温度系数绝对值大等优点,可以简便灵敏地测量微小温度的变化。我国有关科研单位还研制出可测量从-260℃低温直到900℃高温的一系列不同类型的热敏电阻传感器,在人造地球卫星和其他有关宇航技术、深海探测以及科学研究等众多领域得到广泛的应用。本实验旨在了解热敏电阻-温度特性和测温原理,掌握惠斯通电桥的原理和使用方法。学习坐标变换、曲线改直的技巧和用异号法消除零点误差等方法。 实验原理 1. 半导体热敏电阻的电阻——温度特性 某些金属氧化物半导体(如:Fe 3O 4、MgCr 2O 4等)的电阻与温度关系满足式(1): T B T e R R ∞= (1) 式中R T 是温度T 时的热敏电阻阻值,R ∞是T 趋于无穷时热敏电阻的阻值,B 是热敏电阻的材 料常数,T 为热力学温度。 金属的电阻与温度的关系满足(2): )](1[1212t t a R R t t -+= (2) 式中a 是与金属材料温度特性有关的系数,R t1、R t2分别对应于温度t 1、t 2时的电阻值。 根据定义,电阻的温度系数可由式(3)来决定: dt dR R a t t 1= (3) R t 是在温度为t 时的电阻值,由图3.5.2-1(a )可知,在R-t 曲线某一特定点作切线,便可求出该温度时的半导体电阻温度系数a 。 由式(1)和式(2)及图3.5.2-1可知,热敏电阻的电阻-温度特性与金属的电阻-温度特性比较,有三个特点: (1) 热敏电阻的电阻-温度特性是非线性的(呈指数下降),而金属的电阻-温度特性是线性的。

智能家居报警系统-课程设计

' 单片机课程设计报告 智能家居报警系统 姓名: 班级: 学号: 指导老师: 日期: 摘要 } 智能家居是人们的一种居住环境,其以住宅为平台安装有智能家居系统,实现家庭生活更加安全,节能,智能,便利和舒适。 本小组设计的是基于STC89C52的智能家居报警系统,其主要模块包括单片机主控制系统、检测模块、密码锁模块、显示模块、报警模块等。 其主要通过人体热释红外感应获取室内人员信息,通过温度传感器获取室内温度,并发送信号到单片机,以输入密码的方式确定目标身份,并通过蜂鸣器、LED灯、语音报警、GSM 短信报警的全方位方式联合来警示输错三次密码者或发生火灾。 本系统还可以不仅大大提高系统安全性及智能性,也方便用户的使用。相信在不久的将来,在物联网产业的不断推动下,智能家居将真正走进寻常百姓的家中,人们也将真正享受到智能家居的舒适生活。 【关键词】AT89C52单片机检测密码门禁报警 目录 1.前言 (3) 2.方案选择与论证 (3) · 主控单元的选择 (3) 温度传感器模块的选择 (3) 远红外检测模块的选择 (4)

密码键盘的选择 (4) 显示模块的选择 (5) 3.总体电路设计 (5) 总体设计框图 (5) 总体电路图 (6) 4.。 5.单元电路设计 (6) 密码存储模块 (7) 检测模块 (7) 人体热释感应模块 (7) 温度探测模块 (8) 液晶显示模块 (9) 报警模块 (10) 蜂鸣器及LED报警 (10) * GSM报警 (11) 语音报警 (11) 5. 焊接与调试 (13) 电路焊接 (13) 电路调试 (14) 6.收获与体会 (15) 参考文献 附录:附录A:任务分配表 ~ 附录B:部分实物图 致谢 1.前言 智能家居是现代社会最热门的话题之一,它的目标是通过网络等信息通信技术手段实现对家居电器等的智能控制,使其能够按照人们的设定工作运行,而不论距离的远近。正是因为通信技术、计算机技术、网络技术、控制技术的迅猛发展与提高,促使了家庭实现了生活现代化,居住环境舒

NTC负温度系数热敏电阻

NTC 负温度系数热敏电阻 热敏电阻分为三类:正温度系数热敏电阻(PTC ),负温度系数热敏电阻(NTC ),临界温度电阻器(CTR )。 图1-1 NTC 负温度系数热敏电阻 负温度系数热敏电阻器如图1-39所示。其电阻值随温度的增加而减小。NTC 热敏电阻器在室温下的变化范围在10O ~1000000欧姆,温度系数-2%~-6.5%。 ⑴ 负温度系数热敏电阻温度方程 )(T f =ρ T B T e A /'=ρ T B T B T T Ae e S l A S l R //'===ρ 其中:S l A A ' = 电阻值和温度变化的关系式为: )1 1(exp N N T T T B R R -= R T --在温度T ( K )时的NT C 热敏电阻阻值。 R N --在额定温度T N ( K )时的NTC 热敏电阻阻值。以25°C 为基准温度时测得的电阻值R N =R25,R25就是NTC 热敏电阻的标称电阻值。通常所说 NTC 热敏电阻多少阻值,亦指R25值。 B---NTC 热敏电阻的材料常数,又叫热敏指数。T T T R R T T T T B 0 00ln -= 该关系式是经验公式,只在额定温度 TN 或额定电阻阻值 RN 的有限范围内才具有一定的精确度,因为材料常数B 本身也是温度 T 的函数。NTC 热敏电阻器在室温下的变化范围在10O ~1000000欧姆,温度系数-2%~-6.5%。 已知温度T 、额定温度T N 和R25即可求的热敏电阻阻值R T 。 ⑵ 负温度系数热敏电阻主要特性 电阻温度系数σ

dT dR R T T 1= σ 微分式(),可得 2 T B -=σ 热敏电阻的温度系数是负 值。 -----温度测量电桥应用 温度测量电桥的A 点所在的桥臂的电阻是固定的,故A U 是固定的。B 点所在的桥臂的电阻t R 随温度变化,故B U 是变动的。电阻t R 为负温度系数热敏电阻, t R =1.5K 指NTC 热敏电阻的标称电阻值R 25。为了方便取2R 与t R 成比例,这里取 K R R t 5.12==,同时,13 1 1212 E E R R R A U =+= ,得Ω=7501R 。 在前面已知条件下,推导13’ 3P R R R +=: 约束条件:① U U U U U B A i ??+-=??-,② 13 1 E A U =。 由测量电桥平衡0=-=B A i U U U 时,得Ω==+=750113’ 3R R R R P 。 又由1'3 1131E R t R t R E U U U B A i +-=-=,得R p R R R ?±Ω=+=75013'3。故取K R P 11=。 ⑴ 温度控制器电路 温度控制器电路如图3-7所示,由测量电桥、测量放大器、滞回比较器 及驱动电路等组成。由于温度的不同,因而在测量电桥的A 、B 点时会产生不同的电压差,这个差值经过测量放大器放大后进入到滞回比较器的反相输入端,与比较电压U R 比较后,由滞回比较器输出信号进行加热或停止加热。

各种温度传感器分类及其原理.

各种温度传感器分类及其原理 温度传感器是检测温度的器件,其种类最多,应用最广,发展最快。众所周知,日常使用的材料及电子元件大部分特性都随温度而变化, 在此我们暂时介绍最常用的热电阻和热电偶两类产品。 1. 热电偶的工作原理 当有两种不同的导体和半导体 A 和 B 组成一个回路,其两端相互连接时,只要两结点处的温度不同,一端温度为 T ,称为工作端或热端,另一端温度为 TO ,称为自由端 (也称参考端或冷端,则回路中就有电流产生,如图 2-1(a所示,即回路中存在的电动势称为热电动势。这种由于温度不同而产生电动势的现象称为塞贝克效应。与塞贝克有关的效应有两个:其一, 当有电流流过两个不同导体的连接处时, 此处便吸收或放出热量 (取决于电流的方向 , 称为珀尔帖效应;其二,当有电流流过存在温度梯度的导体时,导体吸收或放出热量 (取决于电流相对于温度梯度的方向 ,称为汤姆逊效应。两种不同导体或半导体的组合称为热电偶。热电偶的热电势 EAB(T, T0 是由接触电势和温差电势合成的。接触电势是指两种不同的导体或半导体在接触处产生的电势, 此电势与两种导体或半导体的性质及在接触点的温度有关。温差电势是指同一导体或半导体在温度不同的两端产生的电势, 此电势只与导体或半导体的性质和两端的温度有关, 而与导体的长度、截面大小、沿其长度方向的温度分布无关。无论接触电势或温差电势都是由于集中于接触处端点的电子数不同而产生的电势, 热电偶测量的热电势是二者的合成。当回路断开时,在断开处 a , b 之间便有一电动势差△ V ,其极性和大小与回路中的热电势一致,如图 2-1(b所示。并规定在冷端,当电流由 A 流向 B 时, 称 A 为正极, B 为负极。实验表明,当△ V 很小时,△ V 与△ T 成正比关系。定义△ V 对△ T 的微分热电势为热电势率, 又称塞贝克系数。塞贝克系数的符号和大小取决于组成热电偶的两种导体的热电特性和结点的温度差。 2. 热电偶的种类

相关文档
最新文档