高阶线性微分方程
第四章高阶线性微分方程

d nx d n 1 x dx a1 (t ) n 1 an 1 (t ) an (t ) x 0 (4.2) n dt dt dt 定理2 (叠加原理)如果 x1 (t ), x2 (t ), , xk (t ) 是方程(4.2)
的k个解,则它们的线性组合
c1 x1 (t ) c2 x2 (t ) ck xk (t )
t 2 x1 (t ) 0
1 t 0 0 t 1
0 x2 (t ) 2 t
1 t 0 0 t 1
15
t 2 x1 (t ) 0
1 t 0 0 t 1
t2 2t W x1 (t ), x2 (t ) 0 0
n 阶线性微分方程一般形式:
(n)
)0
d nx d n1 x dx a1 (t ) n1 an1 (t ) an (t ) x f (t ) (4.1) n dt dt dt
其中 ai (t )(i 1,2,, n) 及f (t )是区间 a t b 上的连续函数。
d nx d n 1 x dx a1 (t ) n 1 an1 (t ) an (t ) x 0 n dt dt dt
齐次线性微分方程。
(4.2)
称它为 n 阶齐次线性微分方程,而方程(4.1)为 n 阶非
7
d nx d n1 x dx a1 (t ) n1 an1 (t ) an (t ) x f (t ) (4.1) n dt dt dt
0 0 0 t2 0 2t
0 x2 (t ) 2 t
1 t 0 0 t 1
1 t 0 0 t 1
第-节 高阶线性微分方程【高等数学PPT课件】

m maxl, n
Rm ( x),Qm ( x) 都是x的m次多项式, 其系数待定.
例4 设 y 5 y 6 y f ( x)
(1) f ( x) sin x 写出 y 的形式.
(2) f ( x) x cos x
Pm ( x) 为x的m次多项式. 其中 为常数,
分析: 设 y Q( x)ex 是原方程的解,则代入
原方程,整理得
Q (2 p)Q (2 p q)Q Pm ( x) ()
综上,对 f ( x) Pm ( x)ex 型
令 y x kQm ( x)ex
y p1( x) y p2 ( x) y f1( x) f2 ( x) 的特解.
定理5 若 y1( x), y2( x) 是方程(10)的两个解, 则 y1( x) y2( x) 是方程(9)的解.
例3 设 y1 x, y2 x 2 , y3 x3 是方程 y p1( x) y p2( x) y f ( x)
定理2 若 y1( x), y2( x)是方程(9)的两个线性无关
( y1 y2
常数) 的解,
则 C1 y1( x) C2 y2( x) 是 (9)的通解.
上述定理可推广到n阶线性齐次方程。
若已知方程 y p1( x) y p2( x) y 0 有一特解 y1( x), 要求其通解, 则只要再求出该方程的另一个与 y1( x) 线性无关的特解 y2 ( x) 即可. 用降阶法求 y2( x) :
第四节 高阶线性微分方程 二、线性齐次微分方程解的结构
二阶线性齐次微分方程:
y p1( x) y p2( x) y 0 ——(9) 定理1 若 y1( x), y2( x) 是方程(9)的两个解, 则
高阶线性微分方程解的结构

特解的求解方法
总结词
求解高阶线性微分方程的特解通常采用常数 变易法、分离变量法、幂级数法等。
详细描述
常数变易法是通过将高阶微分方程转化为等 价的积分方程,然后求解积分得到特解的方 法。分离变量法适用于具有分离变量形式的 高阶线性微分方程,通过将方程拆分为若干 个一阶微分方程来求解特解。幂级数法是将 高阶微分方程转化为幂级数形式的等价方程
稳定性性质
稳定性具有相对性,即一个方程的解在某个 参照系下是稳定的,在另一个参照系下可能 是不稳定的。
稳定性的判断方法
代数法
通过对方程进行整理和化简,利用代数性质判断其稳定性。
图形法
通过绘制方程的解曲线,观察其随时间变化的趋势,判断其稳定性。
比较法
通过比较两个方程的解,利用已知方程解的稳定性判断另一个方程 的解的稳定性。
定义
高阶线性微分方程的通解是指满足方程的任意常数变动的解。
性质
通解具有任意常数可加性和乘性,即通解可以表示为任意常数与基础解系的线性组合。
通解的求解方法
分离变量法
01
通过将方程转化为多个一阶微分方程来求解。
积分法
02
通过对方程两边积分来求解。
幂级数法
03
通过构造幂级数来求解高阶微分方程。
通解的表示形式
高阶线性微分方程解 的结构
目录
CONTENTS
• 高阶线性微分方程的基本概念 • 高阶线性微分方程的通解 • 高阶线性微分方程的特解 • 高阶线性微分方程解的结构 • 高阶线性微分方程的稳定性
01 高阶线性微分方程的基本 概念
高阶线性微分方程的定义
定义
高阶线性微分方程是形如$y^{(n)}(x) + a_{n-1}(x)y^{(n-1)}(x) + cdots + a_1(x)y'(x) + a_0(x)y(x) = 0$的微分 方程,其中$y^{(n)}(x)$表示函数$y(x)$的$n$阶导数。
高阶线性微分方程

x
为 y1 = e x,
y ′ = ue
x
+ u ′e x ,
= ( u ′′ + 2 u ′ + u ) e x ,
x x x
1 x 代入原方程得 ( u ′′ + 2 u ′ + u ) e 2 ( u + u ′) e + ue = e x 1 整理得 u ′′ = u ′ = ln x + c1, u = x ln x + c1 x + c 2 x
y2
≠ 常数,
则 Y = c1 y1 + c2 y 2是 (3)的通解
证明
2
二 解的结构
2
设y = c1 y1 + c2 y2, (3)得 代入
(3) d2 y dy + p(x) + q(x)y = 0 2 dx dx
d y dy d y1 dy1 + p( x) + q( x) y = c1[ 2 + p(x) + q(x) y1] + 2 dx dx dx dx
d2y dy 再由定理 3得非齐次方程 + p( x) + q( x) y = f ( x) 2 dx dx 通解 : y = Y + y1 = C1 x 2 + C 2 e x + 3
三常数变易法
1.基本步骤 1)求出方程
( 3) d2y dy + p( x) + q ( x) y = 0 2 dx dx
知函数及其各阶导函数 都是线性的。
高阶线性微分方程的解法

高阶线性微分方程的解法实变量复值函数——预备知识常系数线性方程的解法求变系数齐线性方程特解的幂级数法要存在注意极限 ,) sin (cos )(t i t e e t t i b b a b a ±=± , )(21 t i t i e e t b b b -+=. )(21 sin t i t i e e t b b b --=; )()(lim 00t z t z t t =®)()()(t i t t z y j +=; )(lim )(lim )(lim 000t i t t z t t t t t t y j ®®®+=连续,若在0)(t t z 实变量复值函数——预备知识导数定义:; )()(lim )()(0000000dtt d i dt t d t t t z t z dt t dz t z t t )(+)(=--=º¢®y j,)()()]()([2121dt t dz dt t dz t z t z +=+,)()](dt t dz c t cz =.)()()()()]()(212121dt t dz t z t z dt t dz t z t ××=×+,t k t k e =,)(2121t k t k t k k e e e ×=+,)3( t k tk ke .)( )4( tk n t k n n e k e dt d =的性质)( b i a k t k +=.(4.2)中所有系数都是),,2,1( )(n i t a i L =)()()( t i t t z x y j +==是它的复值解,则.)2.4( )( )(的解都是方程和共轭复值函数t z t y 非齐线性微分方程有复值解)( )(][ t V i t U x L +=、及解中的和这里)( )()(),,2,1( )(t u t 、V t U n i t a i L =分别是方程和虚部的实部都是实值函数,则该解)()( t v t u 的实)(t z , ))(][t U x L =)(][t V x L =和的解.变换法. 求常系数齐线性方程通解的特征根法(4.19)0][1111 =++++º---x a dtdx a dt x d a dt x d x n n n n n n L .,,2为实常数n a L 由希望它有指数函数形式的解,t e x l =, 0)( )(][111=º++++º--t t n n n n t e F ea a a e L l l l l l l l L 数方程(4.20) 0)(111 =++++º--n n n n a a a F l l l l L . 这个方程称为(4.19)对应的特征根.特征方程,它的根称为特征根是单根的情形.个解有 (4.19)n 个彼此不相等的的是特征方程 (4.20) ,,,21 n n l l L ,,,, 21t t t n e e e l l l L 无关的,从而组成方程的基本解组. 这时,若的通解为均为实根,方程(4.19)),,2,1(n i L =; 2121tn t t n e c e c e c x l l l +++=L 复也一定是特征根,则( b a l b a l i i -=+=),它们对应方程(4.19)的两个实值解.sin ,cos t e t e t t b b a a 特征根有重根的情形.111(4.19)(4.20) k k 的重根,则它对应的是特征方程设 l 线性无关的解;,,,,1111112t k t t t e t e t te e l l l l -L;,,, ,,,3232m m k k k L L 的重数依次为l l l 则当 , )( , ),,,2,1 21j i n k k k n j i m ¹¹=+++l l L L 还有解;,,,,2222212t k t t t e te t te e l l l l -L .,,,,12tk t t t m m m m m e t e t te e l l l l -L L L L L n 个解, 是线性无关的, 构成了(4.19)的基本解组.b a l b a l l i i k -=+=则重复根是某个特征根,我们将用以下的2k 个实值解来替代:,cos ,,cos ,cos ,cos 12t e tt e t t te t e t k t t t b b b b a a a a -L . sin ,,sin ,sin ,sin 12 t e t t e t t te t e tk t t t b b b b a a a a -L. 0 44的通解=-x dtx d ,014=-l ., , 1, 14321i i -==-==l l l l .sin, cos , , t t e e t t -了4 个线性无关的解,故通解为.sin cos 4321t c t c e c e c x t t +++=-. 012167223的通解=-+x dtdx dt x d 出特征方程, 01216723=+--l l l,0)1(2222246=+=++l l l l l , 0)2)(3(2=--l l ,2, 3321===l l l .)(23231t t e t c c e c x ++=. 02 224466的通解=++dt x d dt x d dt x d ., ,0654321i i -======l l l l l l 通解为.sin )(cos )(654321t t c c t t c c t c c x ++++=+(4.32) )(]1111t f x a dtdx a dt x d a dt x d n n n n n n =++++º---L 最广泛而常见的右端函数是,]sin )(cos )([)( t t B t t A e t f t b b a +=次的实系数多项式,最高是t t B t A )(),(代数方程(4.20)仍然称为(4.32)对应的特征,)( )()(1110 m m m m t t b t b t b t b e t A e t f ++++==--L a a 时,即0=b 1.是单根的根时它的重数是特征方程a l a (0)(=F 是待定常数,将上是特征根m B B B k ,,, );0 10L =t 的同次项系数来确定.,]sin )(cos )([~ t k e t t Q t t P t x a b b +=),( ;0)(t P F i 的根时它的重数 是特征方程=+l b a .次实系数待定多项式. 13322的通解+=--t x dtdx dt 应的特征方程是, 0)1)(3( 0322=+-=--l l l l 或有形如下式的特解时,方程(4.32)0有如下形式的特解,)(~ 110t m m m k e B t B t B t x a +++=-L,0 13)( =+=b ,对应一般形式中的t t f ,故特解形式为不是特征根,因此00==k a .~Bt A x +=,13332+º---t Bt A B 系数,得îíì=--=-,132, 33A B B 特解为 ; 1 , 31-==B , 31~t x -=原方程通解为.31231+-+=-t e c e c x t t 的通解是因此对应的齐线性方程.1,321-==l l .231t t e c e c x -+=. 32 2的通解t e x dtdt -=--对应一,这里特征方程,特征根同上 ,)( t e t f -=确定正是单根,所以而, 11 , 1 , 0=-=-==k a a b .~ t Ate x -=一步,其余略.. )5(332233的通解-=+++-t e x dtdx dt x d dt x d t 特征方程为,0)1(133323=+=+++l l l l 形正是这三重根,故特解三重根 1; 1321-=-===a l l l ,)(~3 t e Bt A t x -+=其余步骤略.. 2cos 44 2的通解+t x dtdt =+一特征方程为,0)2(4422=+=++l l l ,对应一般形右端函数 t t f 2cos )( , 2 21=-==l l 而; 0)(, 1)( , 2 ,ºº=t B t A b ii 2=+b a .故特解形式为2sin 2cos ~t B t A x +=化简得2sin 82cos 8t A t B º-从而特解是 同类项系数,得. 81,0==B A , 2sin 81~t x =.2sin 81)(221t e t c c x t ++=-二因为右端函数)Re(2cos )(2it e t t f ==的结论,先求方程itex dt dx dt x d 22244 =++再取其实部,就是原方程的解.不是特征根,故对应的右端函数i e it 22=a ,~2it Ae x =,得方程并消去因子 it e 2 , 8 18iA iA -==或为. 2sin 812cos 88~2t t i e i x it +-=-=原方程的实特解为{}, 2sin 81~Re t x =. 2sin 81)(221t e t c c x t ++=-。
高阶线性微分方程

知 u 0, 取 u t t ,
得齐次方程的通解为
则 x2 te1t ,
x t C1 C2t e1t ;
17
情形3 有一对共轭复根 ( 0) 特征根为
o
x x
为物体自由振动的微分方程。
2
若受到铅直干扰力 F H sin pt ,
d2x dx 2 2 n k x h sin pt 2 为强迫振动的方程 dt 2 dt d uc duc Em 2 Lc 2 2 0 uc sin t dt dt LC 为串联电路的振荡方程
可以证明: 若方程(1)中的系数
(2)
P1 t , P2 t , Pn t
以及F t 均在区间 a, b 连续,则方程(1)存在惟一的满 足初始条件(2)的解 x t , t a, b .
4
二、 线性微分方程解的结构
x
n
t Pn t x t F t (3) t P1 t x n1 t Pn1 t x
得齐次方程的通解为
,ቤተ መጻሕፍቲ ባይዱ
x t C1e1t C2e2t ;
16
x a1x a2 x 0
情形2 有两个相等的实根
( 0)
a1 1 2 , 特征根为 一特解为 2 设另一特解为 x2 u t e1t ,
x1 e1t ,
,x2 代入原方程并化简, 将 x2 ,x2
可利用微分算子的线性性质证得。
问题: 以上解的线性组合是否是方程的通解?
6
高阶线性微分方程

c1 y1 c2 y2 (c1 2c2 ) y1不是通解
I 内的 定义 设 y1 , y2 ,, yn 为定义在区间
n 个函数.如果存在 n 个不全为零的常数, 使得当 x 在该区间内有恒等式成立
k1 y1 k 2 y2 k n yn 0 ,
I 内线性相关.否 那么称这n 个函数在区间
例如 y y 0,
y1 cos x, y2 sin x,
y C1 cos x C 2 sin x .
y2 且 tan x 常数, y1
推广
yn ( x ) 是齐次方程 如果 y1 ( x ), y2 ( x ),
y ( n ) a1 ( x ) y ( n1) an1 ( x ) y an ( x ) y 0( 2)
P ( x ) y1 )u 0, 令v u, 即 y1 u (2 y1
则有 y1v ( 2 y1 P ( x ) y1 )v 0,
P ( x ) y1 )v 0 v 的一阶方程 y1v (2 y1 1 P ( x ) dx P ( x ) dx 1 解得 v 2 e dx , u 2e y1 y1
特解 y e x .
如果只能观察一个解: y1(x), 则
y2 y1 1 P ( x )dx e dx , 2 y1
令 y2 u( x ) y1 证明: 设y1是方程(1)的一个非零特解,
代入(1)式, 得
P ( x ) y1 )u ( y1 P ( x ) y1 Q( x ) y1 )u 0, y1 u (2 y1
则称线性无关
x 2x 例如 当x ( , )时, e x, e , e 线性无关
微分方程第四节高阶线性方程

高阶线性方程的未来研究方向
高效求解算法研究
针对高阶线性方程的特点,研究更为高效和稳定的数值求解算法,以提ห้องสมุดไป่ตู้计算效率和精 度。
多物理场耦合的高阶偏微分方程组研究
随着科学技术的不断发展,多物理场耦合的问题越来越受到关注,研究这类问题需要发 展高阶偏微分方程组的方法。
非线性高阶方程的研究
非线性高阶方程在自然界和工程领域中广泛存在,研究这类方程的解的性质和求解方法 具有重要意义。
微分方程第四节高 阶线性方程
目录
• 高阶线性方程的定义与性质 • 高阶线性方程的解法 • 高阶线性方程的应用 • 高阶线性方程的扩展与展望
01
CATALOGUE
高阶线性方程的定义与性质
高阶线性方程的一般形式
高阶线性方程的一般形式为:$y^{(n)}(x) + a_{n1}(x)y^{(n-1)}(x) + a_{n-2}(x)y^{(n-2)}(x) + ldots + a_1(x)y'(x) + a_0(x)y(x) = f(x)$,其中$n geq 2$,$a_i(x)$ 和$f(x)$是已知函数,$y(x)$是未知函数。
延迟高阶线性方程
这类方程在描述物理、工程和经 济等领域的问题时具有广泛应用 ,如描述人口增长、信号传输等 。
非齐次高阶线性方
程
这类方程在解决实际问题时经常 出现,如求解波动方程、热传导 方程等。
耦合高阶线性方程
组
这类方程组在描述多个相互作用 的物理量时出现,如弹性力学、 流体力学等。
高阶线性方程与其他数学领域的联系
积分因子法
总结词
通过引入积分因子将高阶线性方程转化为可求解的一阶 微分方程组。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
机动 目录 上页 下页 返回 结束
例. 设线性无关函数
都是二阶非齐次线
性方程 y P(x) y Q(x) y f (x)的解, C1,C2 是任意 常数, 则该方程的通解是 ( D ).
(B) C1y1 C2 y2 (C1 C2 ) y3; (C) C1y1 C2 y2 (1 C1 C2 ) y3;
x C1x1(t) C2x2 (t)
数) 是该方程的通解.
例如, 方程 x x 0 有特解 x1 cost, x2 sin t, 且
x2 tan t 常数, 故方程的通解为
x1
x C1 cost C2 sin t
若 x1, x2, , xn 是 n 阶齐次方程
使得
k1x1(t) k2x2 (t) knxn (t) 0, t I
则称这 n个函数在 I 上线性相关, 否则称为线性无关.
例如,1 , cos2 t , sin 2 t ,在( , )上都有
1 cos2 t sin 2 t 0
故它们在任何区间 I 上都线性相关;
( x * p(t)x * q(t)x *) ( X p(t)X q(t)X )
f (t) 0 f (t)
复习 目录 上页 下页 返回 结束
例如, 方程 y y x 有特解 对应齐次方程 y y 0 有通解
Y C1 cos x C2 sin x
存在不全为 0 的
使
线性无关 线性无关
k1x1(t) k2x2 (t) 0
x1(t) k2 k ( 无妨设
x2 (t) k1
k1 0 )
x1 (t ) x2 (t)
常数
x1(t) x2 (t) 0 x1(t) x2 (t)
结论:
若 x1(t), x2(t) 是二阶线性齐次方程的两个线 性无关特解, 则
二、线性齐次方程解的结构
若函数 x1(t), x2 (t) 是二阶线性齐次方程
x p(t)x q(t)x 0
的两个解, 则 x C1x1(t) C2x2 (t)
也是该方程的解. (叠加原理)
证: 将 x C1x1(t) C2x2 (t) 代入方程左边, 得
[ C1x1 C2x2 ] P(t)[ C1x1 C2x2 ] Q(t)[C1x1 C2 x2]
机动 目录 上页 下页 返回 结束
四.二阶常系数线性齐次微分方程:
x a1x a2x 0
令方程的解为 x et (待定)
代入得 (2 a1 a2 ) et 0 2 a1 a2 0
称为微分方程的特征方程, 其根称为特征根.
机动 目录 上页 下页 返回 结束
第七章 高阶线性微分方程
一.二阶线性微分方程举例
例. 质量为m的物体自由悬挂在一端固定的弹簧上,
当重力与弹性力抵消时, 物体处于 平衡状态, 若用手向 下拉物体使它离开平衡位置后放开, 物体在弹性力与阻 力作用下作往复运动, 阻力的大小与运动速度
成正比, 方向相反. 建立位移满足的微分方程.
解: 设时刻 t 物位移为 x(t).
x(n) a1(t)x(n1) an1(t)x an (t)x 0
的 n 个线性无关解, 则方程的通解为
x C1x1 Cn xn (Ck为任意常数)
三、线性非齐次方程解的结构
设 x*(t) 是二阶非齐次方程
x p(t)x q(t)x f (t)
x1(t) x2 (t) xn (t)
x1(t) x2 (t) xn (t)
w(t0 )
0
x1(n1) (t)
x ( n 1) 2
(t
)
x ( n 1) n
(t
)
t t0
t0 I
两个函数在区间 I 上线性相关与线性无关的充要条件:
x1(t), x2 (t) 线性相关
方程的通解为 x C1 e1t C2 e2 t
2.当特征方程有两个相等实根
1
2
a1 2
,
方程的通解为 x ( C1 C2t ) e1t
3.当 特征方程有一对共轭复根1 i , 2 i
方程的通解为 x e t (C1 cos t C2 sin t)
m
d2x dt2
2n
dx dt
k
2x
h sin
pt
机动 目录 上页 下页 返回 结束
具有如下形式的方程:
x p(t)x q(t)x f (t), 为二阶线性微分方程.
n 阶线性微分方程的一般形式为
x(n) a1(t)x(n1) an1(t)x an (t)x f (t)
因此原方程的通解为
2. 当 a12 4 a2 0 时, 特征方程有两个相等实根
1
2
a1 2
,
则微分方程有一个特解
x1
e1 t .
设另一特解 x2 x1u (t) e1tu (t) ( u (t) 待定)
代入方程得:
e1 t [ ( u 2 1u 12u )a1(u 1u )a2 u 0
C1 [ x1 p(t)x1 q(t)x1]
C2 [ x2 p(t)x2 q(t)x2 ] 0
机动 目录 上页 下页 返回 结束
说明:
x C1x1(t) C2x2 (t) 不一定是所给二阶方程的通解.
例如, x1(t) 是某二阶齐次方程的解, 则 x2 (t) 2 x1(t)也是齐次方程的解
因此该方程的通解为
机动 目录 上页 下页 返回 结束
设 xk(t) (k 1, 2, , n) 分别是方程
x P(t)x Q(t)x fk (t) (k 1, 2, , n )
n
的特解, 则 x xk 是方程 k 1 n
x P(t)x Q(t)x fk (t) k 1
1. 当 a12 4 a2 0 时, 特征方程有两个相异实根1, 2,
则微分方程有两个线性无关的特解: x1 e1t , x2 e2 t , 因此方程的通解为 x C1 e1t C2 e2 t
例. 求方程 y 2 y 3 y 0的通解.
解: 特征方程 2 2 3 0, 特征根: 1 1, 2 3 ,
解: 特征方程: 2 1 0 即 2 1 0
特征根为 1, 2 i,
则方程通解 :
机动 目录 上页 下页 返回 结束
二阶常系数齐次线性微分方程:
x a1x a2x 0
2 a1 a2 0
称为微分方程的特征方程, 其根称为特征根.
1.当特征方程有两个相异实根1, 2,
d2s dt2
2
d d
s t
s
0
s t0 4 ,
ds dt
t
0 2
解: 特征方程 2 2 1 0 有重根 1 2 1 ,
因此原方程的通解为 s (C1 C2 t ) e t
利用初始条件得
C1 4, C2 2
于是所求初值问题的解为
机动 目录 上页 下页 返回 结束
利用解的叠加原理 , 得原方程的线性无关特解:
x1
1 2
( x1
x2 )
e t
cos
t
x2
1 2i
( x1
x2 )
e
t
sin
t
因此原方程的通解为
x e t (C1 cos t C2 sin t)
机动 目录 上页 下页 返回 结束
例. 解方程 y y 0 .
的一个特解, X (t) 是相应齐次方程的通解, 则
x X (t) x *(t)
是非齐次方程的通解 . 这是因为 :
x X (t) x *(t) 代入方程, 得
X (t) x * (t) P(t) (X (t) x * (t)) Q(t) (X (t) x*(t))
推广:
x(n) a1 x(n1) an1x an x 0 ( ak 均为常数) 特征方程: n a1 n1 an1 an 0
若特征方程含 k 重实根 λ, 则其通解中必含对应项
( C1 C2t Ck 考研 )
y1 y3, y2 y3 都是对应齐次方程的解,
二者线性无关 . (反证法可证)
机动 目录 上页 下页 返回 结束
例. 已知微分方程 y p(x) y q(x) y f (x) 有三 个解 y1 x , y2 ex , y3 e2x , 求此方程满足初始条件 y(0) 1, y(0) 3 的特解 .
u ( 2 1 a1 ) u ( 12 a1 1 a2 ) u 0
注意 1 是特征方程的重根
u 0
取 u = t , 则得 x2 t e1t , 因此原方程的通解为
x ( C1 C2t ) e1t
机动 目录 上页 下页 返回 结束
例. 求解初值问题
(1) 自由振动情况. 物体所受的力有:
o
弹性恢复力
(虎克定律)
x
阻力
x
机动 目录 上页 下页 返回 结束
据牛顿第二定律得
令 2 n , k 2 c , 则得有阻尼自由振动方程: