高阶线性微分方程优秀PPT
合集下载
高等数学(微积分)课件--93高阶微分方程共29页文档

17
二阶常系数非齐次线性方程
y p y q y f( x )二阶常系数非齐次线性方程
对应齐次方程 y p y q y 0 ,
通解结构 yYy,
常见类型 Pm(x), Pm(x)ex,
P m (x)exco xs , P m (x)exsin x,
难点 如何求特解? 方法 待定系数法.
18
f(x)=eλx pm(x)
设非齐方程特解为 yQ(x)ex 代入原方程
Q ( x ) ( 2 p ) Q ( x ) ( 2 p q ) Q ( x ) P m ( x )
(1) 若不是特征方程的根2 ,pq0,
可 Q (x 设 ) Q m (x ), yQ m(x)ex;
7
二阶常系数齐次线性方程的通解
二阶常系数齐次线性方程的解法
y p y q y 0
-----特征方程法
设yerx, 将其代入上方程, 得
(r2p rq)erx0erx0,
故有 r2prq0
特征方程
特征根
p p24q
r1,2
, 2
8
不相等的实数根
有两个不相等的实根 (0)
特征根为
p r1
p24q ,
(2) 若是特征方程的单根,
2pq0, 2p0,
可 Q (x 设 ) xm ( Q x ), yxm Q (x)ex;
45、法律的制定是为了保证每一个人 自由发 挥自己 的才能 ,而不 是为了 束缚他 的才能 。—— 罗伯斯 庇尔
二阶非齐次线性方程的解的结构
定理3 设y* 是二阶非齐次线性方程
y P(x)y Q(x)y f (x)
(2)
的一个特解, Y 是与(2)对应的齐次方程(1)的通解, 那 么y Y y*是二阶非齐次线性微分方程(2)的通解.
二阶常系数非齐次线性方程
y p y q y f( x )二阶常系数非齐次线性方程
对应齐次方程 y p y q y 0 ,
通解结构 yYy,
常见类型 Pm(x), Pm(x)ex,
P m (x)exco xs , P m (x)exsin x,
难点 如何求特解? 方法 待定系数法.
18
f(x)=eλx pm(x)
设非齐方程特解为 yQ(x)ex 代入原方程
Q ( x ) ( 2 p ) Q ( x ) ( 2 p q ) Q ( x ) P m ( x )
(1) 若不是特征方程的根2 ,pq0,
可 Q (x 设 ) Q m (x ), yQ m(x)ex;
7
二阶常系数齐次线性方程的通解
二阶常系数齐次线性方程的解法
y p y q y 0
-----特征方程法
设yerx, 将其代入上方程, 得
(r2p rq)erx0erx0,
故有 r2prq0
特征方程
特征根
p p24q
r1,2
, 2
8
不相等的实数根
有两个不相等的实根 (0)
特征根为
p r1
p24q ,
(2) 若是特征方程的单根,
2pq0, 2p0,
可 Q (x 设 ) xm ( Q x ), yxm Q (x)ex;
45、法律的制定是为了保证每一个人 自由发 挥自己 的才能 ,而不 是为了 束缚他 的才能 。—— 罗伯斯 庇尔
二阶非齐次线性方程的解的结构
定理3 设y* 是二阶非齐次线性方程
y P(x)y Q(x)y f (x)
(2)
的一个特解, Y 是与(2)对应的齐次方程(1)的通解, 那 么y Y y*是二阶非齐次线性微分方程(2)的通解.
第四章 高阶微分方程 常微分方程课件 高教社 王高雄教材配套ppt

5/8/2021
第四章
10
x1
t 2 , 0,
1 t 0 0t 1
注 仅对函数而言 线性相关时W(t)≡0的
逆定理一般不成立。
例 函数
和
x1
t 2 , 0,
x2
0,
t
2
,
1 t 0 0t 1
1 t 0 0t 1
在区间-1≤t≤1上有W[x1(t),x2(t)]≡0 ,但却线性无 关。
证 5/8/2021 用反证法证。
第四章
12
(续)定理4 齐次线性微分方程的线性 无关解的伏朗斯基行列式恒不为零
dn x dtn
a1(t)
dn1 x d t n1
an1 (t )
d d
x t
an
(t ) x
0
证 用反证法证。设有t0 (a≤t0≤b) 使得W(t0)=0,则t = t0时 的 (6)、(7)组成的n个齐次线性代数方程组有非零解 c1 ,c2 ,…,cn。 根椐叠加原理,函数 x(t)=c1x1(t)+ c2x2(t)+…+ cnxn(t) 是方程(2)的解,
第四章
13
定理5 齐次线性方程(2)的基本 解组必存在且其伏朗斯基行列式 恒不为零。
证 根据定理1,线性 方程(2)的满足初值 条件:
的解x1(t),x2(t),…,xn(t)必 存在,且有
x1
(t0
)
1,
x1'
(t0
)
0,
x2
(t0
)
0,
x2'
(t0
)
1,
xn
(t0
)
0,
xn'
D7_4高阶线性微分方程

y Y (x) y *(x)
②
是非齐次方程的通解 .
证: 将 y Y (x) y *(x) 代入方程①左端, 得
(Y y *) P(x) (Y y *) Q(x) (Y y *)
f (x) 0 f (x)
(Y P(x)Y Q(x)Y )
YANGZHOU UNIVERSITY
因此原方程的通解为 s (C1 C2 t ) e t
利用初始条件得
C1 4, C2 2
于是所求初值问题的解为
YANGZHOU UNIVERSITY
机动 目录 上页 下页 返回 结束
例3. 质量为m的物体自由悬挂在一端固定的弹簧上,
在无外力作用下做自由运动, 取其平衡位置为原点建
立坐标系如图, 设 t = 0 时物体的位置为
定理 4.
分别是方程
y P(x) y Q(x) y fk (x) (k 1, 2, , n )
的特解,
是方程
n
y P(x) y Q(x) y fk (x)
k 1
的特解. (非齐次方程之解的叠加原理)
定理3, 定理4 均可推广到 n 阶线性非齐次方程.
YANGZHOU UNIVERSITY
例如, 方程
有特解
且
y2 y1
tan
x
常数, 故方程的通解为
推论.
是 n 阶齐次方程
的 n 个线性无关解, 则方程的通解为
y C1y1 Cn yn (Ck为任意常数)
YANGZHOU UNIVERSITY
机动 目录 上页 下页 返回 结束
定理 3. 设 y * (x) 是二阶非齐次方程
①
的一个特解, Y (x) 是相应齐次方程的通解, 则
高数微分方程PPT

应用
描述了许多自然现象,如生态模型、化学反应等。
二阶常系数线性微分方程
定义
形如 $y'' + py' + qy = 0$ 的微分方程称为二阶常系数 线性微分方程。
解法
通过求解特征方程,得到通 解。
应用
在物理学、工程学等领域有 广泛应用,如弹簧振动、电 磁波等。
04
高阶微分方程
BIG DATA EMPOWERS TO CREATE A NEW
参数法
总结词
通过引入参数,将微分方程转化为更易于求 解的形式。
详细描述
参数法是通过引入参数,将微分方程转化为 更易于求解的形式。这种方法适用于具有特 定形式的高阶微分方程。
积分因子法
总结词
通过寻找积分因子,将微分方程转化为积分 方程,简化求解过程。
详细描述
积分因子法是通过寻找积分因子,将微分方 程转化为积分方程,从而简化求解过程。这 种方法适用于具有特定形式的一阶线性微分
高阶微分方程
包含多个导数的微分方程。
微分方程的应用
物理问题
描述物理现象的变化规律,如 振动、波动、流体动力学等。
经济问题
描述经济现象的变化规律, 如供求关系、市场均衡等。
工程问题
在机械、航空、化工等领域中 ,微分方程被用来描述各种动 态过程。
生物问题
描述生物种群的增长规律、 生理变化等。
02
一阶微分方程
经济增长模型
在经济学中,微分方程可以用来描述一个国家或地区的经济增长率 与人口、技术、资本等因素之间的关系。
生物问题中的应用
1 2 3
种群动态
微分方程可以用来描述种群数量的变化规律,如 Logistic增长模型、捕食者-猎物模型等。
高阶线性微分方程PPT文档共67页

高阶线性微分方程
41、实际上,我们想要的不是针对犯 罪的法 律,而 是针对 疯狂的 法律。 ——马 克·吐温 42、法律的力量应当跟随着公民,就 像影子 跟随着 身体一 样。— —贝卡 利亚 43、法律和制度必须跟上人类思想进 步。— —杰弗 逊 44、人类受制于法律,法律受制于情 理。— —托·富 勒
45、法律的制定是为了保证每一个人 自由发 挥自己 的才能 ,而不 是为了 束缚他 的才能 。—— 罗伯。——非洲 2、最困难的事情就是认识自己。——希腊 3、有勇气承担命运这才是英雄好汉。——黑塞 4、与肝胆人共事,无字句处读书。——周恩来 5、阅读使人充实,会谈使人敏捷,写作使人精确。——培根
41、实际上,我们想要的不是针对犯 罪的法 律,而 是针对 疯狂的 法律。 ——马 克·吐温 42、法律的力量应当跟随着公民,就 像影子 跟随着 身体一 样。— —贝卡 利亚 43、法律和制度必须跟上人类思想进 步。— —杰弗 逊 44、人类受制于法律,法律受制于情 理。— —托·富 勒
45、法律的制定是为了保证每一个人 自由发 挥自己 的才能 ,而不 是为了 束缚他 的才能 。—— 罗伯。——非洲 2、最困难的事情就是认识自己。——希腊 3、有勇气承担命运这才是英雄好汉。——黑塞 4、与肝胆人共事,无字句处读书。——周恩来 5、阅读使人充实,会谈使人敏捷,写作使人精确。——培根
高阶微分方程方程组26页PPT

END
人,显然比用法律来约束他更有价值。—— 希腊
12、法律是无私的,对谁都一视同仁。在每件事上,她都不徇私情。—— 托马斯
13、公正的法律限制不了好的自由,因为好人不会去做法律不允许的事 情。——弗劳德
14、法律是为了保护无辜而制定的。——爱略特 15、像房子一样,法律和法律都是相互依存的。——伯克
16、业余生活要有意义,不要越轨。——华盛顿 17、一个人即使已登上顶峰,也仍要自强不息。——罗素·贝克 18、最大的挑战和突破在于用人,而用人最大的突破在于信任人。——马云 19、自己活着,就是为了使别人过得更美好。——雷锋 20、要掌握书,莫被书掌握;要为生而读,莫为读而生。——布尔沃
高阶常系数线性微分方程、欧拉方程共51页PPT

60、人民的幸福是至高无个的法。— —西塞 罗
46、我们若已接受最坏的,就再没有什么损失。——卡耐基 47、书到用时方恨少、事非经过不知难。——陆游 48、书籍把我们引入最美好的社会,使我们认识各个时代的伟大智者。——史美尔斯 49、熟读唐诗三百首,不会作诗也会吟。—孙洙 50、谁和我一样用功,谁就会和我一样成功。——莫扎特
高阶常系数线性微分方程、欧拉方程
56、极端的法规,就是极端的不公。 ——西 塞罗 57、法律一旦成为人们的需要,人们 就不再 配享受 自由了 。—— 毕达哥 拉斯 58、法律规定的惩罚不是为了私人的 利益, 而是为 了公共 的利益 ;一部 分靠有 害的强 制,一 部分靠 榜样的 效力。 ——格 老秀斯 59、假如没有法律他们会更快乐的话 ,那么 法律作 为一件 无用之 物自己 就会消 灭。— —洛克
46、我们若已接受最坏的,就再没有什么损失。——卡耐基 47、书到用时方恨少、事非经过不知难。——陆游 48、书籍把我们引入最美好的社会,使我们认识各个时代的伟大智者。——史美尔斯 49、熟读唐诗三百首,不会作诗也会吟。—孙洙 50、谁和我一样用功,谁就会和我一样成功。——莫扎特
高阶常系数线性微分方程、欧拉方程
56、极端的法规,就是极端的不公。 ——西 塞罗 57、法律一旦成为人们的需要,人们 就不再 配享受 自由了 。—— 毕达哥 拉斯 58、法律规定的惩罚不是为了私人的 利益, 而是为 了公共 的利益 ;一部 分靠有 害的强 制,一 部分靠 榜样的 效力。 ——格 老秀斯 59、假如没有法律他们会更快乐的话 ,那么 法律作 为一件 无用之 物自己 就会消 灭。— —洛克