初中数学竞赛辅导讲义:第4讲-明快简捷—构造方程的妙用(含习题解答)
初中数学竞赛平面几何讲座---巧添辅助-- 妙解竞赛题

初中数学巧添辅助-- 妙解竞赛题在某些数学竞赛问题中,巧妙添置辅助圆常可以沟通直线形和圆的内在联系,通过圆的有关性质找到解题途径.下面举例说明添置辅助圆解初中数学竞赛题的若干思路.1 挖掘隐含的辅助圆解题有些问题的题设或图形本身隐含着“点共圆”,此时若能把握问题提供的信息,恰当补出辅助圆,并合理挖掘图形隐含的性质,就会使题设和结论的逻辑关系明朗化.1.1 作出三角形的外接圆例1如图1,在△ABC中,AB=AC,D是底边BC上一点,E是线段AD上一点且∠BED=2∠CED=∠A.求证:BD=2CD.ABGC DFE 图1例 2 凸四边形ABCD 中,∠ABC =60°,∠BAD =∠BCD =90°, AB =2,CD =1,对角线AC 、BD 交于点O ,如图2.则sin ∠AOB =____.例3 已知:如图3,AB =BC =CA =AD ,AH ⊥CD 于H ,CP ⊥BC ,CP 交AH 于P . 求证:△ABC 的面积S =43AP ·BD .A图3BP QD HC ABCDPO图22 构造相关的辅助圆解题有些问题貌似与圆无关,但问题的题设或结论或图形提供了某些与圆的性质相似的信息,此时可大胆联想构造出与题目相关的辅助圆,将原问题转化为与圆有关的问题加以解决. 2.1 联想圆的定义构造辅助圆例4 如图4,四边形ABCD 中,AB ∥CD ,AD =DC =DB =p ,BC =q .求对角线AC 的长.2.2 联想直径的性质构造辅助圆例5 已知抛物线y =-x 2+2x +8与x 轴交于B 、C 两点,点D 平分BC .若在x 轴上侧的A 点为抛物线上的动点,且∠BAC 为锐角,则AD 的取值范围是____.A EDCB图4图5例6 AD 是Rt △ABC 斜边BC 上的高,∠B 的平行线交AD 于M ,交AC 于N . 求证:AB 2-AN 2=BM ·BN .例7 如图7,ABCD 是⊙O 的内接四边形,延长AB 和DC 相交于E ,延长AB 和DC 相交于E ,延长AD 和BC 相交于F ,EP 和FQ 分别切⊙O 于P 、Q .求证:EP 2+FQ 2=EF 2.EANCD B FM 12345图6例8 如图8,△ABC 与△A 'B 'C '的三边分别为a 、b 、c 与a '、b '、c ',且∠B =∠B ',∠A +∠A '=180°.试证:aa '=bb '+cc '.同步练习题1. 作一个辅助圆证明:△ABC 中,若AD 平分∠A ,则AC AB =DCBD.2. 已知凸五边形ABCDE 中,∠BAE =3a ,BC =CD =DE ,∠BCD =∠CDE =180°-2a . 求证:∠BAC =∠CAD =∠DAE .3. 在△ABC 中AB =BC ,∠ABC =20°,在AB 边上取一点M ,使BM =AC .求∠AMC 的度数.(1)(2)图8ABCA'B'C'cb a'c'b'3. 如图10,AC 是ABCD 较长的对角线,过C 作CF ⊥AF ,CE ⊥AE .求证:AB ·AE +AD ·AF =AC 2.4. 如图11.已知⊙O 1和⊙O 2相交于A 、B ,直线CD 过A 交⊙O 1和⊙O 2于C 、D ,且AC =AD ,EC 、ED 分别切两圆于C 、D . 求证:AC 2=AB ·AE .6.已知E 是△ABC 的外接圆之劣弧BC 的中点. 求证:AB ·AC =AE 2-BE 2.7. 若正五边形ABCDE 的边长为a ,对角线长为b ,试证:a b -ba=1.F DAB EC图10C图11初中数学巧添辅助-- 妙解竞赛题答案在某些数学竞赛问题中,巧妙添置辅助圆常可以沟通直线形和圆的内在联系,通过圆的有关性质找到解题途径.下面举例说明添置辅助圆解初中数学竞赛题的若干思路.1 挖掘隐含的辅助圆解题有些问题的题设或图形本身隐含着“点共圆”,此时若能把握问题提供的信息,恰当补出辅助圆,并合理挖掘图形隐含的性质,就会使题设和结论的逻辑关系明朗化. 1.1 作出三角形的外接圆例1 如图1,在△ABC 中,AB =AC ,D 是底边BC 上一点,E 是线段AD 上一点且∠BED =2∠CED = ∠A .求证:BD =2CD .分析:关键是寻求∠BED =2∠CED 与结论的联系. 容易想到作∠BED 的平分线,但因BE ≠ED ,故不能 直接证出BD =2CD .若延长AD 交△ABC 的外接圆 于F ,则可得EB =EF ,从而获取.证明:如图1,延长AD 与△ABC 的外接圆相交于点F ,连结CF 与BF ,则∠BFA =∠BCA =∠ABC =∠AFC ,即∠BFD =∠CFD .故BF :CF =BD :DC .又∠BEF =∠BAC ,∠BFE =∠BCA ,从而∠FBE =∠ABC =∠ACB =∠BFE . 故EB =EF .作∠BEF 的平分线交BF 于G ,则BG =GF . 因∠GEF =21∠BEF =∠CEF ,∠GFE =∠CFE ,故△FEG ≌△FEC .从而GF =FC . 于是,BF =2CF .故BD =2CD . 1.2 利用四点共圆例2 凸四边形ABCD 中,∠ABC =60°,∠BAD = ∠BCD =90°,AB =2,CD =1,对角线AC 、BD 交于点O ,如图2. 则sin ∠AOB =____.ABGCD FE图1ABCDPO 图2分析:由∠BAD =∠BCD =90°可知A 、B 、C 、D四点共圆,欲求sin ∠AOB ,联想到托勒密定理,只须求出BC 、AD 即可.解:因∠BAD =∠BCD =90°,故A 、B 、C 、D 四点共圆.延长BA 、CD 交于P ,则∠ADP =∠ABC =60°.设AD =x ,有AP =3x ,DP =2x .由割线定理得(2+3x )3x =2x (1+2x ).解得AD =x =23-2,BC =21BP =4-3. 由托勒密定理有BD ·CA =(4-3)(23-2)+2×1=103-12.又S ABCD =S △ABD +S △BCD =233. 故sin ∠AOB =263615 . 例3 已知:如图3,AB =BC =CA =AD ,AH ⊥CD 于H ,CP ⊥BC ,CP 交AH 于P .求证: △ABC 的面积S =43AP ·BD . 分析:因S △ABC =43BC 2=43AC ·BC ,只 须证AC ·BC =AP ·BD ,转化为证△APC ∽△BCD .这由A 、B 、C 、Q 四点共圆易证(Q 为BD 与AH 交点).证明:记BD 与AH 交于点Q ,则由AC =AD ,AH ⊥CD 得∠ACQ =∠ADQ . 又AB =AD ,故∠ADQ =∠ABQ .从而,∠ABQ =∠ACQ .可知A 、B 、C 、Q 四点共圆. ∵∠APC =90°+∠PCH =∠BCD ,∠CBQ =∠CAQ , ∴△APC ∽△BCD . ∴AC ·BC =AP ·BD . 于是,S =43AC ·BC =43AP ·BD . A图3BPQDHC2 构造相关的辅助圆解题有些问题貌似与圆无关,但问题的题设或结论或图形提供了某些与圆的性质相似的信息,此时可大胆联想构造出与题目相关的辅助圆,将原问题转化为与圆有关的问题加以解决. 2.1 联想圆的定义构造辅助圆例4 如图4,四边形ABCD 中,AB ∥CD ,AD =DC =DB =p ,BC =q .求对角线AC 的长.分析:由“AD =DC =DB =p ”可知A 、B 、C 在 半径为p 的⊙D 上.利用圆的性质即可找到AC 与 p 、q 的关系.解:延长CD 交半径为p 的⊙D 于E 点,连结AE . 显然A 、B 、C 在⊙D 上. ∵AB ∥CD ,∴BC =AE . 从而,BC =AE =q .在△ACE 中,∠CAE =90°,CE =2p ,AE =q ,故 AC =22AE CE -=224q p -. 2.2 联想直径的性质构造辅助圆例5 已知抛物线y =-x 2+2x +8与x 轴交于B 、C 两点,点D 平分BC .若在x 轴上侧的A 点为抛物线上的动点,且∠BAC 为锐角,则AD 的取值范围是____.分析:由“∠BAC 为锐角”可知点A 在以定线段BC 为直径的圆外,又点A 在x 轴上侧,从而可确定动点A 的范围,进而确定AD 的取值范围. 解:如图5,所给抛物线的顶点为A 0(1,9), 对称轴为x =1,与x 轴交于两点B (-2,0)、 C (4,0).分别以BC 、DA 为直径作⊙D 、⊙E ,则两圆与抛物线均交于两点P (1-22,1)、A EDCB图4图5Q (1+22,1).可知,点A 在不含端点的抛物线PA 0Q 内时,∠BAC <90°.且有3=DP =DQ <AD ≤DA 0=9,即AD 的取值范围是3<AD ≤9. 2.3 联想圆幂定理构造辅助圆例6 AD 是Rt △ABC 斜边BC 上的高,∠B 的平行线交AD 于M ,交AC 于N .求证:AB 2-AN 2=BM ·BN .分析:因AB 2-AN 2=(AB +AN )(AB -AN )=BM ·BN ,而由题设易知AM =AN ,联想割线定理,构造辅助圆即可证得结论. 证明:如图6,∵∠2+∠3=∠4+∠5=90°, 又∠3=∠4,∠1=∠5, ∴∠1=∠2.从而,AM =AN . 以AM 长为半径作⊙A ,交AB 于F ,交 BA 的延长线于E .则AE =AF =AN . 由割线定理有 BM ·BN =BF ·BE =(AB +AE )(AB -AF ) =(AB +AN )(AB -AN ) =AB 2-AN 2, 即 AB 2-AN 2=BM ·BN .例7 如图7,ABCD 是⊙O 的内接四边形,延长AB 和DC 相交于E ,延长AB 和DC 相交于E ,延长AD 和BC 相交于F ,EP 和FQ 分别切⊙O 于P 、Q .求证:EP 2+FQ 2=EF 2. 分析:因EP 和FQ 是⊙O 的切线,由结论联想到切割线定理,构造辅助圆使EP 、FQ 向EF 转化.证明:如图7,作△BCE 的外接圆交EF 于G ,连 结CG .因∠FDC =∠ABC =∠CGE ,故F 、D 、C 、G 四点共圆.EA N D BFM 12345图6由切割线定理,有 EF 2=(EG +GF )·EF =EG ·EF +GF ·EF =EC ·ED +FC ·FB=EC ·ED +FC ·FB =EP 2+FQ 2,即 EP 2+FQ 2=EF 2.2.4 联想托勒密定理构造辅助圆 例8 如图8,△ABC 与△A 'B ' C '的三边分别为a 、b 、c 与a '、 b '、c ',且∠B =∠B ',∠A +∠A '=180°.试证:aa '=bb '+cc '. 分析:因∠B =∠B ',∠A +∠A '=180°,由结论联想到托勒密定理,构造圆内接四边形加以证明.证明:作△ABC 的外接圆,过C 作CD ∥AB 交圆于D ,连结AD 和BD ,如图9所示. ∵∠A +∠A '=180°=∠A +∠D , ∠BCD =∠B =∠B ',∴∠A '=∠D ,∠B '=∠BCD .∴△A 'B 'C '∽△DCB .有DC B A ''=CB C B ''=DBC A '',即 DC c '=a a '=DB b '.故DC =''a ac ,DB =''a ab .又AB ∥DC ,可知BD =AC =b ,BC =AD =a . 从而,由托勒密定理,得 AD ·BC =AB ·DC +AC ·BD , 即 a 2=c ·''a ac +b ·''a ab . 故aa '=bb '+cc '.练习题(1)(2)图8ABCA'B'C'ca b a'c'b'A BCDa b b c图91. 作一个辅助圆证明:△ABC 中,若AD 平分∠A ,则AC AB =DCBD. (提示:不妨设AB ≥AC ,作△ADC 的外接圆交AB 于E ,证△ABC ∽△DBE ,从而AC AB =DEBD=DCBD.) 2. 已知凸五边形ABCDE 中,∠BAE =3a ,BC =CD =DE ,∠BCD =∠CDE =180°-2a .求证:∠BAC =∠CAD =∠DAE .(提示:由已知证明∠BCE =∠BDE =180°-3a ,从而A 、B 、C 、D 、E 共圆,得∠BAC =∠CAD =∠DAE .)3. 在△ABC 中AB =BC ,∠ABC =20°,在AB 边上取一点M ,使BM =AC .求∠AMC 的度数. (提示:以BC 为边在△ABC 外作正△KBC ,连结KM ,证B 、M 、C 共圆,从而∠BCM =21∠BKM =10°,得∠AMC =30°.) 4.如图10,AC 是ABCD 较长的对角线,过C 作CF ⊥AF ,CE ⊥AE .求证:AB ·AE +AD ·AF =AC 2. (提示:分别以BC 和CD 为直径作圆交AC 于点 G 、H .则CG =AH ,由割线定理可证得结论.) 5. 如图11.已知⊙O 1和⊙O 2相交于A 、B ,直线CD 过A 交⊙O 1和⊙O 2于C 、D ,且AC =AD ,EC 、ED 分别切两圆于C 、D .求证:AC 2=AB ·AE . (提示:作△BCD 的外接圆⊙O 3,延长BA 交⊙O 3 于F ,证E 在⊙O 3上,得△ACE ≌△ADF ,从而AE =AF ,由相交弦定理即得结论.)6.已知E 是△ABC 的外接圆之劣弧BC 的中点. 求证:AB ·AC =AE 2-BE 2.(提示:以BE 为半径作辅助圆⊙E ,交AE 及其延长线于N 、M ,由△ANC ∽△ABM 证AB ·AC =AN ·AM .)7. 若正五边形ABCDE 的边长为a ,对角线长为b ,试证:a b -ba=1. (提示:证b 2=a 2+ab ,联想托勒密定理作出五边形的外接圆即可证得.)FDAEC图10图11。
(中考类)初中数学竞赛讲座精讲与练习题之精讲篇(一)

基础知识1.面积公式由于平面上的凸多边形都可以分割成若干三角形,故在面积公式中最基本的是三角形的面积公式.它形式多样,应在不同场合下选择最佳形式使用.设△ABC ,c b a ,,分别为角C B A ,,的对边,a h 为a 的高,R 、r 分别为△ABC外接圆、内切圆的半径,)(21c b a p ++=.则△ABC 的面积有如下公式:(1)a ABC ah S 21=∆;(2)A bc S ABCsin 21=∆ (3)))()((c p b p a p p S ABC ---=∆(4)pr c b a r S ABC =++=∆)(21(5)Rabc S ABC 4=∆(6)C B A R S ABC sin sin sin 22=∆(7))sin(2sin sin 2C B CB a S ABC +=∆ (8))(21a cb r S a ABC -+=∆ (9))2sin 2sin 2(sin 212C B A R S ABC++=∆ 2.面积定理(1)一个图形的面积等于它的各部分面积这和; (2)两个全等形的面积相等;(3)等底等高的三角形、平行四边形、梯形(梯形等底应理解为两底和相等)的面积相等;(4)等底(或等高)的三角形、平行四边形、梯形的面积的比等于其所对应的高(或底)的比;(5)两个相似三角形的面积的比等于相似比的平方;(6)共边比例定理:若△PAB 和△QAB 的公共边AB 所在直线与直线PQ 交于M ,则QM PM S S Q AB PAB ::=∆∆;(7)共角比例定理:在△ABC 和△C B A '''中,若A A '∠=∠或︒='∠+∠180A A ,则C A B A ACAB S S C B A ABC ''⋅''⋅='''∆∆. 3.张角定理:如图,由P 点出发的三条射线PC PB PA ,,,设α=∠APC ,β=∠CPB ,︒<+=∠180βαAPB ,则C B A ,,三点共线的充要条件是:PCPA PB )sin(sin sin βαβα+=+.例题分析例1.梯形ABCD 的对角线BD AC ,相交于O ,且m S AOB =∆,n S COD =∆,求ABCD S 例2.在凸五边形ABCDE 中,设1=====∆∆∆∆∆EAB D EA CD E BCD ABC S S S S S ,求此五边形的面积.例3.G 是△ABC 内一点,连结CG BG AG ,,并延长与AB CA BC ,,分别交于F E D ,,,△AGF 、△BGF 、△BGD 的面积分别为40,30,35,求△ABC 的面积.例4.R Q P ,,分别是△ABC 的边BC AB ,和CA 上的点,且1====RC QR PQ BP ,求△ABC 的面积的最大值.例5.过△ABC 内一点引三边的平行线DE ∥BC ,FG ∥CA ,HI ∥AB ,点I H G F E D ,,,,,都在△ABC 的边上,1S 表示六边形DGHEFI 的面积,2S 表示 △ABC的面积.求证:2132S S ≥.例6.在直角△ABC 中,AD 是斜边BC 上的高,过△ABD 的内心与△ACD 的内心的直线分别交边AB 和AC 于K 和L ,△ABC 和△AKL 的面积分别记为S 和T .求证:T S 2≥.例7.锐角三角形ABC 中,角A 等分线与三角形的外接圆交于一点1A ,点1B 、1C 与此类似,直线1AA 与B 、C 两角的外角平分线将于一点0A ,点0B 、0C 与此类似.求证:(1)三角形000C B A 的面积是六边形111CB BA AC 的面积的二倍; (2)三角形000C B A 的面积至少是三角形ABC 的四倍.例8.在△ABC 中,R Q P ,,将其周长三等分,且Q P ,在边AB 上,求证:92>∆∆ABCPQR S S . 例9.在锐角△ABC 的边BC 边上有两点E 、F ,满足CAF BAE ∠=∠,作AB FM ⊥,AC FM ⊥(N M ,是垂足),延长AE 交△ABC 的外接圆于点D ,证明四边形AMDN 与△ABC 的面积相等. 三.面积的等积变换等积变换是处理有关面积问题的重要方法之一,它的特点是利用间面积相等而进行相互转换证(解)题.例10.凸六边形ABCDEF 内接于⊙O ,且13+===DC BC AB ,1===FA EF DE ,求此六边形的面积.例11.已知ABC ∆的三边c b a >>,现在AC 上取AB B A =',在BA 延长线上截取BC C B =',在CB 上截取CA A C =',求证:C B A ABC S S '''∆∆>.例12.C B A '''∆在ABC ∆内,且ABC ∆∽C B A '''∆,求征:ABC AB C CA B BC A S S S S ∆'∆'∆'∆=++ 例13.在ABC ∆的三边AB CA BC ,,上分别取点F E D ,,,使EA CE DC BD 3,3==,FB AF 3=,连CF BE AD ,,相交得三角形PQR ,已知三角形ABC 的面积为13,求三角形PQR 的面积.例14.E 为圆内接四边形ABCD 的AB 边的中点,AD EF ⊥于F ,BC EH ⊥于H ,CD EG ⊥于G ,求证:EF 平分FH .例15.已知边长为,,,c b a 的ABC ∆,过其内心I 任作一直线分别交AC AB ,于N M ,点,求证:bca IN MI +≤. 例16.正△PQR ≅正△R Q P ''',1a AB =,1b BC =,2a CD =,2b DE =,3a EF =,3b FA =.求证:232221232221b b b a a a ++=++.例17.在正ABC ∆内任取一点O ,设O 点关于三边AB CA BC ,,的对称点分别为C B A ''',,,则C C B B A A ''',,相交于一点P .例18.已知CE AC ,是正六边形ABCDEF 的两条对角线,点N M ,分别内分ACCE ,且使k CECNAC AM ==,如果N M B ,,三点共线,试求k 的值. 例19.设在凸四边形ABCD 中,直线CD 以AB 为直径的圆相切,求证:当且仅当BC ∥AD 时,直线AB 与以CD 为直径的圆相切.训练题1.设ABC ∆的面积为102cm ,F E D ,,分别是CA BC AB ,,边上的点,且,3,2cm DB cm AD ==若DBEF ABE S S =∆,求ABE ∆的面积.2.过ABC ∆内一点作三条平行于三边的直线,这三条直线将ABC ∆分成六部份,其中,三部份为三角形,其面积为321,,S S S ,求三角形ABC ∆的面积.3.在ABC ∆的三边CA BC AB ,,上分别取不与端点重合的三点L K M ,,,求证:AML ∆,CLK BKM ∆∆,中至少有一个的面积不大于ABC ∆的面积的41.4.锐角ABC ∆的顶角A 的平分线交BC 边于L ,又交三角形的外接圆于N ,过L 作AB 和AC 边的垂线LK 和LM ,垂足是M K ,,求证:四边形AKNM 的面积等于ABC ∆的 面积.5.在等腰直角三角形ABC 的斜边BC 上取一点D ,使BC DC 31=,作ADBE ⊥交AC 于E ,求证:EC AE =.6.三条直线n m l ,,互相平行,n l ,在m 的两侧,且m l ,间的距离为2,n m ,间的距离为1,若正ABC ∆的三个顶点分别在n m l ,,上,求正ABC ∆的边长. 7.已知321P P P ∆及其内任一点P ,直线P P i 分别交对边于i Q (3,2,1=i ),证明:在332211,,PQ P P PQ P P PQ P P 这三个值中,至少有一个不大于2,并且至少有一个不小于2.8.点D 和E 分别在ABC ∆的边AB 和BC 上,点K 和M 将线段DE 分为三等分,直线BK 和BM 分别与边AC 相交于点T 和P ,证明:AC TP 31≤.9.已知P 是ABC ∆内一点,延长CP BP AP ,,分别交对边于C B A ''',,,其中x AP =,w C P B P A P z CP y BP ='='='==,,,且3,23==++w z y x ,求xyz 之值. 10.过点P 作四条射线与直线l l ',分别交于D C B A ,,,和D C B A '''',,,,求证:CB D A DC B A BC AD CD AB ''⋅''''⋅''=⋅⋅. 11.四边形ABCD 的两对对边的延长线分别交L K ,,过L K ,作直线与对角线BD AC ,的延长线分别F G ,,求证:KGLGKFLF=. 12.G 为ABC ∆的重心,过G 作直线交AC AB ,于F E ,,求证:GF EG 2≤.同余式与不定方程同余式和不定方程是数论中古老而富有魅力的内容.考虑数学竞赛的需要,下面介绍有关的基本内容.1. 同余式及其应用定义:设a、b、m为整数(m>0),若a和b被m除得的余数相同,则称a和b对模m同余.记为或一切整数n可以按照某个自然数m作为除数的余数进行分类,即n=pm+r (r=0,1,…,m-1),恰好m个数类.于是同余的概念可理解为,若对n1、n2,有n1=q1m+r,n2=q2m+r,那么n1、n2对模m的同余,即它们用m除所得的余数相等.利用整数的剩余类表示,可以证明同余式的下述简单性质:(1) 若,则m|(b-a).反过来,若m|(b-a),则;(2) 如果a=km+b(k为整数),则;(3) 每个整数恰与0,1,…,m-1,这m个整数中的某一个对模m 同余;(4) 同余关系是一种等价关系:①反身性;②对称性,则,反之亦然.③传递性,,则;(5)如果,,则①;②特别地应用同余式的上述性质,可以解决许多有关整数的问题.例1(1898年匈牙利奥林匹克竞赛题)求使2n+1能被3整除的一切自然数n.解∵∴则2n+1∴当n为奇数时,2n+1能被3整除;当n为偶数时,2n+1不能被3整除.例2 求2999最后两位数码.解考虑用100除2999所得的余数.∵∴又∴∴∴2999的最后两位数字为88.例3 求证31980+41981能被5整除.证明∵∴∴∴2.不定方程不定方程的问题主要有两大类:判断不定方程有无整数解或解的个数;如果不定方程有整数解,采取正确的方法,求出全部整数解.(1) 不定方程解的判定如果方程的两端对同一个模m(常数)不同余,显然,这个方程必无整数解.而方程如有解则解必为奇数、偶数两种,因而可以在奇偶性分析的基础上应用同余概念判定方程有无整数解.例4 证明方程2x2-5y2=7无整数解.证明∵2x2=5y2+7,显然y为奇数.①若x为偶数,则∴∵方程两边对同一整数8的余数不等,∴x不能为偶数.②若x为奇数,则但5y2+7∴x不能为奇数.因则原方程无整数解.说明:用整数的整除性来判定方程有无整数解,是我们解答这类问题的常用方法.例5 (第14届美国数学邀请赛题)不存在整数x,y使方程①证明如果有整数x,y使方程①成立,则=知(2x+3y2)+5能被17整除.设2x+3y=17n+a,其中a是0,±1,±2,±3,±4,±5,±6,±7,±8中的某个数,但是这时(2x+3y)2+5=(17n)2+34na+(a2+5)=a2+5(mod17),而a2+5被17整除得的余数分别是5,6,9,14,4,13,7,3,1,即在任何情况下(2x+3y)2+5都不能被17整除,这与它能被17整除矛盾.故不存在整数x,y使①成立.例7 (第33届美国数学竞赛题)满足方程x2+y2=x3的正整数对(x,y)的个数是().(A)0 (B)1(C)2(D)无限个(E)上述结论都不对解由x2+y2=x3得y2=x2(x-1),所以只要x-1为自然数的平方,则方程必有正整数解.令x-1=k2(k为自然数),则为方程的一组通解.由于自然数有无限多个,故满足方程的正整数对(x,y)有无限多个,应选(D).说明:可用写出方程的一组通解的方法,判定方程有无数个解.(2) 不定方程的解法不定方程没有统一的解法,常用的特殊方法有:配方法、因式(质因数)分解法、不等式法、奇偶分析法和余数分析法.对方程进行适当的变形,并正确应用整数的性质是解不定方程的基本思路.例6 求方程的整数解.解(配方法)原方程配方得(x-2y)2+y2=132.在勾股数中,最大的一个为13的只有一组即5,12,13,因此有8对整数的平方和等于132即(5,12),(12,5),(-5,-12),(-12,-5),(5-,12),(12,-5),(-5,12),(-12,5).故原方程组的解只能是下面的八个方程组的解解得例7 (原民主德国1982年中学生竞赛题)已知两个自然数b和c及素数a满足方程a2+b2=c2.证明:这时有a<b及b+1=c.证明(因式分解法)∵a2+b2=c2,∴a2=(c-b)(c+b),又∵a为素数,∴c-b=1,且c+b=a2.于是得c=b+1及a2=b+c=2b+1<3b,即<.而a≣3,∴≢1,∴<1.∴a<b.例9(第35届美国中学数学竞赛题)满足联立方程的正整数(a,b,c)的组数是().(A)0 (B)1 (C)2 (D)3 (E)4解(质因数分解法)由方程ac+bc=23得(a+b)c=23=1³23.∵a,b,c为正整数,∴c=1且a+b=23.将c和a=23-b代入方程ab+bc=44得(23-b)b+b=44,即(b-2)(b-22)=0,∴b1=2,b2=22.从而得a1=21,a2=1.故满足联立方程的正整数组(a,b,c)有两个,即(21,2,1)和(1,22,1),应选(C).例10求不定方程2(x+y)=xy+7的整数解.解由(y-2)x=2y-7,得分离整数部分得由x为整数知y-2是3的因数,∴y-2=±1,±3,∴x=3,5,±1.∴方程整数解为例11 求方程x+y=x2-xy+y2的整数解.解(不等式法)方程有整数解必须△=(y+1)2-4(y2-y)≣0,解得≢y≢.满足这个不等式的整数只有y=0,1,2.当y=0时,由原方程可得x=0或x=1;当y=1时,由原方程可得x=2或0;当y=2时,由原方程可得x=1或2.所以方程有整数解最后我们来看两个分式和根式不定方程的例子.例12 求满足方程且使y是最大的正整数解(x,y).解将原方程变形得由此式可知,只有12-x是正的且最小时,y才能取大值.又12-x应是144的约数,所以,12-x=1,x=11,这时y=132.故满足题设的方程的正整数解为(x,y)=(11,132).例13(第35届美国中学生数学竞赛题)满足0<x<y及的不同的整数对(x,y)的个数是().(A)0 (B)1 (C)3 (D)4 (E)7解法1 根据题意知,0<x<1984,由得当且仅当1984x是完全平方数时,y是整数.而1984=26²31,故当且仅当x具有31t2形式时,1984x是完全平方数.∵x<1984,∵1≢t≢7.当t=1,2,3时,得整数对分别为(31,1519)、(124,1116)和(279,775).当t>3时y≢x不合题意,因此不同的整数对的个数是3,故应选(C).解法2 ∵1984=∴由此可知:x必须具有31t2形式,y 必须具有31k2形式,并且t+k=8(t,k均为正整数).因为0<x<y,所以t<k.当t=1,k=7时得(31,1519);t=2,k=6时得(124,1116);当t=3,k=5时得(279,775).因此不同整数对的个数为3.练习二十1. 选择题(1)方程x2-y2=105的正整数解有( ).(A)一组(B)二组(C)三组(D)四组(2)在0,1,2,…,50这51个整数中,能同时被2,3,4整除的有().(A) 3个(B)4个(C)5个(D)6个2.填空题(1)的个位数分别为_________及_________.(2)满足不等式104≢A≢105的整数A的个数是x³104+1,则x的值________.(3) 已知整数y被7除余数为5,那么y3被7除时余数为________.(4) (全俄第14届中学生数学竞赛试题)求出任何一组满足方程x2-51y2=1的自然数解x和y_________.3.(第26届国际数学竞赛预选题)求三个正整数x、y、z满足.4.(1985年上海数学竞赛题)在数列4,8,17,77,97,106,125,238中相邻若干个数之和是3的倍数,而不是9的倍数的数组共有多少组?5.求的整数解.6.求证可被37整除.7.(全俄1986年数学竞赛题)求满足条件的整数x,y的所有可能的值.8.(1985年上海初中数学竞赛题)已知直角三角形的两直角边长分别为l厘米、m厘米,斜边长为n厘米,且l,m,n均为正整数,l为质数.证明:2(l+m+n)是完全平方数.9.(1988年全国初中数学竞赛题)如果p、q、、都是整数,并且p>1,q>1,试求p+q的值.练习二十1.D.C.2.(1)9及1. (2)9. (3)4.(4)原方程可变形为x2=(7y+1)2+2y(y-7),令y=7可得x=50.3.不妨设x≢y≢z,则,故x≢3.又有故x≣2.若x=2,则,故y≢6.又有,故y≣4.若y=4,则z=20.若y=5,则z=10.若y=6,则z无整数解.若x=3,类似可以确定3≢y≢4,y=3或4,z 都不能是整数.4.可仿例2解.5.先求出,然后将方程变形为y=5+x-2要使y为整数,5x-1应是完全平方数,…,解得6.8888≡8(mod37),∴88882222≡82(mod37).7777≡7(mod37),77773333≡73(mod37),88882222+77773333≡(82+73)(mod37),而82+73=407,37|407,∴37|N.7.简解:原方程变形为3x2-(3y+7)x+3y2-7y=0由关于x的二次方程有解的条件△≣0及y为整数可得0≢y≢5,即y=0,1,2,3,4,5.逐一代入原方程可知,原方程仅有两组解(4,5)、(5,4).8.∵l2+m2=n2,∴l2=(n+m)(n-m).∵l为质数,且n+m>n-m>0,∴n+m=l2,n-m=1.于是l2=n+m=(m+1)+m=2m+1,2m=l2-1,2(l+m+1)=2l+2+2m=l2+2l+1=(l+1)2.即2(l+m+1)是完全平方数.9.易知p≠q,不妨设p>q.令=n,则m>n由此可得不定方程(4-mn)p=m+2,解此方程可得p、q之值.几何解题途径的探求方法一.充分地展开想象想象力,就是人们平常说的形象思维或直觉思维能力。
2021年初中数学竞赛辅导讲义及习题解答 第 讲 方程与函数

感谢您使用本资源,本资源是由订阅号”初中英语资源库“制作并分享给广大用户,本资源制作于2020年底,是集实用性、可编辑性为一体。
本资源为成套文件,包含本年级本课的相关资源。
有教案、教学设计、学案、录音、微课等教师最需要的资源。
我们投入大量的人力、物力,聘请精英团队,从衡水中学、毛毯厂中学、昌乐中学等名校集合了一大批优秀的师资,精研中、高考,创新教学过程,将同学们喜闻乐见的内容整体教给学生。
本资源适用于教师下载后作为教学的辅助工具使用、适合于学生家长下载后打印出来作为同步练习使用、也适用于同学们自己将所学知识进行整合,整体把握进度和难度,是一个非常好的资源。
如果需要更多成套资料,请微信搜索订阅号“初中英语资源库”,在页面下方找到“资源库”,就能得到您需要的每一份资源(包括小初高12000份主题班会课课件免费赠送!)第十二讲 方程与函数方程思想是指在解决问题时,通过等量关系将已知与未知联系起来,建立方程或方程组,然后运用方程的知识使问题得以解决的方法;函数描述了自然界中量与量之间的依存关系,函数思想的实质是剔除问题的非本质特征,用联系和变化的观点研究问题.转化为函数关系去解决.方程与函数联系密切,我们可以用方程思想解决函数问题,也可以用函数思想讨论方程问题,在确定函数解析式中的待定系数、函数图象与坐标轴的交点、函数图象的交点等问题时,常将问题转化为解方程或方程组;而在讨论方程、方程组的解的个数、解的分布情况等问题时,借助函数图象能获得直观简捷的解答.【例题求解】【例1】 若关于的方程mx x =-1有解,则实数m 的取值范围 .思路点拨 可以利用绝对值知识讨论,也可以用函数思想探讨:作函数x y -=1,mx y =函数图象,原方程有解,即两函数图象有交点,依此确定m 的取值范围.【例2】设关于x 的方程09)2(2=+++a x a ax 有两个不相等的实数根1x ,2x ,且1x <1<2x ,那么a 取值范围是( )A .5272<<-aB .52>a C .72-<a D .0112<<-a思路点拨 因根的表达式复杂,故把原问题转化为二次函数问题来解决,即求对应的二次函数与x 轴的交点满足1x <1<2x 的a 的值,注意判别式的隐含制约.【例3】 已知抛物线0)21(22=+-+=a x a x y (0≠a )与x 轴交于两点A(1x ,0),B(2x ,0)( 1x ≠2x ).(1)求a 的取值范围,并证明A 、B 两点都在原点O 的左侧;(2)若抛物线与y 轴交于点C ,且OA+OB =OC 一2,求a 的值.思路点拨 1x 、2x 是方程0)21(22=+-+a x a x 的两个不等实根,于是二次函数问题就可以转化为二次方程问题加以解决,利用判别式,根与系数的关系是解题的切入点.【例4】 抛物线)1(2)45(2212+++-=m x m x y 与y 轴的正半轴交于点C ,与x 轴交于A 、B 两点,并且点B 在A 的右边,△ABC 的面积是△OAC 面积的3倍.(1)求这条抛物线的解析式;(2)判断△OBC 与△OCA 是否相似,并说明理由.思路点拨 综合运用判别式、根与系数关系等知识,可判定对应方程根的符号特征、两实根的关系,这是解本例的关键.对于(1),建立关于m 的等式,求出m 的值;对于(2)依m 的值分类讨论.【例5】 已知抛物线q px x y ++=2上有一点M(,0y )位于x 轴下方.(1)求证:此抛物线与轴交于两点;(2)设此抛物线与x 轴的交点为A(1x ,0),B(,0),且1x <2x ,求证:1x <0x <2x .思路点拨 对于(1),即要证042>-q p ;对于(2),即要证0))((2010<--x x x x .注:(1)抛物线与x 轴交点问题常转化为二次方程根的个数、根的符号特征、根的关系来探讨,需综合运用判别式、韦达定理等知识.(2)对较复杂的二次方程实根分布问题,常转化为用函数的观点来讨论,基本步骤是:在直角坐标系中作出对应函数图象,由确定函数图象大致位置的约束条件建立不等式组.(3) 一个关于二次函数图象的命题:已知二次函数c bx ax y ++=2(0≠a )的图象与x 轴交于A (1x ,0),B(,0)两点,顶点为C .①△ABC 是直角三角形的充要条件是:△=442=-ac b .②△ABC 是等边三角形的充要条件是:△=1242=-ac b学历训练1.已知关于x 的函数1)1(2)6(2++-++=m x m x m y 的图象与x 轴有交点,则m 的取值范围是 .2.已知抛物线23)1(2----=k x k x y 与x 轴交于A (α,0),B(β,0)两点,且1722=+βα,则=k .3.已知二次函数y=kx 2+(2k -1)x —1与x 轴交点的横坐标为x 1、x 2(x 1<x 2),则对于下列结论:①当x=-2时,y=l ;②当x>x 2,时,y>O ;③方程kx 2+l(2k -1)x —l=O 有两个不相等的实数根x 1、x 2;④x 1<-l ,x 2>-l ;⑤x 2-x 1=kk 241+,其中所有正确的结论是 (只需填写序号) .4.设函数)5(4)1(2+-+-=k x k x y 的图象如图所示,它与x 轴交于A 、B 两点,且线段OA 与OB 的长的比为1:4,则k =( ).A .8B .一4C .1lD .一4或115.已知:二次函数y =x 2+bx+c 与x 轴相交于A(x 1,0)、B(x 2,0)两点,其顶点坐标为P(-2b ,4b -4c 2),AB =|x 1-x 2|,若S △APB =1,则b 与c 的关系式是 ( ) A .b 2-4c+1= 0 B .b 2-4c -1=0 C .b 2-4c+4=0 D .b 2-4c -4=06.已知方程1+=ax x 有一个负根而且没有正根,那么a 的取值范围是( )A .a >-1B .a =1C .a ≥1D .非上述答案7.已知在平面直角坐标系内,O 为坐标原点,A 、B 是x 轴正半轴上的两点,点A 在点B 的左侧,如图,二次函数y=ax 2+bx +c (a ≠0)的图象经过点A 、B ,与y 轴相交于点C .(1)a 、c 的符号之间有何关系?(2)如果线段OC 的长度是线段OA 、OB 长度的比例中项,试证a 、c 互为倒数;(3)在(2)的条件下,如果b=-4,AB=43,求a 、c 的值.8.已知:抛物线c bx ax y ++=2过点A(一1,4),其顶点的横坐标为21,与x 轴分别交于B(x 1,0)、C(x 2,0)两点(其中且1x <2x ),且132221=+x x .(1)求此抛物线的解析式及顶点E 的坐标;(2)设此抛物线与y 轴交于D 点,点M 是抛物线上的点,若△MBO 的面积为△DOC 面积的32倍,求点M 的坐标. 9.已知抛物线m mx x y 223212--=交x 轴于A (1x ,0)、B (2x ,0),交y 轴于C 点,且1x <0<2x ,()1122+=+CO OB AO .(1)求抛物线的解析式;(2)在x 轴的下方是否存在着抛物线上的点P ,使∠APB 为锐角,若存在,求出P 点的横坐标的范围;若不存在,请说明理由.10.设m 是整数,且方程0232=-+mx x 的两根都大于59-而小于73,则= .11.函数732+-=x x y 的图象与函数63322+-+-=x x x x y 的图象的交点个数是 .12.已知a 、b 为抛物线2))((----=d c x c x y 与x 轴交点的横坐标,b a <,则b c c a -+-的值为 .13.是否存在这样的实数k ,使得二次方程0)23()12(2=+--+k x k x 有两个实数根,且两根都在2与4之间?如果有,试确定k 的取值范围;如果没有,试述理由.14.设抛物线452)12(2++++=a x a x y 的图象与x 轴只有一个交点. (1)求a 的值;(2)求61832-+a a 的值.15.已知以x 为自变量的二次函数23842---=n nx x y ,该二次函数图象与x 轴的两个交点的横坐标的差的平方等于关于x 的方程0)4)(1(2)67(2=++++-n n x n x 的一整数根,求n 的值.16.已知二次函数的图象开口向上且不过原点O ,顶点坐标为(1,一2),与x 轴交于点A ,B ,与y 轴交于点C ,且满足关系式OB OA OC ⋅=2.(1)求二次函数的解析式;(2)求△ABC 的面积.17.设p 是实数,二次函数p px x y --=22的图象与x 轴有两个不同的交点A (1x ,0)、B (2x ,0).(1)求证:032221>++p x px ;(2)若A 、B 两点之间的距离不超过32-p ,求P 的最大值.(参考答案精品“正版”资料系列,由本公司独创。
2022年九年级数学上册《用一元二次方程解决问题》教材预习辅导讲义(附解析)

初中数学《用一元二次方程解决问题》教材讲义及过关练列一元二次方程解应用题的一般步骤1.利用方程解决实际问题的关键是寻找等量关系.2.解决应用题的一般步骤:审(审题目,分清已知量、未知量、等量关系等);设(设未知数,有时会用未知数表示相关的量);列(根据题目中的等量关系,列出方程);解(解方程,注意分式方程需检验,将所求量表示清晰);验(检验方程的解能否保证实际问题有意义)答(写出答案,切忌答非所问).【点拨】列方程解实际问题的三个重要环节:一是整体地、系统地审题;二是把握问题中的等量关系;三是正确求解方程并检验解的合理性.一元二次方程应用题的主要类型1.数字问题(1)任何一个多位数都是由数位和数位上的数组成.数位从右至左依次分别是:个位、十位、百位、千位……,它们数位上的单位从右至左依次分别为:1、10、100、1000、……,数位上的数字只能是0、1、2、……、9之中的数,而最高位上的数不能为0.因此,任何一个多位数,都可用其各数位上的数字与其数位上的单位的积的和来表示,这也就是用多项式的形式表示了一个多位数.如:一个三位数,个位上数为a ,十位上数为b ,百位上数为c ,则这个三位数可表示为:100c+10b+a.(2)几个连续整数中,相邻两个整数相差1.如:三个连续整数,设中间一个数为x ,则另两个数分别为x-1,x+1.几个连续偶数(或奇数)中,相邻两个偶数(或奇数)相差2.如:三个连续偶数(奇数),设中间一个数为x ,则另两个数分别为x-2,x+2. 2.平均变化率问题列一元二次方程解决增长(降低)率问题时,要理清原来数、后来数、增长率或降低率,以及增长或降低的次数之间的数量关系.如果列出的方程是一元二次方程,那么应在原数的基础上增长或降低两次.(1)增长率问题:平均增长率公式为(1)na xb += (a 为原来数,x 为平均增长率,n 为增长次数,b 为增长后的量.)(2)降低率问题:平均降低率公式为(1)n a x b -= (a 为原来数,x 为平均降低率,n 为降低次数,b 为降低教材知识总结后的量.)3.利息问题(1)概念:本金:顾客存入银行的钱叫本金;利息:银行付给顾客的酬金叫利息;本息和:本金和利息的和叫本息和; 期数:存入银行的时间叫期数;利率:每个期数内的利息与本金的比叫利率。
初中数学—构造法

知识点拨【知识提要】1.代数构造;2.几何构造;3.其他一些构造。
【基本题型】1.证明存在符合题目条件的某个“事物”;2.说明某个“事物”的最大值或最小值(需要构造说明它存在);3.其他一些杂题。
【解题技巧】1.构造一一对应方法;2.用组合数学的方法;3.极端的思想。
快乐热身【热身】求证:区间(0,1)上的实数和整个实数集中的实数一样多。
【解析】分析两个集合都有无穷多个实数,不能求出个数。
看起来,一条有限长的线段和一条无限长的直线里面的点不会一样多。
那么,要想说明两个无穷集合是一样大的,需要构造出一个一一对应的关系。
解令函数π()tanπ(01)2f x x x⎛⎫=-<<⎪⎝⎭,则易知()f x是从(0,1)到上的一一映射。
所第二讲构造法以,这两个集合里面的数一样多。
说明 证明两个集合的元素个数一样多(可能是无限集合),最常规的方法就是做一一对应。
热身完了,我们开始今天的课程吧!例题精讲【例 1】 用构造法求147464712...47...52515250515256 (52)⨯⨯⨯⨯++++⨯⨯⨯⨯⨯⨯的值。
【解析】 分析 看起来是组合数的概率问题,可以构造一个模型。
解 分母出现52,那么考虑1到52的全排列。
第一个数是1的概率为152; 考虑第二项,4752是“前5项中没有出现1”的概率,且这显然与“第一个数是1”互斥;那么,475152⨯便是:前5项中没有出现1,且第一项为2的概率。
继续考虑第三项,4647505152⨯⨯⨯是前5项中没有出现1或2,且第一项为3的概率。
……最后一项是前5项中没有出现1,2,3,……,47,且第一项为48的概率。
综上所述,所求的数为第一项是前5项中最小的那项的概率,所以等于15。
说明 本题当然也可以用裂项法。
【例 2】 记n 为正整数,设n A 为数字和为n 且不含有1,3,4以外的数字的自然数个数,n B 为数字和为n 且不含有1,2以外的数字的自然数个数。
妙用对称性 快速巧求解

妙用对称性 快速巧求解数学中存在着大量对称的形与式,不过有些问题中的对称性是比较隐蔽的,在求解相关的问题时,如果能够注意寻觅和发掘或通过变形构造出对称关系,则可以收到事半功倍的效果,达到快速简捷求解的目的。
下面举例说明,相信会对同学们有所启迪。
例1 设A 、B 两点是圆心都在直线3x -2y +5 = 0上的两个相交圆的交点,并且点A 的坐标为(-4, 5),求点B 的坐标。
解析 乍一看本题似乎缺少条件,无法求解。
如果我们仔细分析就会发现题中隐含的对称性,这样问题便可迅速获解。
如图1,设B 点的坐标为(x , y ),则由题设可知AB 垂直于直线3x -2y +5 = 0。
又点A 的坐标为(-4, 5),所以直线AB 的方程为y-5 =)4(32-+x 。
解方程组.52),4(325=+-+-=-y x x y 得直线AB 与直线3x -2y +5 =0的交点坐标为(131-,1331)。
由对称性知,(131-,1331)为AB 的中点,于是可得B 点的坐标为(1350, 133-)。
例2 四边形ABCD 面积为S ,求证:S ≤2ADBC CD AB ⋅+⋅。
解析 三角形面积不大于其任意两边之积的一半,观察不等式的右边可想到,如果能够把AB 、AD (或BC 、CD )调换位置,则结论很容易证明。
如图2,以BD 的中垂线为轴作△BCD 的对称图形△BC 1D ,则有:2211DC AD BC AB ADBC CD AB ⋅+⋅=⋅+⋅≥S S S S S ABCD D ABC ADCABC ===+∆∆∆111。
例3 设有一直角QOP ,试在OP 边上求一点A ,在OQ 边上求一点B ,在直角内求一点C ,使BC + CA 等于定长L ,且使四边形ACBO 的面积最大。
简析 如图3,显然难于直接确定点的位置,若利用对称性,把四边形ACBO 补成一个八边形,其周长为4L ,是定值。
由对称性知,要使四边形ACBO 的面积最大,必须使此八边形面积最大。
初中数学竞赛辅导讲义:第5讲-一元二次方程的整数整数解(含习题解答)
第五讲 一元二次方程的整数整数解在数学课外活动中,在各类数学竞赛中,一元二次方程的整数解问题一直是个热点,它将古老的整数理论与传统的一元二次方程知识相结合,涉及面广,解法灵活,综合性强,备受关注,解含参数的一元二次方程的整数解问题的基本策略有:从求根入手,求出根的有理表达式,利用整除求解;从判别式手,运用判别式求出参数或解的取值范围,或引入参数(设△=2k ),通过穷举,逼近求解;从韦达定理入手,从根与系数的关系式中消去参数,得到关于两根的不定方程,借助因数分解、因式分解求解;从变更主元入人,当方程中参数次数较低时,可考虑以参数为主元求解.注:一元二次方程的整数根问题,既涉及方程的解法、判别式、韦达定理等与方程相关的知识,又与整除、奇数、偶数、质数、合数等整数知识密切相关.【例题求解】【例1】若关于x 的方程054)15117()9)(6(2=+----x k x k k 的解都是整数,则符合条件的整数是的值有 个.思路点拨 用因式分解法可得到根的简单表达式,因方程的类型未指明,故须按一次方程、二次方程两种情形讨论,这样确定是的值才能全面而准确.注:系数含参数的方程问题,在没有指明是二次方程时,要注意有可能是一次方程,根据问题的题设条件,看是否要分类讨论.【例2】 已知a 、b 为质数且是方程0132=+-c x x 的根,那么ba ab +的值是( ) A .22127 B .22125 C .22123 D .22121 思路点拨 由韦达定理a 、b 的关系式,结合整数性质求出a 、b 、c 的值.【例3】 试确定一切有理数r ,使得关于x 的方程01)2(2=-+++r x r rx 有根且只有整数根.思路点拨 由于方程的类型未确定,所以应分类讨论.当0≠r 时,由根与系数关系得到关于r 的两个等式,消去r ,利用因式(数)分解先求出方程两整数根.【例4】 当m 为整数时,关于x 的方程01)12()12(2=++--x m x m 是否有有理根?如果有,求出m 的值;如果没有,请说明理由.思路点拨 整系数方程有有理根的条件是为完全平方数.设△=22224)12(544)12(4)12(n m m m m m =+-=+-=--+(n 为整数)解不定方程,讨论m 的存在性.注:一元二次方程02=++c bx ax (a ≠0)而言,方程的根为整数必为有理数,而△=ac b 42-为完全平方数是方程的根为有理数的充要条件.【例5】 若关于x 的方程0)13()3(22=-+--a x a ax 至少有一个整数根,求非负整数a 的值. 思路点拨 因根的表示式复杂,从韦达定理得出的a 的两个关系式中消去a 也较困难,又因a 的次数低于x 的次数,故可将原方程变形为关于a 的一次方程.学历训练1.已知关于x 的方程012)1(2=--+-a x x a 的根都是整数,那么符合条件的整数a 有 .2.已知方程019992=+-m x x 有两个质数解,则m = .3.给出四个命题:①整系数方程02=++c bx ax (a ≠0)中,若△为一个完全平方数,则方程必有有理根;②整系数方程02=++c bx ax (a ≠0)中,若方程有有理数根,则△为完全平方数;③无理数系数方程02=++c bx ax (a ≠0)的根只能是无理数;④若a 、b 、c 均为奇数,则方程02=++c bx ax 没有有理数根,其中真命题是 .4.已知关于x 的一元二次方程0)12(22=+-+a x a x (a 为整数)的两个实数根是1x 、2x ,则21x x -= .5.设rn 为整数,且4<m<40,方程08144)32(222=+-+--m m x m x 有两个整数根,求m 的值及方程的根.(山西省竞赛题)6.已知方程015132)83(222=+-+--a a x a a ax (a ≠0)至少有一个整数根,求a 的值.7.求使关于x 的方程01)1(2=-+++k x k kx 的根都是整数的k 值.8.当n 为正整数时,关于x 的方程0763*******=-+-+-n n x nx x 的两根均为质数,试解此方程.9.设关于x 的二次方程4)462()86(2222=+--++-k x k k x k k 的两根都是整数,试求满足条件的所有实数k 的值.10.试求所有这样的正整数a ,使得方程0)3(4)12(22=-+-+a x a ax 至少有一个整数解.11.已知p 为质数,使二次方程015222=--+-p p px x 的两根都是整数,求出p 的所有可能值.12.已知方程02=++c bx x 及02=++b cx x 分别各有两个整数根1x 、2x 及1x '、2x ',且1x 2x >0,1x '2x ' >0. (1)求证:1x <0,2x <0,1x '<0,2x '< 0; (2)求证:11+≤≤-b c b ;(3)求b 、c 所有可能的值.13.如果直角三角形的两条直角边都是整数,且是方程0122=+--m x mx 的根(m 为整数),这样的直角三角形是否存在?若存在,求出满足条件的所有三角形的三边长;若不存在,请说明理由.参考答案。
初中数学竞赛-第4讲 调和点列与调和线束
调和点列与调和线束定义对于线段AB 的内分点C 和外分点D 满足AC ADCB DB,则称C 、D 调和分割线段AB 或者A 、B 、C 、D 是调和点列。
我们允许无穷远点的存在,即规定如果D 为无穷远点,则1ADDB,也可以说,当C 平分线段AB 时,A 、B 、C 以及直线AC 上的无穷远点四点成调和点列。
性质1 设,,,A B C D 是共线四点,点M 是线段AB 的中点,则,C D 调和分割线段AB 的充要条件是满足下列六个条件之一: (1) 点,A B 调和分割CD (2) 112AC AD AB(3) 22AB CD AD BC AC DB (4) CA CB CM CD (5) DA DB DM DC (6) 22MA MB MC MD性质2 (调和点列的角元形式)设A 、C 、B 、D 是共线四点,过共点直线外一点P 引射线PA ,PC ,PB ,PD .令1APC θ ,2CPB θ ,3BPD θ ,则AC BD CB AD 的充要条件132123sin sin sin sin()θθθθθθ .性质3 设,,,A B C D 是共线四点,过共点的直线外一点P 引射线,,,PA PC PB PD ,则,C D 调和分割线段AB 的充分必要条件是满足下列两个条件之一:(1) 线束,,,PA PC PB PD 其中一射线的任一平行线被其他三条射线截出相等的两线段;l 分别交射线,,,PA PC PB PD 于点(2) 另一直线',',','A C B D 时,点','C D 调和分割线段''A B 。
性质4对线段AB 的内分点C 和外分点D ,以及直线外一点P ,给出如下四个论断:AM CBD(1) PC 是APB 的平分线 (2) PD 是APB 的外角平分线 (3) ,C D 调和分割线段AB(4) PC PD以上四个论断中,任意两个作题设,另两个作结论组成的六个命题均为真命题。
应用“构造法”解题例析
应用“构造法”巧解数学问题例析河北省隆化县职业中学 曹瑞民(068150)构造法是初中数学的一种重要的数学方法,利用构造法可以巧妙的解决数学中的很多难题。
一、构造矛盾,巧证几何题例1、 求证:两条角平分线相等的三角形是等腰三角形。
证明:如图1,已知∆ABC ,BD 、CE 分别是ACB ABC ∠∠,的平分线。
BD=CE ,要证AB=AC 。
假设AB ,AC ≠不妨设AB>AC,则有ACB ∠>ABC ∠ A因而ACE ∠>ABD ∠构造ECF ∠=ABD ∠. F设CF 分别交AB 、BD 于G ,则CEF BFG ∆≈∆。
E G D 即BF :CF=BG :CE但BF>CF ∴BG>CE B C BD>BG ∴ BD>CE (图1)这显然与已知BD=CE 相矛盾,故AB ≠AC 的假设不成立,而必有AB=AC 。
二、构造对偶式,巧求非对称式的值例2、设x 21x 是方程x 2+5x +2=0的两根,不解方程;求21x x 的值。
分析:21x x 是非对称式,构造其对偶式12x x (即将21x x 中的2,1x x 互换位置)以后,组合成对称式再进行运算。
22124)5(2)(11,221212212122211221=--=-+=+=+∴==x x x x x x x x x x y y y x x y x x 则解:设即2y 2-21y +2=0,解之得 4175212,1±=y 三、构造方程,巧解几何最值问题例2、 如图2,平行四边形MNPQ 的一边在ABC ∆的边BC 上, A 另两个顶点分别在AB ,AC 上。
M H N 求证:平行四边形MNPQ 的面积的最大值为ABC ∆面积的一半。
分析:题设中出现两个相关图形——平行四边形,三角形;结论是证明面积最值问题,面积问题自然联想到作高AG , 与两个图形面积有关的元素有四个:MN 、HG 、BC 、AG 。
初中数学竞赛中考讲义之“K”字型
第4讲几何模型之“K ”字型模型讲解直角型锐角型钝角型【例题讲解】(直接“K ”字型)例题1、(1)问题:如图1,在四边形ABCD 中,点P 为AB 上一点,∠DPC =∠A =∠B =90°,求证:AD ﹒BC =AP ﹒BP ;(2)探究:如图2,在四边形ABCD 中,点P 为AB 上一点,当∠DPC =∠A =∠B =θ时,上述结论是否依然成立?说明理由.(3)应用:请利用(1)(2)获得的经验解决问题:如图3,在△ABD 中,AB =6,AD =BD =5,点P 以每秒1个单位长度的速度,由点A 出发,沿边AB 向点B 运动,且满足∠CPD =∠A ,设点P 的运动时间为t (秒),当DC =4BC 时,求t 的值.解:(1)如图1,图1∵∠DPC =∠A =∠B =90°,∴∠ADP +∠APD =90°,∠BPC +∠APD =90°,∴∠ADP =∠BPC ,∴△ADP ∽△BPC ,∴=,∴AD•BC=AP•BP;(2)结论AD•BC=AP•BP仍然成立.理由:如图2,图2∵∠BPD=∠DPC+∠BPC,∠BPD=∠A+∠ADP,∴∠DPC+∠BPC=∠A+∠ADP.∵∠DPC=∠A=∠B=θ,∴∠BPC=∠ADP,∴△ADP∽△BPC,∴=,∴AD•BC=AP•BP;(3)如图3,图3∵DC=4BC,又∵AD=BD=5,∴DC=4,BC=1,,由(1)、(2)的经验可知AD•BC=AP•BP,∴5×1=t(6﹣t),解得:t1=1,t2=5,∴t的值为1秒或5秒.例题2、如图,在等边△ABC中,将△ABC沿着MN折叠。
使点A落在边BC上的点D处。
(1)若AB =4,当△BMD 为直角三角形时,求AM 的长。
(2)当BD :CD =1:3时,求AM :AN 的值。
解:(1)如图1,设BM =k ,AM =DM =3k .可得方程k +3k =4,得k =2+23,得AM =2(3-3).同理,如图2,可求得AM =83-12.(2)如图3,设BD =m ,CD =3m ,可得△BDM 与△CDN 的周长比即相似比为5:7.可得AM :AN =DM :DN =5:7.图1图2图3【巩固练习】1.如图,已知△ABC 和△ADE 均为等边三角形,D 在BC 上,DE 与AC 相交于点F ,AB =9,BD =3,则CF 等于()A .1B .2C .3D .42.如图坐标系中,O (0,0),A (6,63),B (12,0),将△OAB 沿直线线CD 折叠,使点A 恰好落在线段OB 上的点E 处,若OE =524,则CE :DE 的值是_________.3.正方形ABCD 边长为4,M 、N 分别是BC 、CD 上的两个动点,当M 点在BC 上运动时,保持AM ⊥MN .(1)设BM =x ,CN =y ,求y 与x 之间的函数关系式.(2)在点M ,N 运动的过程中,求CN 的最小值.4.如图,在平面直角坐标系中,点A 、C 分别在x 轴、y 轴上,四边形ABCO 为矩形,AB =16,点D 与点A 关于y 轴对称,tan ∠ACB =43CDE =∠CAO ,点E 、F 分别是线段AD 、AC 上的动点(点E 不与点A 、D 重合),且∠CEF =∠ACB .(1)求AC 的长和点D 的坐标;(2)证明:△AEF ∽△DCE ;(3)当△EFC 为等腰三角形时,求点E 的坐标.5.如图.等腰直角三角形ABC中,∠A=90°,P为BC的中点,小明拿着含45°角的透明三角形,使45°角的顶点落在点P,且绕P旋转.(1)如图①:当三角板的两边分别AB、AC交于E、F点时,试说明△BPE∽△CFP.(2)将三角板绕点P旋转到图②,三角板两边分别交BA延长线和边AC于点EF.探究1:△BPE与△CFP.还相似吗?(只需写结论)探究2:连接EF,△BPE与△EFP是否相似?请说明理由.图①图②6.如图,一条抛物线经过原点和点C(8,0),A、B是该抛物线上的两点,AB∥x轴,OA=5,AB=2.点E在线段OC上,作∠MEN=∠AOC,使∠MEN的一边始终经过点A,另一边交线段BC于点F,连接AF.(1)求抛物线的解析式;(2)当点F是BC的中点时,求点E的坐标;(3)当△AEF是等腰三角形时,求点E的坐标.7.【试题再现】如图1,Rt△ABC中,∠ACB=90°,AC=BC,直线l过点C,过点A、B分别作AD⊥l于点D,BE⊥l于点E,则DE=AD+BE(不用证明).(1)【类比探究】如图2,在△ABC中,AC=BC,且∠ACB=∠ADC=∠BEC=100°,上述结论是否成立?若成立,请说明理由:若不成立,请写出一个你认为正确的结论.(2)【拓展延伸】①如图3,在△ABC中,AC=nBC,且∠ACB=∠ADC=∠BEC=100°,猜想线段DE、AD、BE之间有什么数量关系?并证明你的猜想.②若图1的Rt△ABC中,∠ACB=90°,AC=nBC,并将直线l绕点C旋转一定角度后与斜边AB相交,分别过点A、B作直线l的垂线,垂足分别为点D和点E,请在备用图上画出图形,并直接写出线段DE、AD、BE之间满足的一种数量关系(不要求写出证明过程).图1图2图3备用图【例题讲解】(构造“K”字型)基本构造方法将矩形沿对角线AC翻折,B点落在D点的位置,且AD交y轴于点E,那么点D的坐标为_______.解:如图,过D作DF⊥x轴于F,∵点B的坐标为(4,8),∴AO=4,AB=8,根据折叠可知:CD=OA,而∠D=∠AOE=90°,∠DEC=∠AEO,∴△CDE≌△AOE,∴OE=DE,OA=CD=4,设OE=x,那么CE=8﹣x,DE=x,∴在Rt△DCE中,CE2=DE2+CD2,∴(8﹣x)2=x2+42,∴x=3,又DF⊥AF,∴DF∥EO,∴△AEO∽△ADF,而AD=AB=8,∴AE=CE=8﹣3=5,∴==,即,∴DF=,AF=,∴OF=﹣4=,∴D的坐标为(﹣,).故答案是:(﹣,).例题2.如图,矩形ABCD中,AB=2AD,点A(0,1),点C、D在反比例函数y=kx(k>0)的图象上,AB与x轴的正半轴相交于点E,若E为AB的中点,则k的值为_______.解:如图,作DF⊥y轴于F,过B点作x轴的平行线与过C点垂直与x轴的直线交于G,CG交x轴于K,作BH⊥x轴于H,∵四边形ABCD是矩形,∴∠BAD=90°,∴∠DAF+∠OAE=90°,∵∠AEO+∠OAE=90°,∴∠DAF=∠AEO,∵AB=2AD,E为AB的中点,∴AD=AE,在△ADF和△EAO中,∴△ADF≌△EAO(AAS),∴DF=OA=1,AF=OE,∴D(1,k),∴AF=k﹣1,同理;△AOE≌△BHE,△ADF≌△CBG,∴BH=BG=DF=OA=1,EH=CG=OE=AF=k﹣1,∴OK=2(k﹣1)+1=2k﹣1,CK=k﹣2∴C(2k﹣1,k﹣2),∴(2k﹣1)(k﹣2)=1•k,解得k1=,k2=,∵k﹣1>0,∴k=故答案是:.例题3、如图,直线a∥b∥c,a与b之间的距离为3,b与c之间的距离为6,a、b、c分别经过等边三角形ABC的三个顶点,则三角形的边长为______________.简解:构造∠BDC=∠AEC=60°,可得△BCD≌△CAE.可求得AC=221.例题4、如图,抛物线y =-x 2+4x -3与坐标轴交与A 、B 、C 三点,点M 在线段BC 上,将线段OM 绕O 点逆时针旋转90°,点M 的对应点N 恰好落在第一象限的抛物线上,求N 点的坐标.简解:A (1,0),B (3,0),C (0,-3).直线BC :y =x -3.设M (t ,t -3).则N (3-t ,t ).代入函数关系式可求得t =0或1.得N (2,1).【巩固练习】1、如图,直线l 1∥l 2∥l 3,等腰直角三角形ABC 的三个顶点A ,B ,C 分别在l 1,l 2,l 3上,∠ACB =90°,AC 交l 2于点D ,已知l 1与l 2的距离为1,l 2与l 3的距离为3,则△ABC 的面积为_____________.2.如图,边长为54的正方形ABCD 的顶点A 在y 轴上,顶点D 在反比例函数y =k x(x >0)的图象上,已知点B 的坐标是34,94k 的值为()A .2716B .278C .4D .63.如图,AB =4,射线BM 和AB 互相垂直,点D 是AB 上的一个动点,点E 在射线BM 上,BE =12DB ,作EF ⊥DE 并截取EF =DE ,连结AF 并延长交射线BM 于点C .设BE =x ,BC =y ,则y 关于x 的函数解析式是()A .y =-12xx -4B .y =-2xx -1C .y =-3xx -1D .y =-8xx -44.如图,在矩形AOBC 中,点A 的坐标(-2,1),点C 的纵坐标是4,则B 、C 两点的坐标分别是()A .74,72、-12,4B .32,3、-23,4C .32,3、-12,4D .74,72、-23,45.如图,在平面直角坐标系中,矩形ABCD 的边AB 所在直线的解析式为y =kx +2,顶点C 、D 在反比例函数y =m x(m >0)的图象上,若tan ∠ADB =2.则点D 的坐标为_______.6、已知抛物线y=mx2-3mx-4m与x轴交于A、B两点(点A在点B左侧),与y轴交于点C,当∠ACB=90°时,(1)求抛物线解析式;(2)当抛物线开口向下时,在第一象限的抛物线上有一点P,横坐标为a,当∠BPC=90°时,求a的值.7.若两条抛物线的顶点相同,则称它们为“友好抛物线”,抛物线C1:y1=-2x2+4x+2与C2:y2=-x2+mx+n为“友好抛物线”.(1)求抛物线C2的解析式.(2)点A是抛物线C2上在第一象限的动点,过A作AQ⊥x轴,Q为垂足,求AQ+OQ的最大值.(3)设抛物线C2的顶点为C,点B的坐标为(-1,4),问在C2的对称轴上是否存在点M,使线段MB绕点M逆时针旋转90°得到线段MB′,且点B′恰好落在抛物线C2上?若存在求出点M的坐标,不存在说明理由.8、如图,在平面直角坐标系中,抛物线与x轴交于点A(-1,0),B(3,0),与y轴交于点C,直线BC 的解析式为y=kx+3.(1)求抛物线和直线BC的解析式;(2)在抛物线的对称轴上找一点P,使得∠CBP=90°,求P点坐标;(3)若点Q是第一象限的抛物线上一动点,当∠CQB=90°时,求Q点的坐标.9.小明是一个喜欢探究钻研的学生,他在和同学们一起研究某条抛物线y=ax2(a<0)的性质时,将一把直角三角板的直角顶点置于平面直角坐标系的原点O,两直角边与该抛物线交于A、B两点,请解答以下问题:图1图2(1)小明测得OA=OB=4(如图1),求a的值;(2)对同一条抛物线,小明将三角板绕点O旋转到如图2所示位置时,过B作BF⊥x轴于点F,测得OF=2,写出此时点B的坐标,并求点A的横坐标;(3)对该抛物线,小明将三角板绕点O旋转任意角度时惊奇地发现,交点A、B的连线段总经过一个固定的点,试说明理由并求出该点的坐标.参考答案1.解:如图,∵△ABC和△ADE均为等边三角形,∴∠B=∠BAC=60°,∴∠BAD+∠ADB=120°,∠ADB+∠FDC=120°∴∠BAD=∠FDC又∵∠B=∠C=60°,∴∴△ABD~△CDF,∴AB:BD=CD:CF,即9:3=(9﹣3):CF,∴CF=2.2.解:过A作AF⊥OB于F,∵A(6,6),B(12,0),∴AF=6,OF=6,OB=12,∴BF=6,∴OF=BF,∴AO=AB,∵tan∠AOB=,∴∠AOB=60°,∴△AOB是等边三角形,∴∠AOB=∠ABO=60°,∵将△OAB沿直线线CD折叠,使点A恰好落在线段OB上的点E处,∴∠CED=∠OAB=60°,∴∠OCE=∠DEB,∴△CEO∽△DBE,∴,设CE=a,则CA=a,CO=12﹣a,ED=b,则AD=b,DB=12﹣b,,∴24b=60a﹣5ab①,,∴36a=60b﹣5ab②,②﹣①得:36a﹣24b=60b﹣60a,∴=,即CE:DE=.故答案为:.3.解:(1)证明:∵四边形ABCD为正方形,∴∠B=∠C=90°,又∵AM⊥MN,∴∠AMN=90°,∴∠AMB+∠NMC=90°,而∠AMB+∠BAM=90°,∴∠BAM=∠NMC,∴Rt△ABM∽Rt△MCN,(2)解:∵Rt△ABM∽Rt△MCN,∴AB:MC=BM:NC,而AB=4,BM=x,MC=4﹣x,∴4:(4﹣x)=x:NC,∴NC=,∴y=(NC+AB)•BC=(+4)×4=﹣x2+2x+8.4.解:(1)由题意tan∠ACB=,∴cos∠ACB=,∵四边形ABCO为矩形,AB=16,∴BC==12,AC==20,∴A(﹣12,0),∵点D与点A关于y轴对称,∴D(12,0);(2)∵点D与点A关于y轴对称,∴∠CDE=∠CAO,∵∠CEF=∠ACB,∠ACB=∠CAO,∴∠CDE=∠CEF,又∵∠AEC=∠AEF+∠CEF=∠CDE+∠DCE,∴∠AEF=∠DCE,∴△AEF∽△DCE;(3)当△EFC为等腰三角形时,有以下三种情况:①当CE=EF时,∵△AEF∽△DCE,∴△AEF≌△DCE,∴AE=CD=20,∴OE=AE﹣OA=20﹣12=8,∴E(8,0);②当EF=FC时,过点F作FM⊥CE于M,则点M为CE中点,∴CE=2ME=2EF•cos∠CEF=2EF•cos∠ACB=EF,∵△AEF∽△DCE,∴=,即=,∴AE=,∴DE=AE﹣OA=﹣12=,∴E(,0);③当CE=CF时,则有∠CFE=∠CEF,∵∠CEF=∠ACB=∠CAO,∴∠CFE=CAO,即此时点E与点D重合,这与已知条件矛盾,综上所述,E(8,0)或(,0).5.(1)证明:∵在△ABC中,∠BAC=90°,AB=AC,∴∠B=∠C=45°.∵∠B+∠BPE+∠BEP=180°,∴∠BPE+∠BEP=135°,∵∠EPF=45°,又∵∠BPE+∠EPF+∠CPF=180°,∴∠BPE+∠CPF=135°,∴∠BEP=∠CPF,又∵∠B=∠C,∴△BPE∽△CFP(两角对应相等的两个三角形相似).(2)探究1:△BPE与△CFP还相似,探究2:证明:连接EF,△BPE与△CFP相似,∵△BPE∽△CFP,∴,又∵CP=BP,∴,∴,又∵∠B=∠EPF,∴△BEP∽△PEF.6.解:(1)如图,∵该抛物线经过原点和点C(8,0),∴设该抛物线的解析式为:y=ax(x﹣8)(a≠0).∵点C(8,0),∴该抛物线的对称轴是x=4.∵AB=2,AB∥x轴,∴设A(3,t),B(5,t),又∵OA=5,∴t=4,即A(3,4),B(5,4),∴把点A的坐标代入解析式,得4=3a×(3﹣8),解得a=﹣,∴该抛物线的解析式是:y=﹣x(x﹣8)(或y=﹣x2+x);(2)∵AB∥x轴,∴根据抛物线的对称性知OA=CB=5,∠AOC=∠BCO,∵点F是BC的中点,∴CF=.∵∠MEN=∠AOC,即∠AEF=∠AOC,∠AEC=∠AEF+∠CEF=∠AOC+∠OAE,∴∠CEF=∠OAE,∴△AOE∽△ECF,∴=,即=,解得,OE=,或OE=,则E(,0);(3)①当AE=EF时,可证△AOE≌△ECF.则OA=CE=5,∴OE=3,则E(3,0);②当AF=EF时,过点F作FK∥AO.易证△ABF≌△FKE,求得OE=,则E(,0);③当AE=AF时,在AO上取点Q,使得EQ=OE.易证△ABF≌△EQA,则EQ=AB=2,∴OE=2.则E(2,0);综上所述,点E的坐标是:(3,0)、(,0)或(2,0)时,△AEF是等腰三角形.7.解:(1)【类比探究】猜想DE=AD+BE.理由:如图2,∵∠ADC=100°,∴∠DAC+∠DCA=80°.∵∠ACB=100°,∴∠DCA+∠ECB=80°,∴∠DAC=∠ECB.在△ACD和△CBE中,,∴△ACD≌△CBE,∴AD=CE,CD=BE,∴DE=AD+BE;(2)【拓展延伸】①猜想:DE=AD+nBE.理由:如图3,∵∠ADC=100°,∴∠DAC+∠DCA=80°.∵∠ACB=100°,∴∠DCA+∠ECB=80°,∴∠DAC=∠ECB.∵∠ADC=∠CEB,∴△ADC∽△CEB,∴===n,∴CE=AD,CD=nBE,∴DE=DC+CE=AD+nBE;②DE=AD﹣nBE或DE=nBE﹣AD.提示:同①可得:CE=AD,CD=nBE.如图4,DE=CE﹣CD=AD﹣nBE;如图5,DE=CD﹣DE=nBE﹣AD.1.简解:构造一对直角三角形全等,可得BC=AC=5.2.解:如图,作DE⊥OA于E,BF⊥OA于F,∵四边形ABCD是正方形,∴AD=AB,∠DAB=90°,∵∠EAD+∠FAB=90°,∠FAB+∠ABF=90°,∴∠EAD=∠ABF,在△ADE和△BAF中,,∴△ADE≌△BAF,∴AF=ED,AE=BF,∵B点坐标(,),AB=,∴OF=,AF=DE===1.∴OE=4,点D坐标(1,4),∴k=4.故选:C.3.解:作FG⊥BC于G,∵∠DEB+∠FEC=90°,∠DEB+∠BDE=90°;∴∠BDE=∠FEG,在△DBE与△EGF中∴△DBE≌△EGF,∴EG=DB,FG=BE=x,∴EG=DB=2BE=2x,∴GC=y﹣3x,∵FG⊥BC,AB⊥BC,∴FG∥AB,CG:BC=FG:AB,即=,∴y=﹣.故选:A.4.解:如图过点A、B作x轴的垂线垂足分别为F、M.过点C作y轴的垂线交FA、∵点A坐标(﹣2,1),点C纵坐标为4,∴AF=1,FO=2,AE=3,∵∠EAC+∠OAF=90°,∠OAF+∠AOF=90°,∴∠EAC=∠AOF,∵∠E=∠AFO=90°,∴△AEC∽△OFA,∴,∴EC=,∴点C坐标(﹣,4),∵△AOF≌△BCN,△AEC≌△BMO,∴CN=2,BN=1,BM=MN﹣BN=3,BM=AE=3,OM=EC=,∴点B坐标(,3),5.解:过点D作DE⊥y轴于E,过点C作CF⊥x轴,如图所示.∵点A、B是直线y=kx+2分别与y轴、x轴的交点,∴A(0,2),B(﹣,0),∴OA=2,OB=﹣.∵四边形ABCD是矩形,∴∠A=90°,AD=BC.∵tan∠ADB=2,∴=2,=2.∵∠DEA=∠AOB=90°,∠EAD=∠ABO=90°﹣∠OAB,∴△AED∽△BOA,∴===,∴ED=1,AE=﹣,∴点D(1,2﹣).同理:点C(1﹣,﹣).∵点C、D都在反比例函数y=(m>0)的图象上,∴1×(2﹣)=(1﹣)•(﹣),∴k=±1.∵k<0,∴k=﹣1,∴点D的坐标为(1,3).6.解:(1)A(-1,0),B(4,0),C(0,-4m).利用AO BO=CO2列方程可得m=-12(2)构造基本图形,设P (a ,b ),其中b =-12(a 2-3a -4),CM =b -2,BN =b ,PN =4-a ,NP =4-a .可得方程a (4-a )=b (b -2)即,a (4-a )=-12(a -4)(a +1)(-12a 2+32a ),得a =3(-1,0,3舍去)7.解:(1)∵y 1=﹣2x 2+4x +2=﹣2(x ﹣1)2+4,∴抛物线C 1的顶点坐标为(1,4).∵抛物线C 1与C 2顶点相同,∴=1,﹣1+m +n =4.解得:m =2,n =3.∴抛物线C 2的解析式为y 2=﹣x 2+2x +3.(2)如图1所示:设点A 的坐标为(a ,﹣a 2+2a +3).∵AQ =﹣a 2+2a +3,OQ =a ,∴AQ +OQ =﹣a 2+2a +3+a =﹣a 2+3a +3=﹣(a ﹣)2+.∴当a =时,AQ +OQ 有最大值,最大值为.(3)如图2所示;连接BC ,过点B ′作B ′D ⊥CM ,垂足为D .∵B (﹣1,4),C (1,4),抛物线的对称轴为x =1,∴BC ⊥CM ,BC =2.∵∠BMB ′=90°,∴∠BMC +∠B ′MD =90°.∵B ′D ⊥MC∴∠MB ′D +∠B ′MD =90°.∴∠MB ′D =∠BMC .在△BCM 和△MDB ′中,,∴△BCM ≌△MDB ′.∴BC =MD ,CM =B ′D .设点M 的坐标为(1,a ).则B ′D =CM =4﹣a ,MD =CB =2.∴点B ′的坐标为(a ﹣3,a ﹣2).∴﹣(a ﹣3)2+2(a ﹣3)+3=a ﹣2.整理得:a 2﹣7a +10=0.解得a =2,或a =5.当a =2时,M 的坐标为(1,2),当a =5时,M 的坐标为(1,5).综上所述当点M 的坐标为(1,2)或(1,5)时,B ′恰好落在抛物线C 2上.8.解:(1)C (0,3),抛物线为y =-(x +1)(x -3)=-x 2+2x +3.(2)直线BC为y=-x+3,取BC的中点M(32,32)MP=1/2BC=3/22,得P(32,32±322)(3)设Q(a,b)则类似第6题,可得9.解:(1)设线段AB与y轴的交点为C,由抛物线的对称性可得C为AB中点,∵OA=OB=4,∠AOB=90°,∴AC=OC=BC=4,∴B(4,﹣4),将B(4,﹣4)代入抛物线y=ax2(a<0)得,a=﹣.(2)过点A作AE⊥x轴于点E,∵点B的横坐标为2,∴B(2,﹣1),设A(﹣m,﹣m2)(m>0),则OB2=22+12=5,OA2=m2+m4,AB2=(2+m)2+(﹣1+m2)2,∵∠AOB=90°,∴AB2=OA2+OB2,∴(2+m)2+(﹣1+m2)2=m2+m4+5,解得:m=0(不合题意舍去)或m=8,即点A的横坐标为﹣8.(3)设A(﹣m,﹣m2)(m>0),B(n,﹣n2)(n>0),设直线AB的解析式为:y=kx+b,则,①×n+②×m得,(m+n)b=﹣(m2n+mn2)=﹣mn(m+n),∴b=﹣mn,由前可知,OB2=n2+n4,OA2=m2+m4,AB2=(n+m)2+(﹣m2+n2)2,由AB2=OA2+OB2,得:n2+n4+m2+m4=(n+m)2+(﹣m2+n2)2,化简,得mn=16.∴b=﹣×16=﹣4.由此可知不论k为何值,直线AB恒过点(0,﹣4).。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第四讲 明快简捷—构造方程的妙用
有些数学问题虽然表面与一元二次方程无关,但是如果我们能构造一元二次方程,那么就能运用一
元二次方程丰富的知识与方法辅助解题,构造一元二次方程的常用方法是:
1.利用根的定义构造
当已知等式具有相同的结构,就可把某两个变元看成是关于某个字母的一元二次方程的两根.
2.利用韦达定理逆定理构造
若问题中有形如a y x =+,b xy =的关系式时,则x 、y 可看作方程02=+-b az z 的两实根.
3.确定主元构造
对于含有多个变元的等式,可以将等式整理为关于某个字母的一元二次方程.
成功的构造是建立在敏锐的观察、恰当的变形、广泛的联想的基础之上的;成功的构造能收到明快简捷、出奇制胜的效果.
注: 许多数学问题表面上看难以求解,但如果我们创造性地运用已知条件,以已知条件为素材,以所
求结论为方向,有效地运用数学知识,构造出一种辅助问题及其数学形式,就能使问题在新的形式下获
得简解,这就是解题中的“构造”策略,构造图形,构造方程、构造函数、构造反例是常用构造方法.
【例题求解】
【例1】 已知x 、y 是正整数,并且23=++y x xy ,12022=+xy y x ,则=+22y x .
思路点拨 xy y x y x 2)(222-+=+,变形题设条件,可视y x +、xy 为某个一元二次方程两根,这样问
题可从整体上获得简解.
【例2】 若1≠ab ,且有09200152=++a a 及05200192=++b b ,则b
a 的值是( ) A .59 B .95 C .52001- D .9
2001-
思路点拨 第二个方程可变形为09200152=++b b
,这样两个方程具有相同的结构,从利用定义构造方程入手.
【例3】 已知实数a 、b 满足122=++b ab a ,且22b a ab t --=,求t 的取值范围.
思路点拨 由两个等式可求出b a +、ab 的表达式,这样既可以从配方法入手,又能从构造方程的角度
去探索,有较大的思维空间.
【例4】 已知实数a 、b 、c 满足2=++c b a ,4=abc .
(1)求a 、b 、c 中最大者的最小值;
(2)求3=++c b a 的最小值.
思路点拨 不妨设a ≥b ,a ≥c ,由条件得a c b -=+2,a
bc 4=.构造以b 、c 为实根的一元二次方程,通过△≥0探求a 的取值范围,并以此为基础去解(2).
注: 构造一元二次方程,在问题有解的前提下,运用判别式△≥0,建立含参数的不等式,
缩小范围逼近求解,在求字母的取值范围,求最值等方面有广泛的应用.
【例5】 试求出这样的四位数,它的前两位数字与后两位数字分别组成的二位数之和的平方,恰好等
于这个四位数. (2003年全国初中数学联赛试题)
思路点拨 设前后两个二位数分别为x ,y ,则有y x y x +=+100)(2,将此方程整理成关于x (或y )的一
元二次方程,在方程有解的前提下,运用判别式确定y (或x )的取值范围.
学历训练
1.若方程01)32(22=+--x m x m 的两个实数根的倒数和是s ,则s 的取值范围是 .
2.如图,在Rt △ABC 中,斜边AB =5,CD ⊥AB ,已知BC 、AC 是一元二次方程0
)1(4)12(2=-+--m x m x
的两个根,则m 的值是 .
3.已知a 、b 满足0122=--a a ,0122=--b b ,则a
b b a += . 4.已知012=-+αα,012=-+ββ,,则βααβ++的值为( )
A .2
B .-2
C .-1
D . 0
5.已知梯形ABCD 的对角线AC 与BD 相交于点O ,若S △AOB =4,S △COD =9,则四边形ABCD 的面积
S 的最小值为( )
A .21
B . 25
C .26
D . 36
6.如图,菱形A6CD 的边长是5,两条对角线交于O 点,且AO 、BO 的长分别是关于x 的方程的根,
则m 的值为( )
A .一3
B .5
C .5或一3 n 一5或3
7.已知0522=--p p ,01252=-+q q ,其中p 、q 为实数,求221q p +
的值.
8.已知x 和y 是正整数,并且满足条件71=++y x xy ,88022=+xy y x ,求22y x +的值.
9.已知05232=--m m ,03252=-+n n ,其中m 、n 为实数,则n m 1-= .
10.如果a 、b 、c 为互不相等的实数,且满足关系式14162222++=+a a c b 与542--=a a bc ,那么a 的
取值范围是 .
11.已知017101422522==--++y x xy y x ,则x = ,y = .;
12.如图,在Rt △ABC 中,∠ACB =90°,AC =b ,AB =c ,若D 、E 分别是AB 和AB 延长线上的两
点,BD=BC ,CE ⊥CD ,则以AD 和AE 的长为根的一元二次方程是 .
13.已知a 、b 、c 均为实数,且0=++c b a ,2=abc ,求c b a ++的最小值.
14.设实数a 、b 、c 满足⎪⎩⎪⎨⎧=+-++=+--0
66078222a bc c b a bc a ,求a 的取值范围. 15.如图,梯形ABCD 中,AD ∥BC ,AD =AB ,
813=∆ABC ABCD S S 梯形,梯形的高AE=235,且40
1311=+BC AD . (1)求∠B 的度数; (2)设点M 为梯形对角线AC 上一点,DM 的延长线与BC 相交于点F ,当32
3125=
∆ADM S ,求作以CF 、DF 的长为根的一元二次方程.
16.如图,已知△ABC 和平行于BC 的直线DE ,且△BDE 的面积等于定值2k ,那么当2k 与△BDE 之
间满足什么关系时,存在直线DE ,有几条?
参考答案。