非圆齿轮传动

非圆齿轮传动
非圆齿轮传动

齿轮传动是机械传动中最普遍的,已有着上千年的历史。齿轮是机器和仪器中广泛应用的传动件之一,用来传递两轴间的回转运动,其传动比可以是常数(定传动比),也可以是变数(变传动比)[1]。长期以来,广泛应用于生产的是圆齿轮,即节曲线为圆形、传动比为定值的齿轮(如圆柱齿轮、圆锥齿轮)。然而,在某些场合需要机构作为变速比传动,传统的圆齿轮已不能满足这一要求。于是人们突破圆齿轮的局限,提出了非圆齿轮的概念。非圆齿轮传动以其特有的非匀速比传动,满足了实际需求。

非圆齿轮主要运用在两轴变速比传动中,可实现主动机构与从动机构的非线性关系。它的节曲线形状是按运动要求设计的,和其它能得到非匀速的机构相比,具有明显的优点[2]。

非圆齿轮机构可以实现主动件和从动件转角问的非线形关系,在仪器和机器制造业愈来愈多地采用非圆齿轮机构来替代凸轮机构、连杆机构和其它运动机构。已广泛地应用于自动机械、运输、仪器仪表、泵类、流量计等工业装置中[3]。非圆齿轮机构具有结构紧凑、传动精确、平稳、容易实现动平衡等优点,因此对非圆齿轮的动力学分析的研究也变得日益重要[4]。

目前对于圆齿轮的动力学问题,国内外已经有了相对成熟的研究结果,建立了包括齿轮啮合动态激励基本原理、齿轮振动分析模型、齿轮系统参数振动学、齿轮系统间隙非线性动力学等较为成熟的系统理论和方法。对于非圆齿轮这种特殊的齿轮动力学问题的研究,也已有了一定的进展。而对于非圆齿轮的动态特性的研究却不够成熟。

本课题针对非圆齿轮传动问题,首先基于非对称渐开线齿轮的啮合理论,对非对

称渐开线齿轮传动的啮合特性进行分析,推导出有关非圆齿轮传动的基本设计参数的计算公式和齿廓曲线方程。其次,采用三维实体建模软件PRO/E建立非圆齿轮的三维实体模型,并探讨非圆齿轮传动的运动学与动力学模型、用Simulink对非圆齿轮的啮合情况进行仿真分析,研究非圆齿轮的运动学与动力学特性;采用有限元分析软件ANSYS对非圆齿轮进行有限元模态分析,对非圆齿轮振动特性进行分析研究。

根据非圆齿轮传动的运动和几何关系,建立非圆齿轮传动的动力学模型,通过研

究非圆齿轮传动过程中的各项动力学特性,从而建立起针对非圆齿轮建模、仿真及分析的专用动态特性检测装置,为非圆齿轮的设计和分析提供一种更加便捷高效的途径。

2、国内外研究现状综述

2.1非圆齿轮传动技术发展状况

(1)非圆齿轮传动技术的发展及国内外研究动态

非圆齿轮传动早在20世纪初就已出现。当时为了满足传动需求,实现非匀速比传动,人们在圆齿轮的基础上,提出了非圆齿轮的概念,并将其付之于应用。早在1910年,Dunkerly 就在其著作《机构》一书中对椭圆齿轮的设计及应用作了阐述[5],这是一部较早提及非圆齿轮的著作。到了20 世纪40 年代,非圆齿轮传动技术已有所应用,尤其是形状简单的椭圆齿轮副。Miller and Young, Gobler等人在其文献中对此都有论述[6-7]。20世纪40年代到60年代,非圆齿轮传动技术发展比较迅速,曾经掀起一股研究非圆齿轮的热潮。各国学者对此作了大量的研究,形成了比较完整的理论体系。其中有代表性的著作有20世纪50年代原苏联学者编著的《非圆齿轮》一书,该书就当时的技术水平对非圆齿轮作了较系统和完善的论述,反映了当时非圆齿轮的研究水平[8]。同一时期,日本、美国、印度、加拿大等国的学者也对非圆齿轮进行了大量的研究,并取得了一定的成果,推动了非圆齿轮技术的发展。但由于受到当时加工水平的限制,非圆齿轮的生产精度及生产效率都不高,影响了其普及、应用。20 世纪60年代到70年代,非圆齿轮的研究一度陷入低谷。20世纪80年代以来,随着计算机技术及数控技术的迅猛发展,再度掀起非圆齿轮研究热潮。各国学者从非圆齿轮的设计、加工、应用等方面进行了更加深入的研究[9-14],并研制了相应的设计、加工软件包,如德国学者研制的用于计算和模拟的非圆齿轮的软件包;日本学者研制的非圆齿轮CAD/

CAM 系统等,都取得了令人瞩目的成就,进一步丰富和完善了非圆齿轮啮合理论,使非圆齿轮传动技术更加成熟和实用。

国内对非圆齿轮传动的研究起步较晚,与国外有一定的差距。1975 年李福生等人编译了《非圆齿轮》一书[15],该书是国内最早全面、系统的介绍非圆齿轮的著作,对我国非圆齿轮的发展起到了积极的推动作用。1981年李福生等人又编著了《非圆齿轮与特种齿轮传动设计》一书[2],标志着我国在非圆齿轮啮合理论方面已经迈上了一个新台阶。20世纪80年代到90年代末,我国的不少学者从不同侧面对非圆齿轮进行了研究,并取得了一定的研究成果。如国内学者崔希烈、刘生林、田立俭、徐晓俊、李健生等人,分别从非圆齿轮的齿廓分析、节曲线设计、重合度计算及实际应用等不同角度对非圆齿轮传动技术进行了深入的研究[16-20];随着计算机技术的迅猛发展,胡恩楚、孙文磊、丁国富等学者利用计算机技术,对非圆齿轮传动的设计、模拟仿真作了探讨[21-23]。1996 年吴序堂、王贵海编著的《非圆齿轮及非匀速比传动》一书是在总结国内外先进经验和技术的基础上而成的非圆齿轮专著[24],它全面反映了近年来非圆齿轮的研究成果,广泛介绍了非圆齿轮的各种实际应用,标志着我国在非圆齿轮传动理论,尤其是在应用方面迈上了一个新台阶。

(2)非圆齿轮的传动特性及其应用

非圆齿轮可以认为是圆齿轮的一种变型,即其滚动节圆已变为非圆形,称之为节

曲线。反之,也可以认为非圆齿轮是柱形齿轮的一种普遍情况,而圆齿轮则是柱形齿轮的一种特例,即圆齿轮的节曲线的曲率半径为常量。由于非圆齿轮节曲线的曲率半径是变量,故由回转中心到啮合节点的向径也是变量。在一对非圆齿轮啮合过程中,如果

保持两齿轮的中心距不变,由于啮合节点位置沿中心连线变化,故其传动比是变化的。而且传动比的变化规律由啮合节点在中心连线上的变化规律决定,即随两齿轮节曲向径的变化规律决定[25]。

非圆齿轮机构可以实现主动件和从动件转角问的非线形关系,在仪器和机器制造业愈来愈多地采用非圆齿轮机构来替代凸轮机构、连杆机构和其它运动机构。非圆齿轮机构具有结构紧凑,传动精确、平稳,容易实现动平衡等优点,已广泛地应用于自动机械、运输、仪器仪表、泵类、流量计等工业设施中。

非圆齿轮一种典型的应用是作为连杆机构的驱动机构,以改变机构的输出位移或速度。它成功的运用在印刷机和其他一些需要实现特殊运动的机械上[26]。当连续回转机械要求速度的变化,一般可以由椭圆齿轮这种应用很广的非圆齿轮来实现,在这方面,椭圆齿轮成功运用在急回运动机构上,如印刷机、包装机[27]、卷烟机上,板坯连铸机[28]等。其他的一些应用像泵、流量计[29]、抽油机[30]。非圆齿轮也可应用在线性回转输入和非线性运动输出的计算机构上。这种机构应用如纺织机械的引纬系统[31]中,坦克火控系统的测距仪上[32],导弹和航天器的地面作战设备的变频振动器上[33]。

非圆齿轮还可以用在无级变比传动系统中;另一个用途将是作为函数发生器,消除动力传动系统或机构的额外载荷或转矩波动。得益于近些年来计算机、数控技术的飞速发展,非圆齿轮在工业中的应用正在逐渐广泛起来,非圆齿轮正在逐步往高速重载方向发展,对非圆齿轮传动动力学特性的研究将显得尤为重要。图1为非圆齿轮传动及其节曲线图。

图1. 非圆齿轮传动及其节曲线

2.2非圆齿轮制造技术

(1)非圆齿轮制造技术国内研究动态

目前,随着科学技术的发展,我国对于非圆齿轮的研究有升温的迹象。

我国在非圆齿轮传动的研究方面与国外有一定的差距,在五六十年代曾对椭圆齿轮的加工方法做过一些探讨。我国学者徐辖仁、黄文浩、崔希烈等人相继发表了他们在非圆齿轮的啮合理论、参数计算、齿廓分析、误差测量、运动分析及加工制造等方面的研究成果,为后人的研究提供了有价值的经验[34-37]。

谭伟明等建立了非圆齿轮滚切加工数学模型,并建立了CAD/CAM一体化系统[38-42]。以切削点处工件和刀具的切向速度相等( 即滚刀节曲线和非圆齿轮节曲线保持相互

纯滚动) 为基本依据,推导出坐标轴联动控制的一组方程式。对该组方程式进行进一步简化,获得了滚切加工的最简数学模型,并利用计算机图形仿真的方法,动态地演示出齿形的形成过程及结果,从而初步分析判断出所加工齿轮齿形的各种特征,为设计和制造的顺利进行提供了有力的支持。

侯东海等则研究了用工具斜齿条法加工斜齿非圆齿轮的啮合理论模型[43]。

张瑞在提取椭圆齿轮设计共性的基础上,以具有椭圆普遍性质的高阶变性椭圆为基本数学模型,建立了椭圆类齿轮CAD系统,可实现非圆齿轮的设计与测绘参数校核[44]。

唐德威对于渐开线圆柱齿轮插齿刀具加工非圆齿轮时产生的刀具齿根与轮齿齿顶的干涉问题进行了分析,提出了解决非圆齿轮加工中产生干涉问题的有效方法。还对非圆齿轮的测绘设计方法进行探讨[45]。

(2)非圆齿轮制造技术国外研究动态

Bair,Biing-Wen建立插齿刀加工圆弧齿形椭圆齿轮的数学模型,得出了相应的加工机制;建立椭圆齿轮CAD系统[46]。Figliolini,Giorgio建立了渐开线齿型插刀加工椭圆齿轮的几何学模型[47]。Chang,Shinn-Liang建立了渐开线插刀与齿条刀加工非圆齿轮的数学模型,研究了相应的非圆齿轮的计算机齿型生成与根切现象[48,49]。

2.3非圆齿轮动力学研究综述

(1)非圆齿轮动力学国外研究现状

事实上在很早以前人们就开始关注非圆齿轮的静动态性能,但由于非圆齿轮设计计算复杂以及制造技术的落后,限制了非圆齿轮的应用,所以相关这方面发展的一直很慢。

1973年,Yokoyama和Ogawwa等研究了非圆齿轮行星轮系机构的静力学特性。后来,他们研究了该机构的动力学性能。通过理论分析和试验研究,考察了机构在特定的运转条件下的动态响应。此外,非圆齿轮的惯性特性对系统的动态响应的影响也没有得到探究[50]。

Reinhart 和Ferguson等通过有限元方法研究了外啮合非圆齿轮轮齿的静弯曲强度。他们还通过试验和理论的方法分析了齿轮的啮合效率和啮合损失,并对比了圆柱齿轮的情况[51]。

(2)非圆齿轮动力学国内研究现状

在国内对非圆齿轮动力学方面的研究中,胡思楚、孙文磊、丁国富运用计算机技术对非圆传动的设计和模拟仿真进行了探讨[34-35]。李润方等(1987-1997)通过有限元法和实验研究的方式对啮合过程中轮齿耦合热弹性接触变形、齿根应力做了系统的研究[36-38]。

2005年王艾强研究了椭圆齿轮的动力学问题。以较为成熟的圆齿轮动力学研究成果作为研究基础,提出了包括离心力因素和扭转加速度因素的力学分析,使用拉格朗日键合图方法,建立了相应的动力学模型,并使用Simulink软件对不同偏心率的椭圆齿轮进行了仿真和对比分析[39]。

2007年,冉小虎、林超根据静力学基本原理建立非圆齿轮静力学模型,推倒非圆齿轮静力学参数计算公式;根据齿轮系统动力学,采用虚拟仿真技术建立非圆齿轮传动的动力学虚拟模型。针对椭圆形齿轮传动改进静力学参数与动力学虚拟仿真实验,将计算结果与仿真试验结果进行对比分析[40]。

浙江大学张国凤、陈建能等人从理论和试验的角度对椭圆齿轮动力学特性进行了探讨[41-43]。重庆大学机械传动国家重点实验室林超等采用高级有限元软件ABQUS对卵形齿轮的模态特性进行了研究,采用多体动力学软件AMS对卵形齿轮副进行了动力学虚拟建模及实验研究,并和圆柱齿轮进行了对比分析,得到了卵形齿轮副的动力学特性[44]。

齿轮机构作业及答案

第5章 思考题 5-1 齿轮传动要匀速、连续、平稳地进行必须满足哪些条件? 答齿轮传动要均匀、平稳地进行,必须满足齿廓啮合基本定律.即i 12=ω 1 /ω 2 =O 2 P/O 1 P, 其中P为连心线O 1P 2 与公法线的交点。 齿轮传动要连续、平稳地进行,必须满足重合度ε≥l,同时满足一对齿轮的正确啮合条件。 5-2渐开线具有哪些重要的性质?渐开线齿轮传动具有哪些优点? 答:参考教材。 5-3具有标准中心距的标准齿轮传动具有哪些特点? 答若两齿轮传动的中心距刚好等于两齿轮节圆半径之和,则称此中心距为标准中心距.按此中心距安装齿轮传动称为标准安装。 (1)两齿轮的分度圆将分别与各自的节圆重合。 (2)轮齿的齿侧间隙为零。 (3)顶隙刚好为标准顶隙,即c=c*m=O.25m。 5-4何谓重合度?重合度的大小与齿数z、模数m、压力角α、齿顶高系数h a *、顶隙系数c*

及中心距a之间有何关系? 答通常把一对齿轮的实际啮合线长度与齿轮的法向齿距p b 的比值ε α 。称为齿轮传动的重 合度。重合度的表达式为: ε α=[z 1 (tanα al —tanα’)±z 2 (tanα a2 -tanα’)/2π 由重合度的计算公式可见,重合度ε α 与模数m无关.随着齿数z的增多而加大,对 于按标准中心距安装的标准齿轮传动,当两轮的齿数趋于无穷大时的极限重合度ε α= 1.981 此外重合度还随啮合角α’的减小和齿顶高系数h a *的增大而增大。重合度与中心距a有关(涉及啮合角α’),与压力角α、顶隙系数c*无关。 5-5 齿轮齿条啮合传动有何特点?为什么说无论齿条是否为标准安装,啮合线的位置都不会改变? 答由于不论齿条在任何位置,其齿廓总与原始位置的齿廓平行.而啮合线垂直于齿廓,因此,不论齿轮与齿条是否按标准安装,其啮合线的位置总是不变的,节点位置确定,齿轮的节圆确定;当齿轮与齿条按标准安装时,齿轮的分度圆应与齿条的分度线相切。这时齿轮的节圆与其分度圆重合,齿条的常节线也与其分度线重合。因此,传动啮合角α’等于分度圆压力角α,也等于齿条的齿形角α。 5-6节圆与分度圆、啮合角与压力角有什么区别? 答节圆是两轮啮合传动时在节点处相切的一对圆。只有当一对齿轮啮合传动时有了节点才有节圆,对于一个单一的齿轮来说是不存在节圆的,而且两齿轮节圆的大小是随两齿轮中心距的变化而变化的。而齿轮的分度圆是一个大小完全确定的圆,不论这个齿轮是否与

非圆齿轮传动

齿轮传动是机械传动中最普遍的,已有着上千年的历史。齿轮是机器和仪器中广泛应用的传动件之一,用来传递两轴间的回转运动,其传动比可以是常数(定传动比),也可以是变数(变传动比)[1]。长期以来,广泛应用于生产的是圆齿轮,即节曲线为圆形、传动比为定值的齿轮(如圆柱齿轮、圆锥齿轮)。然而,在某些场合需要机构作为变速比传动,传统的圆齿轮已不能满足这一要求。于是人们突破圆齿轮的局限,提出了非圆齿轮的概念。非圆齿轮传动以其特有的非匀速比传动,满足了实际需求。 非圆齿轮主要运用在两轴变速比传动中,可实现主动机构与从动机构的非线性关系。它的节曲线形状是按运动要求设计的,和其它能得到非匀速的机构相比,具有明显的优点[2]。 非圆齿轮机构可以实现主动件和从动件转角问的非线形关系,在仪器和机器制造业愈来愈多地采用非圆齿轮机构来替代凸轮机构、连杆机构和其它运动机构。已广泛地应用于自动机械、运输、仪器仪表、泵类、流量计等工业装置中[3]。非圆齿轮机构具有结构紧凑、传动精确、平稳、容易实现动平衡等优点,因此对非圆齿轮的动力学分析的研究也变得日益重要[4]。 目前对于圆齿轮的动力学问题,国内外已经有了相对成熟的研究结果,建立了包括齿轮啮合动态激励基本原理、齿轮振动分析模型、齿轮系统参数振动学、齿轮系统间隙非线性动力学等较为成熟的系统理论和方法。对于非圆齿轮这种特殊的齿轮动力学问题的研究,也已有了一定的进展。而对于非圆齿轮的动态特性的研究却不够成熟。 本课题针对非圆齿轮传动问题,首先基于非对称渐开线齿轮的啮合理论,对非对 称渐开线齿轮传动的啮合特性进行分析,推导出有关非圆齿轮传动的基本设计参数的计算公式和齿廓曲线方程。其次,采用三维实体建模软件PRO/E建立非圆齿轮的三维实体模型,并探讨非圆齿轮传动的运动学与动力学模型、用Simulink对非圆齿轮的啮合情况进行仿真分析,研究非圆齿轮的运动学与动力学特性;采用有限元分析软件ANSYS对非圆齿轮进行有限元模态分析,对非圆齿轮振动特性进行分析研究。 根据非圆齿轮传动的运动和几何关系,建立非圆齿轮传动的动力学模型,通过研 究非圆齿轮传动过程中的各项动力学特性,从而建立起针对非圆齿轮建模、仿真及分析的专用动态特性检测装置,为非圆齿轮的设计和分析提供一种更加便捷高效的途径。 2、国内外研究现状综述 2.1非圆齿轮传动技术发展状况 (1)非圆齿轮传动技术的发展及国内外研究动态

齿轮机构作业及答案

第5章 思考题 5-1 齿轮传动要匀速、连续、平稳地进行必须满足哪些条件 答 齿轮传动要均匀、平稳地进行,必须满足齿廓啮合基本定律.即i 12=ω1/ω2=O 2P /O 1P ,其中P 为连心线O 1P 2与公法线的交点。 齿轮传动要连续、平稳地进行,必须满足重合度ε≥l ,同时满足一对齿轮的正确啮合条件。 5-2渐开线具有哪些重要的性质渐开线齿轮传动具有哪些优点 答:参考教材。 5-3具有标准中心距的标准齿轮传动具有哪些特点 答 若两齿轮传动的中心距刚好等于两齿轮节圆半径之和,则称此中心距为标准中心距.按此中心距安装齿轮传动称为标准安装。 (1)两齿轮的分度圆将分别与各自的节圆重合。 (2)轮齿的齿侧间隙为零。 (3)顶隙刚好为标准顶隙,即c=c*m=。 5-4何谓重合度重合度的大小与齿数z 、模数m 、压力角α、齿顶高系数h a *、顶隙系数c*及中心距a 之间有何关系 答 通常把一对齿轮的实际啮合线长度与齿轮的法向齿距p b 的比值εα。称为齿轮传动的重合度。重合度的表达式为: εα=[z 1(tan αal —tan α’)±z 2(tan αa2-tan α’)/2π 由重合度的计算公式可见,重合度εα与模数m 无关.随着齿数z 的增多而加大,对于按标准中心距安装的标准齿轮传动,当两轮的齿数趋于无穷大时的极限重合度εα= 此外重合度还随啮合角α’的减小和齿顶高系数h a *的增大而增大。重合度与中心距a 有关(涉及啮合角α’),与压力角α、顶隙系数c*无关。 5-5 齿轮齿条啮合传动有何特点为什么说无论齿条是否为标准安装,啮合线的位置都不会改变 答 由于不论齿条在任何位置,其齿廓总与原始位置的齿廓平行.而啮合线垂直于齿廓,因此,不论齿轮与齿条是否按标准安装,其啮合线的位置总是不变的,节点位置确定,齿轮的节圆确定;当齿轮与齿条按标准安装时,齿轮的分度圆应与齿条的分度线相切。这时齿轮的节圆与其分度圆重合,齿条的常节线也与其分度线重合。因此,传动啮合角α’等于分度圆压力角α,也等于齿条的齿形角α。 5-6节圆与分度圆、啮合角与压力角有什么区别 答 节圆是两轮啮合传动时在节点处相切的一对圆。只有当一对齿轮啮合传动时有了节点才有节圆,对于一个单一的齿轮来说是不存在节圆的,而且两齿轮节圆的大小是随两齿轮中心距的变化而变化的。而齿轮的分度圆是一个大小完全确定的圆,不论这个齿轮是否与另一齿轮啮合,也不论两轮的中心距如何变化,每个齿轮都有一个唯一的、大小完全确定的分度圆。 啮合角是指两轮传动时其节点处的速度矢量与啮合线之间所夹的锐角,压力角是指单个齿轮渐开线上某一点的速度方向与该点法线方向所夹的角。根据定义可知,啮合角就是节圆的压力角。对于标准齿轮.当其按标准中心距安装时.由于节圆与分度圆重合,故其啮合角等于分度圆压力角。 5-7.试问当渐开线标准齿轮的齿根圆与基圆重合时,其齿数应为多少又当齿数大于以上求得的齿数时,试问基圆与齿根圆哪个大 答:cos b d mz α=,

非圆齿轮的结构设计说明

2椭圆齿轮的结构设计 2.1椭圆的基本数学理论 2.1.1椭圆定义 椭圆定义:平面到一定点距离与到一定直线距离之比为一个常数e (0b>0)为半径作两个圆,点B 是大圆半径OA 与 小圆的交点,过点A 作AN⊥Ox,垂足为N,过点B作BM⊥AN,垂足为M,求当半径OA绕O旋转时点M的轨迹的参数方程。 图2.1 椭圆形成示意图 解:设M点的坐标为(x,y),是以O x为始边,OA为终边的正角,取为参数。 那么,

(2.1) 以上(2.1)式即为椭圆的参数方程,其中称为“离心角” 对(1)式进行消参 (2.2)以上(2.2)式即为椭圆的标准方程。 2.2齿轮的基本理论 2.2.1齿轮传动 齿轮传动是机械传动中最重要的传动之一,形式很多,应用广泛,传递的功率可达数十万千瓦,它的圆周速度和转速分别可达300m/s,100000r/min。同摩擦轮传动和带轮传动相比较,齿轮传动齿轮传动具有传动功率大,效率高,寿命长及传动平稳等特点[2]。 齿轮传动特点: (1)效率高在常用的机械传动中,以齿轮传动效率为最高。例如一级圆柱齿轮的传动效率可达99%。这对大功率传动十分重要,因为即使效率提高1%,也有很大的经济意义。 (2)机构紧凑在同样的使用条件下,齿轮传动所需空间尺寸一般较小。 (3)工作可靠、寿命长设计制造正确合理、使用维护良好的齿轮传动,工作十分可靠,寿命可长达一、二十年,这也是其他机械传动所不能比拟的。 (4)传动比稳定传动比稳定往往是对传动性能的基本要求。齿轮传动获得广泛应用,也就是由于具有这个特点。

F01-非圆齿轮节曲线2012.3.4

非圆齿轮节曲线(F01) 1 机构分析 蜗线齿轮副节曲线如图1所示,齿轮1为蜗线齿轮,齿轮2为与蜗线齿轮共轭的齿轮,蜗线齿轮的基圆半径为R ,偏心距为e ,n 1为蜗线齿轮转动一周时,传动比变化的周期数,r 1、?1分别表示蜗线齿轮的向径与极角,蜗线齿轮的节曲线极坐标与直角坐标方程分别为 图1 蜗线齿轮副节曲线 )11()cos(111?+= ?n e R r )21(sin cos 111111?? ??== ??r y r x 若两齿轮的中心距为a ,d = a /R ,ε = e /R ,则其传动比i 21为 )31()]cos(1/[)]cos(1[/)(/1111112112?+??=?== ?ε?εωωn n d r r a i 齿轮2的节曲线极坐标与直角坐标方程分别为 )41(d )]}cos(1/[)]cos(1{[) cos(10111112112??? ?????+=??=∫ ???ε?ε??n d n n e R a r )51(sin cos 222222?? ??=?= ??r y r a x 设n 2表示共轭齿轮2转动一周时,传动比变化的周期数,根据非圆齿轮节曲线封闭的约束条件,传动比函数应满足下式 )61(d )]}cos(1/[)]cos(1{[π21π20111112 ???+=∫ n n d n n ??ε?ε 得d ,ε,n 1和n 2的关系为 )71(/21)/(2)/()1/)(1/(122 1222121212?++++++= n n n n n n n n n n d εε 当n 1 = 2,n 2 = 3时,蜗线齿轮副的节曲线形状如图1所示。 蜗线齿轮1、齿轮2上的点在固定坐标系XO 1Y 上的坐标(X 1,Y 1)、(X 2,Y 2)与xO 1y 坐标系上的坐标 (x 1,y 1) 、(x 2,y 2)之间的关系为 )81(cos sin sin cos 1111111111?? ??+=?= ????y x Y y x X )91(cos sin sin cos 2222222222?? ??+=?= ????y x Y y x X 2 课程上机内容与要求 机构的设计参数为,a =0.150 m 、ε =1/4、R =a /d 、e =ε·R 。 (1) 生成n 1 =2,n 2 = 3时,蜗线齿轮1的节曲线数值x 1i 、y 1i 的Excel 数据表文件,φ1的变化区间为0≤φ1i ≤2π,i =1,2,3, (360) (2) 生成n 1 =2,n 2 = 3时,齿轮2的节曲线数值x 2i 、y 2i ,φ1的变化区间为0≤φ1i ≤2π,i =1,2,3, (360) (3) 生成传动比i 12i 的Excel 数据表文件,φ1的变化区间为0≤φ1i ≤2π,i =1,2,3, (360) (4) 制作机构的动画。

齿轮传动的种类和应用

第四章齿轮传动(10课时) 教学目标 1、了解齿轮传动的分类、特点 2、理解渐开线的形成及性质,了解齿廓的啮合的特点 3、掌握渐开线标准直齿圆柱齿轮基本参数、几何尺寸计算 4、了解渐开线齿廓的啮合的特点 5、掌握标准直齿圆柱齿轮、斜齿圆柱齿轮、直齿圆锥齿轮的正确啮合条件 6、了解斜齿圆柱齿轮、直齿圆锥齿轮的应用特点 7、了解齿轮轮齿失效的形式 教学重点难点 上述3、5两点 【复习】1、链传动的组成及特点、类型和应用 2、链传动的传动比 3、滚子链的组成、标记和特点 第一节齿轮传动的类型及应用 一、概念 齿轮机构是由齿轮副组成的传递运动和动力的装置。 二、齿轮传动的类型

齿轮的种类很多,可以按不同方法进行分类。 (1)根据轴的相对位置,分为两大类,即平面齿轮传动(两轴平行)与空间齿轮传动(两 轴不平行) (2)按工作时圆周速度的不同,分低速、中速、高速三种; (3)按工作条件不同,分闭式齿轮传动(封闭在箱体内,并能保证良好润滑的齿轮传动)、 半开式齿轮传动(齿轮浸入油池,有护罩,但不封闭)和开式齿轮传动(齿轮暴露在外, 不能保证良好润滑)三种; (4)按齿宽方向齿与轴的歪斜形式,分直齿、斜齿和曲齿三种; (5)按齿轮的齿廓曲线不同,分为渐开线齿轮、摆线齿轮和圆弧齿轮等几种; (6)按齿轮的啮合方式,分为外啮合齿轮传动、内啮合齿轮传动和齿条传动。 三、齿轮传动的应用 1、传动比 式中 n1、n2表示主从动轮的转速 z1、z2表示主从动轮的齿数 2、应用特点: 优点:能保证瞬时传动比恒定,工作可靠性高,传递运动准确。 传递功率和圆周速度范围较宽,传递功率可达50000kw ,圆周速度300m/s 结构紧凑,可实现较大传动比 两轴平行 两轴不平行 按轮齿方向 按啮合情况 直齿圆柱齿轮传动 斜齿圆柱齿轮传动 人字齿圆柱齿轮传动 外啮合齿轮传动 内啮合齿轮传动 齿轮齿条传动 相交轴齿轮传动 交错轴齿轮传动 锥齿轮传动 交错轴斜齿轮传动 蜗轮蜗杆传动 1212 21n z i n z ==

齿轮的常见种类及传动效率

齿轮的常见种类及传动效率 齿轮的常见种类及传动效率 1.平行轴之齿轮(圆柱齿轮) (1)正齿轮(直齿轮)(Spur gear ):齿筋平行于轴心之直线圆筒齿轮。 (2)齿条( Rack ):与正齿轮咬合之直线条状齿轮,可以说是齿轮之节距在大小变成无限大时之特殊情形。 (3)内齿轮(Internal gear):与正齿轮咬合之直线圆筒内侧齿轮。 (4)螺旋齿轮(Helical gear):齿筋成螺旋线(helicoid)之圆筒齿轮。 (5)斜齿齿条(Helical rack):与螺旋齿轮咬合之直线状齿轮。 (6)双螺旋齿轮(Double helical gear):左右旋齿筋所形成之螺旋齿轮。 2.直交轴之齿轮(圆锥齿轮) (1)直齿伞形齿轮(Straight bevel gear):齿筋与节圆锥之母线(直线)一致之伞形齿轮。(2)弯齿伞形齿轮(Spiral bevel gear):齿筋为具有螺旋角之弯曲线的伞形齿轮。 (3)零螺旋弯齿伞形齿轮(Zerol bevel gear):螺旋角为零之弯齿伞形齿轮。 3.错交轴之齿轮(蜗轮和蜗杆) (1)圆筒蜗轮齿轮(Worm gear):圆筒蜗轮齿轮为蜗杆(Worm)及齿轮(Wheel)之总称。(2)错交螺旋齿轮(screw gear):此为圆筒形螺旋齿轮,利用要错交轴(又称歪斜轴)间传动时称之。 (3)其它之特殊齿轮: 面齿轮(Face gear):为能与正齿轮或与螺旋齿轮咬合之圆盘形的面齿轮。 鼓形蜗轮齿轮(Concave worm gear):凹鼓形蜗杆及与此咬合之齿轮的总称。 戟齿轮(Hypoid gear):传达错交轴之圆锥状齿轮。形状类似弯齿伞形齿轮。

常用机械传动系统的主要类型和特点

常用机械传动系统的主要类型和特点 2H310000 机电工程技术 2H311000 机电工程专业技术 2H311010 机械传动与技术测量 ――2H311011 掌握传动系统的组成 一、常用机械传动系统的主要类型和特点 机械传动的作用:传递运动和力; 常用机械传动系统的类型:齿轮传动、蜗轮蜗杆传动、轮系;带传动、链传动; (一)齿轮传动 1、齿轮传动的分类 (1)分类依据:按主动轴和从动轴在空间的相对位置形成的平面和空间分类 两平行轴之间的传动――平面齿轮传动(直齿圆柱齿轮传动、斜齿圆柱齿轮传动、人字齿轮传动;齿轮齿条传动) 用于两相交轴或交错轴之间的传动――空间齿轮传动(圆锥齿轮传动、螺旋齿轮传动(交错轴)) 用于空间两垂直轴的运动传递――蜗轮蜗杆传动 (2)传动的基本要求: 瞬间角速度之比必须保持不变。 (3)渐开线齿轮的基本尺寸: 齿顶圆、齿根圆、分度圆、模数、齿数、压力角等 2、渐开线齿轮的主要特点: 传动比准确、稳定、高效率; 工作可靠性高,寿命长; 制造精度高,成本高; 不适于远距离传动。

3、应用于工程中的减速器、变速箱等 (二)蜗轮蜗杆传动 1、用于空间垂直轴的运动传递――蜗轮蜗杆传动 2、正确传动的啮合条件――蜗杆的轴向与蜗轮端面参数的相应关系蜗杆轴向模数和轴向压力角分别等于蜗轮端面模数和端面压力角。 3、蜗轮蜗杆传动的主要特点: 传动比大,结构紧凑; 轴向力大、易发热、效率低; 一般只能单项传动。 (三)带传动 1、带传动――适于两轴平行且转向相同的场合。 带传动组成:主动轮、从动轮、张紧轮和环形皮带构成 2、带传动特点: 挠性好,可缓和冲击,吸振; 结构简单、成本低廉; 传动外尺寸较大,带寿命短,效率低; 过载打滑,起保护作用; 传动比不保证。 切记:皮带打滑产生一正一负的作用: 即过载打滑,起保护作用; 打滑使皮带传动的传动比不保证。 (四)链传动 1、链传动――适于两轴平行且转向相同的场合。 链传动组成:主动链轮、从动链轮、环形链构成

齿轮传动的特点和类型

第一节齿轮传动的特点和类型 一、齿轮传动的特点 齿轮传动是应用最为广泛的一种传动形式,与其它传动相比,具有传递的功率大、速度范围广、效率高、工作可靠、寿命长、结构紧凑、能保证恒定传动比;缺点是制造及安装精度要求高,成本高,不适于两轴中心距过大的传动。 二、齿轮传动分类 1、按轴线相互位置:平面齿轮传动和空间齿轮传动。 平面齿轮传动:按轮齿方向:直齿轮传动,斜齿轮传动和人字齿轮传动;按啮合方式:外啮合、内啮合和齿轮齿条传动; 空间齿轮传动:锥齿轮传动、交错轴斜齿轮传动和蜗杆蜗轮传动。 2、按齿轮是否封闭:开式和闭式齿轮传动 三、齿轮传动的基本要求 1、传动准确平稳; 齿廓啮合基本定律:为保证齿轮传动的瞬时传动比保持不变,则两轮不论在何处接触,过接触点所作两轮的公法线必须与两轮的连心线交于一定点。定点C称为节点,分别以O1、O2为圆心,过节点C所作的两个相切的圆称为节圆。根据齿廓曲线满足齿廓啮合基本定律制出的齿轮有渐开线齿轮、摆线齿轮和圆弧线齿轮。我们主要介绍渐开线齿轮。 渐开线的有关概念:1、发生线在基圆上滚过的长度等于基圆上相应被滚过的弧长;2、发生线即渐开线的法线,它始终与基圆相切,故也是基圆的切线;3、同一基圆上生成的任意两条反向渐开线间的公法线长度处处相等,任意两条同向渐开线间的法向距离处处相等;4、渐开线的形状取决于基圆的大小。基圆越小,渐开线越弯曲;基圆越大,渐开线越平直;5、基圆内无渐开线。 2、承载能力高和较长的使用寿命。 第二节渐开线齿轮的基本参数及几何尺寸计算 一、各部分名称 端平面:垂直于齿轮轴线的平面; 齿槽:相邻两轮之间的空间; 齿顶圆(da)、齿根圆(df)、齿槽宽(ek)、齿厚(sk)、齿顶高(ha)、齿根高(hf)、齿宽(p)、全齿高(h) 二、基本参数 1、模数m:; 2、压力角:规定分度圆上的压力角为标准压力角; 3、齿顶高系数:; 4、顶隙系数:; 5、齿数z:。当m、α不变时,z越大,db越大,渐开线越平直,若当z→∞时,db→∞,渐开线变成直线,齿轮变成齿条。 标准齿轮:m、α、ha*、c*皆为标准值且e=s。 三、几何尺寸计算 1、内齿轮与外齿轮比较:内齿轮的齿根即外齿轮的齿顶,内齿轮的齿顶即外齿轮的齿根;内齿轮的df>da>db; 2、齿条与齿轮比较:齿条的齿廓曲线为直线,齿轮的齿廓曲线为曲线(渐开线);对应的圆都变为直线,如分度线、齿顶线、齿根线;啮合角等于压力角,等于齿形角。齿条上所有轮齿的同侧齿廓都互相平行,齿廓任意位置的齿距都等于分度线的齿距,即pk=p=πm。 3、几何尺寸计算(见书表35-3) 例1、已知:m=7mm,z1=21、z2=37,α=20°,正常齿,求其几何尺寸。

齿轮传动机构的装配要求

齿轮传动机构的装配要 求 集团档案编码:[YTTR-YTPT28-YTNTL98-UYTYNN08]

齿轮传动机构的装配要求 对各种齿轮传动装置的基本技术要求是传动均匀,工作平稳,无冲击振动和噪声,承载能力强以及使用寿命长等。 1.齿轮孔与轴配合要符合技术要求,不得有偏心或歪斜现象。齿轮的端面轴向和径向跳动除由制造产生外,轴和轮孔的配合间隙过大或轴线弯曲变形也会引起。 在测量齿轮径向摆动量时,在齿间放入圆柱规,由百分表得出一个读数,然后转动齿轮,每隔3至4个轮齿又重复进行一次检查,百分表得最大读数与最小读数之差,就是齿轮分度圆上得径向跳动误差。检查端面跳动时,将百分表得触针抵在齿轮的端面上,转动轴就可以测出齿轮跳动量。 2.保证齿轮又准确的安装中心距和适当的齿侧间隙。间隙过小,齿轮转动不灵活,甚至卡齿,并加剧齿面的磨损。间隙过大,换向空程大并产生冲击。齿侧间隙允许值见表:测量齿轮侧隙的方法通常有3种: a用塞尺法来测量齿侧隙,国标推荐此法 b压铅丝法(铅保险丝)检验。即在齿面延齿宽两端平行放置3至4条。铅丝直径不超过最小侧隙的4倍,转动齿轮测量铅丝的最薄处的尺寸极为侧隙(见图) c百分表检验。将百分表测头与齿轮的齿面接触,另一齿轮固定。将接触百分表测头的齿轮从一侧啮合转到另一侧啮合,百分表上的读数差值即为侧隙。如对小模齿轮测量,可以将一个齿轮固定,在另一个齿轮上装夹紧杆,由于侧隙的存在,装有夹紧杆的齿轮便可摆动一定角度,从而推动百分表的测头,得到表针摆动的读数C,根据分度圆半径R,指针长度L,即可按下式就得侧隙Cn的值(见图):Cn=CR/Lmm 3.保证齿面有一定的接触面积和正确的接触部位。接触部位与接触面积是互相联系 的,接触部位的正确与否反映了两啮合齿轮的相互位置的误差。分别用涂色法检查斑点的情况 4.对于滑动齿轮的轴向位移,不应有阻滞和啃住现象。轮齿的错位量不得超过规定值 5.对于转速高的大齿轮,装配在轴后还应做动平衡试验,以避免转速升高时产生过大 振动 6.圆柱齿轮装配要点: 1)安装前的准备

齿轮传动以及类型

齿轮传动的特点 一、齿轮传动的特点 1)效率高在常用的机械传动中,以齿轮传动效率为最高,闭式传动效率为96%~99%,这对大功率传动有很大的经济意义。 2)结构紧凑比带、链传动所需的空间尺寸小。 3)传动比稳定传动比稳定往往是对传动性能的基本要求。齿轮传动获得广泛应用,正是由于其具有这一特点。 4)工作可靠、寿命长设计制造正确合理、使用维护良好的齿轮传动,工作十分可靠,寿命可长达一二十年,这也是其它机械传动所不能比拟的。这对车辆及在矿井内工作的机器尤为重要。 但是齿轮传动的制造及安装精度要求高,价格较贵,且不宜用于传动距离过大的场合。二、齿轮传动的类型 齿轮传动就装置形式分: 1)开式、半开式传动在农业机械、建筑机械以及简易的机械设备中,有一些齿轮传动没有防尘罩或机壳,齿轮完全暴露在外边,这叫开式齿轮传动。这种传动不仅外界杂物极易侵入,而且润滑不良,因此工作条件不好,轮齿也容易磨损,故只宜用于低速传动。齿轮传动装有简单的防护罩,有时还把大齿轮部分地浸入油池中,则称为半开式齿轮传动。它工作条件虽有改善,但仍不能做到严密防止外界杂物侵入,润滑条件也不算最好。 2)闭式传动而汽车、机床、航空发动机等所用的齿轮传动,都是装在经过精确加工而且封闭严密的箱体(机匣)的,这称为闭式齿轮传动(齿轮箱)。它与开式或半开式的相比,润滑及防护等条件最好,多用于重要的场合。 按齿面硬度分: 1)软齿面齿轮轮齿工作面的硬度小于或等于350HBS或38HRC; 2)硬齿面齿轮轮齿工作面的硬度大于350HBS或38HRC。 文章编辑:东莞永滔齿轮加工厂官方网:https://www.360docs.net/doc/b512988201.html, huangkaijun

齿轮机构介绍

第五章 齿轮机构 案例导入:通过机床、汽车、摩托车、手表等仪器设备中广泛应用的齿轮传动,引入齿轮传动的类型、特点及基本要求、齿轮传动啮合的特点。在所有众多的齿轮机构中,直齿圆柱齿轮机构是最基本、也是最常用的一种,本章以直齿圆柱齿轮为研究的重点。 第一节 齿轮机构的齿廓啮合基本规律、特点和类型 一、齿轮机构的特点和类型 齿轮传动是近代机械传动中用得最多的传动形式之一。它不仅可用于传递运动,如各种仪表机构;而且可用于传递动力,如常见的各种减速装置、机床传动系统等。 同其他传动形式比较,它具有下列优点:①能保证传动比恒定不变;②适用的载荷与速度范围很广,传递的功率可由很小到几万千瓦,圆周速度可达150m/s ;③结构紧凑;④效率高,一般效率η=0.94~0.99;⑤工作可靠且寿命长。其主要缺点是:①对制造及安装精度要求较高;②当两轴间距离较远时,采用齿轮传动较笨重。 齿轮的分类方法很多,按照两轴线的相对位置,可分为两类:平面齿轮传动和空间齿轮传动。 1.平面齿轮传动 该传动的两轮轴线相互平行,常见的有直齿圆柱齿轮传动(图5-1a ),斜齿圆柱齿轮传动(图5-1d ),人字齿轮传动(图5-1e )。此外,按啮合方式区分,前两种齿轮传动又可分为外啮合传动(图5-1a 、d ),内啮合传动(图5-1b )和齿轮齿条传动(图 5 a) b) c) d) e) 图5-1 平面齿轮传动

-1c )。 2.空间齿轮传动 两轴线不平行的齿轮传动称为空间齿轮传动,如直齿圆锥齿轮传动(图5-2a )、交错轴斜齿轮传动(图5-2b )和蜗杆传动(图5-2c )。 另外,齿轮传动按照齿轮的圆周速度可分为:①低速传动 v < 3m/s ;②中速传动 v =3~15m/s ,(3)高速传动v >15m/s 。按齿轮的工作情况可以分为:①开式齿轮传动;②闭式齿轮传动。 二、齿轮啮合的基本规律 齿轮传动最基本的要求是其瞬时传动比必须恒定不变。否则当主动轮以等速度回转时,从动轮的角速度为变数,因而产生惯性力,影响齿轮的寿命,同时也引起振动,影响其工作精度。 要满足这一基本要求,则齿轮的齿廓曲线必须符 合一定的条件。 图5-3所示为两啮合齿轮的齿廓C 1和C 2在K 点接触的情况,设两轮的角速度分别为 ω1和 ω 2,则齿廓 C 1上K 点的速度k o v K 111ω=;齿廓C 2上K 点的速度 k o v K 222ω=。 过K 点作两齿廓的公法线NN 与两轮中心连线2 1o o 交于C 点,为保证两轮连续和平稳的运动,v k 1与v k 2 在公法线上得分速度应相等,否则两齿廓将互相嵌入 或分离,即 2211cos cos K K K K v v αα= 过2o 作z o 2平行于NN ,与k o 1的延长线交于Z a) b) c) 图5-2 空间齿轮传动

相关文档
最新文档