高中物理弹簧问题考点大全及常见典型考题
高考物理综合题3 - 弹簧问题(含答案,打印版)

1.如图所示,重10 N 的滑块在倾角为30°的斜面上,从a 点由静止下滑,到b 点接触到一个轻弹簧.滑块压缩弹簧 到c 点开始弹回,返回b 点离开弹簧,最后又回到a 点,已 知ab =0.8 m ,bc =0.4 m ,那么在整个过程中 ( )A .滑块动能的最大值是6 JB .弹簧弹性势能的最大值是6 JC .从c 到b 弹簧的弹力对滑块做的功是6 JD .滑块和弹簧组成的系统整个过程机械能守恒 解析:滑块能回到原出发点,所以机械能守恒,D 正确;以c 点为参考点,则a 点的机械能为6 J ,c 点时的速度为0,重力势能也为0,所以弹性势能的最大值为6 J ,从c 到b 弹簧的弹力对滑块做的功等于弹性势能的减小量,故为6 J ,所以B 、C 正确.由a →c 时,因重力势能不能全部转变为动能,故A 错.答案:BCD2. 如图所示,水平面上的轻弹簧一端与物体相连,另一端固定在墙上P 点,已知物体的质量 为m =2.0 kg ,物体与水平面的动摩擦因数μ=0.4,弹簧的劲度系数k =200 N/m.现用力F 拉物体,使弹簧从处于自然状态的O 点由静止开始向左移动10 cm ,这时弹簧具有弹性势能E p =1.0 J ,物体处于静止状态,若取g =10 m/s 2,则撤去外力F 后 ( )A .物体向右滑动的距离可以达到12.5 cmB .物体向右滑动的距离一定小于12.5 cmC .物体回到O 点时速度最大D .物体到达最右端时动能为0,系统机械能不为0解析:物体向右滑动到O 点摩擦力做功W F =μmgs =0.4×2×10×0.1 J =0.8 J <E p ,故物体回到O 点后速度不等零 ,还要继续向右压缩弹簧,此时有E p =μmgx +E p ′且E p ′>0,故x =E p -E p ′μmg <E pμmg=12.5 cm ,A 错误,B 正确;物体到达最右端时动能为零,但弹性势能不为零,故系统机械能不为零,D 正确;由kx -μmg =ma ,可知当a =0,物体速度最大时,弹簧的伸长量x =μmg k>0,故C 错误.答案:BD3.如图所示,在倾角为30°的光滑斜面上,有一劲度系数为k 的轻质弹簧,其一端固定在固定挡板C 上,另一端连接一质量为m 的物体A.有一细绳通过定滑轮,细绳的一端系在物体A 上(细绳与斜面平行),另一端系有一细绳套,物体A 处于静止状态.当在细绳套上轻轻挂上一个质量为m 的物体B 后,物体A 将沿斜面向上运动,试求:(1)未挂物体B 时,弹簧的形变量;(2)物体A 的最大速度值.解析 (1)设未挂物体B 时,弹簧的压缩量为x ,则有:mg sin 30°=kx 所以x =mg2k.(2)当A 的速度最大时,设弹簧的伸长量为x ′,则有mg sin 30°+kx ′=mg 所以x ′=x =mg2k对A 、B 和弹簧组成的系统,从刚挂上B 到A 的速度最大的过程,由机械能守恒定律得:mg·2x -mg·2x sin 30°=12·2mv 2m 解得v m = mg 22k . 答案 (1)mg 2k (2) mg 22k4.如图所示,光滑水平面AB 与竖直面内的半圆形导轨在B 点相接,导轨半径为R .一个质量为m 的物体将弹簧压缩至A 点后由静止释放,在弹力作用下物体获得某一向右速度后脱离弹簧,当它经过B 点进入导轨瞬间对导轨的压力为其重力的7倍,之后向上运动恰能完成半个圆周运动到达C 点.试求: (1)弹簧开始时的弹性势能. (2)物体从B 点运动至C 点克服阻力做的功.(3)物体离开C 点后落回水平面时的动能.解析:(1)物体在B 点时,由牛顿第二定律得:F N -mg =m v B 2R,又F N =7mg ,可得E k B =12m v B 2=3mgR在物体从A 点至B 点的过程中,根据机械能守恒定律,弹簧的弹性势能E p =E k B =3mgR .(2)物体到达C 点仅受重力mg ,根据牛顿第二定律有mg =m v C 2R E k C =12m v C 2=12mgR物体从B 点到C 点只有重力和阻力做功,根据动能定理有:W 阻-mg ·2R =E k C -E k B解得W 阻=-12mgR所以物体从B 点运动至C 点克服阻力做的功为W =12mgR .(3)物体离开轨道后做平抛运动,仅有重力做功,根据机械能守恒定律有:E k =E k C +mg ·2R =52mgR .答案:(1)3mgR (2)12mgR (3)52mgR5.为了测量小木板和斜面间的摩擦因数,某同学设计如图所示实验,在小木板上固定一个轻弹簧,弹簧下端吊一个光滑小球,弹簧长度方向与斜面平行,现将木板连同弹簧、小球放在斜面上,用手固定木板时,弹簧示数为F 1,放手后,木板沿斜面下滑,稳定后弹簧示数为F 2,测得斜面斜角为θ,则木板与斜面间动摩擦因数为多少?(斜面体固定在地面上)【5题解答】固定时示数为F 1, 对小球F 1=mgsin θ ①整体下滑:(M+m )sin θ-μ(M+m)gcos θ=(M+m)a ② 下滑时,对小球:mgsin θ-F 2=ma ③ 由式①、式②、式③得 μ=12F F tan θ6. 如图是为了检验某种防护罩承受冲击能力的装置,M 为半径为1.0R m =、固定于竖直平面内的1/4光滑圆弧轨道,轨道上端切线水平,N 为待检验的固定曲面,该曲面在竖直面内的截面为半径r 的1/4圆弧,圆弧下端切线水平且圆心恰好位于M 轨道的上端点,M 的下端相切处置放竖直向上的弹簧枪,可发射速度不同的质量0.01m k g =的小钢珠,假设某次发射的钢珠沿轨道恰好能经过M 的上端点,水平飞出后落到N 的某一点上,取210/g m s =,求:(1)发射该钢珠前,弹簧的弹性势能p E 多大? (2)钢珠落到圆弧N上时的速度大小N v 是多少?(结果保留两位有效数字)【6题解答】(1)设钢珠在M 轨道最高点的速度为v ,在最高点,由题意2v mg mR= ① 2分从发射前到最高点,由机械能守恒定律得:212p E mgR mv =+② 2分(2)钢珠从最高点飞出后,做平抛运动x vt = ③ 1分212y gt =④ 1分 由几何关系222x y r += ⑤ 2分 从飞出M 到打在N 得圆弧面上,由机械能守恒定律:221122N mgy mv mv +=⑥ 2分联立①、③、④、⑤、⑥解出所求 5.0/N v m s =1分7.如图所示,质量为m 的滑块放在光滑的水平平台上,平台右端B 与水平传送带相接,传送带的运行速度为v 0,长为L .今将滑块缓慢向左压缩固定在平台上的轻弹簧,到达某处时突然释放,当滑块滑到传送带右端C 时,恰好与传送带速度相同.滑块与传送带间的动摩擦因数为μ. 求:(1)试分析滑块在传送带上的运动情况;(2)若滑块离开弹簧时的速度大于传送带的速度,求释放滑块时弹簧具有的弹性势能; (3)若滑块离开弹簧时的速度大于传送带的速度,求滑块在传送带上滑行的整个过程中产生的热量.解析:(1)若滑块冲上传送带时的速度小于带速,则滑块由于受到向右的滑动摩擦力而做匀加速运动;若滑块冲上传送带时的速度大于带速,则滑块由于受到向左的滑动摩擦力而做匀减速运动.(2)设滑块冲上传送带时的速度为v ,由机械能守恒E p =12m v 2.设滑块在传送带上做匀减速运动的加速度大小为a ,由牛顿第二定律:μmg =ma .由运动学公式v 2-v 02=2aL 解得E p =12m v 02+μmgL .(3)设滑块在传送带上运动的时间为t ,则t 时间内传送带的位移s =v 0t ,v 0=v -at滑块相对传送带滑动的位移Δs =L -s 因相对滑动生成的热量Q =μmg ·Δs 解得Q =μmgL -m v 0(v 02+2μgL -v 0).答案:(1)见解析 (2)12m v 02+μmgL(3)μmgL-m v 0(v 02+2μgL -v 0)8.如图所示,两质量相等的物块A 、B 通过一轻质弹簧连接,B 足够长、放置在水平面上,所有接触面均光滑。
弹簧问题专项复习及练习题(含详细解答)

高三物理第二轮专题复习(一)弹簧类问题轻弹簧是一理想模型,涉及它的知识点有①形变和弹力,胡克定律②弹性势能弹簧振子等。
问题类型:1、弹簧的瞬时问题弹簧的两端若有其他物体或力的约束,使其发生形变时,弹力不能由某一值突变为零或由零突变为某一值。
弹簧的弹力不能突变是由弹簧形变的改变要逐渐进行决定的。
2、弹簧的平衡问题这类题常以单一的问题出现,通常用胡克定律F=Kx和平衡条件来求解,列方程时注意研究对象的选取,注意整体法和隔离法的运用。
3、弹簧的非平衡问题这类题主要指弹簧在相对位置发生变化时,所引起的合外力加速度速度动能和其它物理量发生变化的情况。
弹簧的弹力与形变量成正比例变化,而它引起的物体的加速度速度动量动能等变化不是简单的单调关系,往往有临界值或极值。
有些问题要结合简谐运动的特点求解。
4、弹力做功与动量能量的综合问题弹力是变力,求弹力的冲量和弹力做的功时,不能直接用冲量和功的定义式,一般要用动量定理和动能定理计算。
如果弹簧被作为系统内的一个物体时,弹簧的弹力对系统内物体做不做功都不影响系统的机械能。
在弹力做功的过程中弹力是个变力,并与动量能量联系,一般以综合题出现。
它有机地将动量守恒机械能守恒功能关系和能量转化结合在一起,以考察综合应用能力。
分析解决这类问题时,要细致分析弹簧的动态过程,利用动能定理动量定理和功能关系等知识解题。
规律:在弹簧-物体系统中,当弹簧处于自然长度时,系统具有最大动能;系统运动中弹簧从自然长度开始到再次恢复自然长度的过程相当于弹性碰撞过程。
当弹簧具有最大形变量时,两端物体具有相同的速度,系统具有最大的弹性势能。
系统运动中,从任意状态到弹簧形变量最大的状态的过程相当于完全非弹性碰撞的过程。
(实际上应为机械能守恒)典型试题1、如图所示,轻弹簧下端固定在水平地面上,弹簧位于竖直方向,另一端静止于B点。
在B点正上方A点处,有一质量为m的物块,物块从静止开始自由下落。
物块落在弹簧上,压缩弹簧,到达C点时,物块的速度为零。
高中阶段弹簧问题大全

权威整理84道关于弹簧的问题很全面,几乎所有有价值的高中阶段弹簧问题大全。
错误!未找到引用源。
1.如图轻质弹簧长为L,竖直固定在地面上,质量为m 的小球,由离地面高度为H 处,由静止开始下落,正好 落在弹簧上,使弹簧的最大压缩量为x,在下落过程中,小球受到的空气阻力恒为f,则弹簧在最短时具 有的弹性势能为 [ A ] A.(mg-f)(H-L+x) B.mg(H-L+x)-f(H-L) C.mgH-f(H-L) D.mg(L-x)+f(H-L+x)2.一物体从某一高度自由落下,落在直立于地面的轻弹簧上,如图所示,在A 点,物体开始与弹簧接触,到B 点时,物体速度为零,然后被弹回。
下列说法中正确的是( ) A .物体从A 下降到B 的过程中,速率不断变小 B .物体从B 上升到A 的过程中,速率不断变大C .物体从A 下降到B ,以及从B 上升到A 的过程中, 速率都是先增大,后减小D .物体在B 点时,所受合力为零 答案:C3.如图所示,四根相同的轻质弹簧连着相同的物体,在外力作用下做不同的运动:(1)在光滑水平面上做加速度大小为g 的匀加速直线运动; (2)在光滑斜面上沿斜面向上的匀速直线运动; (3)做竖直向下的匀速直线运动;(4)做竖直向上的加速度大小为g 的匀加速直线运动。
设四根弹簧伸长量分别为△l 1、△l 2、△l 3、△l 4,不计空气阻力,g 为重力加速度,则( ) A .△l 1>△l 2 B .△l 3<△l 4 C .△l 1>△l 4 D .△l 2>△l 3 答案:AB4.放在粗糙水平面上的物块A 、B 用轻质弹簧秤相连,如图所示,物块与水平面间的动摩擦因数均为μ,今对物块A 施加一水平向左的恒力F ,使A 、B 一起向左匀加速运动,设A 、B 的质量分别为m 、M ,则弹簧秤的示数( )A .m MFB .m M MF +C .Mm gM m F )(+-μD .MM m gM m F ++-)(μ答案:B5.如图4所示,两个质量分别为m 1错误!未找到引用源。
高中物理弹簧模型经典题型汇总

弹簧专题1、弹簧弹力的双向性弹簧可以伸长也可以被压缩,因此弹簧的弹力具有双向性,亦即弹力既可能是推力又可能是拉力,这类问题往往是一题多解.例1、如图3-7-15所示,质量为m的质点与三根相同的轻弹簧相连,静止时相邻两弹簧间的夹角均为0120,已知弹簧a b、对质点的作用力均为F,则弹簧c对质点作用力的大小可能为( )A、0B、F mg+C、F mg-D、mg F-2、轻弹簧高中物理中描述一类物体时常在其前面加上限定词“轻”,如“轻结点”、“轻绳”、“轻弹簧”、“轻杆”、“轻滑轮”等.“轻"主要可以理解为物体质量对所研究的物理问题影响很小,可以忽略不计,它是一种理想化的物理模型。
根据牛顿第二定律F = ma知,由于“轻物体”质量为零,无论其加速度多大,所受合外力必然为零,与物体的运动状态无关.这也是它与常规物体的最大区别.例2、如图4所示,4个完全相同的轻质弹簧都处于水平位置,他们的右端受到大小皆为F的拉力作用,而左端的情况各不相同:①中弹簧的左端固定在墙上,②中弹簧的左端受大小也为F的拉力作用,③中弹簧的左端拴一小物块,物块在光滑的桌面上滑动,④中弹簧的左端拴一小物块,物块在有摩擦的桌面上滑动.若认为弹簧的质量都为零,以L1、L2、L3、L4依次表示4个弹簧的伸长量.则有()3、质量不可忽略的弹簧例3、如图所示,一质量为M、长为L的均质弹簧平放在光滑的水平面上,在弹簧右端施加一水平力F使弹簧向右做加速运动.试分析弹簧上各部分的受力情况.答案解析Fx=FLx图3-7-154、三、弹簧的弹力不能突变(弹簧弹力瞬时)问题弹簧(尤其是轻质弹簧)弹力与弹簧的形变量有关,由于弹簧两端一般与物体连接,因弹簧形变过程需要一段时间,其长度变化不能在瞬间完成,因此弹簧的弹力不能在瞬间发生突变,即可以认为弹力大小和方向不变,与弹簧相比较,轻绳和轻杆的弹力可以突变。
例4、如图甲所示,一质量为m的物体系于长度分别为L1、L2的两根细线上,L1的一端悬挂在天花板上,与竖直方向夹角为θ,L2水平拉直,物体处于平衡状态.求解下列问题:(1)现将线L2剪断,求剪断L2的瞬间物体的加速度.(2)若将图甲中的细线L1换成长度相同,质量不计的轻弹簧,如图乙所示,其他条件不变,求剪断L2的瞬间物体的加速度.例5、如图所示,一光滑圆环竖直固定在地面上,三个完全相同的质量均为m的小球穿在圆环上,其中小球A位于圆环最高点,小球B、C位于同一高度,小球A与小球B之间、小球A与小球C间用等长的轻质细绳相连,小球B与小球C用轻弹簧相连。
高考物理弹簧问题归纳汇总

专题复习——弹簧问题复习1:力学体系1——平衡状态下的弹簧问题(基础)1、(单选)探究弹力和弹簧伸长的关系时,在弹性限度内,悬挂15N 重物时,弹簧长度为0.16m ;悬挂20N 重物时,弹簧长度为0.18m.则弹簧的原长L0和劲度系数k 分别为( ) A . L0=0.02 m k =500 N/m B . L0=0.10 m k =500 N/m C . L0=0.02 m k =250 N/m D . L0=0.10 m k =250 N/m【答案】D 【解析】由胡克定律F=kx ,有悬挂15N 重物时15N=k (0.16m-L 0);悬挂20N 重物时20N=k (0.18m-L 0);联立两式可解得k=250N/m ,L 0=0.10m 。
故原长为0.10m ,劲度系数为250N/m 。
故选D 。
2、(单选)如图所示,A 、B 两个物块的重力分别是G A =3 N ,G B =4 N ,弹簧的重力不计,整个装置沿竖直方向处于静止状态,这时弹簧的弹力F =2 N ,则天花板受到的拉力和地板受到的压力,有可能是( ) A .3 N 和4 N B.5 N 和6 N C .1 N 和2 ND .5 N 和2 N解析:选D 当弹簧由于被压缩而产生2 N 的弹力时,由受力平衡及牛顿第三定律知识:天花板受到的拉力为 1 N ,地板受到的压力为6 N ;当弹簧由于被拉伸而产生2 N 的弹力时,可得天花板受到的拉力为5 N ,地板受到的压力为2 N ,3、(单选)一根轻质弹性绳的两端分别固定在水平天花板上相距80 cm 的两点上,弹性绳的原长也为80 cm.将一钩码挂在弹性绳的中点,平衡时弹性绳的总长度为100 cm ;再将弹性绳的两端缓慢移至天花板上的同一点,则弹性绳的总长度变为(弹性绳的伸长始终处于弹性限度内)( ) 解析:选B 设总长度为100 cm 时与水平方向夹角为θ,则cos θ=45,故θ=37°.总长度为100 cm 时弹力F =kx 1,设移至天花板同一点时的弹力为kx 2,则12kx 1sin θ=12kx 2,得x 2=12 cm ,则弹性绳的总长度为92 cm.故B 正确.4、(单选)一个长度为L 的轻弹簧,将其上端固定,下端挂一个质量为m 的小球时,轻弹簧的总长度变为2L .现将两个这样的轻弹簧按如图所示方式连接,A 小球的质量为m ,B 小球的质量为2m ,则两小球平衡时,B 小球距悬点O 的距离为(不考虑小球的大小,且轻弹簧都在弹性限度范围内) ( )A .4LB .5LC .6LD .7L解析:选D 一根轻弹簧,挂一个质量为m 的小球时,轻弹簧的总长度变为2L ,即伸长L ,劲度系数k =mg /L .若两个小球如题图所示悬挂,则下面的轻弹簧伸长2L ,上面的轻弹簧受力3mg ,伸长3L ,则轻弹簧的总长为L +L +2L +3L =7L ,故选项D 正确.5、(单选)如图所示,两根轻弹簧AC 和BD ,它们的劲度系数分别为k 1和k 2,它们的C 、D 端分别固定在质量为m 的物体上,A 、B 端分别固定在支架和正下方地面上.当物体m 静止时,上方的弹簧处于原长;若将物体的质量变为3m ,仍在弹簧的弹性限度内,当物体再次静止时,其相对第一次静止时位置下降了( ) A .mg k 1+k 2k 1k 2B .2mg k 1+k 2k 1k 2C .2mg 1k +kD .mg 1k +k答案 C 解析 当物体m 静止时,上方的弹簧处于原长,由平衡条件可得,k 2x 1=mg ,下面弹簧压缩了x 1=mgk 2.若将物体的质量变为3m ,设相对第一次静止时位置下降了x ,则有上面弹簧拉力F 1=k 1x.由平衡条件可得下面弹簧支持力等于3mg -F 1=3mg -k 1x.由胡克定律得,k 2(x +x 1)=3mg -k 1x ,解得x =2mg 1k 1+k 2,C 项正确.6、如图所示,质量为2m 的物体A 经过一轻质弹簧与地面上的质量为3m 的物体B 相连,弹簧的进度系数为k ,一条不可伸长的轻绳绕过定滑轮,一端连物体A ,另一端连一质量为m 的物体C ,物体A 、B 、C 都处于静止状态,已知重力加速度为g ,忽略一切摩擦 (1)求物体B 对地面的压力;(2)把物体C 的质量改为5m ,这时C 缓慢下降,经过一段时间系统达到新的平衡状态,这时B 仍没离开地面,且C 只受重力和绳的拉力作用,求此过程中物体A 上升的高度。
高中物理弹簧类问题专题练习(经典总结附详细答案)

高 中 物 理 弹 簧 类 问 题 专 题 练 习1. 图中a 、b 为两带正电的小球,带电量都是 q ,质量分别为M 和m ;用一绝缘弹簧联结,弹簧的自 然长度很小,可忽略不计,达到平衡时,弹簧的长度为 d 。
现把一匀强电场作用于两小球,场强的 方向由a 指向b ,在两小球的加速度相等的时刻,弹簧的长度为 d o()A.若 M=m 贝U d=d 0B.若 M>m ,贝U d > d o a bC.若 M< m,则 d < d oD. d=d 0,与 M m 无关 一.■".. 2. 如图a 所示,水平面上质量相等的两木块 A 、B 用一轻弹簧相连接,■整个系统处于平衡状态.现用 一竖直向上的力F 拉动木块A,使木块A 向上做匀加速直线运动, 从力F 刚作用在木块A 的瞬间到木块B 刚离开地面的瞬间这个 这个过程中木块A 的起始位置为坐标原点,则下列图象中可以 A 的位移x 之间关系的是() 如图b 所示.研究 过程,并且选定 表示力F 和木块 F BK 平向 b一轻弹簧的两端分别与质量为 止在光滑的水平面上. 八、、° L 两物块的速度随时|间变化的规律如图乙 B. C. D. 4. 如图所示,绝缘弹簧的下端固定在斜面 平行,带电小球Q (可视 V 光滑绝缘斜面上的M 点, 的直线ab 上。
现把与Q 大小相同,甲带电性也 点由静止释放,在小球P 与弹簧接触到速度变为零的过程中 A. 小球P 的速度是先增大后减小 B. 小球P 和弹簧的机械能守恒,且P 速度最大时所受弹力与库仑力的合力最大C. 小球P 的动能、重力势能、电势能与弹簧的弹 性势能的总和不变 bD. 小球P 合力的冲量为零5、 如图所示,A B 两木块叠放在竖直轻弹簧上,如图所示,已知木块 A B 质量分别为0.42 kg 和0.40 kg ,弹簧的劲度系数k=100N/m ,若在木块A 上作用一个竖直向上的力F ,使A 由静止开始 以0.5 m/s 2的加速度竖直向上做匀加速运动(g=10 m/s 2). (1) 使木块A 竖直做匀加速运动的过程中,力 F 的最大值; (2) 若木块由静止开始做匀加速运动,直到 A 、B 分离的过 程中,弹簧的弹性势能减少了 0.248J ,求这一过程F 对 木块做的功. 6如图,质量为m 的物体A 经一轻质弹簧与下方地面上的质量 簧的劲度系数为k , A 、B 都处于静止状态。
高中物理弹簧问题考点大全及常见典型考题

高中物理弹簧问题考点大全及常见典型考题(总14页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除常见弹簧类问题分析高考要求轻弹簧是一种理想化的物理模型,以轻质弹簧为载体,设置复杂的物理情景,考查力的概念,物体的平衡,牛顿定律的应用及能的转化与守恒,是高考命题的重点,此类命题几乎每年高考卷面均有所见.应引起足够重视. 弹簧类命题突破要点1.弹簧的弹力是一种由形变而决定大小和方向的力.当题目中出现弹簧时,要注意弹力的大小与方向时刻要与当时的形变相对应.在题目中一般应从弹簧的形变分析入手,先确定弹簧原长位置,现长位置,找出形变量x与物体空间位置变化的几何关系,分析形变所对应的弹力大小、方向,以此来分析计算物体运动状态的可能变化.2.因弹簧(尤其是软质弹簧)其形变发生改变过程需要一段时间,在瞬间内形变量可以认为不变.因此,在分析瞬时变化时,可以认为弹力大小不变,即弹簧的弹力不突变.一、与物体平衡相关的弹簧问题1.(1999年,全国)如图示,两木块的质量分别为m1和m2,两轻质弹簧的劲度系数分别为k1和k2,上面木块压在上面的弹簧上(但不拴接),整个系统处于平衡状态.现缓慢向上提上面的木块,直到它刚离开上面弹簧.在这过程中下面木块移动的距离为( )k 1k2k2k2此题是共点力的平衡条件与胡克定律的综合题.题中空间距离的变化,要通过弹簧形变量的计算求出.注意缓慢上提,说明整个系统处于一动态平衡过程,直至m1离开上面的弹簧.开始时,下面的弹簧被压缩,比原长短(m1 + m2)g/k2,而m l刚离开上面的弹簧,下面的弹簧仍被压缩,比原长短m2g/k2,因而m2移动△x=(m1 + m2)·g/k2 - m2g/k2=m l g/k2.此题若求ml移动的距离又当如何求解参考答案:C和S2表示劲度系数分别为k1,和k2两根轻质弹簧,k1>k2;A和B表示质量分别为mA 和mB的两个小物块,mA>mB,将弹簧与物块按图示方式悬挂起来.现要求两根弹簧的总长度最大则应使( ).在上,A在上在上,B在上在上,A在上在上,B在上参考答案:D3.一根大弹簧内套一根小弹簧,大弹簧比小弹簧长,它们的一端固定,另一端自由,如图所示,求这两根弹簧的劲度系数k 1(大弹簧)和k2(小弹簧)分别为多少?(参考答案k1=100N/m k2=200N/m)4.(2001年上海高考)如图所示,一质量为m的物体系于长度分别为L1、L 2的两根细线上,L1的一端悬挂在天花板上,与竖直方向夹角为θ,L2水平拉直,物体处于平衡状态.现将L2线剪断,求剪断瞬时物体的加速度.(1)下面是某同学对该题的一种解法:解设L1线上拉力为Tl,L2线上拉力为T2,重力为mg,物体在三力作用下保持平衡T l cosθ=mg,Tlsinθ=T2,T2=mgtanθ,剪断线的瞬间,T2突然消失,物体即在T2反方向获得加速度.因为mgtanθ=ma,所以加速度a=g tanθ,方向在T2反方向.你认为这个结果正确吗?清对该解法作出评价并说明理由.解答:错.因为L2被剪断的瞬间,L1上的张力大小发生了变化.此瞬间T2=mgcosθ, a=gsinθ(2)若将图中的细线Ll改为长度相同、质量不计的轻弹簧,其他条件不变,求解的步骤和结果与(1)完全相同,即a=gtanθ,你认为这个结果正确吗?请说明理由.解答:对,因为L2被剪断的瞬间,弹簧L1的长度未及发生变化,T1大小和方向都不变.二、与动力学相关的弹簧问题5.如图所示,在重力场中,将一只轻质弹簧的上端悬挂在天花板上,下端连接一个质量为M的木板,木板下面再挂一个质量为m的物体.当剪掉m后发现:当木板的速率再次为零时,弹簧恰好能恢复到原长,(不考虑剪断后m、M间的相互作用)则M与m之间的关系必定为 ( )>m =m <m D.不能确定参考答案:B6.如图所示,轻质弹簧上面固定一块质量不计的薄板,在薄板上放重物,用手将重物向下压缩到一定程度后,突然将手撤去,则重物将被弹簧弹射出去,则在弹射过程中(重物与弹簧脱离之前)重物的运动情况是 ( ) 参考答案:CA.一直加速运动 B.匀加速运动C.先加速运动后减速运动 D.先减速运动后加速运动[解析] 物体的运动状态的改变取决于所受合外力.所以,对物体进行准确的受力分析是解决此题的关键,物体在整个运动过程中受到重力和弹簧弹力的作用.刚放手时,弹力大于重力,合力向上,物体向上加速运动,但随着物体上移,弹簧形变量变小,弹力随之变小,合力减小,加速度减小;当弹力减至与重力相等的瞬间,合力为零,加速度为零,此时物体的速度最大;此后,弹力继续减小,物体受到的合力向下,物体做减速运动,当弹簧恢复原长时,二者分离.7.如图所示,一轻质弹簧竖直放在水平地面上,小球A由弹簧正上方某高度自由落下,与弹簧接触后,开始压缩弹簧,设此过程中弹簧始终服从胡克定律,那么在小球压缩弹簧的过程中,以下说法中正确的是()参考答案:CA.小球加速度方向始终向上B.小球加速度方向始终向下C.小球加速度方向先向下后向上D.小球加速度方向先向上后向下(试分析小球在最低点的加速度与重力加速度的大小关系)8.如图所示,一轻质弹簧一端系在墙上的O点,自由伸长到B点.今用一小物体m把弹簧压缩到A点,然后释放,小物体能运动到C点静止,物体与水平地面间的动摩擦因数恒定,试判断下列说法正确的是 ()A.物体从A到B速度越来越大,从B到C速度越来越小B.物体从A到B速度越来越小,从B到C加速度不变C.物体从A到B先加速后减速,从B一直减速运动D.物体在B点受到的合外力为零参考答案:C9.如图所示,一轻质弹簧一端与墙相连,另一端与一物体接触,当弹簧在O点位置时弹簧没有形变,现用力将物体压缩至A点,然后放手。
物理弹簧测试题及答案

物理弹簧测试题及答案一、选择题1. 一个弹簧在没有外力作用时,其长度为L0。
当施加一个恒定的拉力F时,弹簧伸长到L1。
如果拉力增加到2F,弹簧的长度将变为:A. L0B. L1 + L0C. 2L1D. L1 + (L1 - L0)答案:D2. 根据胡克定律,弹簧的伸长量与施加的力成正比。
如果弹簧的劲度系数为k,当施加的力为F时,弹簧的伸长量为:A. k/FB. F/kC. FkD. kF答案:B3. 一个弹簧的劲度系数为k,其自然长度为L0。
当弹簧被压缩到长度为L0/2时,弹簧所受的力为:A. k/2B. 2kC. kD. 4k答案:B二、填空题4. 弹簧的劲度系数是指弹簧在单位形变下所受的力,其单位是______。
答案:牛顿/米(N/m)5. 当一个弹簧被拉伸或压缩时,其长度的变化量与所受力的关系遵循胡克定律,即F=______。
答案:kx三、计算题6. 一个弹簧的劲度系数为100 N/m,其自然长度为0.2 m。
当弹簧被拉伸到0.4 m时,求弹簧所受的力。
答案:弹簧被拉伸到0.4 m时,伸长量为0.4 m - 0.2 m = 0.2 m。
根据胡克定律,F = kx,所以F = 100 N/m * 0.2 m = 20 N。
7. 一个弹簧的劲度系数为500 N/m,其自然长度为0.5 m。
当弹簧被压缩到0.3 m时,求弹簧所受的力。
答案:弹簧被压缩到0.3 m时,压缩量为0.5 m - 0.3 m = 0.2 m。
根据胡克定律,F = kx,所以F = 500 N/m * 0.2 m = 100 N。
四、简答题8. 描述弹簧的胡克定律,并解释其物理意义。
答案:胡克定律是指在弹性限度内,弹簧的伸长量或压缩量与施加的力成正比。
物理意义是,弹簧的形变程度与作用在其上的力的大小直接相关,且这种关系是线性的,即力的增加会导致形变程度的线性增加。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
常见弹簧类问题分析高考要求轻弹簧是一种理想化的物理模型,以轻质弹簧为载体,设置复杂的物理情景,考查力的概念,物体的平衡,牛顿定律的应用及能的转化与守恒,是高考命题的重点,此类命题几乎每年高考卷面均有所见.应引起足够重视.弹簧类命题突破要点1.弹簧的弹力是一种由形变而决定大小和方向的力.当题目中出现弹簧时,要注意弹力的大小与方向时刻要与当时的形变相对应.在题目中一般应从弹簧的形变分析入手,先确定弹簧原长位置,现长位置,找出形变量x与物体空间位置变化的几何关系,分析形变所对应的弹力大小、方向,以此来分析计算物体运动状态的可能变化.2.因弹簧(尤其是软质弹簧)其形变发生改变过程需要一段时间,在瞬间内形变量可以认为不变.因此,在分析瞬时变化时,可以认为弹力大小不变,即弹簧的弹力不突变.一、与物体平衡相关的弹簧问题1.(1999年,全国)如图示,两木块的质量分别为m1和m2,两轻质弹簧的劲度系数分别为k1和k2,上面木块压在上面的弹簧上(但不拴接),整个系统处于平衡状态.现缓慢向上提上面的木块,直到它刚离开上面弹簧.在这过程中下面木块移动的距离为( )A.m1g/k1B.m2g/k2C.m1g/k2D.m2g/k2此题是共点力的平衡条件与胡克定律的综合题.题中空间距离的变化,要通过弹簧形变量的计算求出.注意缓慢上提,说明整个系统处于一动态平衡过程,直至m1离开上面的弹簧.开始时,下面的弹簧被压缩,比原长短(m1 + m2)g/k2,而m l刚离开上面的弹簧,下面的弹簧仍被压缩,比原长短m2g/k2,因而m2移动△x=(m1 + m2)·g/k2 - m2g /k2=m l g/k2.此题若求m l移动的距离又当如何求解?参考答案:C2.S1和S2表示劲度系数分别为k1,和k2两根轻质弹簧,k1>k2;A和B表示质量分别为m A和m B的两个小物块,m A>m B,将弹簧与物块按图示方式悬挂起来.现要求两根弹簧的总长度最大则应使( ).A.S1在上,A在上B.S1在上,B在上C.S2在上,A在上D.S2在上,B在上参考答案:D3.一根大弹簧内套一根小弹簧,大弹簧比小弹簧长0.2m,它们的一端固定,另一端自由,如图所示,求这两根弹簧的劲度系数k1(大弹簧)和k2(小弹簧)分别为多少?(参考答案k1=100N/m k2=200N/m)4.(2001年上海高考)如图所示,一质量为m的物体系于长度分别为L1、L2的两根细线上,L1的一端悬挂在天花板上,与竖直方向夹角为θ,L2水平拉直,物体处于平衡状态.现将L2线剪断,求剪断瞬时物体的加速度.(1)下面是某同学对该题的一种解法:解设L1线上拉力为T l,L2线上拉力为T2,重力为mg,物体在三力作用下保持平衡T l cosθ=mg,T l sinθ=T2,T2=mgtanθ,剪断线的瞬间,T2突然消失,物体即在T2反方向获得加速度.因为mgtanθ=ma,所以加速度a=g tanθ,方向在T2反方向.你认为这个结果正确吗?清对该解法作出评价并说明理由.解答:错.因为L2被剪断的瞬间,L1上的张力大小发生了变化.此瞬间T2=mgcosθ, a=gsinθ(2)若将图中的细线L l改为长度相同、质量不计的轻弹簧,其他条件不变,求解的步骤和结果与(1)完全相同,即a=gtanθ,你认为这个结果正确吗?请说明理由.解答:对,因为L2被剪断的瞬间,弹簧L1的长度未及发生变化,T1大小和方向都不变.二、与动力学相关的弹簧问题5.如图所示,在重力场中,将一只轻质弹簧的上端悬挂在天花板上,下端连接一个质量为M的木板,木板下面再挂一个质量为m的物体.当剪掉m后发现:当木板的速率再次为零时,弹簧恰好能恢复到原长,(不考虑剪断后m、M间的相互作用)则M与m之间的关系必定为 ( )A.M>mB.M=mC.M<mD.不能确定参考答案:B6.如图所示,轻质弹簧上面固定一块质量不计的薄板,在薄板上放重物,用手将重物向下压缩到一定程度后,突然将手撤去,则重物将被弹簧弹射出去,则在弹射过程中(重物与弹簧脱离之前)重物的运动情况是( ) 参考答案:CA.一直加速运动 B.匀加速运动C.先加速运动后减速运动 D.先减速运动后加速运动[解析] 物体的运动状态的改变取决于所受合外力.所以,对物体进行准确的受力分析是解决此题的关键,物体在整个运动过程中受到重力和弹簧弹力的作用.刚放手时,弹力大于重力,合力向上,物体向上加速运动,但随着物体上移,弹簧形变量变小,弹力随之变小,合力减小,加速度减小;当弹力减至与重力相等的瞬间,合力为零,加速度为零,此时物体的速度最大;此后,弹力继续减小,物体受到的合力向下,物体做减速运动,当弹簧恢复原长时,二者分离.7.如图所示,一轻质弹簧竖直放在水平地面上,小球A由弹簧正上方某高度自由落下,与弹簧接触后,开始压缩弹簧,设此过程中弹簧始终服从胡克定律,那么在小球压缩弹簧的过程中,以下说法中正确的是()参考答案:CA.小球加速度方向始终向上B.小球加速度方向始终向下C.小球加速度方向先向下后向上D.小球加速度方向先向上后向下(试分析小球在最低点的加速度与重力加速度的大小关系)8.如图所示,一轻质弹簧一端系在墙上的O点,自由伸长到B点.今用一小物体m把弹簧压缩到A点,然后释放,小物体能运动到C点静止,物体与水平地面间的动摩擦因数恒定,试判断下列说法正确的是 ()A.物体从A到B速度越来越大,从B到C速度越来越小B.物体从A到B速度越来越小,从B到C加速度不变C.物体从A到B先加速后减速,从B一直减速运动D.物体在B点受到的合外力为零参考答案:C9.如图所示,一轻质弹簧一端与墙相连,另一端与一物体接触,当弹簧在O点位置时弹簧没有形变,现用力将物体压缩至A点,然后放手。
物体向右运动至C点而静止,AC距离为L。
第二次将物体与弹簧相连,仍将它压缩至A点,则第二次物体在停止运动前经过的总路程s可能为:A.s=LB.s>LC.s<LD.条件不足,无法判断参考答案:AC(建议从能量的角度、物块运动的情况考虑)10. A、B两木块叠放在竖直轻弹簧上,如图所示,已知木块A、B质量分别为0.42 kg 和0.40 kg,弹簧的劲度系数k=100 N/m ,若在木块A上作用一个竖直向上的力F,使A 由静止开始以0.5 m/s2的加速度竖直向上做匀加速运动(g=10 m/s2).(1)使木块A竖直做匀加速运动的过程中,力F的最大值;(2)若木块由静止开始做匀加速运动,直到A、B分离的过程中,弹簧的弹性势能减少了0.248 J,求这一过程F对木块做的功.分析:此题难点和失分点在于能否通过对此物理过程的分析后,确定两物体分离的临界点,即当弹簧作用下的两物体加速度、速度相同且相互作用的弹力N =0时 ,恰好分离.解:当F=0(即不加竖直向上F力时),设A、B叠放在弹簧上处于平衡时弹簧的压缩量为x,有kx=(m A+m B)gx=(m A+m B)g/k ①对A施加F力,分析A、B受力如图对A F+N-m A g=m A a ②对B kx′-N-m B g=m B a′③可知,当N≠0时,AB有共同加速度a=a′,由②式知欲使A匀加速运动,随N减小F增大.当N=0时,F取得了最大值F m,即F m=m A(g+a)=4.41 N又当N=0时,A、B开始分离,由③式知,此时,弹簧压缩量kx′=m B(a+g)x′=m B(a+g)/k ④AB共同速度v2=2a(x-x′)⑤由题知,此过程弹性势能减少了W P =E P =0.248 J设F 力功W F ,对这一过程应用动能定理或功能原理W F +E P -(m A +m B )g (x -x ′)=21(m A +m B )v 2⑥联立①④⑤⑥,且注意到E P =0.248 J可知,W F =9.64×10-2 J 弹簧类模型中的最值问题在高考复习中,常常遇到有关“弹簧类”问题,由于弹簧总是与其他物体直接或间接地联系在一起,弹簧与其“关联物”之间总存在着力、运动状态、动量、能量方面的联系,因此学生普遍感到困难,本文就此类问题作一归类分析。
一、最大、最小拉力问题例1. 一个劲度系数为k =600N/m 的轻弹簧,两端分别连接着质量均为m =15kg 的物体A 、B ,将它们竖直静止地放在水平地面上,如图1所示,现加一竖直向上的外力F 在物体A 上,使物体A 开始向上做匀加速运动,经0.5s ,B 物体刚离开地面(设整个加速过程弹簧都处于弹性限度内,且g =10m/s 2)。
求此过程中所加外力的最大和最小值。
图1解析:开始时弹簧弹力恰等于A 的重力,弹簧压缩量∆l mg km ==025.,0.5s 末B 物体刚要离开地面,此时弹簧弹力恰等于B 的重力,∆∆l l m '.==025,故对A 物体有2122∆l at =,代入数据得a m s =42/。
刚开始时F 为最小且F ma N N min ===15460×,B 物体刚要离开地面时,F 为最大且有F mg mg ma max --=,解得F mg ma N max =+=2360。
二、最大高度问题例2. 如图2所示,质量为m 的钢板与直立弹簧的上端连接,弹簧下端固定在地面上,平衡时弹簧的压缩量为x 0。
一物体从钢板正上方距离为30x 的A 处自由下落打在钢板上,并立即与钢板一起向下运动,但不粘连,它们到达最低点后又向上运动,已知物块质量也为m 时,它们恰能回到O 点,若物体质量为2m 仍从A 处自由下落,则物块与钢板回到O 点时还有向上的速度,求物块向上运动到达的最高点与O 点的距离。
图2解析:物块碰撞钢板前作自由落体运动,设v 0表示物块与钢板碰撞时的速度,则:v gx 006= ①物块与钢板碰撞后一起以v 1速度向下运动,因碰撞时间极短,碰撞时遵循动量守恒,即:mv mv 012= ②刚碰完时弹簧的弹性势能为E p ,当它们一起回到O 点时,弹簧无形变,弹性势能为0,根据机械能守恒有:E m v mgx p +=1222120() ③ 设v 2表示质量为2m 的物块与钢板碰撞后开始向下运动的速度,由动量守恒有:2302mv mv = ④碰撞后,当它们回到O 点时具有一定速度v ,由机械能守恒定律得: E m v mgx m v p +=+12331232202()() ⑤ 当质量为2m 的物块与钢板一起回到O 点时两者分离,分离后,物块以v 竖直上升,其上升的最大高度: h v g=22 ⑥ 解①~⑥式可得h x =02。
三、最大速度、最小速度问题 例3. 如图3所示,一个劲度系数为k 的轻弹簧竖直立于水平地面上,下端固定于地面,上端与一质量为m 的平板B 相连而处于静止状态。