数据挖掘报告

数据挖掘报告
数据挖掘报告

数据挖掘报告

一、数据挖掘综述

随着信息时代的来临,网络技术的发展和普及,各个行业都有爆炸性的数据增长,这些海量的数据中隐藏着我们需要的信息和财富。国际数据公司(IDC)报告称,2011年全球被复制和创建的数据总量就已经大得惊人,在短短几年时间内增长了近9倍,而且预计这些数据每两年就将至少增加一倍。并且,政府机构也对外宣称了要加快数据研究进度这一重大计划,各行业也在积极讨论数据挖掘研究带来的吸引力。面对如此庞大的数据,以及这些数据背后的价值和新的机遇,挖掘和研究这些数据就会给我们带来挑战和切实的利益。

早在1989 年8 月美国底特律召开的第11 届国际功能会议上就出现了KDD 这个术语,1995年学术界和工业界共同成立了ACM 数据挖掘与知识发现专委,后者发展成为数据挖掘领域的顶级国际会议。数据挖掘是一门交叉学科,涉及到各个行业和各个领域,同时,随着各行业对大量数据的处理深度和分析上的需求的增加,数据挖掘研究已经成为了学术界研究的热门学科,同时也受到各领域的重视。

经过多年的发展,数据挖掘研究领域成果颇丰,已经有了一套自己的基础理论。从大体趋势来说,国内和国外的研究方法和方向有差异,尤其是在某些方面还是存在着一定的差距。总的来说,国外的研究更偏重交叉学科和理论基础的研究,而国内则偏重于实际的应用上,用数据来解决实际的问题。同时,国内的学者在研究上也处于世界前沿水平,在国际舞台上也有十分突出的成绩,近年来也频频有国内团队登上国际领奖台。

在20世纪90年代中后期,用关联规则来进行挖掘、分类、预测等被逐渐用于时间序列数据挖掘和空间数据挖掘,以发现与时间和空间相关的有价值的模式,这些手段使得数据挖掘研究领域已经有了一些比较成熟的技术。如今的定位系统、手持移动设备等设备的普及和应用积累了大量的移动对象数据,对这些数据领域的研究使我们受益匪浅。近年来,数据挖掘研究已经渗透到生物信息、医疗卫生、智能交通、金融证券、社交网络、多媒体数据挖掘、轨迹数据、文本数据等各大领域。这些领域与数据挖掘研究接轨后又会出现一些新的机遇和挑战。

数据挖掘是从大量数据中抽取隐含的事先未知的具有潜在有用信息或知识的非平凡过程。一般来说可以把数据挖掘过程分为6 个阶段,如图所示。

数据挖掘过程

(1)问题的定义:进行用户调查熟悉应用领域的数据背景知识确定研究目标和需求明确所要完成的数据库挖

掘任务的性质。

(2)数据收集:根据数据挖掘任务的要求确定与任务相关的数据集合。

(3)数据预处理:对上一阶段得到的数据进行加工以生成用于数据挖掘的数据集。这一阶段的工作包括两个内容:一方面需要将数据组织成一种标准形式,使其能被数据挖掘工具和其他基于计算机的工具处理;另一方面需要准备数据集,使其能得到最佳的数据挖掘效果。涉及到数据标准化、数据平整、丢失数据的处理、时间相关数据的处理以及异常数据的分析和处理。

(4)构造模型针对任务的所属类别设计或选择有效的数据挖掘算法并进行数据挖掘从中得到应用感兴趣的

模式。

(5)评估与优化对发现的模式进行解释评估与优化必要时需要返回到前面处理中的某些步骤以反复提取。

(6)结果应用将所发现的知识进行整理并使之应用到实际的系统中。从中可见数据挖掘过程是一个多阶段的、反复的、复杂的处理过程。过程的各个阶段都需要包括领域专家数据分析员及数据挖掘专业人员等共同参与。各步骤之间包含了多次循环与反复在某个步骤的检验与应用中如果发现不合适则应对前面的步骤进行修改直到取得较满意的结果。

需要指出的是,数据挖掘的两个基本目标往往是预测和描述:预测涉及到使用数据集中的一些变量用来预测其它我们所关心变量的未知或未来的值;描述关注的则是找出描述可由人类解释的数据模式。由此对应:(1)预测性数据挖掘生成已知数据集所描述的系统模型;(2)描述性数据挖掘在可用数据集的基础上生成新的非同寻常的信息。

通常情况下我们把数据挖掘方法分为两大方面,一是人工智能领域中的机器学习型,这种类型通过训练和学习大量的样品获得需要的模式或者参数;二是统计类型,有判别分析、相关性分析和概率分析等技术。

1. 可视化技术

可视化技术指采用计算机图形学和图像处理技术,把抽象的东西转换成图像并且在屏幕上显示出来的一种让人一目了然的方法,从而进行交互处理的技术。它将几何数据绘制成目标图像,将图像按照要求进行输出显示在屏幕上。

2. 模糊技术

通过利用原有的数据挖掘技术的同时,结合模糊理论,从大数据中发现更为广泛的内容,并将其挖掘出来以方便用户理解。因为模糊性的客观存在,而且复杂性较高,因此,数据采集之间的关系表现出十分的模糊。将模糊理论与数据挖掘技术结合从大量、不完全的数据中提取潜在的、模糊决策、模糊模式识别和模糊聚类分析。

3. 粗糙集方法

粗糙集理论为一种描述不确定性和不完整性的数学工具,可以有效地处理和分析不完整、不一致、不精确等信息,并从中发现知识,揭示规律。粗集理论是处理模糊数据的有力工具,且粗集理论的创建和研究的出发点是直接对数据进行分析和推理,发现隐含的知识并揭示规律。

4. 神经网络

指能够模仿人脑神经元的人工神经网络,并能进行信息的处理。需要通过一定时间的训练才能增强挖掘结果的可理解性。其工作原理是根据人脑神经元的原理,通过不断修正其内部的节点间相互连接的关系达到处理信息的目的。

5. 遗传算法

遗传算法是在生物进化过程中,在组合优化的基础上的提出的,这是生物学与计算机结合的产物。就像生物的进化一样,会选择适宜度更强的个体进行交换和变异,通过时间和空间上的类比,能够使大量数据系统化和简单化,以方便找到他们的内在联系获得概念和模式。

6. 决策树

决策树的构造不需要任何领域的知识,很适合知识的挖掘并且可以处理高维度的数据。决策树可以被大多数人所掌握,并且不需要太多的专业知识。

7. 关联规则

关联规则挖掘技术就是从大量数据中发现其相关性,这也是最常见的数据挖掘的方法。通过层层的筛选以减少候选的子集数,从而加快了关联规则挖掘的进度。

数据的应用实质上是利用数据的分析结果,为用户提供辅助决策,发掘潜在价值的过程。数据挖掘技术是面向应用的,是为了获取信息来服务各行业。随着数据挖掘研究的深入与成熟,发展和推广,数据应用技术也会越来越广泛。现阶段,数据挖掘应用主要集中在以下方面。在金融业上:用于银行行业各种趋势预测,优化存贷策越等。客户关系管理:用于分析客户的行为,对客户进行分类,改善客户关系等。生物信息:用于各种染色体、基因序列的识别以及制药生物信息和科学研究等。电子商务:用于在线交互式营销系统的经营模式、市场策略等方面来优化网站结构,改善网易推荐和商品推荐内容等。零售业:数据挖掘技术被用来进行分析购物篮来协助货架设置,安排促销商品的时间等商业活动。

二、数据挖掘在智能交通中的应用

交通是关系到人们日常生活的一件大事随着城市规模不断扩大城市的交通问题也越来越突出目前利用多种先进科学技术的智能交通系统ITS 是解决交通问题的一个方向ITS 中的一个重要研究领域就是交通流的控制与诱导然而城市交通控制系统是一种对象不确定的对控制的实时性要求高结构十分复杂的巨系统由此决定了系统建模和模型求解的难度而控制的实时性要求在交通流状态迅速变化条件下尽快求出最优或次优的控制变量传统的控制方法已无法解决这些难题。

事实上交通流数据采集系统长时间通过人工采集和自动采集积累了大量交通流数据利用数据挖掘技术可以对交通流量的原始数据进行重新组织使这些数据不但能够为智能交通系统中的控制系统服务也能为决策系统和诱导系统等提供数据本文首先进行数据挖掘综述然后给出智能交通系统信息特性及其不确定性指出传统方法的局限性对应用数据挖掘处理某些具体交通问题进行了分析。

智能交通系统是信息全球化和社会化的产物。它通过运用先进的信息技术、数据通信技术、自动控制技术以及计算机技术,建立起立体化、全方位的公路交通运输体系,并被视为

解决当今交通问题最有前途的手段之一。随着智能交通事业的飞速发展,日积月累的海量交通信息逐渐成为各种智能交通应用系统的宝贵资源。智能交通的目的就是通过分析交通信息,不断优化系统的控制策略,调整各类交通参与者的行为,来实现交通系统的优化运行。作为ITS 核心资源的交通信息具有如下特征:

(1)交通信息来源广泛、种类繁多、表现形式多样、信息量巨大。针对传统的基于统计学的经典分析方法难以处理非数值型或非结构化的数据,传统的基于数据库的决策支持系统难以支持日益膨胀的海量信息分析的现状。

(2)信息具有很强的时空相关性。如车流量数据,只有在与一定的时刻及路口相关时才有意义,否则难以被理解与利用。

(3)信息具有明显的主题相关性,如交通流信息、交通信号控制信息等‘

(4)信息具有生命特性,智能交通系统的信息具有生命周期,经历从采集、融合、加工、应用到最后被扬弃的过程。

可见,智能交通系统存在动态性、不确定性、时空相关性、主题相关性和生命特性等信息特征,经典的数学公式与传统的建模方法已不能满足现实世界的信息分析要求。因此亟需采用新一代的数据融合、决策支持和分析手段,综合知识工程、人工智能、数据挖掘技术等方面的研究成果进行智能分析,才能充分发掘各应用系统的潜力,为动态交通管理提供科学准确的决策依据,使智能交通应用的深度和广度更上一个台阶。

针对交通信息、交通系统的不确定性,在传统的基于数据库、知识库和模型库的决策支持系统基础上,采用数据仓库、联机分析、数据挖掘以及专家系统的有关理论与技术,构建出新一代的智能决策支持系统模型;应用数据挖掘方法。(统计模式识别、神经网络方法、遗传规划和多源复杂信息知识挖掘技术等)研究建立适合交通信息挖掘的具体模型;在信息分析技术方面,突破传统的基于经典数学的统计分析方法的局限性,全面引入神经计算模糊计算进化计算等智能计算技术,为交通信息的综合管理、智能分析和实时决策支持提供可行的方案。

数据挖掘在ITS 中某些具体应用问题的分析如下:

(1)数据净化处理问题

在检测器自动采集的数据和人工输入的数据中都可能出现的错误数据,这是因为:一方面车辆检测器有一定的误差,而且可能出现故障;另一方面,由于种种原因人工输入可能出错,因此有必要从大量数据中把错误的、异常的数据、没有用的信息剔除掉,这就是所谓的

数据净化问题。数据净化是典型的数据分类问题,即把数据分为有用数据和无用数据,更细化一点,再把无用数据分为错误数据、异常数据。分类是数据挖掘最基本的、应用最广的用途。因为所有海量数据都有数据净化问题。很多车辆检测器和视频监视器长时间日复一日地自动采集信息,各个子系统的操作人员长期地输入数据,对于这些海量数据必须应用数据挖掘技术加以净化。分类数据挖掘的方法主要有人工神经网络、决策树、遗传算法、粗集理论、模糊逻辑、最近邻技术等方法。

(2)短缺数据的挖掘问题

科学决策需要尽可能完全的信息支持。但是在实际系统中往往不可能得到完全的信息,交通管理信息系统就是这样的实际系统。因为一方面不可能设置无限多的车辆检测器和视频监视设备,这样会大大增加建设费用和维护工作量,在没有设置检测器的地方就得不到交通流数据,需要通过数据挖掘技术从相邻的检测器数据中把这些地方的数据估算出来;另一方面,检测器和视频监视设备都有一定的误差和故障率,同一检测面上个别检测器也可能出现受遮挡或失效的情况,在设备发生故障时或者检测器检测失效时,就会出现数据短缺现象。这就需要弥补数据。从上下游检测器的交通流数据,当地交通流的历史数据以及从同一个检测器前后时段的交通流数据,通过数据挖掘可以获得短缺的交通流数据与已知数据之间的关系,从而可以估算出没有设置检测器的断面的交通流数据和发生故障的检测器丢失的交通流数据。

(3)交通流参数的预测问题

为了实现有效的交通控制(限速、路线诱导等)需要每隔5 min 预测1 次交通流动态参数。从实际检测得到的交通流数据(车流量、车速、占有率或车流密度等)预测下一个控制周期(下一个5min )的交通流动态参数,需要寻求交通流数据与预测值之间的对应关系。然而交通流本身是一个典型的非平稳随机过程,短时(5min)的交通流参数预测问题是一个不确定性很强的弱结构化问题。一般不能用简单的解析数学式子描述交通流参数预测值与已知交通流检测数据之间的关系,只能从检测器不断地采集的大量实测数据中挖掘出它们之间的关系,用知识来表达这种关系,形成相应的知识库。这里可能用到的数据挖掘方法有小波分析、状态空间重构以及各种人工智能的方法,例如机器学习、不确定性推理、定性推理、神经网络等。

交通流参数的预测值发送到相应子系统(交通管理子系统、交通运营决策子系统、紧急事件处理子系统、公众信息发布子系统等),供这些子系统决策用。

三、数据挖掘的应用思路

1. 数据挖掘在交通安全领域应用

(1)交通事故专项分析

开展事故的区域分布特征、时间分布特征、道路分布特征、事故原因分布特征、事故形态分布特征、重点车辆事故信息分析等专项分析。

(2)交通事故发展趋势分析

开展基于事故历史数据的交通事故发展趋势分析。

(3)事故多发路段分析挖掘

针对某一条重点道路或某几条重点道路的事故多发路段分析。

(4)事故与违法信息关联分析

将事故信息与违法信息结合开展关联分析,分析事故与违法行为的关系。

(5)事故与机动车、驾驶人保有量的相对数分析

将事故信息与机动车、驾驶人信息结合开展关联分析,分析事故与机动车、驾驶人等信息的关系。

(6)交通事故综合挖掘分析

利用相关数据挖掘的分析主题有针对性开展数据挖掘分析。

通过以上分析来挖掘全国或某一区域道路交通事故的主要特点、事故的相关因素、事故多发路段等,同时可以对全国和某一区域开展事故发展趋势预测分析。

2. 基于数据挖掘的干线协调信号控制

在已有的数据挖掘技术在单点信号控制中的应用基础上,针对干线协调自身的数据随机性特点,在设计过程中将公交优先理念结合起来,通过对以往社会车辆流量和公交车辆流量随时间变化的数据挖掘其相应规律,结合干线协调设计需求,完成更加高效的干线协调系统。

数据挖掘实验报告

《数据挖掘》Weka实验报告 姓名_学号_ 指导教师 开课学期2015 至2016 学年 2 学期完成日期2015年6月12日

1.实验目的 基于https://www.360docs.net/doc/b5735452.html,/ml/datasets/Breast+Cancer+WiscOnsin+%28Ori- ginal%29的数据,使用数据挖掘中的分类算法,运用Weka平台的基本功能对数据集进行分类,对算法结果进行性能比较,画出性能比较图,另外针对不同数量的训练集进行对比实验,并画出性能比较图训练并测试。 2.实验环境 实验采用Weka平台,数据使用来自https://www.360docs.net/doc/b5735452.html,/ml/Datasets/Br- east+Cancer+WiscOnsin+%28Original%29,主要使用其中的Breast Cancer Wisc- onsin (Original) Data Set数据。Weka是怀卡托智能分析系统的缩写,该系统由新西兰怀卡托大学开发。Weka使用Java写成的,并且限制在GNU通用公共证书的条件下发布。它可以运行于几乎所有操作平台,是一款免费的,非商业化的机器学习以及数据挖掘软件。Weka提供了一个统一界面,可结合预处理以及后处理方法,将许多不同的学习算法应用于任何所给的数据集,并评估由不同的学习方案所得出的结果。 3.实验步骤 3.1数据预处理 本实验是针对威斯康辛州(原始)的乳腺癌数据集进行分类,该表含有Sample code number(样本代码),Clump Thickness(丛厚度),Uniformity of Cell Size (均匀的细胞大小),Uniformity of Cell Shape (均匀的细胞形状),Marginal Adhesion(边际粘连),Single Epithelial Cell Size(单一的上皮细胞大小),Bare Nuclei(裸核),Bland Chromatin(平淡的染色质),Normal Nucleoli(正常的核仁),Mitoses(有丝分裂),Class(分类),其中第二项到第十项取值均为1-10,分类中2代表良性,4代表恶性。通过实验,希望能找出患乳腺癌客户各指标的分布情况。 该数据的数据属性如下: 1. Sample code number(numeric),样本代码; 2. Clump Thickness(numeric),丛厚度;

数据挖掘实验三报告

实验三:基于Weka 进行关联规则挖掘 实验步骤 1.利用Weka对数据集contact-lenses.arff进行Apriori关联规则挖掘。要求: 描述数据集;解释Apriori 算法及流程;解释Weka 中有关Apriori 的参数;解释输出结果 Apriori 算法: 1、发现频繁项集,过程为 (1)扫描 (2)计数 (3)比较 (4)产生频繁项集 (5)连接、剪枝,产生候选项集 (6)重复步骤(1)~(5)直到不能发现更大的频集 2、产生关联规则 (1)对于每个频繁项集L,产生L的所有非空子集; (2)对于L的每个非空子集S,如果 P(L)/P(S)≧min_conf(最小置信度阈值) 则输出规则“S=>L-S” Weka 中有关Apriori 的参数:

1. car 如果设为真,则会挖掘类关联规则而不是全局关联规则。 2. classindex 类属性索引。如果设置为-1,最后的属性被当做类属性。 3.delta 以此数值为迭代递减单位。不断减小支持度直至达到最小支持度或产生了满足数量要求的规则。 4. lowerBoundMinSupport 最小支持度下界。 5. metricType 度量类型。设置对规则进行排序的度量依据。可以是:置信度(类关联规则只能用置信度挖掘),提升度(lift),杠杆率(leverage),确信度(conviction)。 在Weka中设置了几个类似置信度(confidence)的度量来衡量规则的关联程度,它们分别是: a)Lift :P(A,B)/(P(A)P(B)) Lift=1时表示A和B独立。这个数越大(>1),越表明A和B存在于一个购物篮中不是偶然现象,有较强的关联度. b)Leverage :P(A,B)-P(A)P(B) Leverage=0时A和B独立,Leverage越大A和B的关系越密切

数据挖掘及决策树

昆明理工大学信息工程与自动化学院学生实验报告 (2016 —2017 学年第学期) 课程名称:数据仓库与数据挖掘开课实验室:信自楼444 2017 年 06 月 01 日 一、上机目的及内容 目的: 1.理解数据挖掘的基本概念及其过程; 2.理解数据挖掘与数据仓库、OLAP之间的关系 3.理解基本的数据挖掘技术与方法的工作原理与过程,掌握数据挖掘相关工具的使用。 内容: 给定AdventureWorksDW数据仓库,构建“Microsoft 决策树”模型,分析客户群中购买自行车的模式。 要求: 利用实验室和指导教师提供的实验软件,认真完成规定的实验内容,真实地记录实验中遇到的 二、实验原理及基本技术路线图(方框原理图或程序流程图) 请描述数据挖掘及决策树的相关基本概念、模型等。 1.数据挖掘:从大量的、不完全的、有噪音的、模糊的、随机的数据中,提取隐含在其中的、 人们事先不知道的、但又潜在有用的信息和知识的过程。

预测:利用历史数据建立模型,再运用最新数据作为输入值,获得未来 变化趋势或者评估给定样本可能具有的属性值或值的范围 聚类分析根据数据的不同特征,将其划分为不同数据类 偏差分析对差异和极端特例的描述,揭示事物偏离常规的异常现象,其基本思想 是寻找观测结果与参照值之间有意义的差别 3.决策树:是一种预测模型,它代表的是对象属性与对象值之间的一种映射关系。树中每个 节点表示某个对象,而每个分叉路径则代表的某个可能的属性值,而每个叶结点则对应从 根节点到该叶节点所经历的路径所表示的对象的值。决策树仅有单一输出,若欲有复数输 出,可以建立独立的决策树以处理不同输出。 算法概念 ID3 在实体世界中,每个实体用多个特征来描述。每个特征限于在一 个离散集中取互斥的值 C4.5 对ID3算法进行了改进: 用信息增益率来选择属性,克服了用信息增益选择属性时偏向选 择取值多的属性的不足;在树构造过程中进行剪枝;能够完成对 连续属性的离散化处理;能够对不完整数据进行处理。 三、所用仪器、材料(设备名称、型号、规格等或使用软件) 1台PC及Microsoft SQL Server套件 四、实验方法、步骤(或:程序代码或操作过程) (一)准备Analysis Services 数据库 1.Analysis Services 项目创建成功 2.更改存储数据挖掘对象的实例

数据挖掘报告

哈尔滨工业大学 数据挖掘理论与算法实验报告(2016年度秋季学期) 课程编码S1300019C 授课教师邹兆年 学生姓名汪瑞 学号 16S003011 学院计算机学院

一、实验内容 决策树算法是一种有监督学习的分类算法;kmeans是一种无监督的聚类算法。 本次实验实现了以上两种算法。在决策树算法中采用了不同的样本划分方式、不同的分支属性的选择标准。在kmeans算法中,比较了不同初始质心产生的差异。 本实验主要使用python语言实现,使用了sklearn包作为实验工具。 二、实验设计 1.决策树算法 1.1读取数据集 本次实验主要使用的数据集是汽车价值数据。有6个属性,命名和属性值分别如下: buying: vhigh, high, med, low. maint: vhigh, high, med, low. doors: 2, 3, 4, 5more. persons: 2, 4, more. lug_boot: small, med, big. safety: low, med, high. 分类属性是汽车价值,共4类,如下: class values:unacc, acc, good, vgood 该数据集不存在空缺值。

由于sklearn.tree只能使用数值数据,因此需要对数据进行预处理,将所有标签类属性值转换为整形。 1.2数据集划分 数据集预处理完毕后,对该数据进行数据集划分。数据集划分方法有hold-out法、k-fold交叉验证法以及有放回抽样法(boottrap)。 Hold—out法在pthon中的实现是使用如下语句: 其中,cv是sklearn中cross_validation包,train_test_split 方法的参数分别是数据集、数据集大小、测试集所占比、随机生成方法的可

数据挖掘实训报告

项目1:基于sklearn的数据分类挖掘 一、项目任务 ①熟悉sklearn数据挖掘的基本功能。 ②进行用朴素贝叶斯、KNN、决策树C4.5、SVM算法进行数据分类分析。 二、项目环境及条件 ?sklearn-0.18.0 ?python- ?numpy- ?scipy- ?matplotlib- 三、实验数据 Iris数据集 Iris数据集是常用的分类实验数据集,由Fisher, 1936收集整理。Iris也称鸢尾花卉数据集,是一类多重变量分析的数据集。数据集包含150个数据集,分为3类,每类50个数据,每个数据包含4个属性。可通过花萼长度,花萼宽度,花瓣长度,花瓣宽度4个属性预测鸢尾花卉属于(Setosa,Versicolour,Virginica)三个种类中的哪一类。 Digits数据集 美国著名数据集NIST的子集,模式识别常用实验数据集,图像属于灰度图像。分辨率为8x8

四、项目内容及过程 1.读取数据集 从sklearn中读取iris和digits数据集并测试打印 打印的数据集存在numpy.ndarray中,ndarray会自动省略较长矩阵的中间部分。 Iris数据集的样本数据为其花瓣的各项属性 Digits数据集的样本数据为手写数字图像的像素值 2.划分数据集 引入sklearn的model_selection使用train_test_split划分digits数据集,训练集和测试集比例为8:2 3.使用KNN和SVM对digits测试集分类 引用sklearn的svm.SVC和neighbors.KNeighborsClassifier模块调用算法,使用classification_report查看预测结果的准确率和召回率

数据挖掘实验报告(一)

数据挖掘实验报告(一) 数据预处理 姓名:李圣杰 班级:计算机1304 学号:1311610602

一、实验目的 1.学习均值平滑,中值平滑,边界值平滑的基本原理 2.掌握链表的使用方法 3.掌握文件读取的方法 二、实验设备 PC一台,dev-c++5.11 三、实验内容 数据平滑 假定用于分析的数据包含属性age。数据元组中age的值如下(按递增序):13, 15, 16, 16, 19, 20, 20, 21, 22, 22, 25, 25, 25, 25, 30, 33, 33, 35, 35, 35, 35, 36, 40, 45, 46, 52, 70。使用你所熟悉的程序设计语言进行编程,实现如下功能(要求程序具有通用性): (a) 使用按箱平均值平滑法对以上数据进行平滑,箱的深度为3。 (b) 使用按箱中值平滑法对以上数据进行平滑,箱的深度为3。 (c) 使用按箱边界值平滑法对以上数据进行平滑,箱的深度为3。 四、实验原理 使用c语言,对数据文件进行读取,存入带头节点的指针链表中,同时计数,均值求三个数的平均值,中值求中间的一个数的值,边界值将中间的数转换为离边界较近的边界值 五、实验步骤 代码 #include #include #include #define DEEP 3 #define DATAFILE "data.txt" #define VPT 10 //定义结构体 typedef struct chain{ int num; struct chain *next; }* data; //定义全局变量 data head,p,q; FILE *fp; int num,sum,count=0; int i,j; int *box; void mean(); void medain(); void boundary(); int main () { //定义头指针 head=(data)malloc(sizeof(struc t chain)); head->next=NULL; /*打开文件*/ fp=fopen(DATAFILE,"r"); if(!fp) exit(0); p=head; while(!feof(fp)){

数据挖掘课程报告

数据挖掘课程报告 学习“数据挖掘”这门课程已经有一个学期了,在这十余周的学习过程中,我对数据挖掘这门技术有了一定的了解,明确了一些以前经常容易混淆的概念,并对其应用以及研究热点有了进一步的认识。以下主要谈一下我的心得体会,以及我对数据挖掘这项课题的见解。 随着数据库技术和计算机网络的迅速发展以及数据库管理系统的广泛应用,

人们积累的数据越来越多,而数据挖掘(Data Mining)就是在这样的背景下诞生的。 简单来说,数据挖掘就是从大量的数据中,抽取出潜在的、有价值的知识、模型或规则的过程。作为一类深层次的数据分析方法,它利用了数据库、人工智能和数理统计等多方面的技术。从某种角度上来说,数据挖掘可能并不适合进行科学研究,因为从本质上来说,数据挖掘这个技术是不能证明因果的,以一个最典型的例子来说,例如数据挖掘技术可以发现啤酒销量和尿布之间的关系,但是显然这两者之间紧密相关的关系可能在理论层面并没有多大的意义。不过,仅以此来否定数据挖掘的意义,显然就是对数据挖掘这项技术价值加大的抹杀,显然,数据挖掘这项技术从设计出现之初,就不是为了指导或支持理论研究的,它的重要意义在于,它在应用领域体现出了极大地优越性。 首先有一点是我们必须要明确的,即我们为什么需要数据挖掘这门技术?这也是在开课前一直困扰我的问题。数据是知识的源泉,然而大量的数据本身并不意味信息。尽管现代的数据库技术使我们很容易存储大量的数据,但现在还没有一种成熟的技术帮助我们分析、理解这些数据。数据的迅速增加与数据分析方法的滞后之间的矛盾越来越突出,人们希望在对已有的大量数据分析的基础上进行研究,但是目前所拥有的数据分析工具很难对数据进行深层次的处理,使得人们只能望“数”兴叹。数据挖掘正是为了解决传统分析方法的不足,并针对大规模数据的分析处理而出现的。数据挖掘可以帮助人们对大规模数据进行高效的分析处理,以节约时间,将更多的精力投入到更高层的研究中,从而提高科研工作的效率。 那么数据挖掘可以做些什么呢?数据挖掘的研究领域非常广泛,主要包括数据库系统、基于知识的系统、人工智能、机器学习、知识获取、统计学、空间数据库和数据可视化等领域。具体来说,它可以做这七件事情:分类,估计,预测,关联分析,聚类分析,描述和可视化,复杂数据类型挖掘。在本学期的学习过程中,我们对大部分内容进行了较为详细的研究,并且建立了一些基本的概念,对将来从事相关方向的研究奠定了基础。由于篇幅限制,就不对这些方法一一讲解了,这里只谈一下我在学习工程中的一些见解和心得。 在学习关联规则的时候,我们提到了一个关于“尿布与啤酒”的故事:在一

数据挖掘实验报告资料

大数据理论与技术读书报告 -----K最近邻分类算法 指导老师: 陈莉 学生姓名: 李阳帆 学号: 201531467 专业: 计算机技术 日期 :2016年8月31日

摘要 数据挖掘是机器学习领域内广泛研究的知识领域,是将人工智能技术和数据库技术紧密结合,让计算机帮助人们从庞大的数据中智能地、自动地提取出有价值的知识模式,以满足人们不同应用的需要。K 近邻算法(KNN)是基于统计的分类方法,是大数据理论与分析的分类算法中比较常用的一种方法。该算法具有直观、无需先验统计知识、无师学习等特点,目前已经成为数据挖掘技术的理论和应用研究方法之一。本文主要研究了K 近邻分类算法,首先简要地介绍了数据挖掘中的各种分类算法,详细地阐述了K 近邻算法的基本原理和应用领域,最后在matlab环境里仿真实现,并对实验结果进行分析,提出了改进的方法。 关键词:K 近邻,聚类算法,权重,复杂度,准确度

1.引言 (1) 2.研究目的与意义 (1) 3.算法思想 (2) 4.算法实现 (2) 4.1 参数设置 (2) 4.2数据集 (2) 4.3实验步骤 (3) 4.4实验结果与分析 (3) 5.总结与反思 (4) 附件1 (6)

1.引言 随着数据库技术的飞速发展,人工智能领域的一个分支—— 机器学习的研究自 20 世纪 50 年代开始以来也取得了很大进展。用数据库管理系统来存储数据,用机器学习的方法来分析数据,挖掘大量数据背后的知识,这两者的结合促成了数据库中的知识发现(Knowledge Discovery in Databases,简记 KDD)的产生,也称作数据挖掘(Data Ming,简记 DM)。 数据挖掘是信息技术自然演化的结果。信息技术的发展大致可以描述为如下的过程:初期的是简单的数据收集和数据库的构造;后来发展到对数据的管理,包括:数据存储、检索以及数据库事务处理;再后来发展到对数据的分析和理解, 这时候出现了数据仓库技术和数据挖掘技术。数据挖掘是涉及数据库和人工智能等学科的一门当前相当活跃的研究领域。 数据挖掘是机器学习领域内广泛研究的知识领域,是将人工智能技术和数据库技术紧密结合,让计算机帮助人们从庞大的数据中智能地、自动地抽取出有价值的知识模式,以满足人们不同应用的需要[1]。目前,数据挖掘已经成为一个具有迫切实现需要的很有前途的热点研究课题。 2.研究目的与意义 近邻方法是在一组历史数据记录中寻找一个或者若干个与当前记录最相似的历史纪录的已知特征值来预测当前记录的未知或遗失特征值[14]。近邻方法是数据挖掘分类算法中比较常用的一种方法。K 近邻算法(简称 KNN)是基于统计的分类方法[15]。KNN 分类算法根据待识样本在特征空间中 K 个最近邻样本中的多数样本的类别来进行分类,因此具有直观、无需先验统计知识、无师学习等特点,从而成为非参数分类的一种重要方法。 大多数分类方法是基于向量空间模型的。当前在分类方法中,对任意两个向量: x= ) ,..., , ( 2 1x x x n和) ,..., , (' ' 2 ' 1 'x x x x n 存在 3 种最通用的距离度量:欧氏距离、余弦距 离[16]和内积[17]。有两种常用的分类策略:一种是计算待分类向量到所有训练集中的向量间的距离:如 K 近邻选择K个距离最小的向量然后进行综合,以决定其类别。另一种是用训练集中的向量构成类别向量,仅计算待分类向量到所有类别向量的距离,选择一个距离最小的类别向量决定类别的归属。很明显,距离计算在分类中起关键作用。由于以上 3 种距离度量不涉及向量的特征之间的关系,这使得距离的计算不精确,从而影响分类的效果。

《数据挖掘》结课报告

《数据挖掘》结课报告 --基于k-最近邻分类方法的连衣裙属性数据集的研究报告 (2013--2014 学年第二学期) 学院: 专业: 班级: 学号: 姓名: 指导教师: 二〇一四年五月二十四日

一、研究目的与意义 (介绍所选数据反应的主题思想及其研究目的与意义) 1、目的 (1)熟悉weka软件环境; (2)掌握数据挖掘分类模型学习方法中的k-最近邻分类方法; (3)在weka中以“Dress Attribute DataSet”为例,掌握k-最近邻分类算法的相关方法; (4)取不同的K值,采用不同的预测方法,观察结果,达到是否推荐某款连衣裙的目的,为企业未来的规划发展做出依据。 2、意义 此数据集共有14个属性,500个实例,包含了连衣裙的各种属性和根据销售量的不同而出现的推荐情况,按照分类模型学习方法中的k-最近邻分类方法依据各属性推断应推广哪些种类的裙子,对发展市场的扩大及企业的发展战略具有重要意义。 二、技术支持 (介绍用来进行数据挖掘、数据分析的方法及原理) 1、原理:k-最近邻分类算法是一种基于实例的学习方法,不需要事先对训练数据建立分类模型,而是当需要分类未知样本时才使用具体的训练样本进行预测,通过在训练集中找出测试集的K个最近邻,来预测估计测试集的类标号; 2、方法:k-最近邻方法是消极学习方法的典型代表,其算法的关键技术是搜索模式空间,该方法首先找出最近邻即与测试样本相对

接近的所有训练样本,然后使用这些最近邻的类标号来确定测试样本的类标号。 三、数据处理及操作过程 (一)数据预处理方法 1、“remove”属性列:数据集中属性“Dress_ID”对此实验来说为无意义的属性,因此在“Attributes”选项中勾选属性“Dress_ID”并单击“remove”,将该属性列去除,并保存新的数据集; 2、离散化预处理:需要对数值型的属性进行离散化,该数据集中只有第3个属性“rating”和第13个属性“recommendation”为数值型,因此只对这两个属性离散化。 “recommendation”属性只有2个取值:0,1,因此用文本编辑器“Ultra Edit”或者写字板打开数据集并直接修改“Dress Attribute Data Set.arff”文件,把“@attribute recommendation numeric”改为“@attribute recommendation {0,1,}”,并保存;在“Explorer”中重新打开“Dress Attribute Data Set.arff”,选中“recommendation”属性后,右方的属性摘要中“Type”值变为“Nominal”。 在过滤器Filter中单击“choose”,出现树形图,单击“weka”--“Filters”--“unsupervised”--“attribute”--“discretize”,点击“Choose”右边的文本框进行参数设置,把“attribute Indices”右边改成“3”,计划将该属性分成3段,于是把“bins”改成“3”,其它参数不更改,点“OK”回到“Explorer”,单击“Apply”离散化后的数据如下所示:

数据挖掘报告

摘要 数据挖掘技术可以在浩瀚的数据中进行统计、分析、综合、推理,发现数据部关联,并作出预测,提供数据信息,为决策提供辅助支持。目前,数据挖掘技术已经广泛应用在商业领域,同样,可以将数据挖掘技术与国家教育项目相结合,对项目中的各类数据信息进行挖掘分析,提取隐藏的数据信息,为项目开发部门提供决策依据,进一步提高项目的科学性和高效性。 本文结合自身参与教育部指定的关于城市集群竞争力项目的实践经验,分析数据挖掘技术在国家教育项目中应用的可行性,并以此为例,采用JAVA语言编写实现KNN算法。 在项目实施方案中,以城市集群的数据为基础,完成数据挖掘的全过程:确定数据挖掘的对象和目标、数据清理和预处理,对某个指标缺失的数据引入神经网络方法进行预测填补,对缺失较多的数据引入对比和类比的方法进行预测填补,采用KNN算法实现数据分类,形成指标体系。利用数据挖掘的结果,通过对指标数据的分析,预测决定城市集群竞争力的主要因素,从而为今后城市集群的发展方向和职能定位提供参考,为城镇体系的总体发展指明方向,为提高我国城市集群整体经济实力和综合竞争力提供一些有益的建议和对策,促进成熟集群向一体化方向发展,同时也可以为国其他城市集群的发展提供给一些有益的参考。 【关键词】数据挖掘 KNN算法数据分类 JAVA 城市集群竞争力

目录 摘要 (1) 目录 (2) 第一章绪论 (3) 1.1研究背景和研究意义 (3) 第二章数据挖掘技术的研究 (4) 2.1 数据挖掘的功能 (4) 2.2 数据挖掘的对象 (6) 2.3 数据挖掘的过程 (7) 2.4 数据挖掘算法 (9) 第三章 KNN算法介绍与实现 (10) 3.1 KNN算法介绍 (10) 3.2 KNN算法的JAVA实现 (12) 第四章总结 (17)

数据挖掘实验报告-关联规则挖掘

数据挖掘实验报告(二)关联规则挖掘 姓名:李圣杰 班级:计算机1304 学号:1311610602

一、实验目的 1. 1.掌握关联规则挖掘的Apriori算法; 2.将Apriori算法用具体的编程语言实现。 二、实验设备 PC一台,dev-c++5.11 三、实验内容 根据下列的Apriori算法进行编程:

四、实验步骤 1.编制程序。 2.调试程序。可采用下面的数据库D作为原始数据调试程序,得到的候选1项集、2项集、3项集分别为C1、C2、C3,得到的频繁1项集、2项集、3项集分别为L1、L2、L3。

代码 #include #include #define D 4 //事务的个数 #define MinSupCount 2 //最小事务支持度数 void main() { char a[4][5]={ {'A','C','D'}, {'B','C','E'}, {'A','B','C','E'}, {'B','E'} }; char b[20],d[100],t,b2[100][10],b21[100 ][10]; int i,j,k,x=0,flag=1,c[20]={0},x1=0,i1 =0,j1,counter=0,c1[100]={0},flag1= 1,j2,u=0,c2[100]={0},n[20],v=1; int count[100],temp; for(i=0;i=MinSupCount) { d[x1]=b[k]; count[x1]=c[k]; x1++; } } //对选出的项集中的元素进行排序 for(i=0;i

数据挖掘报告(模板)

第一章:数据挖掘基本理论 数据挖掘的产生: 随着计算机硬件和软件的飞速发展,尤其是数据库技术与应用的日益普及,人们面临着快速扩张的数据海洋,如何有效利用这一丰富数据海洋的宝藏为人类服务业已成为广大信息技术工作者的所重点关注的焦点之一。与日趋成熟的数据管理技术与软件工具相比,人们所依赖的数据分析工具功能,却无法有效地为决策者提供其决策支持所需要的相关知识,从而形成了一种独特的现象“丰富的数据,贫乏的知识”。 为有效解决这一问题,自二十世纪90年代开始,数据挖掘技术逐步发展起来,数据挖掘技术的迅速发展,得益于目前全世界所拥有的巨大数据资源以及对将这些数据资源转换为信息和知识资源的巨大需求,对信息和知识的需求来自各行各业,从商业管理、生产控制、市场分析到工程设计、科学探索等。数据挖掘可以视为是数据管理与分析技术的自然进化产物。自六十年代开始,数据库及信息技术就逐步从基本的文件处理系统发展为更复杂功能更强大的数据库系统;七十年代的数据库系统的研究与发展,最终导致了关系数据库系统、数据建模工具、索引与数据组织技术的迅速发展,这时用户获得了更方便灵活的数据存取语言和界面;此外在线事务处理手段的出现也极大地推动了关系数据库技术的应用普及,尤其是在大数据量存储、检索和管理的实际应用领域。 自八十年代中期开始,关系数据库技术被普遍采用,新一轮研究与开发新型与强大的数据库系统悄然兴起,并提出了许多先进的数据模型:扩展关系模型、面向对象模型、演绎模型等;以及应用数据库系统:空间数据库、时序数据库、 多媒体数据库等;日前异构数据库系统和基于互联网的全球信息系统也已开始出现并在信息工业中开始扮演重要角色。

数据挖掘报告书

数据挖掘报告书 题目:关联规则算法在电影爱好中的应用院系:经济管理学院 专业: 信息管理与信息系统 班级:07304班 小组成员:王梦宇李肖楠黄林橙沈岁张舒 2010年6月

〇、SQL Server 2005 Microsoft SQL Server 2005是微软公司在2005年12月推出的一个全面的数据库平台,使用集成的商业智能工具,提供了企业级的数据管理。使用Business Intelligence Development Studio 在Analysis Services 项目中定义数据源、数据源视图、维度和多维数据集,并可以利用其现有的数据挖掘算法方便简单的对数据进行分析。SQL Server 2005包括算法主要有:决策树,关联规则,神经网络,时序,聚类分析等。 微软公司的数据库产品SQL Server 2005中包含了数据挖掘特性, 可以直接从数据库或者数据仓库中进行数据挖掘操作,实现数据挖掘与数据库以及应用程序的紧密耦合,从而大大提高数据挖掘效率。 Microsoft关联规则算法属于priori关联规则算法家族,该算法适用于挖掘频繁项集的非常流行和有效的算法。在关联算法中有两个步骤:第一个步骤是挖掘频繁项集;第二步是基于频繁项集来生成关联规则。 关联规则算法对算法参数的设置非常敏感。以下是用于Microsoft 关联规则算法的一系列参数: 1.Minimum_Support:定义了项要成为频繁项集所必须满足的最小支持度。 2.Maximum_Support:定义了频繁项集的最大支持度阈值。 3.Minimum_Probability:定义了一个关联规则的最小概率。 4.Minimum_Importance:重要性小于它的规则会被过滤掉。

大数据挖掘weka大数据分类实验报告材料

一、实验目的 使用数据挖掘中的分类算法,对数据集进行分类训练并测试。应用不同的分类算法,比较他们之间的不同。与此同时了解Weka平台的基本功能与使用方法。 二、实验环境 实验采用Weka 平台,数据使用Weka安装目录下data文件夹下的默认数据集iris.arff。 Weka是怀卡托智能分析系统的缩写,该系统由新西兰怀卡托大学开发。Weka使用Java 写成的,并且限制在GNU通用公共证书的条件下发布。它可以运行于几乎所有操作平台,是一款免费的,非商业化的机器学习以及数据挖掘软件。Weka提供了一个统一界面,可结合预处理以及后处理方法,将许多不同的学习算法应用于任何所给的数据集,并评估由不同的学习方案所得出的结果。 三、数据预处理 Weka平台支持ARFF格式和CSV格式的数据。由于本次使用平台自带的ARFF格式数据,所以不存在格式转换的过程。实验所用的ARFF格式数据集如图1所示 图1 ARFF格式数据集(iris.arff)

对于iris数据集,它包含了150个实例(每个分类包含50个实例),共有sepal length、sepal width、petal length、petal width和class五种属性。期中前四种属性为数值类型,class属性为分类属性,表示实例所对应的的类别。该数据集中的全部实例共可分为三类:Iris Setosa、Iris Versicolour和Iris Virginica。 实验数据集中所有的数据都是实验所需的,因此不存在属性筛选的问题。若所采用的数据集中存在大量的与实验无关的属性,则需要使用weka平台的Filter(过滤器)实现属性的筛选。 实验所需的训练集和测试集均为iris.arff。 四、实验过程及结果 应用iris数据集,分别采用LibSVM、C4.5决策树分类器和朴素贝叶斯分类器进行测试和评价,分别在训练数据上训练出分类模型,找出各个模型最优的参数值,并对三个模型进行全面评价比较,得到一个最好的分类模型以及该模型所有设置的最优参数。最后使用这些参数以及训练集和校验集数据一起构造出一个最优分类器,并利用该分类器对测试数据进行预测。 1、LibSVM分类 Weka 平台内部没有集成libSVM分类器,要使用该分类器,需要下载libsvm.jar并导入到Weka中。 用“Explorer”打开数据集“iris.arff”,并在Explorer中将功能面板切换到“Classify”。点“Choose”按钮选择“functions(weka.classifiers.functions.LibSVM)”,选择LibSVM分类算法。 在Test Options 面板中选择Cross-Validatioin folds=10,即十折交叉验证。然后点击“start”按钮:

数据挖掘实验报告

数据挖掘实验报告 ——加权K-近邻法 一、 数据源说明 1. 数据理解 数据来自于天猫对顾客的BuyOrNot(买与不买),BuyDNactDN(消费活跃度),ActDNTotalDN(活跃度),BuyBBrand(成交有效度),BuyHit(活动有效度)这五个变量的统计。 数据分成两类数据,一类作为训练数据集,一类为测试数据集。 2.数据清理 现实世界的数据一般是不完整的、有噪声的和不一致的。数据清理例程试图填充缺失的值,光滑噪声并识别离群点,并纠正数据中的不一致。 a) 缺失值:当数据中存在缺失值是,忽略该元组 b) 噪声数据:本文暂没考虑。 二、 基于变量重要性的加权K-近邻法[1] 由于我们计算K-近邻法默认输入变量在距离测度中有“同等重要”的贡献,但情况并不总是如此。我们知道不同的变量对我们所要预测的变量的作用是不一定一样的,所以找出对输出变量分类预测有意义的重要变量对数据预测具有重要作用。同时也可以减少那些对输出变量分类预测无意义的输入变量,减少模型的变量。为此,采用基于变量重要性的K-近邻法,计算加权距离,给重要的变量赋予较高的权重,不重要的变量赋予较低的权重是必要的。 (1)算法思路: 我们引进1w 为第i 个输入变量的权重,是输入变量重要性(也称特征重要性),FI 函数,定义为:∑== p j i FI FI 1 ) i ()((i)w 。其中(i)FI 为第i 个输入变量的特征重要性, ∑=<1,1w )((i)i w 这里,(i)FI 依第i 个输入变量对预测误差的影响定义。设输入 变量集合包含p 个变量:p x x x x ,...,,,321。剔除第i 个变量后计算输入变量

宁夏分行:资金体内循环及承接率-数据挖掘与分析报告

宁夏区分行资金体内循环及承接率数据挖掘与分析报告 宁夏区分行新一代项目组 朱子奕 2014/12/2

我行应总行指示,自2014年中旬知晓了资金体内循环和资金承接率两个专项数据的重要性后,就从数据挖掘及分析方面,展开了对这两项数据指标的提取、整理、研究处理工作。现就相关分析成果向大家做汇报: 一、在总行未开始全面通报这两项数据时,我行便开始自发的数据处理工作,借助科技部门的力量,从ODSB数据库中提取数据,针对体内循环及承接率,首先从两个路径提取了数据,以ODSB中“汇划/非汇划”为标志,区分了两类数据。并分别对数据进行了大量的处理工作。在这里再跟大家啰嗦一下两个指标的含义,体内循环率指我行对公户转到其他我行对公户的资金量或笔数占我行对公户转出到所有金融机构对公户款项的占比,承接率指我行对公户接收其他我行对公户的资金量或笔数占我行对公户接收所有金融机构对公户的款项的占比。 1、行内→行内 在刚提取出这类数据时,我们发现相对于行内→行外,这类数据的数据量大的有点异常,如果直接以此为基础,那么算出的体内循环率会远远超过总行平均水平和其他先进分行的水平,所以一度让我们对取数的路径和操作步骤产生了怀疑。但我们与资金结算部的账务交易专家进行了讨论、又对几十万条的转账信息做了梳理后发现,在所有行内→行内的交易数据中,有很大一部分数据其实属于非常规类客户交易,应该在做这类数据处理时进行剔除,比如下面这几种: ①现金管理系统运行所产生的资金归集与资金划拨; ②回单柜使用费、短信使用费、汇划费等我行业务管理费; ③同名客户之间划拨的多发自身交易; ④贷款回收本息,及其他通过内部账户发生的交易; 当对这4类数据进行了剔除后,整个样本数量集便呈现出一个正常的数量,OK,

数据挖掘期末实验报告

数据挖掘技术期末报告 理学院 姓名: 学号: 联系电话:

专业班级: 评分:优□|良□|中□|及格□|不及格□

一、实验目的 基于从UCI公开数据库中下载的数据,使用数据挖掘中的分类算法,用Weka 平台的基本功能对数据集进行分类,对算法结果进行性能比较,画出性能比较图,另外针对不同数量的训练集进行对比实验,并画出性能比较图训练并测试。二、实验环境 实验采用Weka平台,数据使用来自从UCI公开数据库中下载,主要使用其中的Breast Cancer Wisc-onsin (Original) Data Set数据。Weka是怀卡托智能分析系统的缩写,该系统由新西兰怀卡托大学开发。Weka使用Java写成的,并且限制在GNU通用公共证书的条件下发布。它可以运行于几乎所有操作平台,是一款免费的,非商业化的机器学习以及数据挖掘软件。Weka提供了一个统一界面,可结合预处理以及后处理方法,将许多不同的学习算法应用于任何所给的数据集,并评估由不同的学习方案所得出的结果。 三、实验步骤 3.1数据预处理 本实验是针对威斯康辛州(原始)的乳腺癌数据集进行分类,该表含有Sample code number(样本代码),Clump Thickness(丛厚度),Uniformity of Cell Size(均匀的细胞大小),Uniformity of Cell Shape (均匀的细胞形状),Marginal Adhesion(边际粘连),Single Epithelial Cell Size(单一的上皮细胞大小),Bare Nuclei(裸核),Bland Chromatin(平淡的染色质),Normal Nucleoli(正常的核仁),Mitoses(有丝分裂),Class(分类),其中第二项到第十项取值均为1-10,分类中2代表良性,4代表恶性。通过实验,希望能找出患乳腺癌客户各指标的分布情况。

数据挖掘实验报告1

实验一 ID3算法实现 一、实验目的 通过编程实现决策树算法,信息增益的计算、数据子集划分、决策树的构建过程。加深对相关算法的理解过程。 实验类型:验证 计划课间:4学时 二、实验内容 1、分析决策树算法的实现流程; 2、分析信息增益的计算、数据子集划分、决策树的构建过程; 3、根据算法描述编程实现算法,调试运行; 4、对所给数据集进行验算,得到分析结果。 三、实验方法 算法描述: 以代表训练样本的单个结点开始建树; 若样本都在同一个类,则该结点成为树叶,并用该类标记; 否则,算法使用信息增益作为启发信息,选择能够最好地将样本分类的属性; 对测试属性的每个已知值,创建一个分支,并据此划分样本; 算法使用同样的过程,递归形成每个划分上的样本决策树 递归划分步骤,当下列条件之一成立时停止: 给定结点的所有样本属于同一类; 没有剩余属性可以进一步划分样本,在此情况下,采用多数表决进行 四、实验步骤 1、算法实现过程中需要使用的数据结构描述: Struct {int Attrib_Col; // 当前节点对应属性 int Value; // 对应边值 Tree_Node* Left_Node; // 子树 Tree_Node* Right_Node // 同层其他节点 Boolean IsLeaf; // 是否叶子节点 int ClassNo; // 对应分类标号 }Tree_Node; 2、整体算法流程

主程序: InputData(); T=Build_ID3(Data,Record_No, Num_Attrib); OutputRule(T); 释放内存; 3、相关子函数: 3.1、 InputData() { 输入属性集大小Num_Attrib; 输入样本数Num_Record; 分配内存Data[Num_Record][Num_Attrib]; 输入样本数据Data[Num_Record][Num_Attrib]; 获取类别数C(从最后一列中得到); } 3.2、Build_ID3(Data,Record_No, Num_Attrib) { Int Class_Distribute[C]; If (Record_No==0) { return Null } N=new tree_node(); 计算Data中各类的分布情况存入Class_Distribute Temp_Num_Attrib=0; For (i=0;i=0) Temp_Num_Attrib++; If Temp_Num_Attrib==0 { N->ClassNo=最多的类; N->IsLeaf=TRUE; N->Left_Node=NULL;N->Right_Node=NULL; Return N; } If Class_Distribute中仅一类的分布大于0 { N->ClassNo=该类; N->IsLeaf=TRUE; N->Left_Node=NULL;N->Right_Node=NULL; Return N; } InforGain=0;CurrentCol=-1; For i=0;i

数据挖掘实验报告一

数据预处理 一、实验原理 预处理方法基本方法 1、数据清洗 去掉噪声和无关数据 2、数据集成 将多个数据源中的数据结合起来存放在一个一致的数据存储中 3、数据变换 把原始数据转换成为适合数据挖掘的形式 4、数据归约 主要方法包括:数据立方体聚集,维归约,数据压缩,数值归约,离散化和概念分层等二、实验目的 掌握数据预处理的基本方法。 三、实验内容 1、R语言初步认识(掌握R程序运行环境) 2、实验数据预处理。(掌握R语言中数据预处理的使用) 对给定的测试用例数据集,进行以下操作。 1)、加载程序,熟悉各按钮的功能。 2)、熟悉各函数的功能,运行程序,并对程序进行分析。 对餐饮销量数据进统计量分析,求销量数据均值、中位数、极差、标准差,变异系数和四分位数间距。 对餐饮企业菜品的盈利贡献度(即菜品盈利帕累托分析),画出帕累托图。 3)数据预处理 缺省值的处理:用均值替换、回归查补和多重查补对缺省值进行处理 对连续属性离散化:用等频、等宽等方法对数据进行离散化处理 四、实验步骤 1、R语言运行环境的安装配置和简单使用 (1)安装R语言 R语言下载安装包,然后进行默认安装,然后安装RStudio 工具(2)R语言控制台的使用 1.2.1查看帮助文档

1.2.2 安装软件包 1.2.3 进行简单的数据操作 (3)RStudio 简单使用 1.3.1 RStudio 中进行简单的数据处理 1.3.2 RStudio 中进行简单的数据处理

2、R语言中数据预处理 (1)加载程序,熟悉各按钮的功能。 (2)熟悉各函数的功能,运行程序,并对程序进行分析 2.2.1 销量中位数、极差、标准差,变异系数和四分位数间距。 , 2.2.2对餐饮企业菜品的盈利贡献度(即菜品盈利帕累托分析),画出帕累托图。

相关文档
最新文档