插补原理及控制方法
插补运动(逐点比较法)

1、概述在机床的实际加工中,被加工工件的轮廓形状千差万别,各式各样。
严格说来,为了满足几何尺寸精度的要求,刀具中心轨迹应该准确地依照工件的轮廓形状来生成。
然而,对于简单的曲线,数控装置易于实现,但对于较复杂的形状,若直接生成,势必会使算法变得很复杂,计算机的工作量也相应地大大增加。
因此,在实际应用中,常常采用一小段直线或圆弧去进行逼近,有些场合也可以用抛物线、椭圆、双曲线和其他高次曲线去逼近(或称为拟合)。
所谓插补是指数据密化的过程。
在对数控系统输入有限坐标点(例如起点、终点)的情况下,计算机根据线段的特征(直线、圆弧、椭圆等),运用一定的算法,自动地在有限坐标点之间生成一系列的坐标数据,即所谓数据密化,从而自动地对各坐标轴进行脉冲分配,完成整个线段的轨迹运行,以满足加工精度的要求。
机床数控系统的轮廓控制主要问题就是怎样控制刀具或工件的运动轨迹。
无论是硬件数控(NC)系统,还是计算机数控(CNC)系统或微机数控(MNC)系统,都必须有完成插补功能的部分,只是采取的方式不同而已。
在CNC或MNC中,以软件(程序)完成插补或软、硬件结合实现插补,而在NC中有一个专门完成脉冲分配计算(即插补计算)的计算装置——插补器。
无论是软件数控还是硬件数控,其插补的运算原理基本相同,其作用都是根据给定的信息进行数字计算,在计算过程中不断向各个坐标发出相互协调的进给脉冲,使被控机械部件按指定的路线移动。
有关插补算法问题,除了要保证插补计算的精度之外,还要求算法简单。
这对于硬件数控来说,可以简化控制电路,采用较简单的运算器。
而对于计算机数控系统来说,则能提高运算速度,使控制系统较快且均匀地输出进给脉冲。
经过多年的发展,插补原理不断成熟,类型众多。
从产生的数学模型来分,有直线插补、二次曲线插补等;从插补计算输出的数值形式来分,有基准脉冲插补(又称脉冲增量插补)和数据采样插补。
在基准脉冲插补中,按基本原理又分为以区域判别为特征的逐点比较法插补,以比例乘法为特征的数字脉冲乘法器插补,以数字积分法进行运算的数字积分插补,以矢量运算为基础的矢量判别法插补,兼备逐点比较和数字积分特征的比较积分法插补,等等。
一、插补及其算法 插补:是指在一条已知起点和终点的曲线上进行数

插补: 插补:是指在一条已知起点和终点的曲线上进行 数据点的密化。 数据点的密化。 CNC系统插补功能:直线插补功能 系统插补功能: 系统插补功能 圆弧插补功能 抛物线插补功能 螺旋线插补功能
淮海工学院
8.1
插补原理
直线和圆弧插补功能插补算法: 直线和圆弧插补功能插补算法:
⑴逐点比较法直线插补的象限与坐标变换 线 G01 型 偏 差 判 别 F≥0 F<0 象 2 限 3
1
4
+X +Y
+Y - X
-X -Y
-Y +X
淮海工学院
8.1
插补原理
(2)逐点比较法圆弧插补象限与坐标变换 )
象 线 型 偏差判别 F≥0 G02 G03 F<0 F≥0 F<0 1 -Y +X -X +Y 2 +X +Y -Y -X 3 +Y -X +X -Y 限 4 -X -Y +Y +X
淮海工学院
或半闭环)CNC系统的加减速控制 二、闭环(或半闭环 闭环 或半闭环 系统的加减速控制
前加减速控制: 前加减速控制 (1)稳定速度和瞬时速度 ) (2)线性加减速处理 ①加速处理 )
②减速处理 ③终点判别处理
8.1
插补原理
图8-2 逐点比较法直线插补轨迹
淮海工学院
8.1
插补原理
2.逐点比较法圆弧插补 逐点比较法圆弧插补
(1)判别函数及判别条件 ) (2)进给方向判别 ) (3)迭代法偏差函数F的推导 )迭代法偏差函数 的推导 (4)逐点比较法圆弧插补终点判别 )
淮海工学院
8.1
插补原理
⒊ 坐标变换及自动过象限处理
数控编程中的高速插补算法解读

数控编程中的高速插补算法解读在数控机床的操作中,高速插补算法是至关重要的一环。
它能够使机床在高速运动中保持精准的定位和平滑的轨迹,从而实现高效的加工。
本文将对数控编程中的高速插补算法进行解读,探讨其原理和应用。
一、高速插补算法的原理高速插补算法是通过计算机对机床的轴运动进行控制,使其在高速运动中能够准确地按照预定的路径进行插补。
其原理主要包括两个方面:轨迹规划和速度控制。
1. 轨迹规划轨迹规划是指根据加工要求和机床的运动特性,确定机床在加工过程中的运动路径。
常见的轨迹规划方法有线性插补、圆弧插补和螺旋线插补等。
在高速插补算法中,需要根据机床的最大加速度和最大速度等参数,结合加工要求,确定合适的插补方式和路径。
2. 速度控制速度控制是指根据轨迹规划确定的路径,控制机床在运动过程中的速度。
在高速插补算法中,需要考虑机床的加速度和减速度,以及机床的最大速度等参数,通过合理的速度控制算法,使机床在高速运动中保持平稳的轨迹和准确的定位。
二、高速插补算法的应用高速插补算法在数控编程中有着广泛的应用。
它可以用于各种形状的曲线插补、复杂的轮廓加工和高速切割等。
下面将通过几个实际案例来介绍高速插补算法的应用。
1. 曲线插补在数控机床的加工过程中,经常需要对各种形状的曲线进行插补。
高速插补算法可以根据曲线的特点,通过合理的轨迹规划和速度控制,实现精准的曲线插补。
例如,在雕刻加工中,通过高速插补算法可以实现复杂曲线的精细加工,使得加工效率和加工质量得到提高。
2. 复杂轮廓加工在汽车零部件等复杂工件的加工中,常常需要进行复杂轮廓的加工。
高速插补算法可以根据轮廓的特点,通过合理的路径规划和速度控制,实现复杂轮廓的高效加工。
例如,在汽车车身板金加工中,通过高速插补算法可以实现车身轮廓的高速切割,从而提高生产效率和产品质量。
3. 高速切割在金属切割等领域,高速切割是一种常见的加工方式。
高速插补算法可以根据切割的要求,通过合理的路径规划和速度控制,实现高速切割。
插补原理

插补原理:在实际加工中,被加工工件轮廓形状千差万别,严格说来,为了满足几何尺寸精度要求,刀具中心轨迹应该准确地依照工件轮廓形状来生成,对于简单曲线数控系统可以比较容易实现,但对于较复杂形状,若直接生成会使算法变得很复杂,计算机工作量也相应地大大增加,因此,实际应用中,常采用一小段直线或圆弧去进行拟合就可满足精度要求(也有需要抛物线和高次曲线拟合情况),这种拟合方法就是“插补”,实质上插补就是数据密化过程。
插补任务是根据进给速度要求,在轮廓起点和终点之间计算出若干个中间点坐标值,每个中间点计算所需时间直接影响系统控制速度,而插补中间点坐标值计算精度又影响到数控系统控制精度,因此,插补算法是整个数控系统控制核心。
插补算法经过几十年发展,不断成熟,种类很多。
一般说来,从产生数学模型来分,主要有直线插补、二次曲线插补等;从插补计算输出数值形式来分,主要有脉冲增量插补(也称为基准脉冲插补)和数据采样插补[26]。
脉冲增量插补和数据采样插补都有个自特点,本文根据应用场合不同分别开发出了脉冲增量插补和数据采样插补。
1数字积分插补是脉冲增量插补一种。
下面将首先阐述一下脉冲增量插补工作原理。
2.脉冲增量插补是行程标量插补,每次插补结束产生一个行程增量,以脉冲方式输出。
这种插补算法主要应用在开环数控系统中,在插补计算过程中不断向各坐标轴发出互相协调进给脉冲,驱动电机运动。
一个脉冲所产生坐标轴移动量叫做脉冲当量。
脉冲当量是脉冲分配基本单位,按机床设计加工精度选定,普通精度机床一般取脉冲当量为:0.01mm,较精密机床取1或0.5 。
采用脉冲增量插补算法数控系统,其坐标轴进给速度主要受插补程序运行时间限制,一般为1~3m/min。
脉冲增量插补主要有逐点比较法、数据积分插补法等。
逐点比较法最初称为区域判别法,或代数运算法,或醉步式近似法。
这种方法原理是:计算机在控制加工过程中,能逐点地计算和判别加工偏差,以控制坐标进给,按规定图形加工出所需要工件,用步进电机或电液脉冲马达拖动机床,其进给方式是步进式,插补器控制机床。
第3章-插补原理

Y积分器
计t数 器JVX为(XeJ)E,JR均X 为溢三出位Jvy(Ye) JRy 溢出
终点计 数器
JE
备注
二0进制1存01 放器00。0
011 000
000
初始状态
1
101 101
011 011
001 第一次迭代
2
101 010
1
011 110
010
X溢出
3
101 111
011 001
1
011
Y溢出
∑=8-1=7
4
F<0
+Y
F4=F3+xe=-2+6=4
∑=7-1=6
5
F>0
+X
F5=F4-ye=4-4=0
∑=6-1=5
6
F=0
+X
F6=F5-ye=0-4=-4
∑=5-1=4
7
F<0
+Y
F7=F6+xe=-4+6=2
∑=4-1=3
8
F>0
+X
F8=F7-ye=2-4=-2
∑=3-1=2
9
F<0
4
101 100
1
011 100
100
X溢出
5
101 001
1
011 111
101
X溢出
6
101 110
011 010
1
110
Y溢出
7
101 011
1
011 101
111
件加工的要求,现在的数控系统已很少采用这类算法 了。
4
*
第三章 数控插补原理

解:插补完这段直线刀具沿X和Y轴应走的总步数为 = x e + y e =5 + 3=8。 Y 刀具的运动轨迹如图 E(5,3) 3
2 1 O 1 2 3 4 5 X
第二节 基准脉冲插补
插补运算过程见表:
循环序号 偏差判别 F ≥0 坐标进给 +X 偏差计算 Fi+1=Fi-ye
教案 3
终点判别
m
Y
m(Xm,Ym) B(XB,YB)
+Y2
2 m-R
若Fm=0,表示动点在圆弧上;
若Fm>0,表示动点在圆弧外; 若Fm<0,表示动点在圆弧内。
Rm
R A(XA,YA)
第Ⅰ象限逆圆弧
X
第二节 基准脉冲插补
2)坐标进给
教案 3
与直线插补同理,坐标进给应使加工点逼近给定圆弧,规定如下: 当Fm≥0时,向-X方向进给一步; 当Fm<0时,向+Y方向进给一步。
教案 3
若Fi=0,表示动点在直线OE上,如P; 若Fi>0,表示动点在直线OE上方,如P′; 若Fi<0,表示动点在直线OE下方,如P″。
O
xi 第Ι象限直线
X
第二节 基准脉冲插补
2)坐标进给
教案 3
坐标进给应逼近给定直线方向,使偏差缩小的方向进给一步,由插补装 置发出一个进给脉冲控制向某一方向进给。
教案 3
直线线型 进给方向 偏差计算 直线线型
L1、L4 L2、L3 +X -X Fi+1=Fi-ye L1、L2 L3、L4
偏差计算
Fi+1=Fi+xe
注:表中L1、L2、L3、L4分别表示第Ⅰ、第Ⅱ、 第Ⅲ、第Ⅳ象限直线,偏差计算式中xe、ye均代 入坐标绝对值。
插补的基本概念脉冲增量插补与数据采样插补的特点和区别逐点比较法的基本原理直线插补和圆弧插补

插补的基本概念脉冲增量插补与数据采样插补的特点和区别逐点比较法的基本原理直线插补和圆弧插补
脉冲增量插补和数据采样插补是实现插补的两种不同方法。
脉冲增量插补是将连续的运动轨迹离散化,以一定的脉冲数来表示,通过控制脉冲信号的频率和方向来控制机床的运动方向和速度。
而数据采样插补则是将预先生成的轨迹数据存储在内存中,通过对数据进行采样来得到机床的控制指令。
脉冲增量插补的特点是运算简单,系统响应速度较快,适合于高速运动控制;但由于其离散化的特点,可能会引入累积误差。
数据采样插补的特点是能够精确控制机床的运动轨迹,减小累积误差,但需要占用较大的内存空间。
逐点比较法是一种用于校正控制系统误差的方法。
其基本原理是通过对实际运动轨迹数据和预期轨迹数据进行逐点比较,根据比较结果来调整机床的控制指令,使实际运动轨迹尽可能地与预期轨迹一致。
逐点比较法的关键是选择合适的比较误差补偿算法,以实现高效准确的校正。
直线插补是指在机床坐标系下,按照直线轨迹进行插补运动。
直线插补的计算相对简单,只需要对坐标进行线性插值即可。
圆弧插补是指在机床坐标系下,按照圆弧轨迹进行插补运动。
圆弧插补的计算相对复杂,需要考虑起点、终点和半径等参数,通过数学运算得出插补指令。
总之,插补是机床运动控制的基础,脉冲增量插补和数据采样插补是两种常见的实现方式,逐点比较法是一种用于校正误差的方法,直线插补和圆弧插补则是两种常见的插补方式。
脉冲增量插补方法的原理

脉冲增量插补方法的原理
脉冲增量插补方法是指根据每个坐标轴的移动距离,通过给定的脉冲信号来实现机床的运动控制。
其原理如下:
1. 基准脉冲信号:根据给定的控制方式(比如脉冲数、脉冲频率等),产生用于驱动控制系统的基准脉冲信号。
2. 脉冲计数器:通过对基准脉冲信号进行计数,得到机床每个坐标轴的移动距离。
3. 增量运动控制:根据脉冲计数器的结果,控制机床按照指定的移动方向和距离进行运动。
根据脉冲计数器的正负值,可以确定运动的方向;根据脉冲计数器的绝对值,可以确定运动的距离。
4. 反馈控制:在实际运动过程中,通过传感器等装置对机床的运动状态进行反馈监测,以实现闭环控制。
根据反馈信息,可以对脉冲计数器进行修正,以提高运动的精度和稳定性。
总的来说,脉冲增量插补方法通过脉冲信号的计数和控制,实现了对机床的精确定位和移动控制。
这种方法简单、稳定,并且具有较高的精度和可靠性,广泛应用于数控机床等自动化设备中。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
坐标计算 X0 = XA=10 Y0 = YA=0 X1 = X0 -1=9 Y1 = Y0=0 X2= X1=9 Y2 = Y1+1=1 X3= X2=9 Y3 = Y2+1=2
终点判别 n=0; N=12
第 三 章 插 补 原 理 及 控 制 方 法
1 2 3
F0 = 0 F1 = -19 <0 F2 = -18 <0
第 三 章
2-1 逐点比较法插补
一、逐点比较法直线插补 Y
2018年12月10日星期一
偏差判别函数 当M在OA上,即F=0时;
i e
Y Y F<0 插 FX Y XY 0 F=0 X X 补 X 原 O 当M在OA下方,即F<0时; 理 Yi Ye 及 插补规则 FX Y XY 0 控 当F0,则沿+X方向进给一步 X X e 制 当F<0,则沿+Y方向进给一步。 i 方 4 法
i e
e i i e
F>0
· ··
M(Xi,Yi)
Y Y A(Xe,Ye) X X
i
FX Y XY 0
e i i e
e
当M在OA上方,即F>0时;iee来自iie
数 控 技 术
2-1 逐点比较法插补
2018年12月10日星期一
偏差判别函数的递推形式 设当前切削点(Xi,Yi)的偏差为F=Fi=XeYi-XiYe 则根据偏差公式
2 2 2 i i i
R
O A(X0,Y0)
X
偏差判别式
F X Y R
9
数 控 技 术
2-1 逐点比较法插补
偏差判别函数的递推形式 设当前切削点M(Xi,Yi)的偏差为 i 则根据偏差公式
2 i
2018年12月10日星期一
F X Y R
2 i
2
第 当Fi,j 0 新加工点坐标为: Xi+1= Xi -1, Yi+1=Yi 三 新偏差为: F ( X 1) Y R F 2 X 1 章
2018年12月10日星期一
二、逐点比较法圆弧插补 当M(Xi,Yi)在圆弧上,则F=0;
Y
B 第 (X ,Y ) e e
F=0
F<0
当M(Xi,Yi)在圆弧外,则F>0; 当M(Xi,Yi)在圆弧内,则F<0;
Ri
M(Xi,Yi)
F>0 插补规则 当F0, 则沿-X方向进给一步 当F<0, 则沿+Y方向进给一步
数 控 技 术
第 三 章 插 补 原 理 及 控 制 方 法
数控技术
南京师范大学物科院 徐寅林
数 控 技 术
第 三 章 插 补 原 理 及 控 制 方 法
第二章 数控的数学原理
插 补 常 用 插 补 算 法 插 补 算 法 分 类
2018年12月10日星期一
就是运用特定的算法对工件加工轨迹进行运算并根据 运算结果向相应的坐标发出运动指令的过程。 通常就是用一系列的折线逼近理想直线、圆弧等 逐点比较法 数字积分法 比较积分法 时间分割法等 脉冲增量法(用于开环系统) 逐点比较法、数字积分法、比较积分法 数据采样法(用于闭环系统) 时间分割法、扩展DDA法。
2
数 控 技 术
第 三 章 插 补 原 理 及 控 制 方 法
2-1 逐点比较法插补
逐点比较法插补概念:
每走一步都将加工点与给 定轨迹进行比较,以确定 下一步进给方向。 Y
2018年12月10日星期一
插补开始 偏差判别
坐标进给 偏差计算 终点判别 N
插 补 步 骤
O
X 插补结束
Y
3
数 控 技 术
-X +Y +Y
F1 = F0 –2X0+1=
0-2×10+1=-19
n=1<N
F2 = F1 +2Y1+1=
-19+2×0+1=-18
n=2<N
n=3<N
F3 = F2 +2Y2+1=
-18+2×1+1=-15
4
5
F3 = -15 <0
F4 = -10 <0
+Y
+Y
F4 = F3 +2Y3+1=
-15+2×2+1=-10
数 控 技 术
第 三 章 插 补 原 理 及 控 制 方 法
2-1 逐点比较法插补
逐点比较法圆弧插补示例
Y 8 6 4 2 B(6,8)
2018年12月10日星期一
2
4
6
8
10
11
数 2-1 逐点比较法插补 控 偏差判别 进给 方向 技 偏差计算 F0 = 0 术 0
脉冲 个数
2018年12月10日星期一
Fm <0
进给 方向 +Y -Y
7
偏差 计算 Fm+1= Fm+xe
数 控 技 术
第 三 章 插 补 原 理 及 控 制 方 法
2-1 逐点比较法插补
第 一 象 限 直 线 插 补 程 序 框 图
2018年12月10日星期一
8
数 控 技 术
三 章 插 补 原 理 及 控 制 方 法
2-1 逐点比较法插补
数 控 技 术
第 三 章 插 补 原 理 及 控 制 方 法
2-1 逐点比较法插补
逐点比较法直线插补示例
2018年12月10日星期一
6
数 控 技 术
第 三 章 插 补 原 理 及 控 制 方 法
2-1 逐点比较法插补
线四 插个 补象 计限 算直
2018年12月10日星期一
Fm ≥0
线型 L1,L4 L2,L3 进给方向 +X -X 偏差计算 Fm+1= Fm-ye 线型 L1,L2 L3,L4
第 当Fi,j 0 新加工点坐标为: Xi+1= Xi +1, Yi+1=Yi 三 章 新偏差为: Fi+1=XeYi-(Xi +1) Ye = Fi -Ye
插 当Fi,j <0 新加工点坐标为: Xi+1= Xi, Yi+1=Yj+1 补 新偏差为: Fi+1=Xe (Yi+1) - Xi Ye = Fi +Xe 原 理 终点判别方法: 及 设置减法计数器(XeMX ,Ye MY; 或Xe+ Ye Mxy; 或 控 max(Xe, Ye) M),进给一步减1,直至减到0为止 制 方 5 法
X4= X3=9 Y4 = Y3+1=3
X5= X4=9 Y5 = Y4+1=4
n=4<N
n=5<N
i 1i 2 2 2 i i i i
插 当Fi,j <0 新加工点坐标为: Xi+1= Xi, Yi+1=Yi+1 补 2 2 2 新偏差为 : F i 1 X ( Y 1 ) R Fi 2Yi 1 原 i i 理 及 终点判别方法:| Xe- X0| + | Ye - Y0| 控 制 方 10 法