十年高考真题汇编——三角函数和解三角形
专题20 三角函数及解三角形解答题丨十年高考数学真题分项汇编(解析版)(共62页)

十年(2014-2023)年高考真题分项汇编—三角函数解答题目录题型一:三角恒等变换...........................................................................1题型二:三角函数与向量综合...............................................................4题型三:三角函数的图像与性质...........................................................8题型四:正余弦定理的应用.................................................................20题型五:与三角形周长、面积有关问题..............................................38题型六:三角函数的建模应用.............................................................50题型七:结构不良型试题 (56)(1)求sin B 的值;(2)求c 的值;(3)求()sin B C -.【答案】(1)1313(2)5(3)26-解析:(1)由正弦定理可得,sin sin a b A B =,即2sin120sin B = ,解得:sin 13B =;(2)由余弦定理可得,2222cos a b c bc A =+-,即21394222c c ⎛⎫=+-⨯⨯⨯- ⎪⎝⎭,解得:5c =或7c =-(舍去).(3)由正弦定理可得,sin sin a c A C =,即5sin120sin C = ,解得:sin 26C =,而120A =o ,所以,B C 都为锐角,因此cos 26C ==,cos 13B ==,故()sin sin cos cos sin 1326132626B C B C B C -=-=⨯-⨯=-.2.(2023年新课标全国Ⅰ卷·第17题)已知在ABC 中,()3,2sin sin A B C A C B +=-=.(1)求sin A ;(2)设5AB =,求AB 边上的高.【答案】(1)31010(2)6解析:(1)3A B C += ,π3C C ∴-=,即π4C =,又2sin()sin sin()A C B A C -==+,2sin cos 2cos sin sin cos cos sin A C A C A C A C ∴-=+,sin cos 3cos sin A C A C ∴=,sin 3cos A A ∴=,即tan 3A =,所以π02A <<,sin 10A ∴=.(2)由(1)知,10cos 10A ==,由sin sin()B A C =+23101025sin cos cos sin (210105A C A C =+=+=,由正弦定理,sin sin c bC B=,可得255522b ⨯==,11sin 22AB h AB AC A ∴⋅=⋅⋅,310sin 610h b A ∴=⋅==.3.(2018年高考数学江苏卷·第16题)(本小题满分14分)已知,αβ为锐角,4tan 3α=,cos()αβ+=.(1)求cos 2α的值;(2)求tan()αβ-的值.【答案】解析:(1)因为4tan 3α=,sin tan cos ααα=,所以4sin cos 3αα=.因为22sin cos 1αα+=,29cos 25α=,因此27cos 22cos 125αα=-=-.(2)因为,αβ为锐角,所以(0,)αβπ+∈.又因为5cos()5αβ+=,所以25sin()5αβ+=,因此,tan()2αβ+=-.因为4tan 3α=,所以22tan 24tan 21tan 7ααα==--,因此,tan 2tan()2tan()tan[2()]1tan 2tan()11ααβαβααβααβ-+-=-+==-++.4.(2018年高考数学浙江卷·第18题)已知角α的顶点与原点O 重合,始边与x 轴的非负半轴重合,它的终边过点34(,)55P --.(1)求sin(π)α+的值;(2)若角β满足5sin()13αβ+=,求cos β值.【答案】(1)45;(2)5665-或1665.【解析】(1)由角α终边过点34(,55P --得4sin =5α-,所以4sin =sin =5απα+-().(2)由角α终边过点34(,55P --得3cos =5α-,由5sin()13αβ+=得12cos +=13αβ±().由()βαβα=+-得cos cos[()]cos()cos sin()sin βαβααβααβα=+-=+++当12cos()13αβ+=时,1235456cos 13513565β⎛⎫⎛⎫=⨯-+⨯-=- ⎪ ⎪⎝⎭⎝⎭;当12cos()13αβ+=-时,1235416cos 13513565β⎛⎫⎛⎫⎛⎫=-⨯-+⨯-=⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭所以56cos =65β-或1665.5.(2014高考数学广东理科·第16题)已知函数R x x A x f ∈+=),4sin()(π,且53122f π⎛⎫= ⎪⎝⎭,(1)求A 的值;(2)若23)()(=-+θθf f ,2,0(πθ∈,求)43(θπ-f .【答案】解:(1)依题意有55233sin sin 12124322f A A ππππ⎛⎫⎛⎫=+=== ⎪ ⎪⎝⎭⎝⎭,所以A =(2)由(1)得()),4f x x x Rπ=+∈,()()3sin sin 442f f ππθθθθθ⎤⎛⎫⎛⎫∴+-=++-+==⎪ ⎪⎥⎝⎭⎝⎭⎦cos 4θ∴=,(0,)sin 24πθθ∈∴=== 33304444f πππθθθ⎛⎫⎛⎫∴-=-+==⎪ ⎝⎭⎝⎭6.(2014高考数学江苏·第15题)已知),2(ππα∈,55sin =α.(1)求)4sin(απ+的值;(2)求)265cos(απ-的值.【答案】(1)1010-;(2)43310+-解析:(1)因为α∈π,π2⎛⎫⎪⎝⎭,sin α=55,所以cos α=255=-.故sin π4α⎛⎫+ ⎪⎝⎭=sin π4cos α+cos π4sin α=252510⎛⎫⨯-+⨯= ⎪ ⎪⎝⎭.(2)由(1)知sin2α=2sin αcos α=42555⎛⨯⨯-=- ⎝⎭,cos2α=1-2sin 2α=1-2325⨯=⎝⎭,所以cos 5π5π5π2cos cos 2sin sin 2666ααα⎛⎫-=+ ⎪⎝⎭=314525⎛⎛⎫⨯+⨯-= ⎪ ⎝⎭⎝⎭题型二:三角函数与向量综合1.(2014高考数学山东理科·第16题)已知向量(,cos 2)a m x = ,(sin 2,)b x n = ,设函数()f x a b =⋅,且()y f x =的图象过点(12π和点2(,2)3π-.(Ⅰ)求,m n 的值;(Ⅱ)将()y f x =的图象向左平移ϕ(0ϕπ<<)个单位后得到函数()y g x =的图象.若()y g x =图象上各最高点到点(0,3)的距离的最小值为1,求()y g x =的单调递增区间.【答案】(Ⅰ)⎩⎨⎧==13n m (Ⅱ)z k k k ∈+-],,2[πππ解析:(Ⅰ)已知x n x m b a x f 2cos 2sin )(+=⋅=,)(x f 过点)2,32(),3,12(-ππ36cos 6sin 12(=+=∴πππn m f 234cos 34sin )32(-=+=πππn mf 1221222m n m n ⎧+=⎪⎪∴⎨⎪--=-⎪⎩解得⎩⎨⎧==13n m .(Ⅱ))62sin(22cos 2sin 3)(π+=+=x x x x f )(x f 左移ϕ后得到622sin(2)(πϕ++=x x g 设)(x g 的对称轴为0x x =,1120=+=x d 解得00=x 2)0(=∴g ,解得6πϕ=x x x x g 2cos 222sin(2)632sin(2)(=+=++=∴πππ222,k x k k Zπππ∴-+≤≤∈,2k x k k Z πππ∴-+≤≤∈)(x f ∴的单调增区间为[,],2k k k Zπππ-+∈2.(2017年高考数学江苏文理科·第16题)已知向量(cos ,sin ),(3,[0,π].x x x ==∈a b (1)若a b ,求x 的值;(2)记()f x =⋅a b ,求()f x 的最大值和最小值以及对应的x 的值.【答案】(1)5π6x =(2)0x =时,()f x 取得最大值,为3;5π6x =时,()f x取得最小值,为-.解析:解:(1)因为 cos ,s n )i (x x = a,(3,= b ,a b ,所以3sin x x =.若cos 0x =,则sin 0x =,与22sin cos 1x x +=矛盾,故cos 0x ≠.于是3tan 3x =.又[0,]x π∈,所以5π6x =.(2)π(cos ,sin )(3,3cos s ()o (6f x x x x x x =⋅=⋅==+ a b .因为[0,]x π∈,所以ππ7π[,666x +∈,从而π1cos()62x -≤+≤.于是,当ππ66x +=,即0x =时,()f x 取到最大值3;当π6x +=π,即5π6x =时,()f x取到最小值-.3.(2014高考数学辽宁理科·第17题)(本小题满分12分)在ABC ∆中,内角A ,B ,C 的对边a ,b ,c ,且a c >,已知2BA BC ∙= ,1cos 3B =,3b =,求:(1)a 和c 的值;(2)cos()B C -的值.【答案】(1)a =3,c =2;(2)2327解析:(1)2BA BC ∙= ,1cos 3B =,cos 2BA BC B ∴∙= ,即6a c ⋅=①,由余弦定理可得2221cos 23a c b B ac +-==,化简整理得2213a c +=②,①②联立,解得,a =3,c =2;(2)12cos ,sin 33B B =∴== ,因为a =3,3b =,c =2,由余弦定理可得2227cos29a cb Cab -+==,42sin 9C ∴==,7123cos()cos cos sin sin 939327B C B C B C ∴-=+=⋅+⋅=.解析2:(2)在△ABC 中,1cos ,sin 33B B =∴==,根据正弦定理sin sin b cB C=可得sin 42sin 9c B C b ==,a b c => ,C ∴为锐角,7cos 9C ∴==,7142223cos()cos cos sin sin 939327B C B C B C ∴-=+=⋅+⋅=.4.(2015高考数学陕西理科·第17题)(本小题满分12分)C ∆AB 的内角A ,B ,C 所对的边分别为a ,b ,c .向量()m a =与()cos ,sin n =A B平行.(Ⅰ)求A ;(Ⅱ)若a =2b =求C ∆AB 的面积.【答案】(Ⅰ)3π;(Ⅱ)2.分析:(Ⅰ)先利用//m n可得sin sin 0a B -A =,再利用正弦定理可得tan A 的值,进而可得A 的值;(Ⅱ)由余弦定理可得c 的值,进而利用三角形的面积公式可得C ∆AB 的面积.解析:(Ⅰ)因为//m n,所以sin cos 0a B A =,由正弦定理,得sinA sinB A 0-=又sin 0B ≠,从而tan A =,由于0A π<<,所以3A π=(Ⅱ)解法一:由余弦定理,得2222cos a b c bc A=+-而2,a ==3πA =得2742c c =+-,即2230c c --=因为0c >,所以3c =.故C ∆AB的面积为1bcsinA 22=.解法二:由正弦定理,得72sin sin 3π=B,从而21sin 7B =,又由a b >,知A B >,所以cos 7B =.故()321sinC sin A B sin sin cos cos sin 33314B B πππ⎛⎫=+=B +=+=⎪⎝⎭所以C ∆AB的面积为133bcsinA22=.5.(2015高考数学广东理科·第16题)(本小题满分12分)在平面直角坐标系xOy 中,已知向量,22m ⎛⎫=- ⎪ ⎪⎝⎭ ,(sin ,cos )n x x =,(0,)2x π∈.(1)若m n ⊥,求tan x的值;(2)若m与n 的夹角为3π,求x 的值.【答案】解析:(1) ,22m ⎛⎫=- ⎪ ⎪⎝⎭ ,(sin,cos )n x x =,且m n ⊥ ,sin sin cos 0,sin cos ,tan 122cos x m nx x x x xx∴⋅=-=∴===(2)11sin cos ||||cos ,sin()223242m n x x m n x ππ⋅=-=⋅=∴-=5(0,,,,24444612x x x x πππππππ⎛⎫∈∴-∈-∴-== ⎪⎝⎭题型三:三角函数的图像与性质1.(2014高考数学江西理科·第17题)已知函数()sin()cos(2)f x x a x θθ=+++,其中,(,22a R ππθ∈∈-(1)当4a πθ==时,求()f x 在区间[0,]π上的最大值与最小值;(2)若()0,()12f f ππ==,求,a θ的值.【答案】(1最小值为-1.(2)1.6a πθ=-⎧⎪⎨=-⎪⎩分析:(1)求三角函数最值,首先将其化为基本三角函数形式:当4a πθ==时,22()sin(sin cos sin()42224f x x x x x x x πππ=+++=+=-,再结合基本三角函数性质求最值:因为[0,]x π∈,从而3[,]444x πππ-∈-,故()f x 在[0,]π上的最大值为2,2最小值为-1.(2)两个独立条件求两个未知数,联立方程组求解即可.由(02()1f f ππ⎧=⎪⎨⎪=⎩得2cos (12sin )02sin sin 1a a a θθθθ-=⎧⎨--=⎩,又(,22ππθ∈-知cos 0,θ≠解得1.6a πθ=-⎧⎪⎨=-⎪⎩解析:解(1)当4a πθ==时,22()sin())sin cos sin()42224f x x x x x x x πππ=+++=+-=-因为[0,]x π∈,从而3[,444x πππ-∈-故()f x 在[0,]π上的最大值为2,2最小值为-1.(2)由()02()1f f ππ⎧=⎪⎨⎪=⎩得2cos (12sin )02sin sin 1a a a θθθθ-=⎧⎨--=⎩,又(,)22ππθ∈-知cos 0,θ≠解得1.6a πθ=-⎧⎪⎨=-⎪⎩2.(2019·浙江·第18题)设函数()sin f x x =,x ∈R .(Ⅰ)已知[0,2)θπ∈,函数()f x θ+是偶函数,求θ的值;(Ⅱ)求函数22[([(124y f x f x ππ=+++的值域.【答案】【意图】本题主要考查三角函数及其恒等变换等基础知识,同时考查运算求解能力。
十年高考真题汇编(答案)——三角函数和解三角形

11.D【解析】由θ
∈
π 4
,π 2
可得
2θ
∈[π 2
,π ] , cos 2θ
=
−
1 − sin 2 2θ
= −1 , 8
sinθ = 1 − cos 2θ = 3 ,答案应选 D.
2
4
另解:由θ
∈
π 4
= 2 10
10 1 sin 2π
10
= 10
= cos π10 3 ,选 C.
25
10
6.C【解析】 tan α > 0 知α 的终边在第一象限或第三象限,此时 sin α 与 cosα 同号,
= 故 sin 2α 2sinα cosα > 0 ,选 C.
sin α
7.B【解析】由条件得
= 1+ sin β
+
π 5
∈
π 5
,
(ω
+ 2)π 10
,
若
f
(x)
在
0,
π 10
单调递增,
则
(ω
+
2)π
<
π
,即 ω
<
3
12
,因为
ω
<
29
,故③正确.
10 2
5
10
故选 D.
3.解析 因为 f ( x) 是奇函数,所以ϕ = 0 , f ( x) = Asin ωx .
将 y = f ( x) 的图像上所有点的横坐标伸长到原来的 2 倍(纵坐标不变),所得图像对应的
十年高考理科数学真题 专题四 三角函数与解三角形 十 三角函数的图象与性质及答案(优质)

专题四 三角函数与解三角形 第十讲 三角函数的图象与性质2019年1.解析:因为21cos411sin 2cos 422x f x x x -===-()(), 所以f x ()的最小正周期2π4T ==2.解析 当[0,2]x ∈π时,,2555x ωωπππ⎡⎤+∈π+⎢⎥⎣⎦, 因为()f x 在[0,2]π有且仅有5个零点,所以5265ωπππ+<π„, 所以1229510ω<„,故④正确, 因此由选项可知只需判断③是否正确即可得到答案, 下面判断③是否正确, 当(0,)10x π∈时,(2),5510x ωωππ+π⎡⎤+∈⎢⎥⎣⎦,若()f x 在0,10π⎛⎫⎪⎝⎭单调递增, 则(2)102ω+ππ<,即3ω<,因为1229510ω<„,故③正确. 故选D .3.解析 因为()f x 是奇函数,所以0ϕ=,()sin f x A x ω=.将()y f x =的图像上所有点的横坐标伸长到原来的2倍(纵坐标不变),所得图像对应的函数为()g x ,即()1sin 2g x A x ω⎛⎫= ⎪⎝⎭, 因为()g x 的最小正周期为2π,所以2212ωπ=π,得2ω=, 所以()sin g x A x =,()sin 2f x A x=.若4g π⎛⎫=⎪⎝⎭sin 442g A A ππ⎛⎫=== ⎪⎝⎭2A =,所以()2sin 2f x x =,332sin 22sin 2884f ππ3π⎛⎫⎛⎫=⨯=== ⎪ ⎪⎝⎭⎝⎭故选C .2010-2018年一、选择题1.(2018全国卷Ⅱ)若()cos sin =-f x x x 在[,]-a a 是减函数,则a 的最大值是A .π4B .π2C .3π4D .π2.(2018天津)将函数sin(2)5y x π=+的图象向右平移10π个单位长度,所得图象对应的函数 A .在区间35[,]44ππ上单调递增B .在区间3[,]4ππ上单调递减 C .在区间53[,]42ππ上单调递增 D .在区间3[,2]2ππ上单调递减 3.(2018北京)在平面直角坐标系中,记d 为点(cos ,sin )P θθ到直线20x my --=的距离,当θ,m 变化时,d 的最大值为 A .1B .2C .3D .44.(2017新课标Ⅰ)已知曲线1C :cos y x =,2C :2sin(2)3y x π=+,则下面结论正确的是A .把1C 上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移6π个单位长度,得到曲线2CB .把1C 上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移12π 个单位长度,得到曲线2CC .把1C 上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移6π个单位长度,得到曲线2C D .把1C 上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向左平移12π个单位长度,得到曲线2C5.(2017新课标Ⅲ)设函数()cos()3f x x π=+,则下列结论错误的是A .()f x 的一个周期为2π-B .()y f x =的图像关于直线83x π=对称 C .()f x π+的一个零点为6x π=D .()f x 在(,)2ππ单调递减6.(2017天津)设函数()2sin()f x x ωϕ=+,x ∈R ,其中0ω>,||ϕ<π.若5()28f π=,()08f 11π=,且()f x 的最小正周期大于2π,则 A .23ω=,12ϕπ= B .23ω=,12ϕ11π=- C .13ω=,24ϕ11π=- D .13ω=,24ϕ7π=7.(2016北京)将函数sin(2)3y x π=-图像上的点(,)4P t π向左平移s (0s >)个单位长度得到点P '.若P '位于函数sin 2y x =的图像上,则A .12t =,s 的最小值为6π B .t =,s 的最小值为6πC .12t =,s 的最小值为3π D .t =,s 的最小值为3π8.(2016山东)函数()cos sin )f x x x x x =+-的最小正周期是A .2πB .πC .32πD .2π9.(2016全国I )已知函数ππ()sin()(0),24f x x+x ωϕωϕ=>=-,≤为()f x 的零点,π4x =为()y f x =图像的对称轴,且()f x 在π5π()1836,单调,则ω的最大值为 A .11 B .9 C .7 D .5 10.(2016全国II )若将函数2sin 2y x =的图像向左平移12π个单位长度,则平移后图象的对称轴为A .()26k x k Z ππ=-∈ B .()26k x k Z ππ=+∈ C .()212k x k Z ππ=-∈ D .()212k x k Z ππ=+∈11.(2015山东)要得到函数4sin(4)3y x π=-的图像,只需要将函数sin 4y x =的图像A .向左平移12π个单位 B .向右平移12π个单位 C .向左平移3π个单位 D .向右平移3π个单位12.(2015四川)下列函数中,最小正周期为π且图象关于原点对称的函数是A .cos(2)2y x π=+B .sin(2)2y x π=+C .sin 2cos 2y x x =+D .sin cos y x x =+13.(2015新课标Ⅱ)函数()cos()f x x ωϕ=+的部分图像如图所示,则()f x 的单调递减区间为.A .13(,)44k k ππ-+,k Z ∈ B .13(2,2)44k k ππ-+,k Z ∈ C .13(,)44k k -+,k Z ∈ D .13(2,2)44k k -+,k Z ∈14.(2015安徽)已知函数()()sin f x Αx ωϕ=+(Α,ω,ϕ均为正的常数)的最小正周期为π,当23x π=时,函数()f x 取得最小值,则下列结论正确的是 A .()()()220f f f <-< B .()()()022f f f <<- C .()()()202f f f -<< D .()()()202f f f <<- 15.(2014新课标Ⅰ)在函数①|2|cos x y =,②|cos |x y = ,③)62cos(π+=x y ,④)42tan(π-=x y 中,最小正周期为π的所有函数为A .①②③B .①③④C .②④D .①③16.(2014浙江)为了得到函数x x y 3cos 3sin +=的图象,可以将函数y x =的图像A .向右平移12π个单位 B .向右平移4π个单位 C .向左平移12π个单位 D .向左平移4π个单位17.(2014安徽)若将函数x x x f 2cos 2sin )(+=的图象向右平移ϕ个单位,所得图象关于y轴对称,则ϕ的最小正值是A .8π B .4πC .83πD .43π18.(2014福建)将函数sin y x =的图象向左平移2π个单位,得到函数()y f x =的函数图象,则下列说法正确的是A .()y f x =是奇函数B .()y f x =的周期是πC .()y f x =的图象关于直线2x π=对称 D .()y f x =的图象关于点,02π⎛⎫-⎪⎝⎭19.(2014辽宁)将函数3sin(2)3y x π=+的图象向右平移2π个单位长度,所得图象对应的函数 A .在区间7[,]1212ππ上单调递减 B .在区间7[,]1212ππ上单调递增C .在区间[,]63ππ-上单调递减 D .在区间[,]63ππ-上单调递增 20.(2013广东)已知51sin()25πα+=,那么cos α=A .25-B .15-C .15D .2521.(2013山东)将函数()sin 2y x ϕ=+的图像沿x 轴向左平移8π个单位后,得到一个偶函数的图像,则ϕ的一个可能取值为A .34π B .4πC .0D .4π- 22.(2013福建)将函数)22)(2sin()(πθπθ<<-+=x x f 的图象向右平移)0(>ϕϕ个单位长度后得到函数)(x g 的图象,若)(),(x g x f 的图象都经过点)23,0(P ,则ϕ的值可以是A .35πB .65πC .2πD .6π23.(2012新课标)已知ω>0,0ϕπ<<,直线x =4π和x =54π是函数()sin()f x x ωϕ=+图像的两条相邻的对称轴,则ϕ=A .π4B .π3C .π2D .3π424.(2012安徽)要得到函数)12cos(+=x y 的图象,只要将函数x y 2cos =的图象A .向左平移1个单位B .向右平移1个单位C .向左平移12个单位 D .向右平移12个单位 25.(2012浙江)把函数cos 21y x =+的图像上所有点的横坐标伸长到原来的2倍(纵坐标不变),然后向左平移1个单位长度,再向下平移1个单位长度,得到的图像是26.(2012山东)函数2sin (09)63x y x ππ⎛⎫=-≤≤ ⎪⎝⎭的最大值与最小值之和为A .23-B .0C .-1D .13-27.(2012天津)将函数()sin f x x ω=(其中ω>0)的图像向右平移4π个单位长度,所得图像经过点3(,0)4π,则ω的最小值是 A .13 B .1 C .53D .228.(2012新课标)已知0>ω,函数)4sin()(πω+=x x f 在),2(ππ单调递减,则ω的取值范围是 A .]45,21[B .]43,21[C .]21,0(D .]2,0(29.(2011山东)若函数()sin f x x ω=(ω>0)在区间0,3π⎡⎤⎢⎥⎣⎦上单调递增,在区间,32ππ⎡⎤⎢⎥⎣⎦上单调递减,则ω=A .23 B .32C .2D .330.(2011新课标)设函数()sin(2)cos(2)44f x x x ππ=+++,则A .()y f x =在(0,)2π单调递增,其图象关于直线4x π=对称B .()y f x =在(0,)2π单调递增,其图象关于直线2x π=对称C .()y f x =在(0,)2π单调递减,其图象关于直线4x π=对称D .()y f x =在(0,)2π单调递减,其图象关于直线2x π=对称31.(2011安徽)已知函数()sin(2)f x x ϕ=+,其中ϕ为实数,若()()6f x f π≤对x R ∈恒成立,且()()2f f ππ>,则()f x 的单调递增区间是A .,()36k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦ B .,()2k k k Z πππ⎡⎤+∈⎢⎥⎣⎦ C .2,()63k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦ D .,()2k k k Z πππ⎡⎤-∈⎢⎥⎣⎦32.(2011辽宁)已知函数)(x f =A tan (ωx +ϕ)(2||,0πϕω<>),y =)(x f 的部分图像如下图,则=)24(πfA .3B 3C 3D .23 二、填空题33.(2018北京)设函数π()cos()(0)6f x x ωω=->,若π()()4f x f ≤对任意的实数x 都成立,则ω的最小值为___.34.(2018全国卷Ⅲ)函数()cos(3)6f x x π=+在[0,]π的零点个数为_____. 35.(2018江苏)已知函数sin(2)()22y x ϕϕππ=+-<<的图象关于直线3x π=对称,则ϕ的值是 .36.(2016年全国III )函数sin y x x =的图像可由函数sin y x x =+的图像至少向右平移_____________个单位长度得到.37.(2015浙江)函数2()sin sin cos 1f x x x x =++的最小正周期是________,单调递减区间是_______.38.(2014山东)函数22cos 2y x x =+的最小正周期为 . 39.(2014江苏)已知函数x y cos =与)2sin(ϕ+=x y (0≤πϕ<),它们的图象有一个横坐标为3π的交点,则ϕ的值是 . 40.(2014重庆)将函数()()⎪⎭⎫⎝⎛<≤->+=220sin πϕπωϕω,x x f 图象上每一点的横坐标缩短为原来的一半,纵坐标不变,再向右平移6π个单位长度得到x y sin =的图像,则=⎪⎭⎫⎝⎛6πf ______. 41.(2014安徽)若将函数()sin 24f x x π⎛⎫=+⎪⎝⎭的图象向右平移ϕ个单位,所得图象关于y 轴对称,则ϕ的最小正值是________.42.(2013新课标Ⅰ)设当x θ=时,函数()sin 2cos f x x x =-取得最大值,则cos θ= . 43.(2013新课标Ⅱ)函数cos(2)()y x ϕπϕπ=+-≤≤的图象向右平移2π个单位后,与函数sin(2)3y x π=+的图象重合,则ϕ=_________.44.(2013江西)设()cos3f x x x =+,若对任意实数x 都有()f x a ≤,则实数a 的取值范围是 .45.(2013江苏)函数)42sin(3π+=x y 的最小正周期为 .46.(2011江苏)函数()sin(),(,,f x A x A w ωϕϕ=+是常数,0,0)A ω>>的部分图象如图所示,则(0)f = .47.(2011安徽)设()f x =sin 2cos2a x b x +,其中,a b ∈R ,0ab ≠,若()()6f x f π≤对一切则x ∈R 恒成立,则①11()012f π= ②7()10f π<()5f π ③()f x 既不是奇函数也不是偶函数④()f x 的单调递增区间是2,()63k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦⑤存在经过点(,)a b 的直线与函数()f x 的图像不相交 以上结论正确的是 (写出所有正确结论的编号). 48.(2010江苏)定义在区间⎪⎭⎫⎝⎛20π,上的函数6cos y x =的图像与5tan y x =的图像的交点为P ,过点P 作1PP ⊥x 轴于点1P ,直线1PP与sin y x =的图像交于点2P ,则线段12P P 的长为 .49.(2010福建)已知函数()=3sin()(>0)6f x x πωω-和g()=2cos(2+)+1x x ϕ的图象的对称轴完全相同.若[0,]2x π∈,则()f x 的取值范围是 .三、解答题50.(2018上海)设常数a R ∈,函数2()sin 22cos f x a x x =+.(1)若()f x 为偶函数,求a 的值;(2)若()14f π=,求方程()1f x =ππ-[,]上的解.51.(2017江苏)已知向量(cos ,sin )x x =a ,(3,=b ,[0,]x π∈.(1)若∥a b ,求x 的值;(2)记()f x =⋅a b ,求()f x 的最大值和最小值以及对应的x 的值. 52.(2017山东)设函数()sin()sin()62f x x x ππωω=-+-,其中03ω<<.已知()06f π=.(Ⅰ)求ω;(Ⅱ)将函数()y f x =的图象上各点的横坐标伸长为原来的2倍(纵坐标不变),再将得到的图象向左平移4π个单位,得到函数()y g x =的图象,求()g x 在3[,]44ππ-上的最小值.53.(2016年天津)已知函数()4tan cos cos()3f x x x x π=-(Ⅰ)求()f x 的定义域与最小正周期; (Ⅱ)讨论()f x 在区间[,44ππ-]上的单调性.54.(2015北京)已知函数2()cos 222x x x f x =.(Ⅰ) 求()f x 的最小正周期;(Ⅱ) 求()f x 在区间[π0]-,上的最小值.55.(2015湖北)某同学用“五点法”画函数π()sin()(0,||)2f x A x ωϕωϕ=+><在某一个周期内的图象时,列表并填入了部分数据,如下表:((Ⅱ)将()y f x =图象上所有点向左平行移动θ(0)θ>个单位长度,得到()y g x =的图象.若()y g x =图象的一个对称中心为5π(,0)12,求θ的最小值.56.(2014福建)已知函数()2cos (sin cos )f x x x x =+.(Ⅰ)求5()4f π的值; (Ⅱ)求函数()f x 的最小正周期及单调递增区间.57.(2014湖北)某实验室一天的温度(单位:℃)随时间t (单位:h )的变化近似满足函数关系:ππ()10sin 1212f t t t =-,[0,24)t ∈. (Ⅰ)求实验室这一天上午8时的温度; (Ⅱ)求实验室这一天的最大温差.58.(2014福建)已知函数1()cos (sin cos )2f x x x x =+-. (Ⅰ)若02πα<<,且sin 2α=,求()f α的值; (Ⅱ)求函数()f x 的最小正周期及单调递增区间. 59.(2014北京)函数()3sin 26f x x π⎛⎫=+⎪⎝⎭的部分图象如图所示. (Ⅰ)写出()f x 的最小正周期及图中0x 、0y 的值; (Ⅱ)求()f x 在区间,212ππ⎡⎤--⎢⎥⎣⎦上的最大值和最小值.60.(2014天津)已知函数()2cos sin 34f x x x x π⎛⎫=⋅++ ⎪⎝⎭,x R ∈. (Ⅰ)求()f x 的最小正周期;(Ⅱ)求()f x 在闭区间,44ππ⎡⎤-⎢⎥⎣⎦上的最大值和最小值. 61.(2014重庆)已知函数()()⎪⎭⎫⎝⎛<≤->+=220sin 3πϕπωϕω,x x f 的图像关于直线3π=x 对称,且图象上相邻两个最高点的距离为π.(I )求ω和ϕ的值; (II )若⎪⎭⎫ ⎝⎛<<=⎪⎭⎫⎝⎛326432παπαf ,求⎪⎭⎫⎝⎛+23cos πα的值.62.(2013山东)设函数2()sin cos (0)f x x x x ωωωω=->,且()y f x =的图象的一个对称中心到最近的对称轴的距离为4π. (Ⅰ)求ω的值; (Ⅱ)求()f x 在区间3[,]2ππ上的最大值和最小值.63. (2013天津)已知函数2()26sin cos 2cos 41,f x x x x x x π⎛⎫=++- ⎪+⎝⎭∈R .(Ⅰ) 求f (x )的最小正周期;(Ⅱ) 求f (x )在区间0,2π⎡⎤⎢⎥⎣⎦上的最大值和最小值.64.(2013湖南)已知函数()cos cos 3f x x x π⎛⎫=-⎪⎝⎭(1)求2()3f π的值; (2)求使 1()4f x <成立的x 的取值集合.65.(2012安徽) 设函数2())sin 4f x x x π=++ (I )求函数()f x 的最小正周期; (II )设函数()g x 对任意x R ∈,有()()2g x g x π+=,且当[0,]2x π∈时,1()()2g x f x =-; 求()g x 在[,0]π-上的解析式. 66.(2012湖南)已知函数()sin()f x A x ωϕ=+ (,x R ∈0ω>,0)2πϕ<<的部分图像如图所示.(Ⅰ)求函数()f x 的解析式; (Ⅱ)求函数()()()1212g x f x f x ππ=--+的单调递增区间.67.(2012陕西)函数()sin()16f x A x πω=-+(0,0A ω>>)的最大值为3, 其图像相邻两条对称轴之间的距离为2π. (1)求函数()f x 的解析式; (2)设(0,)2πα∈,则()22f α=,求α的值. 专题四 三角函数与解三角形 第十讲 三角函数的图象与性质答案部分 2019年1.(2019北京9)函数f (x )=sin 22x 的最小正周期是 ________. 2.(2019全国Ⅲ理12)设函数()f x =sin (5x ωπ+)(ω>0),已知()f x 在[]0,2π有且仅有5个零点,下述四个结论:①()f x 在(0,2π)有且仅有3个极大值点 ②()f x 在(0,2π)有且仅有2个极小值点③()f x 在(0,10π)单调递增 ④ω的取值范围是[1229510,)其中所有正确结论的编号是A . ①④B . ②③C . ①②③D . ①③④3.(2019天津理7)已知函数()sin()(0,0,||)f x A x A ωϕωϕπ=+>><是奇函数,将()y f x =的图像上所有点的横坐标伸长到原来的2倍(纵坐标不变),所得图像对应的函数为()g x .若()g x 的最小正周期为2π,且π4g ⎛⎫=⎪⎝⎭3π8f ⎛⎫= ⎪⎝⎭A.2-B.D.22010-2018年1.A【解析】解法一()cos sin )4=-=+πf x x x x ,且函数cos =y x 在区间[0,]π上单调递减,则由04ππ+≤≤x ,得344ππ-≤≤x . 因为()f x 在[,]-a a 上是减函数,所以434ππ⎧--⎪⎪⎨⎪⎪⎩≥≤a a ,解得4π≤a ,解法二 因为()cos sin =-f x x x ,所以()sin cos '=--f x x x , 则由题意,知()sin cos 0'=--≤f x x x 在[,]-a a 上恒成立, 即sin cos 0+≥x x)04π+≥x ,在[,]-a a 上恒成立,结合函数)4π=+y x 的图象可知有044πππ⎧-+⎪⎪⎨⎪+⎪⎩≥≤a a ,解得4π≤a ,所以04π<≤a , 所以a 的最大值是4π,故选A . 2.A 【解析】把函数sin(2)5y x π=+的图象向右平移10π个单位长度得函数 ()sin[2()]sin 2105g x x x ππ=-+=的图象,由22222k x k ππππ-++≤≤(k ∈Z )得44k x k ππππ-++≤≤(k ∈Z ),令1k =,得3544x ππ≤≤, 即函数()sin 2g x x =的一个单调递增区间为35[,]44ππ,故选A . 3.C【解析】由题意可得d ====(其中cos ϕ=,sin ϕ=,∵1sin()1θϕ--≤≤,d ≤1=+∴当0m =时,d 取得最大值3,故选C . 4.D 【解析】把2C 的解析式运用诱导公式变为余弦,2C :22sin(2)cos[(2)]cos[(2)]cos(2)32366y x x x x πππππ=+=-+=-+=+ 则由1C 图象横坐标缩短为原来的12,再把得到的曲线向左平移12π个单位长度,得到曲线2C .选D5.D 【解析】∵()cos()3f x x π=+的周期为2k π,k ∈Z ,所以A 正确;∵8()cos313f ππ==-,所以B 正确; 设4()()cos()3g x f x x ππ=+=+,而3()cos 062g ππ==,C 正确;选D .6.A 【解析】由题意5π8x =取最大值,11π8x =与x 相交,设()f x 周期为T ,所以11538844T πππ-==或34T,所以3T π=或T π=, 又()f x 的最小正周期大于2π,所以3T π=,所以223T πω==,排除C 、D ; 由5π()28f =,即252sin()238πϕ⨯+=,102242k ππϕπ+=+, 即212k πϕπ=+,令0k =,12πϕ=.选A .7.A 【解析】因为点(,)4P t π在函数sin(2)3y x π=-的图象上,所以sin(2)43t ππ=⨯-=1sin62π=,又1(,)42P s π'-在函数sin 2y x =的图象上,所以1sin 2()24s π=-,则2()246s k πππ-=+或52()246s k πππ-=+,k Z ∈,得6s k ππ=-+或 6s k ππ=--,k Z ∈.又0s >,故s 的最小值为6π,故选A .8.B 【解析】由题意得()2sin()2cos()2sin(2)663f x x x x πππ=+⨯+=+,故该函数的最小正周期22T ππ==.故选B . 9.B 【解析】因为4x π=-为函数()f x 的零点,4x π=为()y f x =图像的对称轴,所以2π24kT T=+(k Z ∈,T 为周期),得221T k π=+(k Z ∈).又()f x 在5(,)1836ππ单调,所以11,62T k π厔,又当5k =时,11,4πωϕ==-,()f x 在5(,)1836ππ不单调;当4k =时,9,4πωϕ==,()f x 在5(,)1836ππ单调,满足题意,故9ω=,即ω的最大值为9.10.B 【解析】函数2sin 2y x =的图像向左平移12π个单位长度,得到的图像对应的函数表达式为π2sin 212y x ⎛⎫=+ ⎪⎝⎭,令ππ2π+122x k ⎛⎫+= ⎪⎝⎭,解得()ππ26k x k =+∈Z ,所以所求对称轴的方程为()ππ26k x k =+∈Z ,故选B . 11.B 【解析】sin 4()12y x π=-,只需将函数sin 4y x =的图像向右平移12π个单位. 12.A 【解析】采用验证法,由cos(2)sin 22y x x π=+=-,可知该函数的最小正周期为π且为奇函数,故选A . 13.D 【解析】由图象可知242m ωπϕπ+=+,32425ωm πϕπ+=+,m Z ∈, 所以,2,4m m Z πωπϕπ==+∈,所以函数()cos(2)cos()44πππππ=++=+f x x m x 的单调递减区间为,224k x k πππππ<+<+,即132244k x k -<<+,k Z ∈.14.A 【解析】∵()sin()f x A x ωϕ=+的最小正周期为π,且23x π=是经过函数()f x 最小值点的一条对称轴,∴2326x πππ=-=是经过函数()f x 最大值的一条对称轴.∵12|2|66ππ--=,512|(2)|66πππ---=,|0|66ππ-=, ∴|2||(2)||0|666ππππ->-->-,且2233ππ-<<,2233πππ-<-<,2033ππ-<<, ∴(2)(2)(0)f f f π<-<,即(2)(2)(0)f f f <-<.15.A 【解析】①|2|cos x y =,最小正周期为π;②|cos |x y =,最小正周期为π;③)62cos(π+=x y ,最小正周期为π;④)42tan(π-=x y ,最小正周期为2π.最小正周期为π的函数为①②③.16.A 【解析】因为sin 3cos3))412y x x x x ππ=+=-=-,所以将函数y x =的图象向右平移12π个单位后,可得到)4y x π=-的图象,故选A .17.C 【解析】())4f x x π=+,将函数()f x 的图象向右平移ϕ个单位得()2)4f x x πϕ=+-,由该函数为偶函数可知2,42k k Z ππϕπ-=+∈,即328k ππϕ=+,所以ϕ的最小正值是为38π. 18.D 【解析】函数sin y x =的图象向左平移2π个单位,得到函数()sin()cos 2f x x xπ=+=的图象,()cos f x x =为偶函数,排除A ;()cos f x x =的周期为2π,排除B ; 因为()cos022f ππ==,所以()cos f x x =不关于直线2x π=对称,排除C ;故选D .19.B 【解析】 将3sin(2)3y x π=+的图象向有右移2π个单位长度后得到 3sin[2()]23y x ππ=-+,即23sin(2)3y x π=-的图象,令2222232k x k πππππ-+-+≤≤,k Z ∈, 化简可得7[,]1212x k k ππππ∈++,k Z ∈, 即函数23sin(2)3y x π=-的单调递增区间为7[,]1212k k ππππ++,k Z ∈, 令0k =.可得23sin(2)3y x π=-在区间7[,]1212ππ上单调递增,故选B .20.C 【解析】51sin()sin(2+)sin cos 2225πππαπααα⎛⎫+=+=+== ⎪⎝⎭,选C.22.B 【解析】把)23,0(P 代入)22)(2sin()(πθπθ<<-+=x x f ,解得3πθ=, 所以)232sin()(ϕπ-+=x x g ,把)23,0(P 代入得,πϕk =或6ππϕ-=k , 观察选项,故选B23.A 【解析】由题设知,πω=544ππ-,∴ω=1,∴4πϕ+=2k ππ+(k Z ∈), ∴ϕ=4k ππ+(k Z ∈),∵0ϕπ<<,∴ϕ=4π,故选A.24.C 【解析】cos 2y x =向左平移12→1cos 2()cos(21)2y x x =+=+. 25.A 【解析】cos 21cos 1cos(1)1cos(1)y x y x y x y x =+⇒=+⇒=++⇒=+,故选A .26.A 【解析】709,,sin()1,3636263x x x ππππππ∴≤≤∴-≤-≤∴-≤-≤max min 2,y y ∴==故选8.27.D 【解析】函数向右平移4π得到函数)4sin()4(sin )4()(ωπωπωπ-=-=-=x x x f x g ,因为此时函数过点)0,43(π,所以0)443(sin =-ππω,即,2)443(πωπππωk ==-所以Z k k ∈=,2ω,所以ω的最小值为2,选D .28.A 【解析】函数)4sin()(πω+=x x f 的图像可看作是由函数()sin f x x =的图像先向左平移4π个单位得()sin()4f x x π=+的图像,再将图像上所有点的横坐标缩小到原来的1ω倍,纵坐标不变得到的,而函数()sin()4f x x π=+的减区间是5[,]44ππ,所以要使函数)4sin()(πω+=x x f 在),2(ππ上是减函数,需满足142514ππωππω⎧⨯⎪⎪⎨⎪⨯⎪⎩≤≥,解得1524ω≤≤. 29.B 【解析】由于()sin f x x ω=的图象经过坐标原点,根据已知并结合函数图象可知,3π为函数()f x 的四分之一周期,故243ππω=,解得32ω=. 30.D 【解析】∵()sin(2)cos(2)44f x x x ππ=+++)22x x π+=,所以2y x =在(0,)2π单调递减,对称轴为2x k π=,即()2k x k Z π=∈.31.C 【解析】因为当x R ∈时,()|()|6f x f π≤恒成立,所以()sin()163f ππϕ=+=±,可得26k πϕπ=+或526k πϕπ=-,k Z ∈,因为()sin()sin ()sin(2)sin 2f f ππϕϕππϕϕ=+=->=+=故sin 0ϕ<,所以526k πϕπ=-,所以5()sin(2)6f x x π=-,由5222262k x k πππππ-+-+≤≤(k Z ∈), 得263k x k ππππ++≤≤(k Z ∈),故()f x 的单调递增区间是2[,]63k k ππππ++(k Z ∈). 32.B 【解析】半周期为3884πππ-=,即最小正周期为2π,所以2ω=.由题意可知,图象过定点3(,0)8π,所以30tan(2)8A πϕ=⨯+,即34k πϕπ+= ()k Z ∈ 所以3()4k k Z πϕπ=-∈,又||2πϕ<,所以4πϕ=, 又图象过定点(0,1),所以1A =.综上可知()tan(2)4f x x π=+,故有()tan(2)tan 242443f ππππ=⨯+==33.23【解析】由于对任意的实数都有π()()4f x f ≤成立,故当4x π=时,函数()f x 有最大值,故()14f π=,246k πωππ-=(k ∈Z ),∴283k ω=+(k ∈Z ), 又0ω>,∴min 23ω=. 34.3【解析】由题意知,cos(3)06x π+=,所以362x k πππ+=+,k ∈Z ,所以93k x ππ=+,k ∈Z ,当0k =时,9x π=;当1k =时,49x π=;当2k =时,79x π=,均满足题意,所以函数()f x 在[0,]π的零点个数为3.35.π6-【解析】由函数sin(2)()22y x ϕϕππ=+-<<的图象关于直线3x π=对称,得2sin()13πϕ+=±,因为22ϕππ-<<,所以27636πππϕ<+<, 则232ππϕ+=,6πϕ=-.36.32π【解析】函数sin 2sin()3y x x x π==-的图像可由函数sin y x =+2sin()3x x π=+的图像至少向右平移23π个单位长度得到. 37.π、]87,83[ππππk k ++ (Z k ∈)【解析】23)42sin(22)(+-=πx x f ,故最小正周期为π,单调递减区间为]87,83[ππππk k ++ (Z k ∈).38.π【解析】22cos y x x =+=1112cos 2sin(2)2262y x x x π=++=++,所以其最小正周期为22ππ=. 39.6π【解析】由题意交点为1(,)32π,所以21sin()32πϕ+=,又0ϕπ<≤,解得6πϕ=.40.2【解析】把函数sin y x =图象向左平移6π个单位长度得到sin()y x ωϕ=+的图象,再把函数sin()6y x π=+图象上每一点的横坐标伸长为原来的2倍,纵坐标不变,得到函数1()sin()26f x x π=+的图象,所以=⎪⎭⎫⎝⎛6πf 1sin()sin 2664πππ⨯+==41.38π【解析】()sin[2()]sin(22)44f x x x ππϕϕϕ-=-+=+-∴2()42k k Z ππϕπ-=+∈,∴()82k k Z ππϕ=--∈,当1k =-时min 38πϕ=.42.5-【解析】∵()f x =sin 2cos x x -)x x令cos ϕ=5,sin 5ϕ=-,则()f x cos sin cos )x x ϕϕ+)x ϕ+,当x ϕ+=2,2k k z ππ+∈,即x =2,2k k z ππϕ+-∈时,()f x 取最大值,此时θ=2,2k k z ππϕ+-∈,∴cos θ=cos(2)2k ππϕ+-=sin ϕ=. 43.56π【解析】函数cos(2)y x ϕ=+,向右平移2π个单位,得到sin(2)3y x π=+, 即sin(2)3y x π=+向左平移2π个单位得到函数cos(2)y x ϕ=+,sin(2)3y x π=+向左平移2π个单位,得sin[2()]sin(2)233y x x ππππ=++=++sin(2)cos(2)323x x πππ=-+=++ 5cos(2)6x π=+,即56πϕ=.44.2a ≥【解析】()3cos32sin(3)f x x x x φ=+=+得|()|2f x ≤故2a ≥. 45.π【解析】2==2T ππ.46A =,741234T πππ=-=,所以T π=,22Tπω==,又函数图象经过点(,0)3π,所以23πϕπ⨯+=,则3πϕ=,故())3f x x π=+,所以(0)3f π==.47.①③【解析】()sin 2cos2)f x a x b x x ϕ=++(其中tan b aϕ=),因此对一切x R ∈,()|()|6f x f π≤恒成立,所以sin()13πϕ+=±,可得()6k k Z πϕπ=+∈,故())6f x x π=+.而1111())012126f πππ=⨯+=,所以①正确;74717|()||||123030f πππ==,17|()|||530f ππ=,所以7|()||()|105f f ππ=,故②错;③明显正确;④错误:由函数())6f x x π=+和())6f x x π=+的图象(图略)可知,不存在经过点(,)a b 的直线与函数()f x 的图象不相交,故⑤错误.48.23【解析】线段12P P 的长即为sin x 的值,且其中的x 满足6cos 5tan x x =,解得sin x =23.线段12P P 的长为23. 49.3[,3]2-【解析】由题意知,2ω=,因为[0,]2x π∈,所以52[,]666x πππ-∈-,由三角函数图象知:()f x 的最小值为33sin ()=62π--,最大值为3sin =32π,所以()f x 的取值范围是3[,3]2-.50.【解析】(1)若()f x 为偶函数,则对任意∈R x ,均有()()=-f x f x ;即22sin 22cos sin 2()2cos ()+=-+-a x x a x x , 化简得方程sin 20=a x 对任意∈R x 成立,故0=a ;(2)2()sin(2)2cos ()11444πππ=⨯+=+=f a a ,所以=a故2()22cos =+f x x x .则方程()1=-f x 222cos 1+=x x222cos 1+-=x x ,化简即为2sin(2)6π+=x即sin(2)6π+=x ,解得1124ππ=-+x k 或524ππ'=-+x k ,,'∈Z k k 若求该方程在[,]ππ-上有解,则1335[,]2424∈-k ,1929[,]2424'∈-k , 即0=k 或1;0'=k 或1, 对应的x 的值分别为:1124π-、1324π、524π-、1924π.51.【解析】(1)因为(cos ,sin )x x =a ,(3,=b ,∥a b ,所以3sin x x =.若cos 0x =,则sin 0x =,与22sin cos 1x x +=矛盾,故cos 0x ≠.于是tan x = 又[0,]x π∈,所以56x π=.(2)π(cos ,sin )(3,3cos ())6f x x x x x x =⋅=⋅==+a b . 因为[0,]x π∈,所以ππ7π[,]666x +∈,从而π1cos()62x -≤+≤. 于是,当ππ66x +=,即0x =时,()f x 取到最大值3;当π6x +=π,即5π6x =时,()f x 取到最小值-52.【解析】(Ⅰ)因为()sin()sin()62f x x x ππωω=-+-,所以1()cos cos 2f x x x x ωωω=--3cos 2x x ωω=-1sin )22x x ωω=-)3x πω=-由题设知()06f π=,所以63k ωπππ-=,k Z ∈.故62k ω=+,k Z ∈,又03ω<<, 所以2ω=.(Ⅱ)由(Ⅰ)得())3f x x π=-所以()))4312g x x x πππ=+-=-.因为3[,]44x ππ∈-, 所以2[,]1233x πππ-∈-,当123x ππ-=-,即4x π=-时,()g x 取得最小值32-. 53.【解析】(Ⅰ)()f x 的定义域为{|,}2x x k k Z ππ≠+∈.()4tan cos cos()3f x x x x π=--4sin cos()3x x π=--14sin (cos )2x x x =+-22sin cos x x x =+-sin 2cos2)x x =+--sin 2x x =-2sin(2)3x π=-所以()f x 的最小正周期22T ππ==. ()II 令2,3z x π=-函数2sin y z =的单调递增区间是2,2,.22k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦由222232k x k πππππ-+≤-≤+,得5,.1212k x k k Z ππππ-+≤≤+∈ 设5,,,441212A B x k x k k Z ππππππ⎧⎫⎡⎤=-=-+≤≤+∈⎨⎬⎢⎥⎣⎦⎩⎭,易知,124A B ππ⎡⎤=-⎢⎥⎣⎦I . 所以, 当,44x ππ⎡⎤∈-⎢⎥⎣⎦时, ()f x 在区间,124ππ⎡⎤-⎢⎥⎣⎦上单调递增, 在区间412ππ⎡⎤--⎢⎥⎣⎦,上单调递减.54.【解析】(Ⅰ)因为()cos )f x x x =-sin()4x π=+所以()f x 的最小正周期为2π. (Ⅱ)因为0x π-≤≤,所以3444x πππ-≤+≤. 当42x ππ+=-,即34x π=-时,()f x 取得最小值.所以()f x 在区间[],0π-上的最小值为3()142f π-=--. 55.【解析】(Ⅰ)根据表中已知数据,解得π5,2,A ωϕ===-. 数据补全如下表:且函数表达式为π()5sin(2)6f x x =-.(Ⅱ)由(Ⅰ)知 π()5sin(2)6f x x =-,得π()5sin(22)6g x x θ=+-.因为sin y x =的对称中心为(π,0)k ,k ∈Z . 令π22π6x k θ+-=,解得ππ212k x θ=+-,k ∈Z . 由于函数()y g x =的图象关于点5π(,0)12成中心对称,令ππ5π21212k θ+-=, 解得ππ23k θ=-,k ∈Z . 由0θ>可知,当1k =时,θ取得最小值π6. 56.【解析】解法一:(Ⅰ)5555()2cos (sin cos )4444f ππππ=+ 2cos(sincos )444πππ=---2=(Ⅱ)因为2()2sin cos 2cos f x x x x =+sin 2cos21x x =++)14x π=++.所以22T ππ==. 由222,242k x k k Z πππππ-≤+≤+∈,得3,88k x k k Z ππππ-≤≤+∈, 所以()f x 的单调递增区间为3[,],88k k k Z ππππ-+∈. 解法二:因为2()2sin cos 2cos f x x x x =+sin 2cos21x x =++)14x π=++(Ⅰ)511()112444f πππ=+=+=.(Ⅱ)22T ππ==.由222,242k x k k Z πππππ-≤+≤+∈,得3,88k x k k Z ππππ-≤≤+∈, 所以()f x 的单调递增区间为3[,],88k k k Z ππππ-+∈.57.【解析】(Ⅰ)ππ(8)108sin 81212f =⨯-⨯()()2π2π10sin 33=-110()102=--=.故实验室上午8时的温度为10 ℃.(Ⅱ)因为π1πππ()10sin )=102sin()12212123f t t t t =-+-+, 又024t ≤<,所以πππ7π31233t ≤+<,ππ1sin()1123t -≤+≤.当2t =时,ππsin()1123t +=;当14t =时,ππsin()1123t +=-. 于是()f t 在[0,24)上取得最大值12,取得最小值8.故实验室这一天最高温度为12 ℃,最低温度为8 ℃,最大温差为4 ℃.58.【解析】解法一:(Ⅰ)因为0,2πα<<sin 2α=所以cos 2α=.所以11()()22222f α=+-=. (Ⅱ)因为2111cos 21()sin cos cos sin 22222x f x x x x x +=+-=+-11sin 2cos 2)2224x x x π=+=+, 所以22T ππ==.由222,,242k x k k Z πππππ-≤+≤+∈得3,88k x k k Z ππππ-≤≤+∈. 所以()f x 的单调递增区间为3[,],88k k k Z ππππ-+∈.解法二:2111cos 21()sin cos cos sin 22222x f x x x x x +=+-=+-11sin 2cos 2)224x x x π=+=+(Ⅰ)因为0,2πα<<sin 2α=所以4πα=从而31()sin(2)24242f ππαα=+== (Ⅱ)22T ππ== 由222,,242k x k k Z πππππ-≤+≤+∈得3,88k x k k Z ππππ-≤≤+∈. 所以()f x 的单调递增区间为3[,],88k k k Z ππππ-+∈. 59.【解析】:(I )()f x 的最小正周期为π,076x π=,03y =.(II )因为[,]212x ππ∈--,所以52[,0]66x ππ+∈-,于是当206x π+=,即12x π=-时,()f x 取得最大值0;当262x ππ+=-,即3x π=-时,()f x 取得最小值3-.60.【解析】(Ⅰ)由已知,有21()cos sin 224f x x x x x 骣÷ç÷=?-+ç÷ç÷ç桫21sin cos 224x x x =?+)1sin 21cos2444x x =-++1sin 24x x =-1sin 223x p 骣÷ç=-÷ç÷ç桫. 所以,()f x 的最小正周期22T pp ==. (Ⅱ)因为()f x 在区间,412p p 轾犏--犏臌上是减函数,在区间,124p p 轾犏-犏臌上是增函数. 144f p 骣÷ç-=-÷ç÷ç桫,1122f p 骣÷ç-=-÷ç÷ç桫,144f p 骣÷ç=÷ç÷ç桫.所以,函数()f x 在闭区间,44p p 轾犏-犏臌上的最大值为14,最小值为12-.61.【解析】:(I )因()f x 的图象上相邻两个最高点的距离为π,所以()f x 的最小正周期T π=,从而22Tπω==.又因()f x 的图象关于直线3π=x 对称,所以2,0,1,2,,32k k ππϕπ⋅+=+=±±L 因22ππϕ-≤<得0k =.所以2236πππϕ=-=-.(II )由(I )得22264f ααπ⎛⎫⎛⎫=⋅-= ⎪ ⎪⎝⎭⎝⎭,所以1sin 64πα⎛⎫-= ⎪⎝⎭. 由263ππα<<得0,62ππα<-<所以cos 6πα⎛⎫-=== ⎪⎝⎭ 因此3cos sin sin 266πππααα⎡⎤⎛⎫⎛⎫+==-+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦ sin cos cos sin 6666ππππαα⎛⎫⎛⎫=-+- ⎪ ⎪⎝⎭⎝⎭=1142428⨯+=.62.【解析】(1)()f x =22ωx -sin ωx cos ωx1cos 21sin 222x x ωω--ωx -12sin 2ωx =πsin 23x ω⎛⎫-- ⎪⎝⎭. 因为图象的一个对称中心到最近的对称轴的距离为π4, 又ω>0,所以2ππ=424ω⨯.因此ω=1. (2)由(1)知()f x =πsin 23x ⎛⎫--⎪⎝⎭.当π ≤x ≤3π2时,5π3≤π8π233x -≤.所以πsin 2123x ⎛⎫-≤-≤ ⎪⎝⎭,因此-1≤()f x ≤2.故()f x 在区间3ππ,2⎡⎤⎢⎥⎣⎦1.63.【解析】(1)()f x =sin 2x ·ππcossin 44x ⋅+3sin 2x -cos 2x=2sin 2x -2cos 2x =π24x ⎛⎫- ⎪⎝⎭. 所以,()f x 的最小正周期T =2π2=π. (2)因为()f x 在区间3π0,8⎡⎤⎢⎥⎣⎦上是增函数,在区间3ππ,82⎡⎤⎢⎥⎣⎦上是减函数.又f (0)=-2,3π8f ⎛⎫=⎪⎝⎭,π22f ⎛⎫= ⎪⎝⎭,故函数()f x 在区间π0,2⎡⎤⎢⎥⎣⎦上的最大值为,最小值为-2. 64.【解析】(1)41)212cos 232(sin 21)3sin sin 3cos (cos cos )(+⋅+⋅=⋅+⋅⋅=x x x x x x f ππ41)32(.414123sin 21)32(41)62sin(21-==-=+=⇒++=ππππf f x 所以. (2)由(1)知,111()sin(2)sin(2)0(2)(2,2)264466f x x x x k k ππππππ=++<⇒+<⇒+∈- .),12,127(.),12,127(Z k k k Z k k k x ∈--∈--∈⇒ππππππππ所以不等式的解集是:65.【解析】2111())sin cos 2sin 2(1cos 2)4222f x x x x x x π=++=-+- 11sin 222x =-. (I )函数()f x 的最小正周期22T ππ==. (Ⅱ)当[0,]2x π∈时,11()()sin 222g x f x x =-=.当[,0]2x π∈-时,()[0,]22x ππ+∈,11()()sin 2()sin 22222g x g x x x ππ=+=+=-当[,)2x ππ∈--时,()[0,)2x ππ+∈,11()()sin 2()sin 222g x g x x x ππ=+=+=得:函数()g x 在[,0]π-上的解析式为1sin 2(0)22()1sin 2()22x x g x x x πππ⎧--≤≤⎪⎪=⎨⎪-≤<⎪⎩.66.【解析】(Ⅰ)由题设图像知,周期11522(),21212T Tππππω=-=∴==. 因为点5(,0)12π在函数图像上,所以55sin(2)0,sin()0126A ππϕϕ⨯+=+=即.又55450,,=26636πππππϕϕϕπ<<∴<+<+Q 从而,即=6πϕ. 又点0,1()在函数图像上,所以sin 1,26A A π==,故函数()f x 的解析式为()2sin(2).6f x x π=+(Ⅱ)()2sin[2()]2sin[2()]126126g x x x ππππ=-+-++2sin 22sin(2)3x x π=-+12sin 22(sin 22)2x x x =-sin 22x x =-2sin(2),3x π=-由222,232k x k πππππ-≤-≤+得5,.1212k x k k z ππππ-≤≤+∈ ()g x ∴的单调递增区间是5,,.1212k k k z ππππ⎡⎤-+∈⎢⎥⎣⎦ 67.【解析】(Ⅰ)∵函数()f x 的最大值是3,∴13A +=,即2A =.∵函数图像的相邻两条对称轴之间的距离为2π,∴最小正周期T π=,∴2ω=. 故函数()f x 的解析式为()2sin(2)16f x x π=-+.(Ⅱ)∵()2f α2sin()126πα=-+=,即1sin()62πα-=,∵02πα<<,∴663πππα-<-<,∴66ππα-=,故3πα=.。
高考真题——三角函数与解三角形真题(加答案)

全国卷历年高考三角函数及解三角形真题归类分析三角函数一、三角恒等变换( 3 题)1.(2015 年1 卷2)o o o osin20cos10cos160sin10=()(A)32(B)32(C)12(D)12【解析】原式= o o o osin20cos10cos20sin10=osin30=12,故选 D.考点:本题主要考查诱导公式与两角和与差的正余弦公式.2.(2016 年3 卷)(5)若tan 34,则2cos2sin2()(A) 6425(B)4825(C) 1 (D)1625【解析】由tan 34,得34sin,cos55或34sin,cos55,所以2161264cos2sin24252525,故选A.考点:1、同角三角函数间的基本关系;2、倍角公式.3.(2016 年2 卷9)若cos π345,则sin2=(A)725(B)15(C)15(D)725【解析】∵cos345,ππ72sin2cos22cos12425,故选D.二、三角函数性质( 5 题)4.(2017年3卷6)设函数πf(x)cos(x),则下列结论错误的是()3A.f(x)的一个周期为2πB.y f(x)的图像关于直线8πx对称3C.f(x)的一个零点为πx D.f(x)在6π(,π)2单调递减【解析】函数πf x cos x的图象可由y cos x向左平移3π个单位得到,3如图可知,f x在π,π2上先递减后递增,D选项错误,故选 D.yO x-65(. 2017 年2 卷14)函数23f x sin x3cos x(x0,)的最大值是.42【解析】2321f x1cos x3cos x cos x3cos x44 23cos1x,x0,,则cos x0,1,当22cos3x时,取得最大值 1.26.(2015 年1 卷8)函数f(x)= cos(x)的部分图像如图所示,则f(x)的单调递减区间为()(A)(1,3),k k k Z44(B)13(2k,2k),k Z44(C)13(k,k),k Z 44(D)13(2k,2k),k Z44【解析】由五点作图知,1+4253+42,解得=,=4,所以f(x)cos(x),4令22,k x k k Z,解得412k<x<432k k Z4(12k,432k),k Z,故选D. 考点:三角函数图像与性质45.(2015 年2 卷10)如图,长方形ABCD 的边AB=2 ,BC=1,O 是AB 的中点,点P 沿着边BC,CD 与DA 运动,记∠BOP=x.将动点P 到A、B 两点距离之和表示为x 的函数f(x),则f(x)的图像大致为的运动过程可以看出,轨迹关于直线B.x对称,且f()f(),且轨迹非线型,故选2426.(2016 年1 卷12)已知函数f(x)sin(x+)(0,),x为f(x)的零24点, x为y f(x)图像的对称轴,且f(x)在45,单调,则的最大值为1836(A)11 (B)9 (C)7 (D)5 考点:三角函数的性质三、三角函数图像变换( 3 题)7.(2016 年2 卷7)若将函数y=2sin 2x 的图像向左平移π个单位长度,则平移后图象的对12称轴为(A)kππx k Z (B)26kππx k Z26(C)kππx k Z (D)212kππx k212Z【解析】平移后图像表达式为πy2sin2x,令12ππ2x kπ+,得对称轴方程:122kππx k Z ,故选B.268.(2016 年 3 卷14)函数y sin x3cos x错误!未找到引用源。
【2022高考必备】2012-2021十年全国高考数学真题分类汇编 三角大题(精解精析)

2012-2021十年全国高考数学真题分类汇编 三角大题 (精解精析)1.(2020年高考数学课标Ⅱ卷理科)ABC 中,sin 2A -sin 2B -sin 2C =sin B sin C .(1)求A 。
(2)若BC =3,求ABC 周长地最大值.【结果】(1)23π。
(2)3+.思路:(1)由正弦定理可得:222BC AC AB AC AB --=⋅,2221cos 22AC AB BC A AC AB +-∴==-⋅,()0,A π∈ ,23A π∴=(2)由余弦定理得:222222cos 9BC AC AB AC AB A AC AB AC AB =+-⋅=++⋅=,即()29AC AB AC AB +-⋅=.22AC AB AC AB +⎛⎫⋅≤ ⎪⎝⎭ (当且仅当AC AB =时取等号),()()()22223924AC AB AC AB AC AB AC AB AC AB +⎛⎫∴=+-⋅≥+-=+ ⎪⎝⎭,解得:AC AB +≤(当且仅当AC AB =时取等号),ABC ∴周长3L AC AB BC =++≤+,ABC ∴周长地最大值为3+.【点睛】本题考查解三角形地相关知识,涉及到正弦定理角化边地应用,余弦定理地应用,三角形周长最大值地求解问题。
求解周长最大值地关键是能够在余弦定理构造地等式中,结合基本不等式构造不等关系求得最值.2.(2019年高考数学课标Ⅲ卷理科)ABC △地内角,,A B C 地对边分别为,,a b c ,已知sinsin 2A Ca b A +=.(1)求B 。
(2)若ABC △为锐角三角形,且1c =,求ABC △面积地取值范围.【结果】(1)3B π=;(2).【官方思路】.(1)由题设及正弦定理得sin sin sin sin 2A CA B A +=,因为sin 0A ≠,所以sinsin 2A CB +=.由A BC 180++=︒,可得sin cos 22A C B +=,故B B Bcos 2sin cos 222=.因为B cos02≠,故B 1sin 22=,因此60=︒B .(2)由题设及(1)知△ABC 地面积=△ABC S a .由正弦定理得sin sin(120)1sin sin 2︒-===c A C a C C .由于△ABC 为锐角三角形,故090︒<<︒A ,090︒<<︒C .由(1)知120+=︒A C ,所以3090︒<<︒C ,故122<<a ,<<△ABC S .因此△ABC 面积地取值范围是.【点评】这道题考查了三角函数地基础知识,和正弦定理或者余弦定理地使用(此题也可以用余弦定理求解),最后考查△ABC 是锐角三角形这个款件地利用.考查地很全面,是一道很好地考题.3.(2019年高考数学课标全国Ⅰ卷理科)ABC △地内角,,A B C 地对边分别为,,a b c .设22(sin sin )sin sin sin B C A B C -=-.(1)求A 。
高考中三角函数和解三角形的真题(常见的题型)汇总

三角函数类型一:角度的概念、弧长和三角函数的概念1已知角q 的顶点为坐标原点,始边为x 轴的正半轴,若),4(y P 是角q 终边上的一点,且552sin -=q ,则y的值的值2已知弧度数为2的圆心角所对的弦长也是2,则这个圆心角所对的弧长是,则这个圆心角所对的弧长是 3若0cos sin <q q ,则角q 在第在第___________________________象限角。
象限角。
象限角。
4 4 已知已知q 为第二象限角;则2q可能为第可能为第_____________________象限角。
象限角。
象限角。
5已知q 为第二象限角;则24a p +所在的象限是所在的象限是_____________________。
6已知角a 的终边过点)60cos 6,8(--m P ,且54cos -=a ,则m 的值为的值为7在平面直角坐标系中,若角a 的顶点在坐标原点,始边在x 轴的非负半轴上,终点经过点)4,3(a a P -)0(<a ,则a a cos sin +的值为的值为8 8 已知角已知角a 的终边经过点)3,4(-,则a cos 等于等于答案:1 -8-8;;21sin 2;3 二或四;4 一或三;5 一或三;6 21;7 51;8 54-。
类型二:同角三角函数的求值与化解(a a a a a cos tan sin ,1cos sin 22×==+)1求300sin =_______=_______。
2已知3cos sin cos sin =-+xx x x ,则x tan 的值是的值是________________________。
3若点)9,(a 在函数xy 3=的图像上,则6tanpa 的值为的值为 4已知a 是第二象限角,135sin =a ,则a cos 的值的值5已知51)25sin(=+a p ,那么a cos 的值的值6已知21tan -=a ,则1cos 22sin 2--a a 等于等于7)1410tan(-的值的值8 8 记记cos(80)k -°=,那么tan100°= 9已知11-tan tan -=a a,则2cos sin sin 2++a a a = 10 已知角)2,0(p Îx ,21cos 22££-x 的解集是_____。
十年高考理科数学真题 专题四 三角函数与解三角形 十一 三角函数的综合应用及答案

专题四 三角函数与解三角形 第十一讲 三角函数的综合应用2019年1.(2019江苏18)如图,一个湖的边界是圆心为O 的圆,湖的一侧有一条直线型公路l ,湖上有桥AB (AB 是圆O 的直径).规划在公路l 上选两个点P 、Q ,并修建两段直线型道路PB 、QA .规划要求:线段PB 、QA 上的所有点到点O 的距离均不小于圆....O 的半径.已知点A 、B 到直线l 的距离分别为AC 和BD (C 、D 为垂足),测得AB =10,AC =6,BD =12(单位:百米).(1)若道路PB 与桥AB 垂直,求道路PB 的长;(2)在规划要求下,P 和Q 中能否有一个点选在D 处?并说明理由;(3)在规划要求下,若道路PB 和QA 的长度均为d (单位:百米).求当d 最小时,P 、Q 两点间的距离.2010-2018年一、选择题1.(2018北京)在平面直角坐标系中,记d 为点(cos ,sin )P θθ到直线20x my --=的距离,当θ,m 变化时,d 的最大值为 A .1B .2C .3D .42.(2016年浙江)设函数2()sin sin f x x b x c =++,则()f x 的最小正周期A .与b 有关,且与c 有关B .与b 有关,但与c 无关C .与b 无关,且与c 无关D .与b 无关,但与c 有关 3.(2015陕西)如图,某港口一天6时到18时的水深变化曲线近似满足函数3sin()6y x k πϕ=++,据此函数可知,这段时间水深(单位:m )的最大值为A .5B .6C .8D .10 4(2015浙江)存在函数()f x 满足,对任意x R ∈都有A .(sin 2)sin f x x =B .2(sin 2)f x x x =+ C .2(1)1f x x +=+ D .2(2)1f x x x +=+5.(2015新课标Ⅱ)如图,长方形ABCD 的边AB =2,BC =1,O 是AB 的中点,点P 沿着边BC ,CD 与DA 运动,∠BOP =x .将动点P 到A ,B 两点距离之和表示为x 的函数()f x ,则()y f x =的图像大致为A B C D6.(2014新课标Ⅰ)如图,圆O 的半径为1,A 是圆上的定点,P 是圆上的动点,角x 的始边为射线OA ,终边为射线OP ,过点P 作直线OA 的垂线,垂足为M ,将点M 到直线OP 的距离表示为x 的函数()f x ,则y =()f x 在[0,π]上的图像大致为A .B .C .D .7.(2015湖南)已知函数230()sin(),()0,f x x f x dx πϕ=-=⎰且则函数()f x 的图象的一条对称轴是 A .56x π= B .712x π= C .3x π= D .6x π= 二、填空题8.(2016年浙江)已知22cos sin 2sin((>0)x x A x b A ωϕ+=+)+,则A =__,b =__. 9.(2016江苏省) 定义在区间[]0,3π上的函数sin 2y x =的图象与cos y x =的图象的交点个数是 . 10.(2014陕西)设20πθ<<,向量()()sin 2cos cos 1θθθ==,,,a b ,若∥a b , 则=θtan _______.11.(2012湖南)函数()sin()f x x ωϕ=+的导函数()y f x '=的部分图像如图4所示,其中,P 为图像与y 轴的交点,A ,C 为图像与x 轴的两个交点,B 为图像的最低点.(1)若6πϕ=,点P 的坐标为(0,332),则ω= ;(2)若在曲线段¼ABC 与x 轴所围成的区域内随机取一点,则该点在△ABC 内的概率为 .三、解答题12.(2018江苏)某农场有一块农田,如图所示,它的边界由圆O 的一段圆弧MPN (P 为此圆弧的中点)和线段MN 构成.已知圆O 的半径为40米,点P 到MN 的距离为50米.现规划在此农田上修建两个温室大棚,大棚Ⅰ内的地块形状为矩形ABCD ,大棚Ⅱ内的地块形状为CDP △,要求,A B 均在线段MN 上,,C D 均在圆弧上.设OC 与MN 所成的角为θ.NM POAB CD(1)用θ分别表示矩形ABCD 和CDP △的面积,并确定sin θ的取值范围;(2)若大棚Ⅰ内种植甲种蔬菜,大棚Ⅱ内种植乙种蔬菜,且甲、乙两种蔬菜的单位面积年产值之比为43∶.求当θ为何值时,能使甲、乙两种蔬菜的年总产值最大. 13.(2017江苏)如图,水平放置的正四棱柱形玻璃容器Ⅰ和正四棱台形玻璃容器Ⅱ的高均为32cm ,容器Ⅰ的底面对角线AC 的长为cm ,容器Ⅱ的两底面对角线EG ,11E G 的长分别为14cm 和62cm . 分别在容器Ⅰ和容器Ⅱ中注入水,水深均为12cm . 现有一根玻璃棒l ,其长度为40cm .(容器厚度、玻璃棒粗细均忽略不计)(1)将l 放在容器Ⅰ中,l 的一端置于点A 处,另一端置于侧棱1CC 上,求l 没入水中部分的长度;(2)将l 放在容器Ⅱ中,l 的一端置于点E 处,另一端置于侧棱1GG 上,求l 没入水中部分的长度.14.(2015山东)设2()sin cos cos ()4f x x x x π=-+.(Ⅰ)求()f x 的单调区间;(Ⅱ)在锐角△ABC 中,角,,A B C ,的对边分别为,,a b c ,若()02Af =,1a =,求△ABC 面积的最大值.15.(2014湖北)某实验室一天的温度(单位:℃)随时间t (单位:h )的变化近似满足函数关系:ππ()103cossin 1212f t t t =--,[0,24)t ∈. (Ⅰ)求实验室这一天的最大温差; (Ⅱ)若要求实验室温度不高于,则在哪段时间实验室需要降温?16.(2014陕西)ABC ∆的内角C B A ,,所对的边分别为c b a ,,. (I )若c b a ,,成等差数列,证明:()C A C A +=+sin 2sin sin ; (II )若c b a ,,成等比数列,求B cos 的最小值.17.(2013福建)已知函数()sin()(0,0)f x x ωϕωϕπ=+><<的周期为π,图像的一个对称中心为(,0)4π,将函数()f x 图像上的所有点的横坐标伸长为原来的2倍(纵坐标不变),在将所得图像向右平移2π个单位长度后得到函数()g x 的图像. (1)求函数()f x 与()g x 的解析式; (2)是否存在0(,)64x ππ∈,使得0000(),(),()()f x g x f x g x 按照某种顺序成等差数列?若存在,请确定0x 的个数;若不存在,说明理由.(3)求实数a 与正整数n ,使得()()()F x f x ag x =+在(0,)n π内恰有2013个零点.专题四三角函数与解三角形第十一讲三角函数的综合应用答案部分2019年1.解析解法一:(1)过A作AE BD⊥,垂足为E.由已知条件得,四边形ACDE为矩形,6,8DE BE AC AE CD=====.'因为PB⊥AB,所以84cos sin105PBD ABE∠=∠==.所以12154cos5BDPBPBD===∠.因此道路PB的长为15(百米).(2)①若P在D处,由(1)可得E在圆上,则线段BE上的点(除B,E)到点O的距离均小于圆O的半径,所以P选在D处不满足规划要求.②若Q在D处,联结AD,由(1)知2210AD AE ED=+=,从而2227cos0225AD AB BDBADAD AB+-∠==>⋅,所以∠BAD为锐角.所以线段AD上存在点到点O的距离小于圆O的半径.因此,Q选在D处也不满足规划要求.综上,P和Q均不能选在D处.(3)先讨论点P的位置.当∠OBP<90°时,线段PB上存在点到点O的距离小于圆O的半径,点P不符合规划要求;当∠OBP ≥90°时,对线段PB 上任意一点F ,OF ≥OB ,即线段PB 上所有点到点O 的距离均不小于圆O 的半径,点P 符合规划要求.设1P 为l 上一点,且1PB AB ⊥,由(1)知,1P B =15, 此时11113sin cos 1595PD PB PBD PB EBA =∠=∠=⨯=; 当∠OBP >90°时,在1PPB △中,115PB PB >=. 由上可知,d ≥15. 再讨论点Q 的位置.由(2)知,要使得QA ≥15,点Q 只有位于点C 的右侧,才能符合规划要求.当QA =15时,2222156321CQ QA AC =-=-=.此时,线段QA 上所有点到点O 的距离均不小于圆O 的半径.综上,当PB ⊥AB ,点Q 位于点C 右侧,且CQ =321时,d 最小,此时P ,Q 两点间的距离PQ =PD +CD +CQ =17+321.因此,d 最小时,P ,Q 两点间的距离为17+321(百米). 解法二:(1)如图,过O 作OH ⊥l ,垂足为H. 以O 为坐标原点,直线OH 为y 轴,建立平面直角坐标系.因为BD =12,AC =6,所以OH =9,直线l 的方程为y =9,点A ,B 的纵坐标分别为3,−3. 因为AB 为圆O 的直径,AB =10,所以圆O 的方程为x 2+y 2=25. 从而A (4,3),B (−4,−3),直线AB 的斜率为34. 因为PB ⊥AB ,所以直线PB 的斜率为43-, 直线PB 的方程为42533y x =--. 所以P (−13,9),22(134)(93)15PB =-+++=.因此道路PB 的长为15(百米).(2)①若P 在D 处,取线段BD 上一点E (−4,0),则EO =4<5,所以P 选在D 处不满足规划要求.②若Q 在D 处,联结AD ,由(1)知D (−4,9),又A (4,3), 所以线段AD :36(44)4y x x =-+-剟.在线段AD 上取点M (3,154),因为5OM =<=,所以线段AD 上存在点到点O 的距离小于圆O 的半径. 因此Q 选在D 处也不满足规划要求. 综上,P 和Q 均不能选在D 处. (3)先讨论点P 的位置.当∠OBP <90°时,线段PB 上存在点到点O 的距离小于圆O 的半径,点P 不符合规划要求; 当∠OBP ≥90°时,对线段PB 上任意一点F ,OF ≥OB ,即线段PB 上所有点到点O 的距离均不小于圆O 的半径,点P 符合规划要求.设1P 为l 上一点,且1PB AB ⊥,由(1)知,1P B =15,此时1P (−13,9); 当∠OBP >90°时,在1PPB △中,115PB PB >=. 由上可知,d ≥15. 再讨论点Q 的位置.由(2)知,要使得QA≥15,点Q 只有位于点C 的右侧,才能符合规划要求.当QA =15时,设Q(a ,9),由15(4)AQ a ==>,得a =4+Q (4+9),此时,线段QA 上所有点到点O 的距离均不小于圆O 的半径.综上,当P (−13,9),Q (4+9)时,d 最小,此时P ,Q 两点间的距离4(13)17PQ =+-=+.因此,d 最小时,P ,Q 两点间的距离为17+2010-2018年1.C【解析】由题意可得d ====(其中cos ϕ=,sin ϕ=,∵1sin()1θϕ--≤≤,d ≤1=+∴当0m =时,d 取得最大值3,故选C . 2.B 【解析】由于21cos2()sin sin sin 2xf x x b x c b x c -=++=++. 当0b =时,()f x 的最小正周期为π; 当0b ≠时,()f x 的最小正周期2π;c 的变化会引起()f x 的图象的上下平移,不会影响其最小正周期.故选B .注:在函数()()()f x h x g x =+中,()f x 的最小正周期是()h x 和()g x 的最小正周期的公倍数.3.C 【解析】由图象知:min 2y =,因为min 3y k =-+,所以32k -+=,解得:5k =,所以这段时间水深的最大值是max 3358y k =+=+=,故选C . 4.D 【解析】对于A ,当4x π=或54π时,sin 2x 均为1,而sin x 与2x x +此时均有两个值,故A 、B 错误;对于C ,当1x =或1x =-时,212x +=,而|1|x +由两个值,故C 错误,选D .5.B【解析】由于(0)2,()1()()424f f f f ===<πππ,故排除选项C 、D ;当点P 在BC上时,()tan )4f x BP AP x x =+=π≤≤.不难发现()f x 的图象是非线性,排除A .6.C 【解析】由题意知,()|cos |sin f x x x =⋅,当[0,]2x π∈时,1()sin cos sin 22f x x x x ==;当(,]2x ππ∈时,1()cos sin sin 22f x x x x =-=-,故选C . 7.A【解析】由223301sin()cos()|cos cos 02x dx x ππϕϕϕϕϕ-=--=+=⎰,得tan ϕ=()3k k Z πϕπ=+∈,所以()sin()()3f x x k k Z ππ=--∈,由正弦函数的性质知sin()3y x k ππ=--与sin()3y x π=-的图象的对称轴相同,令32x k πππ-=+,则5()6x k k Z ππ=+∈,所以函数()f x 的图象的对称轴为5()6x k k Z ππ=+∈,当0k =,得56x π=,选A . 81【解析】22cos sin 2)14x x x π+++,所以 1.A b ==9.7【解析】画出函数图象草图,共7个交点.10.12【解析】∵∥a b ,∴2sin 2cos θθ=,∴22sin cos cos θθθ=,∵(0,)2πθ∈, ∴1tan 2θ=.11.(1)3;(2)4π【解析】(1)()y f x '=cos()x ωωϕ=+,当6πϕ=,点P 的坐标为(0,cos 36πωω=∴=; (2)曲线()y f x '=cos()x ωωϕ=+的半周期为πω,由图知222T AC ππωω===, 122ABC S AC πω=⋅=V ,设,A B 的横坐标分别为,a b .设曲线段¼ABC 与x 轴所围成的区域的面积为S 则()()sin()sin()2bbaaS f x dx f x a b ωϕωϕ'===+-+=⎰,由几何概型知该点在△ABC 内的概率为224ABC S P S ππ===V . 12.【解析】(1)连结PO 并延长交MN 于H ,则PH ⊥MN ,所以OH =10.θHE KGNM PO ABC D过O 作OE ⊥BC 于E ,则OE ∥MN ,所以COE θ∠=, 故40cos OE θ=,40sin EC θ=,则矩形ABCD 的面积为240cos (40sin 10)800(4sin cos cos )θθθθθ⨯+=+,CDP ∆的面积为1240cos (4040sin )1600(cos sin cos )2θθθθθ⨯⨯-=-.过N 作GN ⊥MN ,分别交圆弧和OE 的延长线于G 和K ,则10GK KN ==. 令0GOK θ∠=,则01sin 4θ=,0(0,)6πθ∈. 当0[,)2πθθ∈时,才能作出满足条件的矩形ABCD ,所以sin θ的取值范围是1[,1)4.答:矩形ABCD 的面积为800(4sin cos cos )θθθ+平方米,CDP ∆的面积为1600(cos sin cos )θθθ-,sin θ的取值范围是1[,1)4.(2)因为甲、乙两种蔬菜的单位面积年产值之比为4∶3,设甲的单位面积的年产值为4k ,乙的单位面积的年产值为3k (0)k >, 则年总产值为4800(4sin cos cos )31600(cos sin cos )k k θθθθθθ⨯++⨯-8000(sin cos cos )k θθθ=+,0[,)2πθθ∈.设()sin cos cos f θθθθ=+,0[,)2πθθ∈,则222()cos sin sin (2sin sin 1)(2sin 1)(sin 1)f θθθθθθθθ'=--=-+-=--+. 令()0f θ'=,得π6θ=,当0(,)6πθθ∈时,()>0f θ′,所以()f θ为增函数; 当(,)62ππθ∈时,()<0f θ′,所以()f θ为减函数, 因此,当π6θ=时,()f θ取到最大值.答:当π6θ=时,能使甲、乙两种蔬菜的年总产值最大.13.【解析】(1)由正棱柱的定义,1CC ⊥平面ABCD ,所以平面11A ACC ⊥平面ABCD ,1CC AC ⊥. 记玻璃棒的另一端落在1CC 上点M 处. 因为107AC =,40AM =. 所以2240(107)30MN =-=,从而3sin 4MAC ∠=. 记AM 与水平的交点为1P ,过1P 作11PQ AC ⊥,1Q 为垂足, 则11PQ ⊥平面ABCD ,故1112PQ =, 从而11116sin PQ AP MAC==∠.答:玻璃棒l 没入水中部分的长度为16cm.( 如果将“没入水中部分”理解为“水面以上部分”,则结果为24cm)(2)如图,O ,1O 是正棱台的两底面中心.由正棱台的定义,1OO ⊥平面 EFGH , 所以平面11E EGG ⊥平面EFGH ,1OO ⊥EG . 同理,平面11E EGG ⊥平面1111E F G H ,1OO ⊥11E G . 记玻璃棒的另一端落在1GG 上点N 处.过G 作GK ⊥11E G ,K 为垂足, 则GK =1OO =32. 因为EG = 14,11E G = 62,所以1KG =6214242-=,从而140GG ===. 设1,,EGG ENG αβ==∠∠则114sin sin()cos 25KGG KGG απ=+==∠∠.因为2απ<<π,所以3cos 5α=-.在ENG △中,由正弦定理可得4014sin sin αβ=,解得7sin 25β=. 因为02βπ<<,所以24cos 25β=. 于是sin sin()sin()sin cos cos sin NEG αβαβαβαβ=π--=+=+∠42473(35)525255=⨯+-⨯=. 记EN 与水面的交点为2P ,过2P 作22P Q EG ⊥,2Q 为垂足,则 22P Q ⊥平面EFGH ,故22P Q =12,从而 2EP =2220sin P NEGQ =∠.答:玻璃棒l 没入水中部分的长度为20cm.(如果将“没入水中部分”理解为“水面以上部分”,则结果为20cm)14.【解析】(Ⅰ)由题意1cos(2)12()sin 222x f x x π++=-x x 2sin 21212sin 21+-= 212sin -=x .由ππππk x k 22222+≤≤+-(Z k ∈),可得ππππk x k +≤≤+-44(Z k ∈);由ππππk x k 223222+≤≤+(Z k ∈),得ππππk x k +≤≤+434(Z k ∈);所以)(x f 的单调递增区间是]4,4[ππππk k ++-(Z k ∈); 单调递减区间是]43,4[ππππk k ++(Z k ∈). (Ⅱ)1()sin 022A f A =-=Q ,1sin 2A ∴=,由题意A 是锐角,所以 cos 2A =. 由余弦定理:A bc c b a cos 2222-+=,可得2212b c bc =+≥32321+=-≤∴bc ,且当c b =时成立.2sin 4bc A ∴≤.ABC ∆∴面积最大值为432+.15.【解析】(Ⅰ)因为1()10sin )102sin()12212123f t t t t ππππ--+--+, 又240<≤t ,所以373123ππππ<+≤t ,1)312sin(1≤+≤-ππt , 当2=t 时,1)312sin(=+ππt ;当14=t 时,1)312sin(-=+ππt ;于是)(t f 在)24,0[上取得最大值12,取得最小值8.故实验室这一天最高温度为12C ︒,最低温度为8C ︒,最大温差为4C ︒ (Ⅱ)依题意,当11)(>t f 时实验室需要降温. 由(Ⅰ)得)312sin(210)(ππ+-=t t f ,所以11)312sin(210>+-ππt ,即1sin()1232t ππ+<-, 又240<≤t ,因此61131267ππππ<+<t ,即1810<<t , 故在10时至18时实验室需要降温.16.【解析】(1)Q c b a ,,成等差数列,2a c b ∴+= 由正弦定理得sin sin 2sin A C B +=sin sin[()]sin()B A C A C π=-+=+Q()sin sin 2sin A C A C ∴+=+(2)Q c b a ,,成等比数列,22b ac ∴=由余弦定理得2222221cos 2222a cb ac ac ac ac B ac ac ac +-+--==== 222a c ac +≥Q (当且仅当a c =时等号成立) 2212a c ac+∴≥(当且仅当a c =时等号成立)2211112222a c ac +∴-≥-=(当且仅当a c =时等号成立)即1cos 2B ≥,所以B cos 的最小值为1217.【解析】(Ⅰ)由函数()sin()f x x ωϕ=+的周期为π,0ω>,得2ω=又曲线()y f x =的一个对称中心为(,0)4π,(0,)ϕπ∈故()sin(2)044f ππϕ=⨯+=,得2πϕ=,所以()cos 2f x x =将函数()f x 图象上所有点的横坐标伸长到原来的2倍(纵坐标不变)后可得cos y x =的图象,再将cos y x =的图象向右平移2π个单位长度后得到函数()sin g x x =(Ⅱ)当(,)64x ππ∈时,1sin 2x <<10cos 22x <<, 所以sin cos2sin cos2x x x x >>.问题转化为方程2cos2sin sin cos2x x x x =+在(,)64ππ内是否有解设()sin sin cos 22cos 2G x x x x x =+-,(,)64x ππ∈ 则()cos cos cos 22sin 2(2sin )G x x x x x x '=++- 因为(,)64x ππ∈,所以()0G x '>,()G x 在(,)64ππ内单调递增又1()064G π=-<,()042G π=> 且函数()G x 的图象连续不断,故可知函数()G x 在(,)64ππ内存在唯一零点0x ,即存在唯一的0(,)64x ππ∈满足题意. (Ⅲ)依题意,()sin cos 2F x a x x =+,令()sin cos 20F x a x x =+=当sin 0x =,即()x k k Z π=∈时,cos21x =,从而()x k k Z π=∈不是方程()0F x =的解,所以方程()0F x =等价于关于x 的方程cos 2sin xa x=-,()x k k Z π≠∈ 现研究(0,)(,2)x πππ∈U 时方程解的情况 令cos 2()sin xh x x=-,(0,)(,2)x πππ∈U 则问题转化为研究直线y a =与曲线()y h x =在(0,)(,2)x πππ∈U 的交点情况22cos (2sin 1)()sin x x h x x +'=,令()0h x '=,得2x π=或32x π=. 当x 变化时,()h x 和()h x '变化情况如下表当0x >且x 趋近于0时,()h x 趋向于-∞ 当x π<且x 趋近于π时,()h x 趋向于-∞ 当x π>且x 趋近于π时,()h x 趋向于+∞ 当2x π<且x 趋近于2π时,()h x 趋向于+∞故当1a >时,直线y a =与曲线()y h x =在(0,)π内有无交点,在(,2)ππ内有2个交点;当1a <-时,直线y a =与曲线()y h x =在(0,)π内有2个交点,在(,2)ππ内无交点;当11a -<<时,直线y a =与曲线()y h x =在(0,)π内有2个交点,在(,2)ππ内有2个交点由函数()h x 的周期性,可知当1a ≠±时,直线y a =与曲线()y h x =在(0,)n π内总有偶数个交点,从而不存在正整数n ,使得直线y a =与曲线()y h x =在(0,)n π内恰有2013个交点;当1a =±时,直线y a =与曲线()y h x =在(0,)(,2)πππU 内有3个交点,由周期性,20133671=⨯,所以67121342n =⨯=综上,当1a =±,1342n =时,函数()()()F x f x ag x =+在(0,)n π内恰有2013个零点。
十年真题(2010-2019)高考数学(理)分类汇编专题05 三角函数与解三角形(新课标Ⅰ卷)(原卷版)

专题05三角函数与解三角形历年考题细目表解答题2018 解三角形2018年新课标1理科17解答题2017 解三角形2017年新课标1理科17解答题2016 解三角形2016年新课标1理科17解答题2013 解三角形2013年新课标1理科17解答题2012 解三角形2012年新课标1理科17历年高考真题汇编1.【2019年新课标1理科11】关于函数f()=sin||+|sin|有下述四个结论:①f()是偶函数②f()在区间(,π)单调递增③f()在[﹣π,π]有4个零点④f()的最大值为2其中所有正确结论的编号是()A.①②④B.②④C.①④D.①③2.【2017年新课标1理科09】已知曲线C1:y=cos,C2:y=sin(2),则下面结论正确的是()A.把C1上各点的横坐标伸长到原的2倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2B.把C1上各点的横坐标伸长到原的2倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C2C.把C1上各点的横坐标缩短到原的倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2D.把C1上各点的横坐标缩短到原的倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C23.【2016年新课标1理科12】已知函数f()=sin(ω+φ)(ω>0,|φ|),为f()的零点,为y=f()图象的对称轴,且f()在(,)上单调,则ω的最大值为()A.11 B.9 C.7 D.54.【2015年新课标1理科02】sin20°cos10°﹣cos160°sin10°=()A. B.C.D.5.【2015年新课标1理科08】函数f()=cos(ω+φ)的部分图象如图所示,则f()的单调递减区间为()A.(π,π),∈B.(2π,2π),∈C.(,),∈D.(,2),∈6.【2014年新课标1理科08】设α∈(0,),β∈(0,),且tanα,则()A.3α﹣βB.3α+βC.2α﹣β D.2α+β7.【2012年新课标1理科09】已知ω>0,函数f()=sin(ω)在区间[,π]上单调递减,则实数ω的取值范围是()A.B.C.D.(0,2]8.【2011年新课标1理科05】已知角θ的顶点与原点重合,始边与轴的正半轴重合,终边在直线y=2上,则cos2θ=()A.B.C.D.9.【2011年新课标1理科11】设函数f()=sin(ω+φ)+cos(ω+φ)的最小正周期为π,且f(﹣)=f(),则()A.f()在单调递减B.f()在(,)单调递减C.f()在(0,)单调递增D.f()在(,)单调递增10.【2010年新课标1理科09】若,α是第三象限的角,则()A.B.C.2 D.﹣211.【2018年新课标1理科16】已知函数f()=2sin+sin2,则f()的最小值是.12.【2015年新课标1理科16】在平面四边形ABCD中,∠A=∠B=∠C=75°.BC=2,则AB的取值范围是.13.【2014年新课标1理科16】已知a,b,c分别为△ABC的三个内角A,B,C的对边,a=2且(2+b)(sin A﹣sin B)=(c﹣b)sin C,则△ABC面积的最大值为.14.【2013年新课标1理科15】设当=θ时,函数f()=sin﹣2cos取得最大值,则cosθ=.15.【2011年新课标1理科16】在△ABC中,B=60°,AC,则AB+2BC的最大值为.16.【2010年新课标1理科16】在△ABC中,D为边BC上一点,BD DC,∠ADB=120°,AD=2,若△ADC的面积为,则∠BAC=.17.【2019年新课标1理科17】△ABC的内角A,B,C的对边分别为a,b,c.设(sin B﹣sin C)2=sin2A ﹣sin B sin C.(1)求A;(2)若a+b=2c,求sin C.18.【2018年新课标1理科17】在平面四边形ABCD中,∠ADC=90°,∠A=45°,AB=2,BD=5.(1)求cos∠ADB;(2)若DC=2,求BC.19.【2017年新课标1理科17】△ABC的内角A,B,C的对边分别为a,b,c,已知△ABC的面积为.(1)求sin B sin C;(2)若6cos B cos C=1,a=3,求△ABC的周长.20.【2016年新课标1理科17】△ABC的内角A,B,C的对边分别为a,b,c,已知2cos C(a cos B+b cos A)=c.(Ⅰ)求C;(Ⅱ)若c,△ABC的面积为,求△ABC的周长.21.【2013年新课标1理科17】如图,在△ABC中,∠ABC=90°,AB,BC=1,P为△ABC内一点,∠BPC=90°.(1)若PB,求P A;(2)若∠APB=150°,求tan∠PBA.22.【2012年新课标1理科17】已知a,b,c分别为△ABC三个内角A,B,C的对边,a cos C a sin C﹣b ﹣c=0(1)求A;(2)若a=2,△ABC的面积为,求b,c.考题分析与复习建议本专题考查的知识点为:同角三角函数基本关系、诱导公式,三角函数的图象与性质,三角恒等变换,正余弦定理,解三角形的综合应用等.历年考题主要以选择填空或解答题题型出现,重点考查的知识点为:诱导公式,三角函数的图象与性质,三角恒等变换,正余弦定理,解三角形等.预测明年本考点题目会比较稳定,备考方向以同角三角函数基本关系、诱导公式,三角函数的图象与性质,三角恒等变换,正余弦定理,解三角形的综合应用等为重点较佳.最新高考模拟试题专题05三角函数与解三角形1.函数2sin()(0,0)y x ωϕωϕπ=+><<的部分图象如图所示.则函数()f x 的单调递增区间为( )A .,63k k ππππ轾犏-+犏臌,k z ∈ B .,33k k ππππ⎡⎤-+⎢⎥⎣⎦,k z ∈C .,36k k ππππ⎡⎤-+⎢⎥⎣⎦,k z ∈D .,66k k ππππ⎡⎤-+⎢⎥⎣⎦,k z ∈2.将函数()2sin(2)3f x x π=+的图像先向右平移12π个单位长度,再向上平移1个单位长度,得到()g x 的图像,若()()129g x g x =且12,[2,2]x x ππ∈-,则122x x -的最大值为( )A .4912π B .356π C .256π D .174π 3.将函数222()2cos 4x f x ϕ+=(0πϕ-<<)的图像向右平移3π个单位长度,得到函数()g x 的图像,若()(4)g x g x π=-则ϕ的值为( )A .23-π B .3π-C .6π-D .2π-4.已知函数()sin()(0,0)f x x ωϕωϕπ=+><<的图象经过两点2(0,(,0)24A B π, ()f x 在(0,)4π内有且只有两个最值点,且最大值点大于最小值点,则()f x =( )A .sin 34x π⎛⎫+⎪⎝⎭B .3sin 54x π⎛⎫+⎪⎝⎭C .sin 74x π⎛⎫+⎪⎝⎭D .3sin 94x π⎛⎫+⎪⎝⎭5.已知函数()cos f x x x =,则下列结论中正确的个数是( ). ①()f x 的图象关于直线3x π=对称;②将()f x 的图象向右平移3π个单位,得到函数()2cos g x x =的图象;③,03π⎛⎫- ⎪⎝⎭是()f x 图象的对称中心;④()f x 在,63ππ⎡⎤⎢⎥⎣⎦上单调递增. A .1B .2C .3D .46.在ABC ∆中,角A 、B 、C 的对边长分别a 、b 、c ,满足()22sin 40a a B B -++=,b =则ABC △的面积为A .B C .D7.设锐角三角形ABC 的内角,,A B C 所对的边分别为,,a b c ,若2,2a B A ==,则b 的取值范围为( )A .(0,4)B .(2,C .D .4)8.已知V ABC 的内角,,A B C 所对的边分别为,,a b c ,若6sin cos 7sin2C A A =,53a b =,则C =( ). A .3π B .23π C .34π D .56π9.若函数()2sin()f x x ωϕ=+ (01ω<<,02πϕ<<)的图像过点,且关于点(2,0)-对称,则(1)f -=_______.10.若实数,x y 满足()()()2221122cos 11x y xyx y x y ++--+-=-+.则xy 的最小值为____________11.设函数()sin(2)3f x x π=+,若120x x <,且12()()0f x f x +=,则21x x -的取值范围是_______.12.已知角α为第一象限角,sin cos a αα-=,则实数a 的取值范围为__________.13.已知函数sin 2cos ()()(()0)f x x x ϕϕϕ+=+<<π-的图象关于直线x π=对称,则cos 2ϕ=___.14.如图,四边形ABCD 中,4AB =,5BC =,3CD =,90ABC ∠=︒,120BCD ∠=°,则AD 的长为______15.在锐角ABC ∆中,角A B C ,,的对边分别为a b c ,,.且cos cos A B a b +=233Ca,23b =则a c +的取值范围为_____.16.在ABC ∆中,已知AB 边上的中线1CM =,且1tan A ,1tan C ,1tan B成等差数列,则AB 的长为________.17.在ABC ∆中,A B C ,,的对边分别a b c ,,,360,cos A B ︒==(Ⅰ)若D 是BC 上的点,AD 平分BAC ∠,求DCBD的值; (Ⅱ)若 ccos cos 2B b C +=,求ABC ∆的面积.18.在ABC ∆中,角,,A B C 所对的边分别,,a b c ,()()()()2sin cos sin f x x A x B C x R =-++∈,函数()f x 的图象关于点,06π⎛⎫⎪⎝⎭对称. (1)当0,2x π⎛⎫∈ ⎪⎝⎭时,求()f x 的值域; (2)若7a =且133sin sin B C +=,求ABC ∆的面积. 19.在ABC ∆中,已知2AB =,2cos 10B =,4C π=.(1)求BC 的长; (2)求sin(2)3A π+的值.20.如图,在四边形ABCD 中,60A ∠=︒,90ABC ∠=︒.已知3AD =6BD =.(Ⅰ)求sin ABD ∠的值;(Ⅱ)若2CD =,且CD BC >,求BC 的长.21.在ABC ∆中,内角A ,B ,C 的对边分别为a ,b ,c ,且234cos 2sin 22A b b aB =+. (1)求cos A ;(2)若25a =5c =,求b .22.已知在△ABC 中,222a c ac b +-=. (Ⅰ)求角B 的大小; (Ⅱ)求cos cos A C +的最大值.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题四 三角函数与解三角形
第九讲 三角函数的概念、诱导公式与三角恒等变换
2019年
1.(2019北京9)函数
的最小正周期是 ________.
2.(2019全国Ⅲ理12)设函数()f x =sin (5
x ωπ
+
)(ω>0),已知()f x 在[]0,2π有且仅有5个零点,下述四个结论:
①()f x 在(0,2π)有且仅有3个极大值点 ②()f x 在(0,2π)有且仅有2个极小值点 ③()f x 在(0,
10
π
)单调递增 ④ω的取值范围是[1229
510
,)
其中所有正确结论的编号是
A . ①④
B . ②③
C . ①②③
D . ①③④
3.(2019天津理7)已知函数()sin()(0,0,||)f x A x A ωϕωϕπ=+>><是奇函数,将()y f x =的图像上所有点的横坐标伸长到原来的2倍(纵坐标不变),所得图像对应的函数为()g x .若()g x 的最小正周期为2π
,且π4g
=
,则3π8f =
A.2−
B.
D.2 4.(2019全国Ⅱ理10)已知α∈(0,
2
π),2sin 2α=cos 2α+1,则sin α=
A .
15
B
C
D
5.(2019江苏13)已知tan 2
π3tan 4αα=−
+
,则πsin 24α + 的值是_________.
6.(2019浙江18)设函数()sin ,f x x x =
∈R . (1)已知[0,2),θ∈π函数()f x θ+是偶函数,求θ的值; (2)求函数22[()][()]124
y f x f x ππ
=+
++ 的值域. 2010-2018年
一、选择题
1.(2018全国卷Ⅲ)若1
sin 3
α=,则cos 2α= A .
89
B .
79
C .79
−
D .89
−
2.(2016年全国III )若3
tan 4
α=
,则2cos 2sin 2αα+= A .
6425 B .4825 C .1 D .1625
3.(2016年全国II )若3
cos(
)45
π
α−=
,则sin 2α=( ) A .725 B .15 C .1
5
− D .725− 4.(2015新课标Ⅰ)sin 20cos10cos160sin10−=
o
o
o
o
A
. B
.12
− D .1
2
5.(2015重庆)若tan 2tan
5
π
α=,则
3cos()10sin()
5
π
απ
α−
−=
A .1
B .2
C .3
D .4 6.(2014新课标Ⅰ)若0tan >α,则
A .0sin >α
B . 0cos >α
C . 02sin >α
D . 02cos >α 7.(2014新课标Ⅰ)设(0,
)2π
α∈,(0,)2π
β∈,且1sin tan cos βαβ
+=
,则 A .32παβ−= B .22παβ−= C .32παβ+= D .22
π
αβ+=
8.(2014江西)在ABC ∆中,内角A ,B ,C 所对应的边分别为,,,c b a ,若32a b =,则
2222sin sin sin B A
A
−的值为( )
A .19
− B .
13 C .1 D .72
9.(2013新课标Ⅱ)已知2sin 23α=,则2
cos ()4
πα+=
( ) A .16 B .13 C .12
D .23
10.(2013浙江)已知2
10
cos 2sin ,=
+∈αααR ,则=α2tan A .
34 B .4
3 C .43
− D .34−
11.(2012山东)若
∈2,4ππθ,8
7
32sin =
θ,则=θsin A .
53 B .54 C .47 D .4
3
12.(2012江西)若
sin cos 1
sin cos 2
αααα+=−,则tan2α=
A .−34
B .3
4
C .−43
D .43
13.(2011新课标)已知角θ的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线
2y x =上,则cos 2θ=
A .45−
B .35−
C .35
D .45
14.(2011浙江)若02
π
α<<
,02
π
β-
<<,1
cos()43π
α+=
,cos()42πβ−cos()2
β
α
+
=
A
B
.C
D . 15.(2010新课标)若4cos 5α=−
,α是第三象限的角,则
1tan
21tan 2
α
α+=− A .12
−
B .
12
C .2
D .-2
二、填空题
16.(2018全国卷Ⅰ)已知函数()2sin sin 2=+f x x x ,则()f x 的最小值是_____. 17.(2018全国卷Ⅱ)已知sin cos 1+=αβ,cos sin 0+=αβ,则sin()+=αβ___.
18.(2017新课标Ⅱ)函数2
3()sin 4f x x x =+−
([0,])2
x π
∈的最大值是 . 19.(2017北京)在平面直角坐标系xOy 中,角α与角β均以Ox 为始边,它们的终边关
于y 轴对称.若1
sin 3α=
,则cos()αβ−=___________. 20.(2017江苏)若1
tan()46
πα−=,则tan α= . 21.(2015四川)=+o
o
75sin 15sin .
22.(2015江苏)已知tan 2α=−,()1
tan 7
αβ+=,则tan β的值为_______. 23.(2014新课标Ⅱ)函数()()()sin 22sin cos f x x x ϕϕϕ=+−+的最大值为____. 24.(2013新课标Ⅱ)设θ为第二象限角,若1
tan 42
πθ
+=
,则sin cos θθ+=___. 25.(2013四川)设sin 2sin αα=−,(
,)2
π
απ∈,则tan 2α的值是_____.
26.(2012江苏)设α为锐角,若4cos 65απ +=
,则sin 212απ
+ 的值为 .
三、解答题
27.(2018江苏)已知,αβ为锐角,4
tan 3
α=
,cos()αβ+. (1)求cos 2α的值; (2)求tan()αβ−的值.
28.(2018浙江)已知角α的顶点与原点O 重合,始边与x 轴的非负半轴重合,它的终边过
点3
4(,)55
P −−. (1)求sin()απ+的值;
(2)若角β满足5sin()13
αβ+=,求cos β的值.
29.(2017浙江)已知函数22()sin cos cos f x x x x x =−−()x ∈R .
(Ⅰ)求2(
)3
f π
的值; (Ⅱ)求()f x 的最小正周期及单调递增区间. 30.(2014江苏)已知),2(ππ
α∈,5
5sin =α.
(1)求)4
sin(απ
+的值;
(2)求)26
5cos(
απ
−的值. 31.(2014江西)已知函数()()
()θ++=x x a x f 2cos cos 22
为奇函数,且04=
πf ,其中()πθ,,0∈∈R a . (1)求θ,a 的值;
(2)若 ∈−=
ππαα,,
2524f ,求 +3sin πα的值.
32.(2013广东)已知函数(),12f x x x R π
=
−∈
.
(1) 求3f π
的值; (2) 若33cos ,,252πθ
θπ
=∈
,求6f πθ
−
.
33.(2013北京)已知函数2
1
()(2cos 1)sin 2cos 42
f x x x x =−+
(1)求()f x 的最小正周期及最大值;
(2)若(
,)2
π
απ∈,且()f α=
,求α的值. 34.(2012广东)已知函数()2cos()6
f x x π
ω=+
,
(其中0ω>,x R ∈)的最小正周期为10π. (1)求ω的值; (2)设,[0,
]2π
αβ∈,56(5)35
f απ+=−,516
(5)617f βπ−=
,求cos()αβ+的值.。