一元线性回归教学设计

一元线性回归教学设计
一元线性回归教学设计

10.3.4 一元线性回归

【教学目标】

1. 了解相关关系、回归分析、散点图、回归直线方程的概念.

2. 掌握散点图的画法,掌握回归直线方程的求解方法,会求回归直线方程.

3. 让学生参与回归直线的探求,结合身边的实例,发现散点图的线性特征,主动构建线性回归直线方程的模型.

【教学重点】

散点图的画法,回归直线方程的求解方法.

【教学难点】

回归直线方程的求解方法.

【教学方法】

这节课主要采取启发引导和讲练结合的教学方法.通过创设情境、设置问题等手段对学生进行了启发、诱导,结合讨论法、讲授法组织学生自主探究.然后结合例题及课后练习巩固求回归直线方程的步骤.

【教学过程】

《计量经济学》eviews实验报告一元线性回归模型详解

《计量经济学》实验报告一元线性回归模型 一、实验内容 (一)eviews 基本操作 (二)1、利用EViews 软件进行如下操作: (1)EViews 软件的启动 (2)数据的输入、编辑 (3)图形分析与描述统计分析 (4)数据文件的存贮、调用 2、查找2000-2014年涉及主要数据建立中国消费函数模型 中国国民收入与居民消费水平:表1 年份X(GDP)Y(社会消费品总量) 2000 99776.3 39105.7 2001 110270.4 43055.4 2002 121002.0 48135.9 2003 136564.6 52516.3 2004 160714.4 59501.0 2005 185895.8 68352.6 2006 217656.6 79145.2 2007 268019.4 93571.6 2008 316751.7 114830.1 2009 345629.2 132678.4 2010 408903.0 156998.4 2011 484123.5 183918.6 2012 534123.0 210307.0 2013 588018.8 242842.8 2014 635910.0 271896.1 数据来源:https://www.360docs.net/doc/b55435155.html, 二、实验目的 1.掌握eviews的基本操作。 2.掌握一元线性回归模型的基本理论,一元线性回归模型的建立、估计、检验及预测的方 法,以及相应的EViews软件操作方法。

三、实验步骤(简要写明实验步骤) 1、数据的输入、编辑 2、图形分析与描述统计分析 3、数据文件的存贮、调用 4、一元线性回归的过程 点击view中的Graph-scatter-中的第三个获得 在上方输入ls y c x回车得到下图

高中数学第2章统计2.4线性回归方程(2)教案苏教版必修3

2.4 线性回归方程 第2课时 导入新课 在上一节课中问题1:将汽油以均匀的速度注入桶里,注入的时间t与注入的油量y如下表: 从表里数据得出油量y与时间t之间的函数关系式为y=2x(x≥0).并且在直角坐标系里很容易作出它们的图象,我们知道各点在同一条直线上. 再看下面的问题(即上一节课的练习2):某小卖部为了了解热茶销售量与气温之间的关系,随机统计并制作了某6天卖出热茶的杯数与当天气温的对比表: 请大家动手作出热茶销售量与气温的坐标图,说说它的特点,能得到什么规律? 分析:该图中所有点不像第一个问题中函数关系的图象对应的点在同一条直线上,但是分布也是很有规律,它们散布在从左上角到右下角的区域,因此,可以得到规律是随着气温的增加,热茶卖出的杯数在减少.但究竟以什么样的方式在减少呢?这就是今天要继续学习的内容——线性回归方程. 推进新课 新知探究 以横坐标x表示气温,纵坐标y表示热茶销量,建立平面直角坐标系,将表中数据构成的6个数对所表示的点在坐标系内标出,得到上图,今后我们称这样的图为散点图. 1.散点图(scatterplot):表示具有相关关系的两个变量的一组数据的图形叫做散点图.散点图形象地反映了各对数据的密切程度.粗略地看,散点分布具有一定的规律.在本图中这些点散布的位置也是值得注意的,它们散布在从左上角到右下角的区域,对于这种相关关系,我们称它为负相关.如果点散布在从左下角到右上角的区域.对于这种相关关系,我们称它为正相关. 请学生举例:两个变量之间是正相关的关系.例如:某小卖部卖的冷饮销售量与气温之间的关系. 再看上节课的练习 1.在一次对人体脂肪含量和年龄关系的研究中,研究人员获得了一组样本数据:

第十章 一元线性回归

第十一章 一元线性回归 一、填空题 1、对回归系数的显著性检验,通常采用的是 检验。 2、若回归方程的判定系数R 2 =0.81,则两个变量x 与y 之间的相关系数r 为_________________。 3、若变量x 与y 之间的相关系数r=0.8,则回归方程的判定系数R 2 为____________。 4、对于直线趋势方程bx a y c +=,已知∑=,0x ∑=130xy ,n=9,1692 =∑x , a=b ,则趋势 方程中的b=______。 5、回归直线方程bx a y c +=中的参数b 是_____________。估计待定参数a 和 b 常用的方法是-_________________。 6、相关系数的取值范围_______________。 7、在回归分析中,描述因变量y 如何依赖于自变量x 和误差项的方程称为 。 8、在回归分析中,根据样本数据求出的方程称为 。 9、在回归模型εββ++=x y 10中的ε反映的是 。 10、在回归分析中,F 检验主要用来检验 。 11、说明回归方程拟合优度检验的统计量称为 。 二、单选题 1、年劳动生产率(x :千元)和工人工资(y :元)之间的回归方程为1070y x =+,这意味着年劳动生产率没提高1千元,工人工资平均( ) A 、 增加70元 B 、 减少70元 C 、增加80元 D 、 减少80元 2、两变量具有线形相关,其相关系数r=-0.9,则两变量之间( )。 A 、强相关 B 、弱相关 C 、不相关 D 、负的弱相关关系 3、变量的线性相关关系为0,表明两变量之间( )。 A 、完全相关 B 、无关系 C 、不完全相关 D 、不存在线性关系 4、相关关系与函数关系之间的联系体现在( )。 A 、相关关系普遍存在,函数关系是相关关系的特例 B 、函数关系普遍存在,相关关系是函数关系的特例 C 、相关关系与函数关系是两种完全独立的现象 D 、相关关系与函数关系没有区别 5、已知x 和y 两变量之间存在线形关系,且δx =10, δy =8, δ xy 2 =-7,n=100,则x 和y 存在着( )。 A 、显著正相关 B 、低度正相关 C 、显著负相关 D 、低度负相关 6、对某地区前5年粮食产量进行直线趋势估计为:80.5 5.5y t =+? 这5年的时间代码分别是:-2,-1,0,1,2,据此预测今年的粮食产量是( )。 A 、107 B 、102.5 C 、108 D 、113.5 7、两变量的线性相关关系为-1,表明两变量之间( )。 A 、完全相关 B 、无关系 C 、不完全相关 D 、不存在线性关系 8、已知x 和y 两变量之间存在线形关系,且δx =10, δy =8, δ xy 2=-7,n=100,则x 和y 存在着( )。 A 、显著正相关 B 、低度正相关 C 、显著负相关 D 、低度负相关 9、下面的各问题中,哪一个不是回归分析要解决的问题( )。 A 、判断变量之间是否存在关系 B 、 判断一个变量的数值的变化对另一个变量的影响

一元线性回归方程的计算和检验

一元线性回归方程的计算和检验 (1) 从键盘输入一组数据(x i ,y i ),i=1,2,…n 。 (2) 计算一元线性回归方程y=ax+b 的系数a 和b ,用两种方法计算: 一是公式:x a y b x x y y x x a i i i -=---=∑∑,)())((2 ; 二是用最小二乘法的公式求出最小值点(a,b ),使 ∑--=2)(min },(b ax y b a Q i i . (3) 检验回归方程是否有效(用F 分布检验)。 (4) 把散列点(x i ,y i )和回归曲线y=ax+b 画在一个图上。 (5) 每种计算法都要有计算框图,且每种计算法都要编成一个自定义函数。 程序: function yiyuanhuigui clc; disp('从键盘输入一组数据:'); x=input('X 的数(以向量形式输入):'); y=input('Y 的数(以向量形式输入):'); disp('一元线性回归方程的计算和检验:'); disp('1、公式法'); disp('2、最小二乘法'); disp('3、检验并画图'); disp('0、退出'); global a0 b0; while 3 num=input('选择求解一元回归方程的方法:'); switch num case 1 [a0,b0]=huigui(x,y) case 2 [a0,b0]=zxec(x,y) case 3 break; case 0 return; otherwise disp('输入错误,请重新输入!'); end end X=x';Y=y'; X=[ones(size(X)),X];alpha=0.5; %输出向量b ,bint 为回归系数估计值和它们的置信区间; %r1,rint 为残差及其置信区间,stats 是用于检验回归模型的统计量,第一个是R^2,其中R %是相关系数,第二个是F 统计量值,第三个是与统计量F 对应的概率P ,第四个是估计误

应用回归课程教学设计

应用回归分析 课程设计报告 课程:应用回归分析 题目:人均可支配收入的分析年级:11金统 专业:金融统计 学号: 姓名: 指导教师: 徐州师范大学 数学科学学院

基于多元线性回归模型对我国城镇居民家 庭人均可支配收入的分析 摘要:收入分配和消费结构都是国民经济的重要课题居民消费的主要来源 是居民收入而消费又是拉动经济增长的重要因素。本文将通过多远统计分析方法对我国各地区城镇居民收入的现状进行分析。通过分析找出我国城镇居民收入特点及其中存在的不足。城镇居民可支配收入是检验我国社会主义现代化进程的一个标准。本文根据我国城镇居民家庭人均可支配收入为研究对象,选取可能影响我国城镇居民家庭人均可支配收入的城乡居民储蓄存款年底余额、城乡居民储蓄存款年增加额、国民总收入、职工基本就业情况、城镇居民家庭恩格尔系数(%)5个因素,运用多元线性回归分析建立模型,先运用普通最小二乘估计求回归系数再对方程进行异方差、自相关、和多重共线性诊断,用迭代法消除了自变量之间的自相关。对于多重共线性问题,先是用逐步回归和剔除变量的方法,最终转变为用方差扩大因子法城乡居民储蓄存款年增加额剔除城镇居民家庭恩格尔系数(%) 解决多重共线性,建立最终回归方程 432108.0039.0012.0470.5305x x x y +++-=∧ 标准化回归方程 ** 3*24108.0863.0031.0x x x y ++=∧ 以其探究最后进入回归方程的几个变量在影响城镇居民收入孰轻孰重,达到学习与生活结合的效果。分析出影响城镇居民收入的主要原因,并对模型联系实际进行分析,以供国家进行决策做参考。 关键词:多元线性回归 异方差 自相关 多重共线性 逐步回归 方差扩 大因子 (一)引言: 改革开放以来我国的国民经济增长迅速居民的收入水平也大幅提高但居

一元线性回归分析法

一元线性回归分析法 一元线性回归分析法是根据过去若干时期的产量和成本资料,利用最小二乘法“偏差平方和最小”的原理确定回归直线方程,从而推算出a(截距)和b(斜率),再通过y =a+bx 这个数学模型来预测计划产量下的产品总成本及单位成本的方法。 方程y =a+bx 中,参数a 与b 的计算如下: y b x a y bx n -==-∑∑ 222 n xy x y xy x y b n x (x)x x x --==--∑∑∑∑∑∑∑∑∑ 上式中,x 与y 分别是i x 与i y 的算术平均值,即 x =n x ∑ y =n y ∑ 为了保证预测模型的可靠性,必须对所建立的模型进行统计检验,以检查自变量与因变量之间线性关系的强弱程度。检验是通过计算方程的相关系数r 进行的。计算公式为: 22xy-x y r= (x x x)(y y y) --∑∑∑∑∑∑ 当r 的绝对值越接近于1时,表明自变量与因变量之间的线性关系越强,所建立的预测模型越可靠;当r =l 时,说明自变量与因变量成正相关,二者之间存在正比例关系;当r =—1时,说明白变量与因变量成负相关,二者之间存在反比例关系。反之,如果r 的绝对值越接近于0,情况刚好相反。 [例]以表1中的数据为例来具体说明一元线性回归分析法的运用。 表1: 根据表1计算出有关数据,如表2所示: 表2:

将表2中的有关数据代入公式计算可得: 1256750x == (件) 2256 1350y ==(元) 1750 9500613507501705006b 2=-??-?=(元/件) 100675011350a =?-=(元/件) 所建立的预测模型为: y =100+X 相关系数为: 9.011638 10500])1350(3059006[])750(955006[1350 750-1705006r 22==-??-???= 计算表明,相关系数r 接近于l ,说明产量与成本有较显著的线性关系,所建立的回归预测方程较为可靠。如果计划期预计产量为200件,则预计产品总成本为: y =100+1×200=300(元)

线性回归分析教案

线性回归分析 管理中经常要研究变量与变量之间的关系,并据以做出决策。前面介绍的检验可以确定两个变量之间是否存在着某种统计关系,但是如果检验说明两个变量之间存在着某种关系,我们还是不能说明它们之间究竟存在什么样的关系。 本章介绍的回归分析能够确定两个变量之间的具体关系和这种关系的强度。回归分析以对一种变量同其他变量相互关系的过去的观察值为基础,并在某种精确度下,预测未知变量的值。 社会经济现象中的许多变量之间存在着因果关系。这些变量之间的关系一般可以分为两类:一类是变量之间存在着完全确定的关系,即一个变量能被一个或若干个其他变量按某种规律唯一地确定,例如,在价格P确定的条件下,销售收入Y与所销售的产品数量之间的关系就是一种确定性的关系:Y=P·X。另一类是变量之间存在着某种程度的不确定关系。例如,粮食产量与施肥量之间的关系就属于这种关系。一般地说,施肥多产量就高,但是,即使是在相邻的地块,采用同样的种子,施相同的肥料,粮食产量仍会有所差异。统计上我们把这种不确定关系称为相关关系。 确定性关系和相关关系之间往往没有严格的界限。由于测量误差等原因,确定性关系在实际中往往通过相关关系表现出来;另一方面,通过对事物内部发展变化规律的更深刻的认识,相关关系又可能转化为确定性关系。 两个相关的变量之间的相关关系尽管是不确定的,但是我们可以通过对现象的不断观察,探索出它们之间的统计规律性。对这类统计规律性的研究就称为回归分析。回归分析研究的主要内容有:确定变量之间的相关关系和相关程度,建立回归模型,检验变量之间的相关程度,应用回归模型进行估计和预测等。 第一节一元线性回归分析 一、问题的由来和一元线性回归模型 例7-1。某地区的人均月收入与同期某种耐用消费品的销售额之间的统计资料如表7-1所示。现要求确定两者之间是否存在相关关系。 表7-1 年份1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 人均收入 1.6 1.8 2.3 3.0 3.4 3.8 4.5 4.8 5.2 5.4 销售额(百万元) 4.7 5.9 7.0 8.2 10.5 12 13 13.5 14 15 如果作一直角坐标系,以人均收入x i为横轴,销售额y i为纵轴,把表7-1中的数据画在这个坐标系上, 我们可以看出两者的变化有近似于直线的关系,因此,可以用一元线性回归方程,以人均收入为自变量,以销售额为因变量来描述它们之间的关系。即: y i =a+b x i+e i() i n =12,,,

简单线性相关(一元线性回归分析)..

第十三讲 简单线性相关(一元线性回归分析) 对于两个或更多变量之间的关系,相关分析考虑的只是变量之间是否相关、相关的程度,而回归分析关心的问题是:变量之间的因果关系如何。回归分析是处理一个或多个自变量与因变量间线性因果关系的统计方法。如婚姻状况与子女生育数量,相关分析可以求出两者的相关强度以及是否具有统计学意义,但不对谁决定谁作出预设,即可以相互解释,回归分析则必须预先假定谁是因谁是果,谁明确谁为因与谁为果的前提下展开进一步的分析。 一、一元线性回归模型及其对变量的要求 (一)一元线性回归模型 1、一元线性回归模型示例 两个变量之间的真实关系一般可以用以下方程来表示: Y=A + BX + ε 方程中的A 、B 是待定的常数,称为模型系数,ε是残差,是以X 预测Y 产生的误差。 两个变量之间拟合的直线是: y a bx ∧ =+ y ∧ 是 y 的拟合值或预测值,它是在X 条件下Y 条件均值的估计 a 、 b 是回归直线的系数,是总体真实直线A 、B 的估计值,a 即 constant 是截距,当自变量的值为0时,因变量的值。 b 称为回归系数,指在其他所有的因素不变时,每一单位自变量的变化引起的因变量的变化。 可以对回归方程进行标准化,得到标准回归方程: y x ∧ =β β 为标准回归系数,表示其他变量不变时,自变量变化一个标准差单位(Z X X S j j j = -),因变量Y 的标准差的平均变化。

由于标准化消除了原来自变量不同的测量单位,标准回归系数之间是可以比较的,绝对值的大小代表了对因变量作用的大小,反映自变量对Y的重要性。 (二)对变量的要求:回归分析的假定条件 回归分析对变量的要求是: 自变量可以是随机变量,也可以是非随机变量。自变量X值的测量可以认为是没有误差的,或者说误差可以忽略不计。 回归分析对于因变量有较多的要求,这些要求与其它的因素一起,构成了回归分析的基本条件:独立、线性、正态、等方差。 (三)数据要求 模型中要求一个因变量,一个或多个自变量(一元时为1个自变量)。 因变量:要求间距测度,即定距变量。 自变量:间距测度(或虚拟变量)。 二、在对话框中做一元线性回归模型 例1:试用一元线性回归模型,分析大专及以上人口占6岁及以上人口的比例(edudazh)与人均国内生产总值(agdp)之间的关系。 本例使用的数据为st2004.sav,操作步骤及其解释如下: (一)对两个变量进行描述性分析 在进行回归分析以前,一个比较好的习惯是看一下两个变量的均值、标准差、最大值、最小值和正态分布情况,观察数据的质量、缺少值和异常值等,缺少值和异常值经常对线性回归分析产生重要影响。最简单的,我们可以先做出散点图,观察变量之间的趋势及其特征。通过散点图,考察是否存在线性关系,如果不是,看是否通过变量处理使得能够进行回归分析。如果进行了变量转换,那么应当重新绘制散点图,以确保在变量转换以后,线性趋势依然存在。 打开st2004.sav数据→单击Graphs → S catter →打开Scatterplot 对话框→单击Simple →单击 Define →打开 Simple Scatterplot对话框→点选 agdp到 Y Axis框→点选 edudazh到 X Aaxis框内→单击 OK 按钮→在SPSS的Output窗口输出所需图形。 图12-1 大专及以上人口占6岁及以上人口比例与人均国内生产总值的散点图

数学苏教版必修3教学案第1部分 第2章 2.4 线性回归方程 Word版含解析

房地产涨价一直是受关注的民生问题之一,以下是某房地产开发商在年前两季度销售的新楼盘中的销售价格(单位:万元)与房屋面积(单位:)的数据. 问题:在平面直角坐标系中,以为横坐标,为纵坐标作出表示以上数据的点. 提示: 问题:从上图中发现,有何关系?是函数关系吗? 提示:从图中发现逐渐增大时,逐渐增大,但有个别情况.不是函数关系. .变量间的常见关系 ()函数关系:变量之间的关系可以用函数表示,是一种确定性关系. ()相关关系:变量之间有一定的联系,但不能完全用函数来表达. .散点图 从一个统计数表中,为了更清楚地看出变量与变量是否有相关关系,常将的取值作为横坐标,将的相应取值作为纵坐标,将表中数据构成的数对所表示的点在坐标系内标出,我们称这样的图形叫做散点图. 某小卖部为了了解热茶销售量与气温之间的关系,随机统计并制作了某天卖出热茶的杯数与当天气温的对照表:

问题:判断气温与杯数是否有相关关系? 提示:作散点图可知具有相关关系. 问题:若某天的气温是-℃,能否根据这些数据预测小卖部卖出热茶的大体杯数? 提示:可以.根据散点图作出一条直线,求出直线方程后可预测. .线性相关关系:能用直线=+近似表示的相关关系. .线性回归方程: 设有对观察数据如下: 当,使=(--)+(取得最小值时,就称方程 =+为拟合这对数据的线性回归方程,该方程所表示的直线称为回归直线..用回归直线进行数据拟合的一般步骤: ()作出散点图,判断散点是否在一条直线附近. ()如果散点在一条直线附近,用公式 错误! 求出,,并写出线性回归方程. .函数关系是一种因果关系,而相关关系不一定是因果关系,也可能是伴随关系,如 试验田的施肥量与水稻的产量.当自变量每取一确定值时,因变量的取值带有一定的随机性 ,即还受其他环境因素的影响..用最小平方法求回归直线的方程的前提是先判断所给数据具有线性相关关系(可用散 点图判断).否则求出的线性回归方程是无意义的. [例] 关于人体的脂肪含量(百分比)与年龄关系的研究中,得到如下一组数据:

一元线性回归方程教案

8.5 一元线性回归案例 湘教版选修 2-3 第 8.5 节 【教学目标】 (一) 知识与技能 了解样本、样本容量、线性回归的概念,理解变量之间的相关系数的概念、 相关系数、一元线性回归直线等概念。 (二) 过程与方法 熟练利用公式求相关系数,掌握求一元线性回归直线方程 l : y = bx + a. 的方 法,加深理解线性回归模型的意义。判断变量间是否线性相关。 (三) 情感、态度与价值观 培养学生分析问题、解决问题的能力,收集数据和处理数据的能力。 【教材分析】 1. 教学重点:让学生了解线性回归的基本思想和方法。 2. 教学难点:掌握建立回归模型的基本步骤。 3. 变量间的关系: 函数关系:自变量 x 确定 y 唯一确定;(确定关系) 相关关系:当自变量一定时,因变量的取值带有一定的 随机性的两个变量之间的 关系称为相关关系 。 例如:在水稻产量与施肥量的关系中,施肥量是可控制变量,而水稻产量 是随机变量。因此只能说明水稻产量与施肥量是相关关系。 现实生活中相关关系大量存在,从某种意义上看,函数是一种理想的关系模型, 而相关关系式一种更为一般的情况,因此更有研究相关关系的必要了。 4. 一元线性回归分析 在具有相关关系的变量中如果因变量仅与一个变量有关,相应的统计分析成 为一元回归分析;若与因变量与多个自变量有关,称为多元线性回归分析。 5. 线性相关性检验: (相关系数检验法) 当 r >0 时,我们称其正相关; 当 r xy <0 时,我们称其负相关; 当 r xy =0 时,我们称其不相关。

教学过程教师活动学生活动 问题一:如果有两个变量X 和Y,那么这两个变量之间 有什么关系呢?答: 设计意图 引入新知 讲授新知(联系我们之前学过的知函数:涉及了两个变量,自通过对两识,哪些涉及了两个变量并变量X因变量Y,个变量之着重强调两个变量之间的随着自变量X的变化相应间关系的关系呢?)的有唯一的因变量Y与之探讨,既用身高和体重这个例子引对应复习了已出相关关系学的函数那么什么叫做相关关系函数关系知识,又呢?引出这节函数关系与相关关系之间课所要关又有什么异同点呢?相关关系注的相关那么这节课我们就一起来关系。研究一下相关关系。 在此之前,我们先一起来看 一道例题。 首先我们先一起分析一下答:通过学生表中所给数据,你能得到怎(1)随着年份的增加,船对数据的样的结论呢?只数量X也是在逐年增加观察可以 的;大概得到这是我们从表中数据直接(2)并且随着船只数量的两个变量得到的,一般情况下对于数增加,被撞死的海牛数整体间的关据的处理我们除了可以采呈现一种上升的趋势。系,但是用列表法,还可以采用图像未来更加法。那么为了更加直观的反直观便可映整体走势,下面请同学们以借助散根据表中数据在坐标系中点图来帮绘出相应各点。看看能得到助我们分什么样的结论呢?析。 (用excel绘制散点图) 我们发现绘制出的图形呈 现一个一个的散点,我们称 这样的图形为散点图。 并且从数据散点图看到y i 有随着x的增加而沿某一 i 直线增加的趋势。并且这些

一元线性回归基本操作

打开eviews7 软件 1.导入数据 File----open--Eviews workfile 查找出数据存放的地方,点击下一步,完成,即可。(注意:数据的格式须正确,否则无法正常操作,若出现?则说明数据格式存在问题,须返回重新修改。) 2.对数据做描述性统计 选中变量,如X,Y 如下图,右键----open—as group 出现如下界面

选择view---descriptive stats(描述性统计)---common sample 从上到下分别是均值,中值,最大值,最小值,标准差 偏度:(样本图形分布)等于0,图形对称分布,大于0,图形长的右拖,小于0,长的左拖峰度:(衡量正态分布)等于3,图形凸起状态符合正态分布, J-B衡量是否服从正态分布的统计量

Pro为J-B的相伴概率,于拒绝原假设,不服从正态分布,10%以内,不能拒绝原假设,即服从正态分布 加总,偏差平方和,观测值数 3.对数据作图进行观测 Scatter(散点图),Line & Symbol(线性图) 一般来说图形纵轴表示应变量,横轴表示自变量,若出现相反情况说明选择时顺序不对,返回更改X,Y的选择顺序即可。

4.简单一元线性回归 Quick---Equation Estimation , 再进行如下操作,键入y c x(按照方程式的顺序,否则无法得到想要的结果),方法选择LS(最小二乘法) 得到如下结果

若要显示回归结果的图形,在“Equation”框中,点击“Resids”,即出现剩余项(Residual)、实际值(Actual)、拟合值(Fitted)的图形,如图2.13所示。

(完整版)回归分析的基本思想及其初步应用第1课时优秀教学设计

3.1 回归分析的基本思想及其初步 【课题】:3.1.1 回归分析的基本思想及其初步 【学情分析】: 教学对象是高二理科学生,学生已经初步学会用最小二乘法建立线性回归模型的知识,并能用所学知识解决一些简单的实际问题。回归分析是数理统计中的重要内容,在教学中,要结合实例进行相关性检验,理解只有两个变量相关性显著时,回归方程才具有实际意义。在起点低的班级中注重让学生参与实践,结合画图表的方法整理数据,鼓励学生通过收集数据,经历数据处理的过程,从而认识统计方法的特点,达到学习的目的。 【教学目标】: (1)知识与技能:回忆线性回归模型与函数模型的差异,理解用最小二乘法求回归模型的步骤,了解判断两变量间的线性相关关系的强度——相关系数。 (2)过程与方法:本节内容先从大学中女大学生的甚高和体重之间的关系入手,求出相应的回归直线方程。 (3)情感态度与价值观:从实际问题中发现自己已有知识的不足之处,激发学生的好奇心和求知欲, 培养学生不满足于已有知识,勇于求知的良好个性品质,引导学生积极进 取。 【教学重点】: 1.了解线性回归模型与函数模型的差异; 2.了解两变量间的线性相关关系的强度——相关系数。 【教学难点】: 1.了解两变量间的线性相关关系的强度——相关系数; 2.了解线性回归模型与一次函数模型的差异。 【课前准备】:课件

②列表求出相关的量,并求出线性回归方程 代入公式有848.025.16582187745 .5425.165872315?2 2 1 21 ≈?-??-=--=∑∑==x n x y x n y x b n i i n i i i 712.8525.165849.05.54?-=?-=-=x b y a 所以回归方程为712.85849.0???-=+=x x b a y ③利用回归方程预报身高172cm 的女大学生的体重约为多少? 当172=x 时,()kg y 316.60712.85172849.0?=-?= 引导学生复习总结求线性回归方程的步骤: 第一步:作散点图—→第二步:求回归方程—→第三步:代值计算 三、探究新知 问题四:身高为172cm 的女大学生的体重一定是60.316kg 吗? (不一定,但一般可以认为她的体重在60.316kg 左右.) 师:提出问题,引导学生比较函数模型与线性回归模型的不同,并引出相关系数的作用。 生:思考、讨论、解释 解释线性回归模型与一次函数的不同 从散点图可观察出,女大学生的体重y 和身高x 之间的关系并不能用一次函数y bx a =+来严格刻画(因为所有的样本点不共线,所以线性模型只能近似地刻画身高和体重的关系). 在数据表中身高为165cm 的3名女大学生的体重分别为48kg 、57kg 和61kg ,如果能用一次函数来描述体重与身高的关系,那么身高为165cm 的3名女在学生的体重应相同. 这就说明体重不仅受身高的影响还受其他因素的影响,把这种影响的结果e (即残差变量或随机变量)引入到线性函数模型中,得到线性回归模型 引导学生了解线性回归模型与一次函数的不同 40 45505560 6570150 155160165170175180

第二节 一元线性回归分析

第二节一元线性回归分析 本节主要内容: 回归是分析变量之间关系类型的方法,按照变量之间的关系,回归分析分为:线性回归分析和非线性回归分析。本节研究的是线性回归,即如何通过统计模型反映两个变量之间的线性依存关系。 回归分析的主要内容: 1.从样本数据出发,确定变量之间的数学关系式; 2.估计回归模型参数; 3.对确定的关系式进行各种统计检验,并从影响某一特定变量的诸多变量中找出 影响显著的变量。 一、一元线性回归模型: 一元线性模型是指两个变量x、y之间的直线因果关系。 理论回归模型: 理论回归模型中的参数是未知的,但是在观察中我们通常用样本观察值估计参数值,通常用分别表示的估计值,即称回归估计模型: 回归估计模型: 二、模型参数估计: 用最小二乘法估计: 【例3】实测某地四周岁至十一岁女孩的七个年龄组的平均身高(单位:厘米)如下表所示

某地女孩身高的实测数据 建立身高与年龄的线性回归方程。 根据上面公式求出b0=80.84,b1=4.68. 三.回归系数的含义 (2)回归方程中的两个回归系数,其中b0为回归直线的启动值,在相关图上变现为x=0时,纵轴上的一个点,称为y截距;b1是回归直线的斜率,它是自变量(x)每变动一个单位量时,因变量(y)的平均变化量。 (3)回归系数b1的取值有正负号。如果b1为正值,则表示两个变量为正相关关系,如果b1为负值,则表示两个变量为负相关关系。 [例题·判断题]回归系数b的符号与相关系数r的符号,可以相同也可以不同。() 答案:错误 解析:回归系数b的符号与相关系数r的符号是相同的 [例题·判断题]在回归直线y c=a+bx,b<0,则x与y之间的相关系数() a.r=0 b.r=1 c.0

用R软件进行一元线性回归 实验报告

数理统计上机报告 上机实验题目:用R软件进行一元线性回归 上机实验目的: 1、进一步理解假设实验的基本思想,学会使用实验检验和进行统计推断。 2、学会利用R软件进行假设实验的方法。 一元线性回归基本理论、方法: 基本理论:假设预测目标因变量为Y,影响它变化的一个自变量为X,因变量随自变量的增(减)方向的变化。一元线性回归分析就是要依据一定数量的观察样本(Xi, Yi),i=1,2…,n,找出回归直线方程Y=a+b*X 方法:对应于每一个Xi,根据回归直线方程可以计算出一个因变量估计值Yi。回归方程估计值Yi 与实际观察值Yj之间的误差记作e-i=Yi-Yi。显然,n个误差的总和越小,说明回归拟合的直线越能反映两变量间的平均变化线性关系。据此,回归分析要使拟合所得直线的平均平方离差达到最小,据此,回归分析要使拟合所得直线的平均平方离差达到最小,简称最小二乘法将求出的a和b 代入式(1)就得到回归直线Yi=a+bXi 。那么,只要给定Xi值,就可以用作因变量Yi的预测值。 (一) 实验实例和数据资料: 有甲、乙两个实验员,对同一实验的同一指标进行测定,两人测定的结果如 试问:甲、乙两人的测定有无显著差异?取显著水平α=0.05. 上机实验步骤: 1

(1)设置假设:H0:u1-u-2=0:H1:u1-u-2<0 (2)确定自由度为n1+n2-2=14;显著性水平a=0.05 (3)计算样本均值样本标准差和合并方差统计量的观测值alpha<-0.05; n1<-8; n2<-8; x<-c(4.3,3.2,3.8,3.5,3.5,4.8,3.3,3.9); y<-c(3.7,4.1,3.8,3.8,4.6,3.9,2.8,4.4); var1<-var(x); xbar<-mean(x); var2<-var(y); ybar<-mean(y); Sw2<-((n1-1)*var1+(n2-1)*var2)/(n1+n2-2) t<-(xbar-ybar)/(sqrt(Sw2)*sqrt(1/n1+1/n2)); tvalue<-qt(alpha,n1+n2-2); (4)计算临界值:tvalue<-qt(alpha,n1+n2-2) (5)比较临界值和统计量的观测值,并作出统计推断 实例计算结果及分析: alpha<-0.05; > n1<-8; > n2<-8; > x<-c(4.3,3.2,3.8,3.5,3.5,4.8,3.3,3.9); > y<-c(3.7,4.1,3.8,3.8,4.6,3.9,2.8,4.4); > var1<-var(x); > xbar<-mean(x); > var2<-var(y); > ybar<-mean(y); > Sw2<-((n1-1)*var1+(n2-1)*var2)/(n1+n2-2) > t<-(xbar-ybar)/(sqrt(Sw2)*sqrt(1/n1+1/n2)); > var1 [1] 0.2926786 > xbar [1] 3.7875 > var2 [1] 0.2926786 2

最新中职数学基础模块教学设计:一元线性回归

【课题】10.5 一元线性回归 【教学目标】 知识目标: (1)了解相关关系的概念. (2)掌握一元线性回归思想及回归方程的建立. 能力目标: 增强学生的数据处理能力,计算工具的使用能力,分析问题和解决问题的能力,培养严谨、细致的学习和工作作风. 【教学重点】 掌握一元回归方程. 【教学难点】 理解相关关系、回归分析概念. 【教学设计】 一切自然现象和社会现象都不是孤立的.事物与事物之间,变量与变量之间,都存在着某种关系.这类关系大体可分为两类:一类是确定性的,另一类是非确定性的.用来近似地描述具有统计相关关系的变量之间关系的函数叫做回归函数.一元回归处理两个变量之间的相关关系问题.如果两个变量之间的相关关系是线性的,就是一元线性回归问题.本教材根据学生的实际情况只介绍两个变量间的一元线性回归问题.通过建立回归方程,可以对相应的变量进行预测和控制.回归分析具有广泛的应用.在本节教学过程中,由于统计量的计算十分繁杂,因此,必须注重训练学生利用计算器或计算机软件进行计算、求解的能力. 【教学备品】 教学课件. 【课时安排】 2课时.(90分钟) 【教学过程】

过 程 行为 行为 意图 间 图10?8 表面上散点图中的这些点杂乱无章,但是大体上呈现出一种直线走向趋势〔这是非常重要的,否则不能用一次函数来近似〕.这启发我们,人的体重y 与身高x 大体上有一次函数的关系,,即可以近似地有 =+y a bx (10.5) 其中a 、b 是未知的,可以用样本的数据去估计a 、b 的值,估计值分别写作a ?和b ?. 一般地,用1122(,),(,),,(,)n n x y x y x y 表示数据的n 个有 序实数对,则可证明得到a ?与b ?的计算公式如下: 11122 1 1 ()() ?,() =====-=-∑∑∑ ∑∑n n n i i i i i i i n n i i i i n x y x y b n x x ??,=-a y bx 其中11 11,====∑∑n n i i i i x x y y n n . 方程 ????=+y a bx (10.6) 叫做y 关于x 的回归方程,它的图形叫做回归直线. 【说明】 引领 分析 仔细 分析 关键 语句 讲解 说明 理解 记忆 观察 带领 学生 分析 启发 学生 思考

Excel关于求解一元及多元线性回归方程图解详细

Excel求解一元线性回归方程步骤(图解详细) 1.开始-程序-Microsoft Excel,启动Excel程序。 2.Excel程序启动后,屏幕显示一个空白工作簿。 3.选定单元格,在单元格输入计算数据。

4.选中输入数据,点击“图表向导”按钮。 5.弹出图表向导对话窗,点击XY散点图,选择平滑线散点图,点击下一步。 6.选择系列产生在:列,点击下一步。

7.在图表标题中输入“硝基苯标准曲线”,数值(X)轴输入“硝基苯浓度”,数值(Y)轴输入“HPLC峰面积”。此外还可以点击“坐标轴”,“网格线”,“图例”,“数据标志”下拉菜单,对其中选项进行选择。 8.点击完成后,即可得到硝基苯的标准曲线图。 9.将鼠标移至图表工作曲线上,单击鼠标右键,选择“添加趋势线”。

10.在“类型”选项中选择“线性”,“选项”中选择“显示公式”,“显示R平方值”,单击确定。 11.单击确定后即可得到附有回归方程的一元线性回归曲线。 12.至此,利用“图表向导”制作回归方程的操作步骤完毕。 利用Excel中“图表向导”制作标准曲线,使用者仅需按照向导说明填入相关信息即可完成图表的制作。方法简单,适合对Excel了解不多的人员,如果你对Excel函数有一定的了解,那么你可以利Excel函数编制程序完成回归方程的计算。 4.4.2.2通过编制Excel程序计算一元线性回归方程 1.打开一个新工作簿,以“一元线性回归方程”为文件名存盘。 2.单击插入,选择名称-定义。

3.在弹出的“定义名称”对话窗中“名称”栏输入“a”,“引用位置”栏输入“=$E$4”,然后按“添加”按钮;再在“名称”栏输入“b”,“引用位置”栏输入“=$E$3”,按“添加”按钮,依次输入下列容,最后单击确定。 “名称”栏输入容“引用位置”栏输入容 a =$E$4 b =$E$3 f =$G$4 n =$G$3 rf =$G$6 rxy =$E$5 x =$A$3:$A$888 y =$B$3:$B$888 aa=$G$2 yi1 =$E$12 yi2 =$E$13 4.完成命名后,在相关单元格输入下列程序容。 单元格输入容 E3 =ROUND(SLOPE(y,x),4) G3 =COUNT(x) E4 =ROUND(INTERCEPT(y,x),4) G4 =n-2 E5 =PEARSON(x,y) E6 =DEVSQ(x) G6 =SQRT(FINV(a,1,f)/(f+FINV(a,1,f ))) E7 =DEVSQ(x)*(1-rxy^2) E8 =STEYX(y,x) E9 =IF(rxy>rf,“rxy>临界值回归方程有意义”, “rxy>临界值回归方程有意义”) G10 =1-G2 E11 =CONCATENATE(“=”,a,”+”,”(“,b,”)X”) G12 =(yi1-a)/b G13 =(yi2-a)/b

线性回归方程 精品课教案

直线的回归方程教学设计 一、课题引入 引言:我们知道,通过散点图可以判断两个变量之间是否具有“正相关”或“负相关”,但这只是一个定性的判断,更多的时候,我们需要的是定量的刻画. 问题1:下列两个散点图中,两个变量之间是否具有线性相关关系?理由呢?是正相关还是负相关? 设计意图:回顾上节课所学内容,使学生的思想、知识和心理能较快地进入本节课课堂学习的状态. 师生活动:学生回答,图1没有线性相关关系,图2有线性相关关系,因为图1中的所有点都落在某一直线的附近.通过问题,使学生回忆前2节课核心概念:线性相关关系、正相关、负相关等,为后续学习打基础. 二、本节课的新知识 问题2:通过上一节课的学习,我们认为以“偏差”最小的直线作为回归直线比较恰当,那你能用代数式来刻画“从整体上看,各点与此直线的偏差最小”吗? 设计意图:几何问题代数化,为下一步探究作好准备,经历“几何直观”转化为“代数表达”过程,为引出“最小二乘法”作准备. 师生活动:先展示上一节课的讨论结果:学生提出的如下四种可能性:图3(1)表示每一点到直线的垂直距离之和最短,图3(2)表示每一点到直线的“偏差”之和最短,图3(3)表示经过点最多的直线,图3(4)表示上下点的个数“大概”一样多的直线.通过上一节课的分析,我们认为选择偏差之和最短比较恰当,即图3(2).

设回归直线方程为,(x i,y i)表示第i个样本点,将样本数据记为,学生思考,教师启发学生比较下列几个用于评价的模型: 模型3:. 师生一起分析后,得出用模型3来制定标准评价一条直线是否为“最好”的直线较为方便.Q=(y1-bx1-a)2+(y2-bx2-a)2+…+(y n-bx n-a)2= 问题3:通过对问题2的分析,我们知道了用Q=最小来表示偏差最小,那么在这个式子中,当样本点的坐标(x i,y i)确定时,a,b等于多少,Q能取到最小值呢?

2.3.2 两个变量的线性相关 教案1

2.3.2两个变量的线性相关 教学目标:经历用不同估算方法描述两个变量线性相关的过程。知道最小二乘法的思想,能 根据给出的线性回归方程系数公式建立线性回归方程。 教学重点:经历用不同估算方法描述两个变量线性相关的过程。知道最小二乘法的思想,能 根据给出的线性回归方程系数公式建立线性回归方程。 教学过程: 1.回顾上节课的案例分析给出如下概念: (1)回归直线方程 (2)回归系数 2.最小二乘法 3.直线回归方程的应用 (1)描述两变量之间的依存关系;利用直线回归方程即可定量描述两个变量间依存 的数量关系 (2)利用回归方程进行预测;把预报因子(即自变量x )代入回归方程对预报量(即 因变量Y )进行估计,即可得到个体Y 值的容许区间。 (3)利用回归方程进行统计控制规定Y 值的变化,通过控制x 的范围来实现统计控 制的目标。如已经得到了空气中NO 2的浓度和汽车流量间的回归方程,即可通过控制汽车流量来控制空气中NO 2的浓度。 4.应用直线回归的注意事项 (1)做回归分析要有实际意义; (2)回归分析前,最好先作出散点图; (3)回归直线不要外延。 5.实例分析: 某调查者从调查中获知某公司近年来科研费用支出(i X )与公司所获得利润(i Y )的统计资料如下表: i X i Y 要求估计利润(i Y )对科研费用支出(i X )的线性回归模型。

解:设线性回归模型直线方程为:i i X Y 10?? ?ββ+= 因为: 5630== = ∑n X X i 306180 == =∑n Y Y i 现利用公式(Ⅰ)、(Ⅱ)、(Ⅲ)求解参数 10的估计值: 2 300600900120054006000302006180 3010006)(?22 2 1==--= -??-?= --=∑∑∑∑∑i i i i i i X X n Y X Y X n β 20 5 230??10=?-=-=X Y ββ ∑∑--=-=2 21 10) (???X n X Y X n Y X X Y i i i βββ 20 5 230??10=?-=-=X Y ββ 2501005620030 5610002==?-??-= ∑∑---=-=2 1 10)())((???X X Y Y X X X Y i i i βββ 20 5 230??1 0=?-=-=X Y ββ

相关文档
最新文档