实验一一元线性回归

合集下载

《计量经济学》eviews实验报告一元线性回归模型详解

《计量经济学》eviews实验报告一元线性回归模型详解

计量经济学》实验报告一元线性回归模型-、实验内容(一)eviews基本操作(二)1、利用EViews软件进行如下操作:(1)EViews软件的启动(2)数据的输入、编辑(3)图形分析与描述统计分析(4)数据文件的存贮、调用2、查找2000-2014年涉及主要数据建立中国消费函数模型中国国民收入与居民消费水平:表1年份X(GDP)Y(社会消费品总量)200099776.339105.72001110270.443055.42002121002.048135.92003136564.652516.32004160714.459501.02005185895.868352.62006217656.679145.22007268019.493571.62008316751.7114830.12009345629.2132678.42010408903.0156998.42011484123.5183918.62012534123.0210307.02013588018.8242842.82014635910.0271896.1数据来源:二、实验目的1.掌握eviews的基本操作。

2.掌握一元线性回归模型的基本理论,一元线性回归模型的建立、估计、检验及预测的方法,以及相应的EViews软件操作方法。

三、实验步骤(简要写明实验步骤)1、数据的输入、编辑2、图形分析与描述统计分析3、数据文件的存贮、调用4、一元线性回归的过程点击view中的Graph-scatter-中的第三个获得在上方输入Isycx回车得到下图DependsntVariable:Y Method:LeastSquares□ate:03;27/16Time:20:18 Sample:20002014 Includedobservations:15VariableCoefficientStd.Errort-StatisticProb.C-3J73.7023i820.535-2.1917610.0472X0416716 0.0107S838.73S44 a.ooao R-squared0.991410 Meandependentwar119790.2 AdjustedR.-squared 0.990750 S.D.dependentrar 7692177 S.E.ofregression 7J98.292 Akaike infocriterion20.77945 Sumsquaredresid 7;12E^-08 Scliwarz 匚「爬伽20.37386 Loglikelihood -1&3.3459Hannan-Quinncriter. 20.77845 F-statistic 1I3&0-435 Durbin-Watsonstat0.477498Prob(F-statistic)a.oooooo在上图中view 处点击view-中的actual ,Fitted ,Residual 中的第一 个得到回归残差打开Resid 中的view-descriptivestatistics 得到残差直方图/icw Proc Qtjject PrintN^me FreezeEstimateForecastStatsResids凹Group:UNIIILtD Worktile:UN III LtLJ::Unti1DependentVariablesMethod;LeastSquares□ate:03?27/16Time:20:27Sample(adjusted):20002014Includedobservations:15afteradjustmentsVariable Coefficient Std.Errort-Statistic ProtJ.C-3373.7023^20.535-2.191761 0.0472X0.4167160.01075S38.735440.0000R-squared0.991410 Meandependeniwar1-19790.3 AdjustedR-squa.red0990750S.D.dependentvar 76921.77 SE.ofregre.ssion 7J98.292 Akaike infacriterion20.77945 Sumsquaredresid 7.12&-0S Schwarzcriterion 20.S73S6 Laglikelihood -153.84&9Hannan-Quinncrite匚20.77545 F-statistic1I3&0.435Durbin-Watsonstat 0.477498 ProbCF-statistic) a.ooaooo在回归方程中有Forecast,残差立为yfse,点击ok后自动得到下图roreestYFM J訓YForea空巾取且:20002015 AdjustedSErmpfe:2000231i mskJddd obaerratire:15Roof kter squa red Error理l%2Mean/^oLteError畐惯啟iJean Afe.PereersErro r5.451SSQThenhe鼻BI附GKWCE口.他腐4Prop&niwi□ooooooVactaree Propor^tori0.001^24G M『倚■底Props^lori09®475在上方空白处输入lsycs…之后点击proc中的forcase根据公式Y。

计量经济学上机实验

计量经济学上机实验

计量经济学上机实验上机实验一:一元线性回归模型实验目的:EViews软件的基本操作实验内容:对线性回归模型进行参数估计并进行检验上机步骤:中国内地2011年中国各地区城镇居民每百户计算机拥有量和人均总收入一.建立工作文件:1.在主菜单上点击File\New\Workfile;2.选择时间频率,A3.键入起始期和终止期,然后点击OK;二.输入数据:1.键入命令:DATA Y X2.输入每个变量的统计数据;3.关闭数组窗口(回答Yes);三.图形分析:1.趋势图:键入命令PLOT Y X2.相关图:键入命令 SCAT Y X 散点图:趋势图:上机结果:Yˆ11.958+0.003X=s (βˆ) 5.6228 0.0002t (βˆ) 2.1267 11.9826prob 0.0421 0.00002=0.831 R2=0.826 FR=143.584 prob(F)=0.0000上机实验二:多元线性回归模型实验目的:多元回归模型的建立、比较与筛选,掌握基本的操作要求并能根据理论对分析结果进行解释实验内容:对线性回归模型进行参数估计并进行检验上机步骤:商品的需求量与商品价格和消费者平均收入趋势图:散点图:上机结果:i Yˆ=132.5802-8.878007X1-0.038888X2s (βˆ) 57.118 4.291 0.419t (βˆ) 2.321 -2.069 -0.093prob 0.0533 0.0773 0.9286 R2=0.79 R2=0.73 F =13.14 prob(F)=0.00427三:非线性回归模型实验目的:EViews软件的基本操作实验内容:对线性回归模型进行参上机步骤:我国国有独立核算工业企业统计资料一.建立工作文件:1.在主菜单上点击File\New\Workfile;2.选择时间频率,A3.键入起始期和终止期,然后点击OK;二.输入数据:1.键入命令:DATA Y L K2.输入每个变量的统计数据;3.关闭数组窗口(回答Yes);三.图形分析:1.趋势图:键入命令PLOT Y K L2.相关图:键入命令 SCAT Y K L四.估计回归模型:键入命令LS Y C K L上机结果:Y =4047.866K1.262204L-1.227157s (βˆ) 17694.18 0232593 0.759696t (βˆ) 0.228768 5.426669 -1.615325prob 0.8242 0.0004 0.1407R2=0.989758 R2=0.987482 F=434.8689 prob(F)=0.0000上机实验四:异方差实验目的::掌握异方差的检验与调整方法的上机实现实验内容:我国制造工业利润函数行业销售销售行业销售销售实验步骤:一.检验异方差性1.图形分析检验:1) 观察Y、X相关图:SCAT Y X2) 残差分析:观察回归方程的残差图LS Y C X在方程窗口上点击Residual按钮;2. Goldfeld-Quant检验:SORT XSMPL 1 10LS Y C X(计算第一组残差平方和)SMPL 19 28LS Y C X(计算第二组残差平方和)计算F统计量,判断异方差性3.White检验:SMPL 1 28LS Y C X在方程窗口上点击:View\Residual\Test\White Heteroskedastcity 由概率值判断异方差性。

一元线性回归法 excle操作

一元线性回归法   excle操作

实验结果:实验一:一元线性回归在Excel中的实现一、实验过程描述1.录入数据打开EXCLE,录入实验数据,B列存放居民货币收入,C列存放居民消费品购买力,如下图所示:2.绘制散点图点击插入——图表——散点图——下一步,选择数据区域如下图:定义表名为消费能力表、X轴为收入、Y轴为购买力,形成生散点图:根据散点图可知,题中两个条件之间存在着线性关系,根据散点图可建立一次回归模型。

3.所需数据的计算一元线性回归系数的计算中,需要用到∑x、∑y、∑2x、∑2y及∑xy 的值,因此按下列步骤求出这些值。

在D2单元格中输入“=B2*B2”,下拉求出所有的值。

同上,在E2单元格中输入”=C2*C2”,在F2单元格中输入“=B2*C2”,依次下拉,得到所有值。

结果如下表所示:在B11单元格中输入“=SUM(B2:B10)”,依次右拉,求出各列的和∑x 、∑y 、∑2x 、∑2y 及∑xy ,依次存在B11,C11,D11,E11,F11.如下图所示:4. 一元线性回归系数的计算:根据系数公式x b y a x x n y x xy n b 22-=--=∑∑∑∑∑)(,在EXCLE 表格中进行计算如下: 在I2单元格中输入一元线性回归系数b 的公式“=(9*F11-B11*C11)/(9*D11-B11*B11)”,在I3单元格中输入系数a 的公式 “ =C11/9-I2*(B11/9)”结果如下图所示:由此得出回归方程:Y=-0.99464X+0.847206二、实验结果分析在进行线性回归分析之前,首先必须依据一定的经济理论、专业知识,对变量间是否存在一定的相关性进行分析。

本题中,应根据实际经验,确定居民货币收入为自变量,居民消费品购买力为因变量。

再次要绘制散点图,观察数据信息是否符合线性要求,在完成上述准备工作后,才能进行线性回归方程的计算。

企业经营决策模拟中一元线性回归分析的实验总结

企业经营决策模拟中一元线性回归分析的实验总结

企业经营决策模拟中一元线性回归分析的实验总结
在企业经营决策模拟中,一元线性回归分析被广泛应用于预测和解释业务相关的变量之间的关系。

通过对实验数据进行回归分析,可以获得许多有价值的结论和洞察力。

以下是一些实验总结的要点:
1. 数据采集与准备:在进行一元线性回归分析实验之前,首先需要收集与研究对象相关的数据。

数据应该是真实可靠的,并且应该具有足够的样本量以确保统计显著性。

2. 变量选择与转换:确定自变量和因变量,自变量是用来预测因变量的变量。

可能需要对数据进行变量转换,例如对数变换或标准化,以确保数据的正态分布性和线性关系。

3. 模型构建与分析:使用拟合优度(R-squared)和显著性检验(F-test)来评估模型的拟合优度。

这些指标可以告诉我们所选模型能够解释多少因变量的变异,以及这种解释的可靠性。

4. 系数解释与预测:线性回归模型提供了变量之间的关系方程,在理解模型中的系数之前,我们应该确保变量之间具有统计显著性。

通过系数解释,我们可以了解自变量的变化对因变量的影响。

5. 模型诊断:在进行一元线性回归分析后,需要对模型进行诊断,以验证模型的假设是否满足。

可以使用残差分析来检查模型的正态分布、同方差性和线性关系等假设。

通过一元线性回归分析实验,我们可以获得对业务变量之间关系的洞察和预测能力。

然而,我们必须谨慎地解释和使用这些结果,并意识到回归模型只能提供相关性,而不是因果关系。

一元回归及检验实验报告

一元回归及检验实验报告

竭诚为您提供优质文档/双击可除一元回归及检验实验报告篇一:一元线性回归模型的参数估计实验报告山西大学实验报告实验报告题目:计量经济学实验报告学院:专业:课程名称:计量经济学学号:学生姓名:教师名称:崔海燕上课时间:一、实验目的:掌握一元线性回归模型的参数估计方法以及对模型的检验和预测的方法。

二、实验原理:1、运用普通最小二乘法进行参数估计;2、对模型进行拟合优度的检验;3、对变量进行显著性检验;4、通过模型对数据进行预测。

三、实验步骤:(一)建立模型1、新建工作文件并保存打开eviews软件,在主菜单栏点击File\new\workfile,输入startdate1978和enddate20XX并点击确认,点击save 键,输入文件名进行保存。

2输入并编辑数据在主菜单栏点击Quick键,选择empty\group新建空数据栏,先输入被解释变量名称y,表示中国居民总量消费,后输入解释变量x,表示可支配收入,最后对应各年分别输入数据。

点击name键进行命名,选择默认名称group01,保存文件。

得到中国居民总量消费支出与收入资料:xY年份19786678.83806.719797551.64273.219807944.24605.5198 184385063.919829235.25482.4198310074.65983.21984115 656745.7198511601.77729.2198613036.58210.9198714627 .788401988157949560.5198915035.59085.5199016525.994 50.9199118939.610375.8199222056.511815.3199325897.3 13004.7199428783.413944.2199531175.415467.919963385 3.717092.5199735956.218080.6199838140.919364.119994 027720989.3200042964.622863.920XX20XX20XX20XX20XX20XX46385.45127457408.164623.17 4580.485623.124370.126243.22803530306.233214.436811 .2注:y表示中国居民总量消费x表示可支配收入3、画散点图,判断被解释变量与解释变量之间是否为线性关系在主菜单栏点击Quick\graph出现对话框,输入“xy”,点击确定。

一元线性回归分析研究实验报告

一元线性回归分析研究实验报告

一元线性回归分析研究实验报告一元线性回归分析研究实验报告一、引言一元线性回归分析是一种基本的统计学方法,用于研究一个因变量和一个自变量之间的线性关系。

本实验旨在通过一元线性回归模型,探讨两个变量之间的关系,并对所得数据进行统计分析和解读。

二、实验目的本实验的主要目的是:1.学习和掌握一元线性回归分析的基本原理和方法;2.分析两个变量之间的线性关系;3.对所得数据进行统计推断,为后续研究提供参考。

三、实验原理一元线性回归分析是一种基于最小二乘法的统计方法,通过拟合一条直线来描述两个变量之间的线性关系。

该直线通过使实际数据点和拟合直线之间的残差平方和最小化来获得。

在数学模型中,假设因变量y和自变量x之间的关系可以用一条直线表示,即y = β0 + β1x + ε。

其中,β0和β1是模型的参数,ε是误差项。

四、实验步骤1.数据收集:收集包含两个变量的数据集,确保数据的准确性和可靠性;2.数据预处理:对数据进行清洗、整理和标准化;3.绘制散点图:通过散点图观察两个变量之间的趋势和关系;4.模型建立:使用最小二乘法拟合一元线性回归模型,计算模型的参数;5.模型评估:通过统计指标(如R2、p值等)对模型进行评估;6.误差分析:分析误差项ε,了解模型的可靠性和预测能力;7.结果解释:根据统计指标和误差分析结果,对所得数据进行解释和解读。

五、实验结果假设我们收集到的数据集如下:经过数据预处理和散点图绘制,我们发现因变量y和自变量x之间存在明显的线性关系。

以下是使用最小二乘法拟合的回归模型:y = 1.2 + 0.8x模型的R2值为0.91,说明该模型能够解释因变量y的91%的变异。

此外,p 值小于0.05,说明我们可以在95%的置信水平下认为该模型是显著的。

误差项ε的方差为0.4,说明模型的预测误差为0.4。

这表明模型具有一定的可靠性和预测能力。

六、实验总结通过本实验,我们掌握了一元线性回归分析的基本原理和方法,并对两个变量之间的关系进行了探讨。

一元线性回归模型实验报告

一元线性回归模型实验报告

一元线性回归模型实验报告——以中国1985~2009年财政收入Y 和国内生产总值(和国内生产总值(GDP GDP GDP)为例)为例以GDP 为横轴,Y 为纵轴的散点图为纵轴的散点图以GDP 为解释变量,Y 为被解释变量,建立一元线性回归方程:为被解释变量,建立一元线性回归方程:Y i =β0+β1·GDP iDependent Variable: Y Method: Least Squares Date: 11/06/11 Time: 22:35 Sample: 1985 2009 Included observations: 25Variable Coefficient Std. Error t-Statistic Prob. C -3225.757 787.7145 -4.095084 0.0004 GDP0.1973980.00565734.894270.0000R-squared0.981461 Mean dependent var 16899.30 Adjusted R-squared 0.980655 S.D. dependent var 19287.38 S.E. of regression 2682.632 Akaike info criterion 18.70360 Sum squared resid1.66E+08Schwarz criterion 18.80111Log likelihood -231.7950 F-statistic 1217.610 Durbin-Watson stat0.118499Prob(F-statistic) 0.000000图3:回归分析结果:回归分析结果可得出β^0=-3225.757 β^1=0.197398财政收入随国内生产总值变化的一元线性回归方程为:财政收入随国内生产总值变化的一元线性回归方程为:Y ^=-3225.757+0.197398·GDPR 2=0.981461斜率的经济意义是:在1985~2009年间,GDP 每增加一单位,财政收入平均增加0.197398单位。

一元线性回归分析实验报告

一元线性回归分析实验报告

一元线性回归在公司加班制度中的应用院(系):专业班级:学号姓名:指导老师:成绩:完成时间:一元线性回归在公司加班制度中的应用一、实验目的掌握一元线性回归分析的基本思想和操作,可以读懂分析结果,并写出回归方程,对回归方程进行方差分析、显著性检验等的各种统计检验 二、实验环境SPSS21.0 windows10.0 三、实验题目一家保险公司十分关心其总公司营业部加班的程度,决定认真调查一下现状。

经10周时间,收集了每周加班数据和签发的新保单数目,x 为每周签发的新保单数目,y 为每周加班时间(小时),数据如表所示y3.51.04.02.01.03.04.51.53.05.01. 画散点图。

2. x 与y 之间大致呈线性关系?3. 用最小二乘法估计求出回归方程。

4. 求出回归标准误差σ∧。

5. 给出0β∧与1β∧的置信度95%的区间估计。

6. 计算x 与y 的决定系数。

7. 对回归方程作方差分析。

8. 作回归系数1β∧的显著性检验。

9. 作回归系数的显著性检验。

10.对回归方程做残差图并作相应的分析。

11.该公司预测下一周签发新保单01000x =张,需要的加班时间是多少?12.给出0y的置信度为95%的精确预测区间。

13.给出()E y的置信度为95%的区间估计。

四、实验过程及分析1.画散点图如图是以每周加班时间为纵坐标,每周签发的新保单为横坐标绘制的散点图,从图中可以看出,数据均匀分布在对角线的两侧,说明x和y之间线性关系良好。

2.最小二乘估计求回归方程用SPSS 求得回归方程的系数01,ββ分别为0.118,0.004,故我们可以写出其回归方程如下:0.1180.004y x =+3.求回归标准误差σ∧由方差分析表可以得到回归标准误差:SSE=1.843 故回归标准误差:2=2SSEn σ∧-,2σ∧=0.48。

4.给出回归系数的置信度为95%的置信区间估计。

由回归系数显著性检验表可以看出,当置信度为95%时:0β∧的预测区间为[-0.701,0.937], 1β∧的预测区间为[0.003,0.005].0β∧的置信区间包含0,表示0β∧不拒绝为0的原假设。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验一一元线性回归一实验目的:掌握一元线性回归的估计与应用,熟悉EViews的基本操作。

二实验要求:应用教材P59第12题做一元线性回归分析并做预测。

三实验原理:普通最小二乘法。

四预备知识:最小二乘法的原理、t检验、拟合优度检验、点预测和区间预测。

五实验容:第2章练习12下表是中国2007年各地区税收Y和国生产总值GDP的统计资料。

单位:亿元(1)作出散点图,建立税收随国生产总值GDP变化的一元线性回归方程,并解释斜率的经济意义;(2)对所建立的回归方程进行检验;(3)若2008年某地区国生产总值为8500亿元,求该地区税收收入的预测值及预测区间。

六实验步骤1.建立工作文件并录入数据:(1)双击桌面快速启动图标,启动Microsoft Office Excel, 如图1,将题目的数据输入到excel表格中并保存。

(2)双击桌面快速启动图标,启动EViews6程序。

(3)点击File/New/ Workfile…,弹出Workfile Create对话框。

在Workfile Create对话框左侧Workfile structure type栏中选择Unstructured/Undated 选项,在右侧Data Range中填入样本个数31.在右下方输入Workfile的名称P53.如图2所示。

图 1 图 2(4)下面录入数据,点击File/Import/Read Text-Lotus-Excel...选中第(1)步保存的excel表格,弹出Excel Spreadsheet Import对话框,在Upper-left data cell栏输入数据的起始单元格B2,在Excel 5+sheet name栏中输入数据所在的工作表sheet1,在Names for series or Number if named in file栏中输入变量名Y GDP,如图3所示,点击OK,得到如图4所示界面。

图 3 图 4(5)按住Ctrl键同时选中Workfile界面的gdp表跟y表,点击鼠标右键选Open/as Group得到完整表格如图5,并点击Group表格上菜单命令Name,在弹出的对话框中命名为group01.图 5 图 62.数据的描述性统计和图形统计:以上建立的序列GDP和Y之后,可对其做描述统计和统计以把握该数据的一些统计属性。

(1)描述属性:点View/Descriptive Stats\Common Sample,得描述统计结果,如图6所示,其中:Mean为均值,Std.Dev为标准差。

(2)图形统计:双击序列GDP,打开GDP的表格形式,点击表格左边View/Graph,可得图7。

同样可查看序列Y的线形图。

很多时候需要把两个序列放在一个图形中来查看两者的相互关系,用线图或散点图都可以。

在命令栏键入:scat GDP Y,然后回车,就可以得到用散点图来查看GDP 和Y的关系,如图8所示。

图 7 图 83.设定模型,用最小二乘法估计参数:设定模型为12i i i Y X u ββ=++。

按住Ctrl 键,同时选中序列Y 和序列GDP ,点击右键,在所出现的右键菜单中,选择Open/as Equation …后弹出一对话框,在框中一次输入“y c gdp ”,(注意被解释变量在最前,变量间要空格,如图9)点击其下的确定,即可得到回归结果(如图10)。

图 9 图 10由图10数据结果,可得到回归分析模型为:10.629630.071047i i Y X =-+(0.123500)- (9.591245)20.760315R =, 9199198F =, .. 1.570523DW =其中,括号的数为相应的t 检验值。

2R 是可决系数,F 与..DW 是有关的两个检验统计量。

4.模型检验:(1)经济意义检验。

斜率2ˆ0.071047β=为边际可支国生产总值GDP ,表明2007年,中国地各省区GDP 每增加1亿元时,税收平均增加0.071047亿元。

(2)t 检验和拟合优度检验。

在显著性水平下,自由度为31-2=29的t 分布的临界值0.025(29) 2.05t =。

因此,从参数的t 检验值看,斜率项显然不为零,但不拒绝截距项为零的假设。

另外,拟合优度20.760315R =表明,税收的76%的变化也以由GDP 的变化来解释,因此拟合情况较好。

在Eqution 界面点击菜单命令View/Actual,Fitted,Residual/Actual,Fitted.Residual Graph 可得到图11,可直观看到实际观测站和拟合值非常接近。

图 11 图 125.应用:回归预测:(1)被解释变量Y 的个别值和平均值的点预测:由第二章第五节知道,个别值和平均值点预测的预测公式均为12ˆˆF FY X ββ=+ 插预测:在Equation 框中,点击“Forecast ”,在Forecast name 框中可以为所预测的预测值序列命名,计算机默认为yf ,点击“OK ”,得到样本期被解释变量的预测值序列yf (也称拟合值序列)的图形形式(图12)。

同时在Workfile 中出现一个新序列对象yf 。

外推预测:① 录入2008年某地区国生产总值GDP 为8500亿元的数据。

双击Workfile 菜单下的Range 所在行,出现将Workfile structured 对话框,讲右侧Observation 旁边的数值改为32,然后点击OK ,即可用将Workfile的Range以及Sample的Range改为32;双击打开GDP序列表格形式,将编辑状态切换为“可编辑”,在GDP序列中补充输入GDP=8500(如图13所示)。

图13 图 14②进行预测在Equation框中,点击“Forecast”,弹出一对话框,在其中为预测的序列命名,如yf2。

点击OK即可用得到预测结果的图形形式(如图14所示)。

点击Workfile中新出现的序列yf2,可以看到预测值为593.2667(图15)(注意:因为没有对默认预测区间1-32做改变,这时候得到的是所有插预测与外插预测的值,若将区间改为32 32,则只会得到外推预测结果)。

图 15 图 16③ 结果查看按住Ctrl 键,同时选中y 、yf 、resid ,点击右键,在右键菜单中选Open/as Group 可打开实际值、预测值、残差序列,在view 菜单选择Graph...,画折线图(如图16所示)。

(2)区间预测原理:当2007年中国某省区GDP 为8500亿元时,预测的税收为()ˆ10.630.0718500593.2667Y=-+⨯=亿元 被解释变量Y 的个别值区间预测公式为:/2ˆˆ1fY t ασ⋅∑ 被解释变量Y 的均值区间预测公式为:/2ˆˆ1/fY t ασ⋅∑。

具体地说,ˆfY 可以在前面点预测序列2593.2667yf =中找到;/2=2.045t α可以查t 分布表得到;样本数n=31为已知;f GDP GDP -中的=8500f GDP 为已知,8891.126GDP =,255957878.6i gdp =∑可以在序列GDP 的描述统计中找到,22()=391.126=152979.5f GDP GDP --();22760310ieRSS ==∑,从而222760310ˆ95183.113111ien k σ===----∑;由X 总体方差的无偏估计式222/(1)619.5803383879.74814809GDP i gdp n σ=-==∑,可以计算2n 111900272.19259079igdp=-=∑() (GDP σ可在序列X 的描述统计中找到)。

(3)区间预测的Eviews 操作: ①个别值置信区间的计算:在命令栏输入:(yfu 为个别值的置信上界,yfl 为个别值的置信下界) “scalaryfu=593.2667+2.045*sqrt(95183.1*(1+1/31+152979.5/55957878.6))” “scalaryfl=593.2667-2.045*sqrt(95183.1*(1+1/31+152979.5/55957878.6))” 得到:yfu=1235.12876632 yfl=-48.5953663235于是95%的置信度下预测的2008年某省区税收入个值的置信区间为:(-48.5953663235,1235.12876632)。

②均值的置信区间的计算:在命令栏输入:(eyfu为均值的置信上界,eyfl为均值的置信下界)“scalare yfu=593.2667+2.045*sqrt(95183.1*(1/31+152979.5/55957878.6))”“scalareyfl=593.2667-2.045*sqrt(95183.1*(1/31+152979.5/55957878.6))”得到:eyfu=711.287072849 eyfl=475.246327151于是在95%的置信度下,预测省区的2008年的税收收入均值的置信区间为:(475.246327151,711.287072849)。

实验二多元线性回归一实验目的:(1) 掌握多元线性回归模型的估计方法(2) 模型方程的F检验,参数的t检验(3) 模型的外推预测与置信区间预测二实验要求:应用教材P107习题14做多元线性回归模型估计,对回归方程和回归参数进行检验并做出单点预测与置信区间预测三实验原理:最小二乘法四预备知识:最小二乘法估计原理、t检验、F检验、点预测和置信区间预测五实验容:在一项对某社区家庭对某种消费品的消费需要调查中,得到书中的表所示的归分析。

,计算2R及2R。

(1)估计回归方程的参数及及随机干扰项的方差2(2)对方程进行F检验,对参数进行t检验,并构造参数95%的置信区间.(3)如果商品单价变为35元,则某一月收入为20000元的家庭的消费支出估计是多少?构造该估计值的95%的置信区间。

六实验步骤:6.1 建立工作文件并录入全部数据如图1所示:图 16.2 建立二元线性回归模型01122Y X X βββ=++点击主界面菜单Quick\Estimate Equation 选项,在弹出的对话框中输入:Y C X1 X2点击确定即可得到回归结果,如图2所示图 2根据图2的信息,得到回归模型的估计结果为:626.51939.790610.02862(15.61)( 3.06)(4.90)Y X X =-+-20.902218R = 20.874281R = .. 1.650804DW =22116.847ie=∑ 32.29408F = (2,7)df =随机干扰项的方差估计值为22116.847302.40677σ∧== 6.3 结果的分析与检验6.3.1 方程的F 检验回归模型的F 值为: 32.29408F =因为在5%的显著性水平下,F 统计量的临界值为0.05(2,7) 4.74F =所以有 0.05(2,7)F F >所以回归方程通过F 检验,方程显著成立。

相关文档
最新文档