2017西安铁路职业技术学院高职 单招数学试题
2023西安铁路职业技术学院单招数学模拟试题及答案

2023西安铁路职业技术学院单招数学模拟试题及答案一、选择题1.若 a = 2,b = 3,则 a^2 + b^2 = ? A. 4 B. 5 C. 9 D. 13答案:C2.已知正方形 ABCD 的边长为 a,点 F 在边 AB 上,且AF = a/5,则点 F 的坐标为? A. $\\(\\frac{a}{5}\\)$, 0 B. 0, $\\(\\frac{a}{5}\\)$ C. $\\(\\frac{4a}{5}\\)$, 0 D. 0, $\\(\\frac{4a}{5}\\)$答案:B3.若函数 f(x) = 3x^2 + 2x - 1,则 f(2) = ? A. 7 B. 8 C. 9D. 10答案:D二、填空题1.一张长方形纸片的长是 20 cm,宽是 10 cm,将它剪成 n 个正方形片段后,每个片段的面积为 5 cm^2,则 n = 4。
2.若直线 y = mx - 4 与 y = 2x + 3 平行,则 m = 2。
3.一辆车以每小时 50 公里的速度行驶,行驶 100 公里所需的时间为2小时。
三、解答题1.集合 A = {1, 2, 3, 4, 5},集合 B = {4, 5, 6, 7},求A ∪B 的结果并写出集合的元素。
解答:集合 A 和 B 的并集是指将 A 和 B 中的所有元素去重后组成的集合。
A ∪ B = {1, 2, 3, 4, 5, 6, 7}2.已知函数 f(x) = 2x^2 + 3x - 1,求 f(1) 的值。
解答:将 x 的值代入函数 f(x) 中,计算 f(1) 的值: f(1) = 2(1)^2 + 3(1) - 1 = 4 + 3 - 1 = 63.某公司去年的年利润为 100 万元,今年利润增长了20%,求今年的年利润。
解答:今年的年利润是去年年利润的增长部分加上去年的年利润:今年的年利润 = 去年年利润 + 去年年利润 × 增长率今年的年利润 = 100 + 100 × 20% = 100 + 20 = 120 万元四、简答题1.什么是平行线?回答:平行线是指在同一个平面上,永不相交的直线。
2017年陕西单招数学模拟题

答案
37,20
解析
由系统抽样知识可知,将总体分成均等的若干部分指的是将总体分段,且分段的间隔相等。在第1段内采用简单随机抽样的方 法确定一个起始编号,在此编号的基础上加上分段间隔的整数倍即为抽样编号。由题意,第5组抽出的号码为22,因为2+(5 -1)×5=22,则第1组抽出的号码应该为2,第8组抽出的号码应该为2+(8-1)×5=37.由分层抽样知识可知,40岁以下年龄 段的职工占50%,按比例应抽取40×50%=20(人)。
答案
400
解析
根据抽样的等可能性,设高一年级共有x人,则
,∴ x=400.
2017年部分单招学校名单 西安医学高等专科学校 西安科技大学高新学院 西安职业技术学院 西安铁路职业技术学院 陕西铁路工程职业技术学院 西安东方亚太职业技术学院 西安海棠职业学院
陕西旅游烹饪职业学院 西安铁路工程职工大学 陕西艺术职业学院 陕西电子信息职业技术学院 陕西能源职业技术学院 陕西工业职业技术学院 陕西省建筑职工大学
答案
25,17,8
解析
根据系统抽样的特点可知抽取的号码间隔为 =12,故抽取的号码构成以3为首项,公差为12的等差数列。在第Ⅰ营区00
1~300号恰好有25组,故抽取25人,在第Ⅱ营区301~495号有195人,共有16组多3人,因为抽取的第一个数是3,所以Ⅱ 营区共抽取17人,剩余50-25-17=8人需从Ⅲ营区抽取。
答案
01
解析
依题意,第一次得到的两个数字为65,由于65>20,将它去掉;第二次得到的两个数字为72,由于72>20,将它去掉;第三 次得到的两个数字为08,由于08<20,说明号码08在总体内,将它取出;继续向右读,依次可以取出02,14,07,02;但由 于02在前面已经选出,故需要继续选一个。再选一个就是01.故选出来的第5个个体是01.
陕西省高职单招考试-数学文科目参考答案及解析

2016年陕西省高职单招考试-数学文科目参考答案及解析本试卷分第I 卷(选择题)和第n 卷(非选择题)两部分。
满分150分。
考试时间120分钟。
答案必须答在答题卡上指定的位置,答在试卷上无效第一部分选择题、选择题:本大题共 17小题;每小题5分,共85分。
在每小题给出的四个选项中,只有 一项是符合题目要求,将所选项前的字母填涂在答题卡相应题号的信息点上。
设集合 M={2,5,8},集合 N={6,8},则 M UN 二 {8}B 、{6}C {2,5,6,8}D 、{2,5,6}F 列函数在各自定义域中为增函数的是1、 A 、2、函数x 9的值域为A 、 [3,二) [0, [9,B 、 D 、.A1 sin4COS )A 、B 、16 C 、 1516D 、A 、 已知平面向量 a= (-2,1 )与b=-4 B 、-1 C 、1 D 、4(,2) .15垂直,则A 、 y =1 _xB 、C 、D 、 A 、 B 、 C 、 D 、 设甲:函数的图像过点(1,1 );乙甲是乙的必要条件,但不是乙的充分条件 甲是乙的充分条件,但不是乙的必要条件 甲不是乙的充分条件,也不是乙的必要条件 甲是乙的充分必要条件k+b=1,则:k设函数y 二7、设函数 X 的图像经过(2,-2),贝U k= A 、4 B 、1 C 、-1 D 、-148、 若等比数列E 的公比为3,a4=9,则a1 =1 1A 、9B 、3C 、3D 、279、 Iog 510-Iog 52 =A 、0B 、 1C 、5D 、811A 、2B 、2C 、 2D 、 -211、已知点A (1,1), B (2,1), C (-2,3),则过点A 及线段BC 中点的直线方程为13、 以点(0,1 )为圆心且与直线、3x-y -3=0相切的圆的方程为2 2 2 2A 、(X-1)和=1B、x +(y-1) =22 2 2 2C 、x +(y-1) =4D 、x +(y j) =1614、 设f(x)为偶函数,若f(—2)=3,则f(2)=A 、-3B 、0C 、3D 、615、 下列不等式成立的1 5 1 3 ~ -A Iog 25>log 2 3B (一)>(一)C 5>3 D log 1 log 13 A 、 B 、C 、D 、2 22 216、 某学校为新生开设了 4门选修课程,规定每位新生至少要选其中三门,则一位新生的不同选课方案有A 、4种B 、5种C 、6种D 、7种17、甲、乙二人独立的破译一个密码,设两人能破译的概率分别是P ,P 2,则恰有一人能10、设喻八2, 贝y tan ( v .二)=A 、 x - y 2=0 x + y —2=0 C x+y+2 = 0° x — y = 0破译的概率为A、P1 P2B、(1—p1)p2 c、(1一p1)p2 +(1—p2)p1 D、〔一(〔一p1)(1—p2)第二卷(非选择题 二、填空题:本大题共 4个小题,每小题4分,共16分。
2017年高职高考数学模拟试卷及参考答案-一

2017年高职高考数学模拟试题数 学本试卷共4页,24小题,满分150分。
考试用时120分钟。
注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和考生号、试室号、座位号填写在答题卡上。
用2B 铅笔将试卷类型(A)填涂在答题卡相应位置上。
将条形码横贴在答题卡右上角“条形码粘贴处”。
2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上。
3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。
不按以上要求作答的答案无效。
4.考生必须保持答题卡的整洁。
考试结束后,将试卷和答题卡一并交回。
一、选择题:本大题共15小题,每小题5分,满分75分. 在每小题给出的四个选项中,只有一项是符合题目要求的.1、已知集合{1,1},{0,1,2},M N =-=则M N =U ( ) A .{0 } B.{1 } C.{0,1,2 } D.{-1,0,1,2 } 2、函数y=的定义域为( ).(2,2).[2,2].(,2).(2,)A B C D ---∞-+∞3、设a ,b ,是任意实数,且a<b,则下列式子正确的是( )22..1.lg()0.22a b b A a b B C a b D a><-><4、()sin30︒-=( )11...22A B C D -5、=(2,4),=(4,3),+=a b a b r r r r若向量则( ).(6,7).(2,1).(2,1).(7,6)A B C D --6、下列函数为奇函数的是( ) ..lg .sin .cos xA y eB y xC y xD y x ====7、设函数21,1()2,1x x f x x x⎧+≤⎪=⎨>⎪⎩,则f(f(—1))=( )A .-1B .-2C .1 D. 2 8、 “3x>”是“5x >”的( )A.充分非必要条件B.必要非充分条件C.充分必要条件D.非充分非必要条件 9、若向量a ,b 满足|a+b|=|a-b|,则必有( ).0.0.||||.0A a B b C a b D a b ====r r r r r r rr g10、若直线l 过点(1, 4),且斜率k=3,则直线l 的方程为( ).310.310.10.10A x yB x yC x yD x y --=-+=--=-+=11、对任意x R ∈,下列式子恒成立的是( )22121.210.|1|0.10.log (1)02xA x xB xCD x ⎛⎫ ⎪⎝⎭⎛⎫-+>->+>+> ⎪⎝⎭12a +a =( ).2.4.24.24A B C D ---或或13、抛物线28yx =-的准线方程是( ).2.2.2.2A x B x C y D y ==-==-14、已知x 是1210,,,x x x L 的平均值,1a 为123456,,,,,x x x x x x 的平均值,2a 为78910,,,x x x x 的平均值,则x =( )121212122332 (5)52a a a a a a A B C a a D ++++15)( ).0.45.0.55.0.65.0.75A B C D二、填空题:本大题共5小题,每小题5分,满分25分.16、函数()3sin 4f x x =的最小正周期为__________17、不等式2280x x -->的解集为________18、若sin θ=35,tan θ< 0,则cos θ=_________ 19、已知等差数列{}n a 满足3285,30,a a a =+=则n a =_______20、设袋子内装有大小相同,颜色分别为红,白,黑的球共100个,其中红球35个,从袋子内任取1个球,若取出白球的概率为0.25,择取黑球的概率为____________三、解答题:本大题共4小题,第21~23题各12分,第24题14分,满分50分.解答须写出文字说明、证明过程和演算步骤. 21.(本小题满分12分),,,3(1)(2)cos B ABC a b c ABC C a π∆∆∠∠∠=∠=已知是中,A 、B 、C 的对边,b=1,c 求的值;求的值.22.(本小题满分12分){}{}(){}(){}21-12n n n =132n 6n+3(n=2,3,)b 1b 2b n S n n n n n n a a a a a =+-⋅⋅⋅已知数列的首项,数列的通项公式b =+n :证明数列是等比数列.求数列的前项和.23.(本小题满分12分)2212x=19A B AB C F (3,0)F (3,0)4D C D C D C xoy y +=-在平面直角坐标系中,直线与圆x 交于两点,,记以为直径的圆为,以点和为焦点,短半轴为的椭圆为。
2017陕西高职单招三校生考试真题

选择题若集合A={x|x>2},B={x|x<4},则A∩B为()。
A. {x|x>2}B. {x|x<4}C. {x|2<x<4}D. ∅设a, b为实数,且a≠b,则“a²=b²”是“a=b”的()。
A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件在等差数列{an}中,若a1=2,d=3,则a10为()。
A. 28B. 29C. 30D. 31已知椭圆的长轴长为10,短轴长为6,则椭圆的离心率e为()。
A. 3/5B. 4/5C. 5/3D. 5/4函数y=sin(2x+π/3)的单调递增区间为()。
A. [kπ-5π/12, kπ+π/12] (k∅Z)B. [kπ-π/12, kπ+5π/12] (k∅Z)C. [kπ-π/6, kπ+π/3] (k∅Z)D. [kπ+π/6, kπ+2π/3] (k∅Z)已知f(x)是奇函数,且当x>0时,f(x)=x²+2x,则f(-3)的值为()。
A. 3B. -3C. 9D. -9填空题已知x²+y²=25,且x+y=7,则xy=________。
若函数y=f(x)的图象关于点(1,2)对称,则f(3)+f(-1)=________。
已知向量a=(1,2),b=(-3,4),则向量a与b的夹角为________(用弧度制表示)。
在∅ABC中,若∅A=60°,a=7,b=5,则sinB=________。
已知直线l经过点P(2,3),且与直线3x-4y+5=0垂直,则直线l的方程为________。
已知双曲线C的中心在原点,焦点在x轴上,且过点(2,√3),其实轴长为4,则双曲线C的方程为________。
简答题已知函数f(x)=x³-3x²+2x-1,求f(x)的单调区间。
在∅ABC中,若∅A,∅B,∅C的对边分别为a,b,c,且a²=b²+c²+bc,求∅A的大小。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017西安铁路职业技术学院高职 单招数学试题
一、单项选择题(在每小题的四个备选答案中,选出一个正确答案,并将正确答案的序号填在题干后的括号内,本大题10小题,每小题3分,共30分)
1、设全集},5,4,2{},5,2,1{},5,4,3,2,1{===B A I 则)()(B C A C I I =( )
A 、}5,4,2,1{
B 、}3{
C 、}4,3{
D 、}3,1{
2、若a>b>0,则( ) A、
b
a 11> B、
b a < C、33b a < D、b a 33> 3、已知,5
4)sin(-=+απ则( ) A、54)sin(=-απ B、53cos =α C、34tan =α D、35sec -=α 4、椭圆36492
2=+y x 的离心率是( ) A、25 B、313 C、553 D、3
5 5、函数x x f cos 21)(+=的值域是( )
A、[0,2] B、[-1,2] C、[-1,3] D、[-1,1]
6、平面内到两定点)0,5(),0,5(21F F -的距离之差的绝对值等于6的点的轨迹方程是( ) A、116922=-y x B、191622=-y x C、116922=+y x D、19
252
2=+y x 7、把一枚均匀的硬币连掷3次,恰有两次正面向上的概率是( ) A、41 B、83 C、43 D、3
2 8、若二次函数22++-=mx x y 是偶函数,则此函数的单调递增区间是( )
A、),0[+∞ B、]0,(-∞ C、),1[+∞ D、]1,(-∞
9、已知点A(1,-1),B(-1,-7),C(0,x),D(2,3),且向量CD 与AB 平行,则x=( ).
A、-4 B、4 C、-3 D、3
10、在等差数列}{n a 中,若10121=+a a ,则=+++111032a a a a ( )
A、10 B、20 C、30 D、40
二、填空题(把答案写在横线上,本大题8小题,每小题4分,共32分)
1、函数)23lg(2
x x y --=的定义域是____________________.
2、
15
tan 115tan 1+-的值等于_______________。
3、在等差数列}{n a 中,若0,1251==a a ,则该数列的前8项之和=8S _______________。
4、顶点在原点,准线为x=4的抛物线标准方程为_______________。
5、在n x x )1(2-的二项展开式中,若第7项为常数项,则n =_______________。
6、已知向量)3,1(),1,3(--==b a ,那么向量b a 与的夹角>=<b a ,______________。
7、如果函数x x x f +=1)(,且)(1x f -为其反函数,那么=+-)3
1()3(1f f ______________。
8、已知正方体1111D C B A ABCD -的棱长为2,P 是棱1CC 的中点,直线AP 和平面11B BCC 所成的角为θ,则=θtan _______________。
三、解答题(本大题6个小题,共38分,解答应写出推理、演算步骤。
)
1、(本小题6分)证明:
)2
tan(2sin sin 2cos cos 1απαααα-=+++。
2、(本小题6分)已知函数13)1()(,32)(2-=+-++=a f a f ax x x f 且,求实数a 的值。
3、(本小题6分)已知圆的方程0124622=+--+y x y x ,求在y 轴上的截距为1,且与圆相切的直线方程。
4、(本小题6分)已知成等比数列的三个数之积为27,且这三个数分别减去1,3,9后就成等差数列,求这三个数。
5、(本小题7分)定义“不动点”:对于函数)(x f ,若存在,R x ∈ 使 x x f =)(,则称)(x f x 是 的不动点。
已知函数)32()1()(2
-+++=b x b x x f ,(1)当b=0时,求函数)(x f 的不动点;(2)若函数)(x f 有两个不同的不动点,求实数b 的取值范围。
6、(本小题7分)已知椭圆的中心在原点,焦点在x 轴上,短轴长为
6,离心率为54。
(1)求椭圆的标准方程;
(2)如图,P 21、、P P 为该椭圆上任意三点,且线段21P P 经过椭圆
的中心O ,若直线21PP PP 、的斜率存在且分别为21,k k ,求证: 259
21-=•k k。