三角函数与解三角形高考试题精选

三角函数与解三角形高考试题精选
三角函数与解三角形高考试题精选

三角函数与解三角形高考试题精选

一.解答题(共31小题)

1.在△ABC中,角A,B,C的对边分别为a,b,c,已知2(tanA+tanB)=+.

(Ⅰ)证明:a+b=2c;(Ⅱ)求cosC的最小值.

2.在△ABC中,内角A,B,C所对的边分别为a,b,c.已知asinA=4bsinB,ac=(a2﹣b2﹣c2).(Ⅰ)求cosA的值;(Ⅱ)求sin(2B﹣A)的值.

3.△ABC的内角A,B,C的对边分别为a,b,c,已知2cosC(acosB+bcosA)=c.

(Ⅰ)求C;(Ⅱ)若c=,△ABC的面积为,求△ABC的周长.

4.在△ABC中,内角A,B,C的对边分别为a,b,c.已知cosA=,sinB=C.

(1)求tanC的值;(2)若a=,求△ABC的面积.

5.在△ABC中,角A,B,C所对的边分别是a,b,c,且+=.

(Ⅰ)证明:sinAsinB=sinC;(Ⅱ)若b2+c2﹣a2=bc,求tanB.

6.在△ABC中,已知AB=2,AC=3,A=60°.

(1)求BC的长;(2)求sin2C的值.

7.在△ABC中,内角A,B,C所对的边分别为a,b,c,已知△ABC的面积为3,b﹣c=2,cosA=﹣.

(Ⅰ)求a和sinC的值;(Ⅱ)求cos(2A+)的值.

8.△ABC的内角A,B,C所对的边分别为a,b,c.向量=(a,b)与=(cosA,sinB)平行.(Ⅰ)求A;(Ⅱ)若a=,b=2,求△ABC的面积.

9.设△ABC的内角A,B,C所对边的长分别为a,b,c,且b=3,c=1,△ABC的面积为,求cosA 与a的值.

10.如图,在平面四边形ABCD中,DA⊥AB,DE=1,EC=,EA=2,∠ADC=,∠BEC=.(Ⅰ)求sin∠CED的值;(Ⅱ)求BE的长.

11.在△ABC中,内角A,B,C所对的边分别为a,b,c,已知b+c=2acosB.

(Ⅰ)证明:A=2B;(Ⅱ)若△ABC的面积S=,求角A的大小.

12.在△ABC中,内角A,B,C所对的边分别为a,b,c,已知A=,b2﹣a2=c2.

(1)求tanC的值;(2)若△ABC的面积为3,求b的值.

13.在△ABC中,内角A、B、C所对的边分别是a、b、c,且a+b+c=8.

(Ⅰ)若a=2,b=,求cosC的值;

(Ⅱ)若sinAcos2+sinBcos2=2sinC,且△ABC的面积S=sinC,求a和b的值.

14.△ABC的内角A,B,C所对应的边分别为a,b,c.

(Ⅰ)若a,b,c成等差数列,证明:sinA+sinC=2sin(A+C);

(Ⅱ)若a,b,c成等比数列,求cosB的最小值.

15.△ABC的内角A、B、C所对的边分别为a,b,c.

(Ⅰ)若a,b,c成等差数列,证明:sinA+sinC=2sin(A+C);

(Ⅱ)若a,b,c成等比数列,且c=2a,求cosB的值.

16.四边形ABCD的内角A与C互补,AB=1,BC=3,CD=DA=2.

(1)求C和BD;

(2)求四边形ABCD的面积.

17.△ABC的内角A,B,C的对边分别为a,b,c,已知sin(A+C)=8sin2.

(1)求cosB;

(2)若a+c=6,△ABC的面积为2,求b.

18.在△ABC中,内角A,B,C所对的边分别为a,b,c,已知b+c=2acosB.

(1)证明:A=2B;(2)若cosB=,求cosC的值.

19.设△ABC的内角A、B、C的对边分别为a、b、c,a=btanA,且B为钝角.

(Ⅰ)证明:B﹣A=;(Ⅱ)求sinA+sinC的取值范围.

20.△ABC中,角A,B,C所对的边分别为a,b,c,已知cosB=,sin(A+B)=,ac=2,求sinA和c的值.

21.设△ABC的内角A,B,C的对边分别为a,b,c,a=btanA.

(Ⅰ)证明:sinB=cosA;

(Ⅱ)若sinC﹣sinAcosB=,且B为钝角,求A,B,C.

22.△ABC中,D是BC上的点,AD平分∠BAC,△ABD面积是△ADC面积的2倍.

(1)求;(2)若AD=1,DC=,求BD和AC的长.

23.已知a,b,c分别是△ABC内角A,B,C的对边,sin2B=2sinAsinC.

(Ⅰ)若a=b,求cosB;(Ⅱ)设B=90°,且a=,求△ABC的面积.

24.△ABC中,D是BC上的点,AD平分∠BAC,BD=2DC

(Ⅰ)求.(Ⅱ)若∠BAC=60°,求∠B.

25.在△ABC中,内角A,B,C所对的边分别为a,b,c,已知a﹣c=b,sinB=sinC,

26.△ABC中,角A,B,C所对的边分别为a,b,c.已知a=3,cosA=,B=A+.(Ⅰ)求b的值;(Ⅱ)求△ABC的面积.

27.在△ABC中,角A,B,C的对边分别是a,b,c.

(1)若sin(A+)=2cosA,求A的值.(2)若cosA=,b=3c,求sinC的值.

28.在△ABC中,角A,B,C的对边是a,b,c,已知3acosA=ccosB+bcosC

(1)求cosA的值

(2)若a=1,cosB+cosC=,求边c的值.

29.在△ABC中,内角A,B,C的对边分别为a,b,c,且bsinA=a?cosB.

(1)求角B的大小;

(2)若b=3,sinC=2sinA,分别求a和c的值.

30.在△ABC中,a=3,b=2,∠B=2∠A.(Ⅰ)求cosA的值;

(Ⅱ)求c的值.

三角函数与解三角形高考试题精选

参考答案与试题解析

一.解答题(共31小题)

1.在△ABC中,角A,B,C的对边分别为a,b,c,已知2(tanA+tanB)=+.

(Ⅰ)证明:a+b=2c;

(Ⅱ)求cosC的最小值.

【解答】解:(Ⅰ)证明:由得:

∴两边同乘以cosAcosB得,2(sinAcosB+cosAsinB)=sinA+sinB;

∴2sin(A+B)=sinA+sinB;

即sinA+sinB=2sinC(1);

根据正弦定理,;

∴,带入(1)得:;

∴a+b=2c;

(Ⅱ)a+b=2c;

∴(a+b)2=a2+b2+2ab=4c2;

∴a2+b2=4c2﹣2ab,且4c2≥4ab,当且仅当a=b时取等号;

又a,b>0;

∴;

∴由余弦定理,=;

∴cosC的最小值为.

2.在△ABC中,内角A,B,C所对的边分别为a,b,c.已知asinA=4bsinB,ac=(a2﹣b2﹣c2).(Ⅰ)求cosA的值;

(Ⅱ)求sin(2B﹣A)的值.

【解答】(Ⅰ)解:由,得asinB=bsinA,

又asinA=4bsinB,得4bsinB=asinA,

两式作比得:,∴a=2b.

由,得,

由余弦定理,得;

(Ⅱ)解:由(Ⅰ),可得,代入asinA=4bsinB,得.由(Ⅰ)知,A为钝角,则B为锐角,

∴.

于是,,

故.

3.△ABC的内角A,B,C的对边分别为a,b,c,已知2cosC(acosB+bcosA)=c.(Ⅰ)求C;

(Ⅱ)若c=,△ABC的面积为,求△ABC的周长.

【解答】解:(Ⅰ)∵在△ABC中,0<C<π,∴sinC≠0

已知等式利用正弦定理化简得:2cosC(sinAcosB+sinBcosA)=sinC,

整理得:2cosCsin(A+B)=sinC,

即2cosCsin(π﹣(A+B))=sinC

2cosCsinC=sinC

∴cosC=,

∴C=;

(Ⅱ)由余弦定理得7=a2+b2﹣2ab?,

∴(a+b)2﹣3ab=7,

∵S=absinC=ab=,

∴ab=6,

∴(a+b)2﹣18=7,

∴a+b=5,

4.在△ABC中,内角A,B,C的对边分别为a,b,c.已知cosA=,sinB=C.(1)求tanC的值;

(2)若a=,求△ABC的面积.

【解答】解:(1)∵A为三角形的内角,cosA=,

∴sinA==,

又cosC=sinB=sin(A+C)=sinAcosC+cosAsinC=cosC+sinC,

整理得:cosC=sinC,

则tanC=;

(2)由tanC=得:cosC====,

∴sinC==,

∴sinB=cosC=,

∵a=,∴由正弦定理=得:c===,

则S

=acsinB=×××=.

△ABC

5.在△ABC中,角A,B,C所对的边分别是a,b,c,且+=.

(Ⅰ)证明:sinAsinB=sinC;

(Ⅱ)若b2+c2﹣a2=bc,求tanB.

【解答】(Ⅰ)证明:在△ABC中,∵+=,

∴由正弦定理得:,

∴=,

∵sin(A+B)=sinC.

∴整理可得:sinAsinB=sinC,

(Ⅱ)解:b2+c2﹣a2=bc,由余弦定理可得cosA=.

sinA=,=

+==1,=,

tanB=4.

6.在△ABC中,已知AB=2,AC=3,A=60°.

(1)求BC的长;

(2)求sin2C的值.

【解答】解:(1)由余弦定理可得:BC2=AB2+AC2﹣2AB?ACcosA=4+9﹣2×2×3×=7,

所以BC=.

(2)由正弦定理可得:,则sinC===,

∵AB<BC,BC=,AB=2,角A=60°,在三角形ABC中,大角对大边,大边对大角,>2,

∴角C<角A,角C为锐角.sinC>0,cosC>0则cosC===.

因此sin2C=2sinCcosC=2×=.

7.在△ABC中,内角A,B,C所对的边分别为a,b,c,已知△ABC的面积为3,b﹣c=2,cosA=﹣.

(Ⅰ)求a和sinC的值;

(Ⅱ)求cos(2A+)的值.

【解答】解:(Ⅰ)在三角形ABC中,由cosA=﹣,可得sinA=,△ABC的面积为3,可得:,

可得bc=24,又b﹣c=2,解得b=6,c=4,由a2=b2+c2﹣2bccosA,可得a=8,

,解得sinC=;

(Ⅱ)cos(2A+)=cos2Acos﹣sin2Asin==.

8.△ABC的内角A,B,C所对的边分别为a,b,c.向量=(a,b)与=(cosA,sinB)平行.(Ⅰ)求A;

【解答】解:(Ⅰ)因为向量=(a,b)与=(cosA,sinB)平行,

所以asinB﹣=0,由正弦定理可知:sinAsinB﹣sinBcosA=0,因为sinB≠0,

所以tanA=,可得A=;

(Ⅱ)a=,b=2,由余弦定理可得:a2=b2+c2﹣2bccosA,可得7=4+c2﹣2c,解得c=3,

△ABC的面积为:=.

9.设△ABC的内角A,B,C所对边的长分别为a,b,c,且b=3,c=1,△ABC的面积为,求cosA 与a的值.

【解答】解:∵b=3,c=1,△ABC的面积为,

∴=,

∴sinA=,

又∵sin2A+cos2A=1

∴cosA=±,

由余弦定理可得a==2或2.

10.如图,在平面四边形ABCD中,DA⊥AB,DE=1,EC=,EA=2,∠ADC=,∠BEC=.(Ⅰ)求sin∠CED的值;

(Ⅱ)求BE的长.

【解答】解:(Ⅰ)设α=∠CED,

在△CDE中,由余弦定理得EC2=CD2+ED2﹣2CD?DEcos∠CDE,

即7=CD2+1+CD,则CD2+CD﹣6=0,

解得CD=2或CD=﹣3,(舍去),

在△CDE中,由正弦定理得,

则sinα=,

*精* (Ⅱ)由题设知0<α<,由(Ⅰ)知cosα=,

而∠AEB=,

∴cos∠AEB=cos()=cos cosα+sin sinα=,

在Rt△EAB中,cos∠AEB=,

故BE=.

11.在△ABC中,内角A,B,C所对的边分别为a,b,c,已知b+c=2acosB.

(Ⅰ)证明:A=2B;

(Ⅱ)若△ABC的面积S=,求角A的大小.

【解答】(Ⅰ)证明:∵b+c=2acosB,

∴sinB+sinC=2sinAcosB,

∴sinB+sin(A+B)=2sinAcosB

∴sinB+sinAcosB+cosAsinB=2sinAcosB

∴sinB=sinAcosB﹣cosAsinB=sin(A﹣B)

∵A,B是三角形中的角,

∴B=A﹣B,

∴A=2B;

(Ⅱ)解:∵△ABC的面积S=,

∴bcsinA=,

∴2bcsinA=a2,

∴2sinBsinC=sinA=sin2B,

∴sinC=cosB,

∴B+C=90°,或C=B+90°,

∴A=90°或A=45°.

12.在△ABC中,内角A,B,C所对的边分别为a,b,c,已知A=,b2﹣a2=c2.

(1)求tanC的值;

【解答】解:(1)∵A=,∴由余弦定理可得:,∴b2﹣a2=bc﹣c2,又b2﹣a2=c2.∴bc﹣c2=c2.∴b=c.可得,

∴a2=b2﹣=,即a=.

∴cosC===.

∵C∈(0,π),

∴sinC==.

∴tanC==2.

或由A=,b2﹣a2=c2.

可得:sin2B﹣sin2A=sin2C,

∴sin2B﹣=sin2C,

∴﹣cos2B=sin2C,

∴﹣sin=sin2C,

∴﹣sin=sin2C,

∴sin2C=sin2C,

∴tanC=2.

(2)∵=×=3,

解得c=2.

∴=3.

13.在△ABC中,内角A、B、C所对的边分别是a、b、c,且a+b+c=8.

(Ⅰ)若a=2,b=,求cosC的值;

(Ⅱ)若sinAcos2+sinBcos2=2sinC,且△ABC的面积S=sinC,求a和b的值.

【解答】解:(Ⅰ)∵a=2,b=,且a+b+c=8,

∴c=8﹣(a+b)=,

∴由余弦定理得:cosC===﹣;

(Ⅱ)由sinAcos2+sinBcos2=2sinC可得:sinA?+sinB?=2sinC,整理得:sinA+sinAcosB+sinB+sinBcosA=4sinC,

∵sinAcosB+cosAsinB=sin(A+B)=sinC,

∴sinA+sinB=3sinC,

利用正弦定理化简得:a+b=3c,

∵a+b+c=8,

∴a+b=6①,

∵S=absinC=sinC,

∴ab=9②,

联立①②解得:a=b=3.

14.△ABC的内角A,B,C所对应的边分别为a,b,c.

(Ⅰ)若a,b,c成等差数列,证明:sinA+sinC=2sin(A+C);

(Ⅱ)若a,b,c成等比数列,求cosB的最小值.

【解答】解:(Ⅰ)∵a,b,c成等差数列,

∴2b=a+c,

利用正弦定理化简得:2sinB=sinA+sinC,

∵sinB=sin[π﹣(A+C)]=sin(A+C),

∴sinA+sinC=2sinB=2sin(A+C);

(Ⅱ)∵a,b,c成等比数列,

∴b2=ac,

∴cosB==≥=,

当且仅当a=c时等号成立,

∴cosB的最小值为.

15.△ABC的内角A、B、C所对的边分别为a,b,c.

(Ⅰ)若a,b,c成等差数列,证明:sinA+sinC=2sin(A+C);

【解答】解:(Ⅰ)∵a,b,c成等差数列,

∴a+c=2b,

由正弦定理得:sinA+sinC=2sinB,

∵sinB=sin[π﹣(A+C)]=sin(A+C),

则sinA+sinC=2sin(A+C);

(Ⅱ)∵a,b,c成等比数列,

∴b2=ac,

将c=2a代入得:b2=2a2,即b=a,

∴由余弦定理得:cosB===.

16.四边形ABCD的内角A与C互补,AB=1,BC=3,CD=DA=2.

(1)求C和BD;

(2)求四边形ABCD的面积.

【解答】解:(1)在△BCD中,BC=3,CD=2,

由余弦定理得:BD2=BC2+CD2﹣2BC?CDcosC=13﹣12cosC①,

在△ABD中,AB=1,DA=2,A+C=π,

由余弦定理得:BD2=AB2+AD2﹣2AB?ADcosA=5﹣4cosA=5+4cosC②,

由①②得:cosC=,

则C=60°,BD=;

(2)∵cosC=,cosA=﹣,

∴sinC=sinA=,

则S=AB?DAsinA+BC?CDsinC=×1×2×+×3×2×=2.

17.△ABC的内角A,B,C的对边分别为a,b,c,已知sin(A+C)=8sin2.(1)求cosB;

【解答】解:(1)sin(A+C)=8sin2,

∴sinB=4(1﹣cosB),

∵sin2B+cos2B=1,

∴16(1﹣cosB)2+cos2B=1,

∴16(1﹣cosB)2+cos2B﹣1=0,

∴16(cosB﹣1)2+(cosB﹣1)(cosB+1)=0,

∴(17cosB﹣15)(cosB﹣1)=0,

∴cosB=;

(2)由(1)可知sinB=,

=ac?sinB=2,

∵S

△ABC

∴ac=,

∴b2=a2+c2﹣2accosB=a2+c2﹣2××

=a2+c2﹣15=(a+c)2﹣2ac﹣15=36﹣17﹣15=4,

∴b=2.

18.在△ABC中,内角A,B,C所对的边分别为a,b,c,已知b+c=2acosB.(1)证明:A=2B;

(2)若cosB=,求cosC的值.

【解答】(1)证明:∵b+c=2acosB,

∴sinB+sinC=2sinAcosB,

∵sinC=sin(A+B)=sinAcosB+cosAsinB,

∴sinB=sinAcosB﹣cosAsinB=sin(A﹣B),由A,B∈(0,π),

∴0<A﹣B<π,∴B=A﹣B,或B=π﹣(A﹣B),化为A=2B,或A=π(舍去).∴A=2B.

(II)解:cosB=,∴sinB==.

cosA=cos2B=2cos2B﹣1=,sinA==.

∴cosC=﹣cos(A+B)=﹣cosAcosB+sinAsinB=+×=.

19.设△ABC的内角A、B、C的对边分别为a、b、c,a=btanA,且B为钝角.

(Ⅰ)证明:B﹣A=;

(Ⅱ)求sinA+sinC的取值范围.

【解答】解:(Ⅰ)由a=btanA和正弦定理可得==,

∴sinB=cosA,即sinB=sin(+A)

又B为钝角,∴+A∈(,π),

∴B=+A,∴B﹣A=;

(Ⅱ)由(Ⅰ)知C=π﹣(A+B)=π﹣(A++A)=﹣2A>0,

∴A∈(0,),∴sinA+sinC=sinA+sin(﹣2A)

=sinA+cos2A=sinA+1﹣2sin2A

=﹣2(sinA﹣)2+,

∵A∈(0,),∴0<sinA<,

∴由二次函数可知<﹣2(sinA﹣)2+≤

∴sinA+sinC的取值范围为(,]

20.△ABC中,角A,B,C所对的边分别为a,b,c,已知cosB=,sin(A+B)=,ac=2,求sinA和c的值.

【解答】解:①因为△ABC中,角A,B,C所对的边分别为a,b,c已知cosB=,

sin(A+B)=,ac=2,所以sinB=,sinAcosB+cosAsinB=,

所以sinA+cosA=①,结合平方关系sin2A+cos2A=1②,

由①②解得27sin2A﹣6sinA﹣16=0,

解得sinA=或者sinA=﹣(舍去);

②由正弦定理,由①可知sin(A+B)=sinC=,sinA=,

所以a=2c,又ac=2,所以c=1.

(Ⅰ)证明:sinB=cosA;

(Ⅱ)若sinC﹣sinAcosB=,且B为钝角,求A,B,C.

【解答】解:(Ⅰ)证明:∵a=btanA.

∴=tanA,

∵由正弦定理:,又tanA=,

∴=,

∵sinA≠0,

∴sinB=cosA.得证.

(Ⅱ)∵sinC=sin[π﹣(A+B)]=sin(A+B)=sinAcosB+cosAsinB,

∴sinC﹣sinAcosB=cosAsinB=,由(1)sinB=cosA,

∴sin2B=,

∵0<B<π,

∴sinB=,

∵B为钝角,

∴B=,

又∵cosA=sinB=,

∴A=,

∴C=π﹣A﹣B=,

综上,A=C=,B=.

22.△ABC中,D是BC上的点,AD平分∠BAC,△ABD面积是△ADC面积的2倍.(1)求;

(2)若AD=1,DC=,求BD和AC的长.

【解答】解:(1)如图,过A作AE⊥BC于E,

∵==2

三角函数解三角形综合

1.已知函数f(x)=sin(ωx)﹣2sin2+m(ω>0)的最小正周期为3π,当x∈[0,π]时,函数f(x)的最小值为0. (1)求函数f(x)的表达式; (2)在△ABC中,若f(C)=1,且2sin2B=cosB+cos(A﹣C),求sinA的值. 解:(Ⅰ). 依题意:函数. 所以. , 所以f(x)的最小值为m.依题意,m=0. . (Ⅱ)∵,∴ .. 在Rt△ABC中,∵, ∴. ∵0<sinA<1,∴. 2.已知函数(其中ω>0),若f(x)的一条对称轴离最近的对称中心的距离为. (I)求y=f(x)的单调递增区间; (Ⅱ)在△ABC中角A、B、C的对边分别是a,b,c满足(2b﹣a)cosC=c?cosA,则f(B)恰是f(x)的最大值,试判断△ABC的形状. 【解答】解:(Ⅰ)∵ , =, ∵f(x)的对称轴离最近的对称中心的距离为,

∴T=π,∴,∴ω=1,∴. ∵得:, ∴函数f(x)单调增区间为; (Ⅱ)∵(2b﹣a)cosC=c?cosA,由正弦定理, 得(2sinB﹣sinA)cosC=sinC?cosA2sinBcosC=sinAcosC+sinCcosA=sin(A+C), ∵sin(A+C)=sin(π﹣B)=sinB>0,2sinBcosC=sinB, ∴sinB(2cosC﹣1)=0,∴,∵0<C<π,∴,∴, ∴.∴, 根据正弦函数的图象可以看出,f(B)无最小值,有最大值y max=1, 此时,即,∴,∴△ABC为等边三角形. 3.已知函数f(x)=sinωx+cos(ωx+)+cos(ωx﹣)﹣1(ω>0),x∈R,且函数的最小正周期为π: (1)求函数f(x)的解析式; (2)在△ABC中,角A、B、C所对的边分别是a、b、c,若f(B)=0,?=,且a+c=4,试求b的值. 【解答】解:(1)f(x)=sinωx+cos(ωx+)+cos(ωx﹣)﹣1 ==. ∵T=,∴ω=2. 则f(x)=2sin(2x)﹣1; (2)由f(B)==0,得. ∴或,k∈Z. ∵B是三角形内角,∴B=. 而=ac?cosB=,∴ac=3.

三角函数与解三角形知识点总结

1. 任意角的三角函数的定义:设α是任意一个角,P (,)x y 是α的终边上的任意一点(异 于原点),它与原点的距离 是0r =>,那么sin ,cos y x r r αα== , ()tan ,0y x x α=≠ 三角函数值只与角的大小有关,而与终边上点P 的位置无关。 2.三角函数在各象限的符号:(一全二正弦,三切四余弦) + + - + - + - - - + + - sin α cos α tan α 3. 同角三角函数的基本关系式: (1)平方关系:2 222 1 sin cos 1,1tan cos αααα +=+= (2)商数关系:sin tan cos α αα = (用于切化弦) ※平方关系一般为隐含条件,直接运用。注意“1”的代换

4.三角函数的诱导公式 诱导公式(把角写成 απ ±2 k 形式,利用口诀:奇变偶不变,符号看象限) Ⅰ)?????=+=+=+x x k x x k x x k tan )2tan(cos )2cos(sin )2sin(πππ Ⅱ)?????-=-=--=-x x x x x x tan )tan(cos )cos(sin )sin( Ⅲ) ?? ???=+-=+-=+x x x x x x tan )tan(cos )cos(sin )sin(πππ Ⅳ)?????-=--=-=-x x x x x x tan )tan(cos )cos(sin )sin(πππ Ⅴ)???????=-=-ααπααπsin )2cos(cos )2sin( Ⅵ)??? ????-=+=+α απααπsin )2cos(cos )2sin( 5.特殊角的三角函数值

高中数学三角函数、解三角形知识点

三角函数、解三角形 1.弧长公式:r l α= 扇形面积公式:22 121r lr S α== 2.同角三角函数的基本关系式: 平方关系:1cos sin 2 2 =+αα 商数关系:sin tan cos α αα = 3.三角函数的诱导公式: 诱导公式(把角写成απ ±2 k 形式,利用口诀:奇变偶不变,符号看象限) 公式一()()()?????=?+=?+=?+απααπααπαtan 2tan cos 2cos sin 2sin k k k 公式二()()()?????=+=+=+ααπααπααπtan tan cos -cos -sin sin 公式三()()()?? ? ??=-=-=-ααααααtan -tan cos cos -sin sin 公式四()()()?????=-=-=-ααπααπααπtan -tan cos -cos sin sin 公式五???????=??? ??-=??? ??-ααπααπsin 2cos cos 2sin 公式六???????=??? ??+=?? ? ??+ααπααπsin -2 cos cos 2sin 4.两角和与差的正弦、余弦、正切公式: βαβαβαcos sin cos sin )sin(+=+ βαβαβαcos sin cos sin )sin(-=- βαβαβαsin sin cos cos )cos(-=+ βαβαβαsin sin cos cos )cos(+=- βαβαβαtan tan 1tan tan )tan(-+= + β αβαβαtan tan 1tan tan )tan(+-=- 5.二倍角公式: a a a cos sin 22sin = 1cos 2sin 21sin cos 2cos 2222-=-=-=a a a a a a a a 2tan 1tan 22tan -= 6.辅助角公式: sin cos a b αα+ )α?+( 其中sin tan b a ???= = = ). 比如: x x y cos 3sin += ) cos ) 3(13sin ) 3(11( )3(12 2 2 2 22x x ++ ++= )cos 23sin 21(2x x += )3 sin cos 3cos (sin 2ππx x +=)3sin(2π+=x 7.正弦定理: 2sin sin sin a b c R C ===A B (R 为△ABC 外接圆的半径) 8.余弦定理:2 2 2 2cos a b c bc =+-A ,2 2 2 2cos b a c ac =+-B ,2 2 2 2cos c a b ab C =+- 推论:222cos 2b c a bc +-A =,222cos 2a c b ac +-B =,222 cos 2a b c C ab +-=.

高中数学专题练习-三角函数及解三角形

高中数学专题练习-三角函数及解三角形 1.【高考全国Ⅰ卷理数】函数f(x)=在的图像大致为 A.B. C.D. 【答案】D 【解析】由,得是奇函数,其图象关于原点对称,排除A.又,排除B,C,故选D. 【名师点睛】本题考查函数的性质与图象,渗透了逻辑推理、直观想象和数学运算素养,采取性质法或赋值法,利用数形结合思想解题.解答本题时,先判断函数的奇偶性,得是奇函数,排除A,再注意到选项的区别,利用特殊值得正确答案. 2.【高考全国Ⅰ卷理数】关于函数有下述四个结论: ①f(x)是偶函数②f(x)在区间(,)单调递增 ③f(x)在有4个零点④f(x)的最大值为2 其中所有正确结论的编号是 A.①②④B.②④ C.①④D.①③ 【答案】C 【解析】为偶函数,故①正确.当时,,它在区间单调递减,故②错误. 当时,,它有两个零点:;当时,

,它有一个零点:,故在有个零点:,故③错误.当时,;当时, ,又为偶函数,的最大值为,故④正确.综上所述,①④正确,故选C. 【名师点睛】本题也可画出函数的图象(如下图),由图象可得①④正确. 3.【高考全国Ⅱ卷理数】下列函数中,以为周期且在区间(,)单调递增的是A.f(x)=|cos2x| B.f(x)=|sin2x| C.f(x)=cos|x| D.f(x)=sin|x| 【答案】A 【解析】作出因为的图象如下图1,知其不是周期函数,排除D; 因为,周期为,排除C; 作出图象如图2,由图象知,其周期为,在区间(,)单调递增,A正确; 作出的图象如图3,由图象知,其周期为,在区间(,)单调递减,排除B,故选A. 图1

图2 图3 【名师点睛】本题主要考查三角函数的图象与性质,渗透直观想象、逻辑推理等数学素养,画出各函数图象,即可作出选择.本题也可利用二级结论:①函数的周期是函数周期的一半; ②不是周期函数. 4.【高考全国Ⅱ卷理数】已知α∈(0,),2sin2α=cos2α+1,则sinα= A. B. C.D. 【答案】B 【解析】,, ,又,,又,,故选B. 【名师点睛】本题是对三角函数中二倍角公式、同角三角函数基本关系式的考查,中等难度,判断正余弦的正负,运算准确性是关键,题目不难,需细心,解决三角函数问题,研究角的范围后得出三角函数值的正负很关键,切记不能凭感觉.解答本题时,先利用二倍角公式得到正余弦关系,再利用角范围及正余弦平方和为1关系得出答案. 5.【高考全国Ⅲ卷理数】设函数=sin()(>0),已知在有且仅有5个零点,下述四个结论: ①在()有且仅有3个极大值点 ②在()有且仅有2个极小值点

三角函数-解三角形的综合应用

学思堂教育个性化教程教案 数学科教学设计 学生姓名教师姓名刘梦凯班主任日期时间段年级课时教学内容 教学目标 重点 难点 教学过程 命题点二解三角形 难度:高、中、低命题指数:☆☆☆☆☆ 1.(2015·安徽高考)在△ABC中,AB=6,∠A=75°,∠B=45°,则 AC=________. 2.(2015·广东高考改编)设△ABC的内角A,B,C的对边分别为a,b, c.若a=2,c=2 3,c os A= 3 2 且b<c,则b=________. 3.(2015·北京高考)在△ABC中,a=3,b=6,∠A= 2π 3 ,则∠B= ________. 4.(2015·福建高考)若△ABC中,A C=3,A=45°,C=75°,则 BC=________. 5.(2015·全国卷Ⅰ)已知a,b,c分别为△ABC内角A,B,C的对边, sin2B=2sin A sin C. (1)若a=b,求cos B;[来源:学科网ZXXK] (2)设B=90°,且a=2,求△ABC的面积. 教 学 效 果 分 析

教学过程 6.(2015·山东高考)△ABC中,角A,B,C所对的边分别为a,b,c. 已知cos B= 3 3 ,sin(A+B)= 6 9 ,ac=23,求sin A和c的值. 7.(2015·全国卷Ⅱ)△ABC中,D是BC上的点,AD平分∠BAC,BD= 2DC. (1)求 sin B sin C ; (2)若∠BAC=60°,求∠B. 8.(2015·浙江高考)在△ABC中,内角A,B,C所对的边分别为a,b, c,已知tan ? ? ?? ? π 4 +A=2. (1)求 sin 2A sin 2A+cos2A 的值; (2)若B= π 4 ,a=3,求△ABC的面积.[来源:学科 教 学 效 果 分 析

三角函数与解三角形-专题复习

专题一 三角函数与解三角形 一、任意角、弧度制及任意角的三角函数 1、弧度制的定义与公式: 定义:把长度等于半径长的弧所对的圆心角叫做1弧度的角. 弧度记作rad. 公式 角的弧度数公式 r =α 角度与弧度的换算 ①rad 180 1π=? ② 弧长公式 扇形面积公式 2、任意角三角函数(正弦、余弦、正切)的定义 第一定义:设是任意角,它的终边与单位圆交于点P(x,y),则 第二定义:设 是任意角,它的终边上的任意一点 P(x,y),则 . 考点1 三角函数定义的应用 例1 .已知角α的终边在直线043=+y x 上,则=++αααtan 4cos 5sin 5 . 变式:(1)已知角α的终边过点)30sin 6,8(? --m P ,且5 4 cos - =α,则m 的值为 . (2)在直角坐标系中,O 是原点,A (3,1),将点A 绕O 逆时针旋转90°到B 点,则B 点坐标为__________. (3)4tan 3cos 2sin 的值( ) A .小于0 B .大于0 C .等于0 D .不存在 考点2 扇形弧长、面积公式的应用 例 2.已知扇形的半径为10cm,圆心角为? 120,则扇形的弧长为 面积为 . 变式:已知在半径为10的圆O 中,弦AB 的长为10,则弦AB 所对的圆心角α的大小 为 ,α所在的扇形弧长 为 ,弧所在的弓形的面积S 为 .

二、同角三角函数的基本关系及诱导公式 1、1cos sin 2 2=+αα α αcos tan = 2、三角函数的诱导公式 例1.已知α是三角形的内角,且.5 cos sin =+αα (1)求αtan 的值; (2)把α α22sin cos 1 +用αtan 表示出来,并求其值. 变式:1、已知α是三角函数的内角,且3 1 tan -=α,求ααcos sin +的值. 2、已知.34tan -=α(1)求α αααcos 2sin 5cos 4sin +-的值;(2)求αααcos sin 2sin 2 +的值. 3.若cos α+2sin α=-5,则tan α=________.

三角函数与解三角形

课程标题三角函数与解三角形 求三角函数得定义域实质就就就是解三角不等式(组)、一般可用三角函数得图象或三角函数线确定三角不等式得解、列三角不等式,既要考虑分式得分母不能为零;偶次方根被开方数大于等于零;对数得真数大于零及底数大于零且不等于1,又要考虑三角函数本身得定义域; 求三角函数得值域得常用方法:1、化为求得值域; ,引入辅助角,化为求解方法同类型。 2、化为关于(或)得二次函数式; ,设,化为二次函数在上得最值求之; 周期问题一般将函数式化为(其中为三角函数,)、 ) ②y=tanx图象得对称中心(,0) (二)主要方法: 1、函数得单调增区间可由 解出,单调减区间可由解出; 周期 2、函数得单调减区间可由 解出,单调增区间呢。(自己导出)周期 3、函数得单调增区间可由 解出。(无增区间,重点掌握) 周期 课堂练习: 1.已知函数得定义域为,值域为,求常数得值 (化为求得值域)、 2、函数得单调递减区间就就是 3、函数得单调增区间为 2、函数,、 (Ⅰ)求函数得最小正周期;(Ⅱ)求函数在区间上得最小值与最大值、(化为求得值域)、 3、函数得一个单调增区间就就是 ???? 4、若函数,则就就是 最小正周期为得奇函数最小正周期为得奇函数 最小正周期为得偶函数最小正周期为得偶函数 5、函数得最大值 6、当函数得最大值为时,求得值、

7、函数得最大值就就是 8、已知函数,、 (1)求得最大值与最小值;(2)f(x)得最小正周期。 (3)若不等式在上恒成立,求实数得取值范围、 解三角形 正弦定理:, 余弦定理: 推论:正余弦定理得边角互换功能 ① ,, ②,, ③== ④ (4)面积公式:S=ab*sinC=bc*sinA=ca*sinB 课堂练习: 1、在中,角得对边分别为,已知,则( ) A、1 ?B.2 C、???D、 2、在△ABC中,AB=3,BC=,AC=4,则边AC上得高为( ) A、B、 C、D、 3、在ΔABC中,已知a=,b=,B=45°,求角A,角C得大小及边c得长度。 4、得内角A、B、C得对边分别为a、b、c,若a、b、c成等比数列,且,则() A、 B、 C、D、 【填空题】 5、在中,分别就就是、、所对得边。若,,,则__________ 6、在锐角△ABC中,边长a=1,b=2,则边长c得取值范围就就是_______、 7、已知锐角得面积为,,则角得大小为( ) ?A、75°?B、60° ?C、45°D、30° 8、在△中,若,则等于、 9、在中,已知,则得大小为 ( ) ??? 【解答题】 10、在中,分别就就是三个内角得对边、若,,求得面积、 11、如图,就就是等边三角形,就就是等腰直角三角形,∠=,交于,、 ?(1)求∠得得值; (2)求、 12、在中,角A、B、C所对得边分别为a,b,c,且满足

必修四三角函数与解三角形综合测试题(基础含答案)

必修四三角函数与解三角形综合测试题 (本试卷满分150分,考试时间120分) 第Ⅰ卷(选择题 共40分) 一.选择题(本大题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的) 1.若点P 在3 2π的终边上,且OP=2,则点P 的坐标( ) A .)3,1( B .)1,3(- C .)3,1(-- D .)3,1(- 2.已知=-=-ααααcos sin ,4 5cos sin 则( ) A .47 B .169- C .329- D .32 9 3.下列函数中,最小正周期为 2 π的是( ) A .)32sin(π-=x y B .)32tan(π-=x y C .)62cos(π+=x y D .)6 4tan(π+=x y 4.等于则)2cos(),,0(,31cos θππθθ+∈=( ) A .924- B .924 C .9 7- D .97 5.函数y =sin (π4 -2x )的单调增区间是 ( ) A.[kπ-3π8 ,kπ+π8 ](k ∈Z ) B.[kπ+π8 ,kπ+5π8 ](k ∈Z ) C.[kπ-π8 ,kπ+3π8 ](k ∈Z ) D.[kπ+3π8 ,kπ+7π8 ](k ∈Z ) 6.将函数x y 4sin =的图象向左平移12 π个单位,得到)4sin(?+=x y 的图象,则?等于( ) A .12π- B .3π- C .3 π D .12π 7.οοοο50tan 70tan 350tan 70tan -+的值等于( ) A .3 B .33 C .33- D .3- 8.在△ABC 中,sinA >sinB 是A >B 的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件 9.ABC ?中,π= A ,BC =3,则ABC ?的周长为( )

三角函数与解三角形(师)

三角函数与解三角形 一、 y=Asin (ωx+φ)函数的图像与性质重难点突破 二、经验分享 【知识点1 用五点法作函数y=Asin (ωx+φ)的图象】 用“五点法”作sin()y A x ω?=+的简图,主要是通过变量代换,设z x ω?=+,由z 取3 0,,,,222 π πππ来求出相应的x ,通过列表,计算得出五点坐标,描点后得出图象. 【知识点2 由y=sinx 得图象通过变换得到y=Asin (ωx+φ)的图象】 1.振幅变换: sin y A x x R =∈,(A>0且A≠1)的图象可以看作把正弦曲线上的所有点的纵坐标伸长(A>1)或缩短 (0≠,且的图象,可看作把正弦曲线上所有点的横坐标缩短()1ω>或伸长()01ω<<到原来的1 ω 倍(纵坐标不变).若0ω<则可用诱导公式将符号“提出”再作图.ω决定了函数的周期. 3.相位变换: 函数()sin y x x R ?=+∈,(其中0?≠)的图象,可以看作把正弦曲线上所有点向左(当?>0时)或向右(当?<0时)平行移动?个单位长度而得到.(用平移法注意讲清方向:“左加右减”). 一般地,函数()sin()0,0y A x A x R ω?ω=+>>∈,的图象可以看作是用下面的方法得到的: (1) 先把y=sinx 的图象上所有的点向左(?>0)或右(?<0)平行移动?个单位; (2) 再把所得各点的横坐标缩短()1ω>或伸长()01ω<<到原来的 1 ω 倍(纵坐标不变); (3) 再把所得各点的纵坐标伸长(A>1)或缩短(0

最新解三角形知识点归纳(附三角函数公式)

高中数学必修五 第一章 解三角形知识点归纳 1、三角形三角关系:A+B+C=180°;C=180°—(A+B); 2、三角形三边关系:a+b>c; a-b,则90C <;③若2 2 2 a b c +<,则90C >. 11、三角形的四心: 垂心——三角形的三边上的高相交于一点 重心——三角形三条中线的相交于一点(重心到顶点距离与到对边距离之比为2:1) 外心——三角形三边垂直平分线相交于一点(外心到三顶点距离相等) 内心——三角形三内角的平分线相交于一点(内心到三边距离相等) 12同角的三角函数之间的关系 (1)平方关系:sin2α+cos2α=1 (2)倒数关系:tanα·cotα=1 (3)商的关系:α α ααααsin cos cot ,cos sin tan ==

三角函数及解三角形知识点总结

1. 任意角的三角函数的定义: 设〉是任意一个角,p (x, y )是〉的终 边上的任意一点(异于原点),它与原点的距离是「“x 2r 2.o , 位置无关。 2. 三角函数在各象限的符号:(一全二正弦,三切四余弦) + L i + —— L + _ - + ------ ■ —— + - ■ sin : cos : tan : 3. 同角三角函数的基本关系式: 4. 三角函数的诱导公式 k 二.一 诱导公式(把角写成2 …形式,利用口诀:奇变偶不变,符 (2)商数关 系: tan-E 屮一、 cos 。(用于切化弦) (1)平方关 系: 2 2 2 sin 工 cos ■■ -1,1 tan : 1 cos 2: ※平方关系一般为隐含条件,直接运用。注意“ 1”的代换 si …y,cos 」 那么 r 三角函数值只与角的大小有关,而与终边上点

5. 特殊角的三角函数值 度 0s 30c A 45“ A 60“ 90 120c A 135“ 150s 180c 270° 360 弧 31 JI JI 2n 3兀 5兀 JI 3兀 2兀 度 6 4 3 2 3 4 6 2 si n 。 0 1 竝 迈 1 旦 1 0 1 2 2 2 2 2 2 cosa 亦 1 1 念 力 1 2 _1 1 2 2 2 2 2 号看象限) sin (2k .亠 x ) = sin x cos (2k ■亠 x ) = cosx [)tan (2k ,亠 x )二 tanx sin ( -x ) - - sin x cos (-x ) =cosx H )tan (-x ) - - tanx m ) |sin (,亠 x ) = -sin x cos (m ) = - cosx tan (二 x ) IV ) Sin (兀 _x ) =sin x cos (兀—x ) = —cosx tan (兀一 sin (— -〉)= cos ..z sin (二:)=cos : V ) -?) = sin :

高考真题:三角函数及解三角形综合

三角函数的概念、诱导公式与三角恒等变换 6.(2019浙江18)设函数()sin ,f x x x =∈R . (1)已知[0,2),θ∈π函数()f x θ+是偶函数,求θ的值; (2)求函数22[()][()]124 y f x f x ππ =+ ++ 的值域. 解析(1)因为()sin()f x x θθ+=+是偶函数,所以,对任意实数x 都有 sin()sin()x x θθ+=-+, 即sin cos cos sin sin cos cos sin x x x x θθθθ+=-+, 故2sin cos 0x θ=, 所以cos 0θ=. 又[0,2π)θ∈,因此π2θ= 或3π2 . (2)2 2 22ππππsin sin 124124y f x f x x x ? ???????????=+++=+++ ? ? ? ???????????? ????? ππ1cos 21cos 213621cos 2sin 222222x x x x ??? ?-+-+ ? ? ??????=+=-- ? ??? π123x ? ?=+ ?? ?. 因此,函数的值域是[1- +. 27.(2018江苏)已知,αβ为锐角,4 tan 3 α= ,cos()5αβ+=-. (1)求cos2α的值; (2)求tan()αβ-的值. 【解析】(1)因为4tan 3α= ,sin tan cos ααα=,所以4 sin cos 3 αα=. 因为22sin cos 1αα+=,所以29 cos 25 α= ,

因此,27cos22cos 125 αα=-=- . (2)因为,αβ为锐角,所以(0,π)αβ+∈. 又因为cos()αβ+=,所以sin()αβ+=, 因此tan()2αβ+=-. 因为4tan 3α=,所以22tan 24 tan 21tan 7 ααα==--, 因此,tan 2tan()2 tan()tan[2()]1+tan 2tan()11ααβαβααβααβ-+-=-+==-+. 28.(2018浙江)已知角α的顶点与原点O 重合,始边与x 轴的非负半轴重合,它的终边过 点3 4(,)55 P --. (1)求sin()απ+的值; (2)若角β满足5 sin()13 αβ+= ,求cos β的值. 【解析】(1)由角α的终边过点34(,)55P --得4 sin 5α=-, 所以4 sin()sin 5απα+=-=. (2)由角α的终边过点34(,)55P --得3 cos 5 α=-, 由5sin()13αβ+=得12 cos()13 αβ+=±. 由()βαβα=+-得cos cos()cos sin()sin βαβααβα=+++, 所以56cos 65β=-或16 cos 65 β=-. 29.(2017浙江)已知函数22 ()sin cos cos f x x x x x =--()x ∈R . (Ⅰ)求2( )3 f π 的值; (Ⅱ)求()f x 的最小正周期及单调递增区间. 【解析】(Ⅰ)由2sin 32π=,21 cos 32 π=-,

高考专题; 三角函数、解三角形综合问题

题型练3大题专项(一) 三角函数、解三角形综合问题 1.(优质试题浙江,18)已知角α的顶点与原点O重合,始边与x轴的非负半轴重合,它的终边过点P. (1)求sin(α+π)的值; (2)若角β满足sin(α+β)=,求cos β的值. 2.(优质试题北京,理15)在△ABC中,a=7,b=8,cos B=-. (1)求A; (2)求AC边上的高. 3.△ABC的内角A,B,C的对边分别为a,b,c.已知△ABC的面积为. (1)求sin B sin C; (2)若6cos B cos C=1,a=3,求△ABC的周长. 4.已知函数f(x)=4tan x sin cos. (1)求f(x)的定义域与最小正周期;

(2)讨论f(x)在区间上的单调性. 5.已知函数f(x)=a cos2a sin ωx-a(ω>0,a>0)在一个周期内的图象如图所示,其中点A为图象上的最高点,点B,C为图象与x轴的两个相邻交点,且△ABC是边长为4的正三角形. (1)求ω与a的值; (2)若f(x0)=,且x0∈,求f(x0+1)的值. 6.在平面直角坐标系xOy中,已知向量m=,n=(sin x,cos x),x∈. (1)若m⊥n,求tan x的值; (2)若m与n的夹角为,求x的值.

题型练3大题专项(一) 三角函数、解三角形综合问题 1.解(1)由角α的终边过点P, 得sin α=-,所以sin(α+π)=-sin α= (2)由角α的终边过点P,得cos α=-, 由sin(α+β)=,得cos(α+β)=± 由β=(α+β)-α,得cos β=cos(α+β)cos α+sin(α+β)sin α,所以cos β=-或cos β= 2.解(1)在△ABC中,∵cos B=-,∴B, ∴sin B= 由正弦定理,得, ∴sin A= ∵B,∴A,∴A= (2)在△ABC中,sin C=sin(A+B)=sin A cos B+sin B cos A= 如图所示,在△ABC中,过点B作BD⊥AC于点D. ∵sin C=,∴h=BC·sin C=7, ∴AC边上的高为 3.解(1)由题设得ac sin B=,即c sin B= 由正弦定理得sin C sin B= 故sin B sin C= (2)由题设及(1)得cos B cos C-sin B sin C=-, 即cos(B+C)=- 所以B+C=,故A= 由题设得bc sin A=,即bc=8. 由余弦定理得b2+c2-bc=9,即(b+c)2-3bc=9,得b+c= 故△ABC的周长为3+

解三角形与三角函数专题

三角函数与解三角形 1.已知函数f (x )=sin x -23sin 2x 2. (1)求f (x )的最小正周期; (2)求f (x )在区间??????0,2π3上的最小值. 2.(2019·济南调研)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知a sin A =4b sin B ,ac =5(a 2-b 2-c 2). (1)求cos A 的值; (2)求sin(2B -A )的值. 3.已知函数f (x )=sin 2x -cos 2x +23sin x cos x (x ∈R ). (1)求f (x )的最小正周期; (2)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若f (A )=2,c =5,cos B =1 7,求△ABC 中线AD 的长.

4.(2018·湘中名校联考)已知函数f (x )=cos x (cos x +3sin x ). (1)求f (x )的最小值; (2)在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,若f (C )=1,S △ABC =334,c =7,求△ABC 的周长. 5.已知△ABC 中内角A ,B ,C 的对边分别为a ,b ,c ,向量m =(2sin B ,-3),n =(cos 2B ,2cos 2B 2-1),B 为锐角且m ∥n . (1)求角B 的大小; (2)如果b =2,求S △ABC 的最大值. 6.(2019·信阳二模)已知a ,b ,c 分别是△ABC 内角A ,B ,C 的对边,且满足(a +b +c )(sin B +sin C -sin A )=b sin C . (1)求角A 的大小; (2)设a =3,S 为△ABC 的面积,求S +3cos B cos C 的最大值.

三角函数及解三角形知识点总结

三角函数及解三角形知识点 总结 -标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

1. 任意角的三角函数的定义:设α是任意一个角,P (,)x y 是α的终边上的任意 一点(异于原点),它与原点的距离是0r =>,那么 sin ,cos y x r r αα= =,()tan ,0y x x α=≠ 三角函数值只与角的大小有关,而与终边上点P 的位置无关。 2.三角函数在各象限的符号: (一全二正弦,三切四余弦) + + - + - + - - - + + - sin α cos α tan α 3. 同角三角函数的基本关系式: (1)平方关系:22221 sin cos 1,1tan cos αααα +=+= (2)商数关系:sin tan cos α αα = (用于切化弦) ※平方关系一般为隐含条件,直接运用。注意“1”的代换 4.三角函数的诱导公式 诱导公式(把角写成 απ ±2 k 形式,利用口诀:奇变偶不变,符号看象限) Ⅰ)??? ??=+=+=+x x k x x k x x k tan )2tan(cos )2cos(sin )2sin(πππ Ⅱ)?????-=-=--=-x x x x x x tan )tan(cos )cos(sin )sin( Ⅲ) ?? ???=+-=+-=+x x x x x x tan )tan(cos )cos(sin )sin(πππ Ⅳ)?????-=--=-=-x x x x x x tan )tan(cos )cos(sin )sin(πππ Ⅴ)???????=-=-ααπααπsin )2cos(cos )2sin( Ⅵ)??? ????-=+=+α απααπsin )2cos(cos )2sin(

2019-2020年高考数学一轮复习第三章三角函数、解三角形单元综合检测(三)理

2019-2020年高考数学一轮复习第三章三角函数、解三角形单元综合检测 (三)理 一、选择题(每小题5分,共45分) 1sin,则2sin2-1=() A.B.-C.D.± 1.B【解析】由已知得cos θ=,所以2sin2-1=-cos θ=-. 2.已知cos 31°=a,则sin 239°·tan 149°的值是() A.B.C.D.- 2.B【解析】sin 239° tan 149°=sin(270°-31°)tan(180°-31°)=(-c os 31°)(-tan 31°)=sin 31°=. 3y=sin(ωx+φ)(ω>0,φ∈[0,2π))的部分图象如图所示,则 φ=() A.B. C.D. 3.D【解析】由题可知=3-1?T=8,所以ω=.由函数图象过点(1,1),将其代入函数式,解得 φ=. 4a,b,c为三角形ABC三边,a≠1,b

5.D【解析】由f(x)=cos 2x向左平移个单位得到的是g(x)=cos 2,则g=cos 2=cos π=-1. 6.已知tan(π-α)=-2,则=() A.-3 B. C.3 D.- 6.D【解析】根据tan(π-α)=-2可得tan α=2,从而 =-. 7.在△ABC中,sin2A≤sin2B+sin2C-sin B sin C,则A的取值范围是() A.B.C.D. 7.B【解析】利用正弦定理化简sin2A≤sin2B+sin2C-sin B sin C得a2≤b2+c2-bc,变形得b2+c2-a2≥bc,∴cos A=,又∵A为三角形的内角,∴A的取值范围是. 8ABC中,AB=,AC=1,∠B=30°,△ABC的面积为,则C= () A.30° B.45° C.60° D.75° 8.C【解析】∵△ABC中,∠B=30°,AC=1,AB=,由正弦定理可得,∴sin ∠C=,∴∠C=60°或120°,当∠C=60°时,∠A=90°;当∠C=120°时,∠A=30°.当∠A=90°时,∴△ABC的面积为·AB·AC=;当∠A=30°时,∴△ABC的面积为·AB·AC·sin ∠A=,不满足题意,则∠ C=60°. 9.已知f(x)=x2+(sin θ-cos θ)x+sin θ(θ∈R)的图象关于y轴对称,则sin 2θ+cos 2θ的值为() A.B.2 C.D.1 9.D【解析】∵f(x)=x2+(sin θ-cos θ)x+sin θ(θ∈R)的图象关于y轴对称,∴y=f(x)为偶函数,即f(-x)=f(x),∴(-x)2+(sin θ-cos θ)(-x)+sin θ=x2+(sin θ-cos θ)x+sin θ,∴sin θ-cos θ=0,即sin θ=cos θ,∴sin 2θ+cos 2θ=2sin2θ+cos2θ-sin2θ=sin2θ+cos2θ=1. 二、填空题(每小题3分,共15分) 10ABC中,已知角C=,a2+b2=4(a+b)-8,则边c=. 10.2【解析】由a2+b2=4(a+b)-8得(a-2)2+(b-2)2=0,所以a=2,b=2,由余弦定理得 c2=a2+b2-2ab cos=4+4-2×2×2×=4,所以c=2. 11.已知tan α=2,tan(α+β)=,则tan β的值为.

专题 三角函数及解三角形(解析版)

专题 三角函数及解三角形 1.【2019年高考全国Ⅰ卷理数】函数f (x )= 在[,]-ππ的图像大致为 A . B . C . D . 2.【2019年高考全国Ⅰ卷理数】关于函数()sin |||sin |f x x x =+有下述四个结论: ①f (x )是偶函数 ②f (x )在区间( 2 π,π)单调递增 ③f (x )在[,]-ππ有4个零点 ④f (x )的最大值为2 其中所有正确结论的编号是 A .①②④ B .②④ C .①④ D .①③ 3.【2019年高考全国Ⅱ卷理数】下列函数中,以2 π为周期且在区间( 4 π, 2 π)单调递增的是 A .f (x )=|cos2x | B .f (x )=|sin2x | C .f (x )=cos|x | D .f (x )=sin|x | 4.【2019年高考全国Ⅱ卷理数】已知α∈(0, 2 π),2sin2α=cos2α+1,则sin α= A . 15 B . 5 C 3 D 5 5.【2019年高考全国Ⅲ卷理数】设函数()f x =sin (5 x ωπ + )(ω>0),已知()f x 在[]0,2π有且仅有5个零点,下述四个结论: ①()f x 在(0,2π)有且仅有3个极大值点 ②()f x 在(0,2π)有且仅有2个极小值点 2 sin cos ++x x x x

③()f x 在(0, 10 π )单调递增 ④ω的取值范围是[1229 510 ,) 其中所有正确结论的编号是 A .①④ B .②③ C .①②③ D .①③④ 6.【2019年高考天津卷理数】已知函数()sin()(0,0,||)f x A x A ω?ω?=+>><π是奇函数,将()y f x =的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),所得图象对应的函数为()g x .若()g x 的最小正周期为2π ,且4g π?? = ???38f π??= ??? A .2- B . C D .2 7.【2019年高考北京卷理数】函数f (x )=sin 22x 的最小正周期是__________. 8.【2019年高考全国Ⅱ卷理数】ABC △的内角,,A B C 的对边分别为,,a b c .若π 6,2,3 b a c B === ,则ABC △的面积为_________. 9.【2019年高考江苏卷】已知 tan 2π3tan 4αα=-??+ ?? ?,则πsin 24α? ?+ ???的值是 ▲ . 10.【2019年高考浙江卷】在ABC △中,90ABC ∠=?,4AB =,3BC =,点D 在线段AC 上,若 45BDC ∠=?,则BD =___________,cos ABD ∠=___________. 11.【2019年高考全国Ⅰ卷理数】ABC △的内角A ,B ,C 的对边分别为a ,b ,c ,设 22(sin sin )sin sin sin B C A B C -=-. (1)求A ; (2 2b c +=,求sin C . 12.【2019年高考全国Ⅲ卷理数】△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知sin sin 2 A C a b A +=. (1)求B ;

三角函数与解三角形练习题

三角函数及解三角形练习题 一.解答题(共16小题) 1.在△ABC中,3sinA+4cosB=6,4sinB+3cosA=1,求C的大小. 2.已知3sinθtanθ=8,且0<θ<π. (Ⅰ)求cosθ; (Ⅱ)求函数f(x)=6cosxcos(x﹣θ)在[0,]上的值域. 3.已知是函数f(x)=2cos2x+asin2x+1的一个零点. (Ⅰ)数a的值; (Ⅱ)求f(x)的单调递增区间. 4.已知函数f(x)=sin(2x+)+sin2x. (1)求函数f(x)的最小正周期; (2)若函数g(x)对任意x∈R,有g(x)=f(x+),求函数g(x)在[﹣,]上的值域. 5.已知函数f(x)=2sinωxcosωx+cos2ωx(ω>0)的最小正周期为π.(1)求ω的值; (2)求f(x)的单调递增区间. 6.已知函数f(x)=sin(ωx+φ)(ω>0,﹣≤φ<)的图象关于直线x=对称,且图象上相邻两个最高点的距离为π. (Ⅰ)求ω和φ的值; (Ⅱ)若f()=(<α<),求cos(α+)的值. 7.已知向量=(cosx,sinx),=(3,﹣),x∈[0,π]. (1)若∥,求x的值; (2)记f(x)=,求f(x)的最大值和最小值以及对应的x的值. 8.已知函数的部分图象如图所示.

(1)求函数f(x)的解析式; (2)在△ABC中,角A,B,C的对边分别是a,b,c,若(2a﹣c)cosB=bcosC,求的取值围. 9.函数f(x)=2sin(ωx+φ)(ω>0,0<φ<)的部分图象如图所示,M 为最高点,该图象与y轴交于点F(0,),与x轴交于点B,C,且△MBC的面积为π. (Ⅰ)求函数f(x)的解析式; (Ⅱ)若f(α﹣)=,求cos2α的值. 10.已知函数. (Ⅰ)求f(x)的最大值及相应的x值; (Ⅱ)设函数,如图,点P,M,N分别是函数y=g(x)图象的零值点、最高点和最低点,求cos∠MPN的值. 11.设函数f(x)=sin(ωx﹣)+sin(ωx﹣),其中0<ω<3,已知f ()=0.

相关文档
最新文档