北京航空航天大学离散数学第8章作业答案
离散数学(第二版)最全课后习题答案详解

离散数学(第⼆版)最全课后习题答案详解习题⼀1.下列句⼦中,哪些是命题?在是命题的句⼦中,哪些是简单命题?哪些是真命题?哪些命题的真值现在还不知道?(1)中国有四⼤发明.答:此命题是简单命题,其真值为 1.(2)5是⽆理数.答:此命题是简单命题,其真值为 1.(3)3是素数或4是素数.答:是命题,但不是简单命题,其真值为 1.(4)2x+ <3 5答:不是命题.(5)你去图书馆吗?答:不是命题.(6)2与3是偶数.答:是命题,但不是简单命题,其真值为0.(7)刘红与魏新是同学.答:此命题是简单命题,其真值还不知道.(8)这朵玫瑰花多美丽呀!答:不是命题.(9)吸烟请到吸烟室去!答:不是命题.(10)圆的⾯积等于半径的平⽅乘以π .答:此命题是简单命题,其真值为 1.(11)只有6是偶数,3才能是2的倍数.答:是命题,但不是简单命题,其真值为0.(12)8是偶数的充分必要条件是8能被3整除.答:是命题,但不是简单命题,其真值为0.(13)2008年元旦下⼤雪.答:此命题是简单命题,其真值还不知道.2.将上题中是简单命题的命题符号化.解:(1)p:中国有四⼤发明.(2)p:是⽆理数.(7)p:刘红与魏新是同学.3.写出下列各命题的否定式,并将原命题及其否定式都符号化,最后指出各否定式的真值.(1)5是有理数.答:否定式:5是⽆理数. p:5是有理数.q:5是⽆理数.其否定式q的真值为 1.(2)25不是⽆理数.答:否定式:25是有理数. p:25不是⽆理数. q:25是有理数.其否定式q的真值为1.(3)2.5是⾃然数.答:否定式:2.5不是⾃然数. p:2.5是⾃然数. q:2.5不是⾃然数.其否定式q的真值为1.(4)ln1是整数.答:否定式:ln1不是整数. p:ln1是整数. q:ln1不是整数.其否定式q的真值为1.4.将下列命题符号化,并指出真值.(1)2与5都是素数答:p:2是素数,q:5是素数,符号化为p q∧,其真值为1.(2)不但π是⽆理数,⽽且⾃然对数的底e也是⽆理数.答:p:π是⽆理数,q:⾃然对数的底e是⽆理数,符号化为p q∧,其真值为 1.(3)虽然2是最⼩的素数,但2不是最⼩的⾃然数.答:p:2是最⼩的素数,q:2是最⼩的⾃然数,符号化为p q∧?,其真值为1.(4)3是偶素数.答:p:3是素数,q:3是偶数,符号化为p q∧,其真值为0.(5)4既不是素数,也不是偶数.答:p:4是素数,q:4是偶数,符号化为? ∧?p q,其真值为0.5.将下列命题符号化,并指出真值.(1)2或3(3)3或5是偶数.(4)3不是偶数或4不是偶数.(5)3不是素数或4不是答: p:2是偶数,q:3是偶数,r:3是素数,s:4是偶数, t:5是偶数偶数.(1)符号化: p q∨,其真值为 1.(2)符号化:p r∨,其真值为1. (3)符号化:r t∨,其真值为0.(4)符号化:? ∨?q s,其真值为 1.(5)符号化:? ∨?r s,其真值为0.6.将下列命题符号化.(1)⼩丽只能从筐⾥拿⼀个苹果或⼀个梨.答:p:⼩丽从筐⾥拿⼀个苹果,q:⼩丽从筐⾥拿⼀个梨,符号化为: p q∨ .(2)这学期,刘晓⽉只能选学英语或⽇语中的⼀门外语课.答:p :刘晓⽉选学英语,q :刘晓⽉选学⽇语,符号化为: (? ∧∨∧?p q )(p q ) . 7.设 p :王冬⽣于 1971年,q :王冬⽣于1972年,说明命题“王冬⽣于1971年或 1972年”既可以化答:列出两种符号化的真值表: p q 0 0 1 10 1 0 10 1 1 00 1 1 1根据真值表,可以判断出,只有当 p 与 q 同时为真时两种符号化的表⽰才会有不同的真值,但结合命题可以发现,p 与 q 不可能同时为真,故上述命题有两种符号化⽅式.8.将下列命题符号化,并指出真值.,就有(1)只要(2)如果(3)只有(4)除⾮(5)除⾮(6),则:;设 q:,则:答:设 p: .符号化真值(1)(2)(3)(4)(5)1 1 0 0 0(6) 19.设p:俄罗斯位于南半球,q:亚洲⼈⼝最多,将下⾯命题⽤⾃然语⾔表述,并指出其真值:(1)(2);;;(3)(4);;(5)(6)(7);;.答:根据题意,p为假命题,q为真命题.⾃然语⾔真值(1)(2)(3)(4)(5)(6)(7)只要俄罗斯位于南半球,亚洲⼈⼝就最多只要亚洲⼈⼝最多,俄罗斯就位于南半球11111 只要俄罗斯不位于南半球,亚洲⼈⼝就最多只要俄罗斯位于南半球,亚洲⼈⼝就不是最多只要亚洲⼈⼝不是最多,俄罗斯就位于南半球只要俄罗斯不位于南半球,亚洲⼈⼝就不是最多只要亚洲⼈⼝不是最多,俄罗斯就不位于南半球10.设p:9是3的倍数,q:英国与⼟⽿其相邻,将下⾯命题⽤⾃然语⾔表述,并指出真值:.答:根据题意,p为真命题,q为假命题.⾃然语⾔真值(1)(2)(3)9是3的倍数当且仅当英语与⼟⽿其相邻9是3的倍数当且仅当英语与⼟⽿其不相邻9不是3的倍数当且仅当英语与⼟⽿其相邻11(4)9不是 3的倍数当且仅当英语与⼟⽿其不相邻 011.将下列命题符号化,并给出各命题的真值:(1)若 2+2=4,则地球是静⽌不动的;(2)若 2+2=4,则地球是运动不⽌的;(3)若地球上没有树⽊,则⼈类不能⽣存;(4)若地球上没有⽔,则是⽆理数. 答:命题 1命题 2符号化真值(1)(2)(3)(4)p:2+2=4 q:地球是静⽌不动的 q:地球是静⽌不动的 q:⼈类能⽣存0 p:2+2=4 1 1 1p:地球上有树⽊ p:地球上有树⽊q:⼈类能⽣存12.将下列命题符号化,并给出各命题的真值:(1)2+2=4当且仅当 3+3=6;(2)2+2=4的充要条件是 3+36;(3)2+2 4与 3+3=6互为充要条件;(4)若 2+2 4,则 3+3 6,反之亦然. 答:设p:2+2=4,q:3+3=6. 符号化真值 (1) (2) (3) (4)(3)今天是星期⼀当且仅当明天是星期⼆;(4)若今天是星期⼀,则明天是星期三.答:设p:今天是星期⼀,q:明天是星期⼆,r:明天是星期三.符号化真值讨论(1)(2)(3)(4)不会出现前句为真,后句为假的情况不会出现前句为真,后句为假的情况必然为1若p为真,则真值为0;若p为假,则真值为114.将下列命题符号化:(1)刘晓⽉跑得快,跳得⾼;(2)⽼王是⼭东⼈或者河北⼈;(3)因为天⽓冷,所以我穿了⽻绒服;(4)王欢与李乐组成⼀个⼩组;(5)李欣与李末是兄弟;(6)王强与刘威都学过法语;(7)他⼀⾯吃饭,⼀⾯听⾳乐;(8)如果天下⼤⾬,他就乘班车上班;(9)只有天下⼤⾬,他才乘班车上班;(10)除⾮天下⼤⾬,否则他不乘班车上班;(11)下雪路滑,他迟到了;(12)2与4都是素数,这是不对的;(13)“2或4是素数,这是不对的”是不对的.答: 命题1 命题2命题3符号化(1)(2)p:刘晓⽉跑得快q:刘晓⽉跳得⾼-p:⽼王是⼭东⼈p:天⽓冷q:⽼王是河北⼈----q:我穿⽻绒服p:王欢与李乐组成p:王欢与李乐组成⼀个--⼀个⼩组⼩组p:李⾟与李末是兄p:李⾟与李末是兄弟弟(6)(7) p:王强学过法语p:他吃饭q:刘威学过法语q:他听⾳乐q:他乘车上班q:他乘车上班q:他乘车上班q:路滑--(8) p:天下⼤⾬p:天下⼤⾬p:天下⼤⾬p:下雪-(9) -(10)(11)r:他迟到了p:2是素数p:2是素数q:4是素数--q:4是素数15.设p:2+3=5.q:⼤熊猫产在中国.r:太阳从西⽅升起.求下列符合命题的真值:(1)(2)(3)(4)解:p真值为1,q真值为1,r真值为0.(1)0,(2)0,(3)0,(4)116.当p,q的真值为0,r,s的真值为1时,求下列各命题公式的真值:(1)(2)(3)(4)解:(1)0,(2)0,(3)0,(4)117.判断下⾯⼀段论述是否为真:“是⽆理数.并且,如果3是⽆理数,则外,只有6能被2整除,6才能被4整除.”也是⽆理数.另解:p:是⽆理数q: 3是⽆理数r:是⽆理数s: 6能被2整除18.在什么情况下,下⾯⼀段论述是真的:“说⼩王不会唱歌或⼩李不会跳舞是正确的,⽽说如果⼩王会唱歌,⼩李就会跳舞是不正确的.”解:p:⼩王会唱歌。
离散数学课后习题答案(最新)

习题参考解答习题1.11、(3)P:银行利率降低Q:股价没有上升P∧Q(5)P:他今天乘火车去了北京Q:他随旅行团去了九寨沟PQ(7)P:不识庐山真面目Q:身在此山中Q→P,或~P→~Q(9)P:一个整数能被6整除Q:一个整数能被3整除R:一个整数能被2整除T:一个整数的各位数字之和能被3整除P→Q∧R ,Q→T2、(1)T (2)F (3)F (4)T (5)F(6)T (7)F (8)悖论习题 1.31(3))()()()()()(R P Q P R P Q P R Q P R Q P →∨→⇔∨⌝∨∨⌝⇔∨∨⌝⇔∨→(4)()()()(())()(()())(())()()()()P Q Q R R P P R Q R P P R R P Q R P P R P R Q R Q P ∧∨∧∨∧=∨∧∨∧=∨∨∧∧∨∧=∨∧∨∧∨∧∨=右2、不, 不, 能习题 1.41(3) (())~((~))(~)()~(~(~))(~~)(~)P R Q P P R Q P P R T P R P R Q Q P R Q P R Q →∧→=∨∧∨=∨∧=∨=∨∨∧=∨∨∧∨∨、主合取范式)()()()()()()()()()()()()()())(())(()()(())()())(()((Q P R P Q R P Q R R Q P R Q P R Q P Q P R Q P R P Q R P Q R R Q P R Q P R Q P R Q P Q Q P R P P Q R R R Q Q P P R Q R P P Q R P P Q R P ∧∧∨∧⌝∧∨⌝∧⌝∧∨∧⌝∧⌝∨⌝∧∧⌝∨⌝∧⌝∧⌝=∧∧∨⌝∧∧∨∧⌝∧∨⌝∧⌝∧∨∧⌝∧⌝∨∧⌝∧⌝∨⌝∧∧⌝∨⌝∧⌝∧⌝=∨⌝∧∧∨∨⌝∧⌝∧∨∨⌝∧∨⌝∧⌝=∧∨⌝∧∨⌝=∨⌝∧∨⌝=→∧→ ————主析取范式(2) ()()(~)(~)(~(~))(~(~))(~~)(~)(~~)P Q P R P Q P R P Q R R P R Q Q P Q R P Q R P R Q →∧→=∨∧∨=∨∨∧∧∨∨∧=∨∨∧∨∨∧∨∨ 2、()~()(~)(~)(~~)(~)(~~)P Q R P Q R P Q P R P Q R P Q R P R Q →∧=∨∧=∨∧∧=∨∨∧∨∨∧∨∨∴等价3、解:根据给定的条件有下述命题公式:(A →(C ∇D ))∧~(B ∧C )∧~(C ∧D )⇔(~A ∨(C ∧~D )∨(~C ∧D ))∧(~B ∨~C )∧(~C ∨~D )⇔((~A ∧~B )∨(C ∧~D ∧~B )∨(~C ∧D ∧~B )∨(~A ∧~C )∨(C ∧~D ∧~C )∨(~C ∧D ∧~C ))∧(~C ∨~D )⇔((~A ∧~B )∨(C ∧~D ∧~B )∨(~C ∧D ∧~B )∨(~A ∧~C )∨(~C ∧D ∧~C )) ∧(~C ∨~D )⇔(~A ∧~B ∧~C )∨(C ∧~D ∧~B ∧~C )∨(~C ∧D ∧~B ∧~C )∨ (~A ∧~C ∧~C )∨(~C ∧D ∧~C ∧~C )∨(~A ∧~B ∧~D )∨(C ∧~D ∧~B ∧~D )∨(~C ∧D ∧~B ∧~D )∨(~A ∧~C ∧~D )∨ (~C ∧D ∧~C ∧~D )(由题意和矛盾律)⇔(~C ∧D ∧~B )∨(~A ∧~C )∨(~C ∧D )∨(C ∧~D ∧~B )⇔(~C ∧D ∧~B ∧A )∨ (~C ∧D ∧~B ∧~A )∨ (~A ∧~C ∧B )∨ (~A ∧~C ∧~B )∨ (~C ∧D ∧A )∨ (~C ∧D ∧~A )∨(C ∧~D ∧~B ∧A )∨(C ∧~D ∧~B ∧~A )⇔(~C ∧D ∧~B ∧A )∨ (~A ∧~C ∧B ∧D )∨ (~A ∧~C ∧B ∧~D )∨(~A ∧~C ∧~B ∧D )∨ (~A ∧~C ∧~B ∧~D )∨(~C ∧D ∧A ∧B )∨ (~C ∧D ∧A ∧~B )∨ (~C ∧D ∧~A ∧B )∨ (~C ∧D ∧~A ∧~B )∨(C ∧~D ∧~B ∧A )∨(C ∧~D ∧~B ∧~A ) ⇔(~C ∧D ∧~B ∧A )∨ (~A ∧~C ∧B ∧D )∨ (~C ∧D ∧A ∧~B )∨ (~C ∧D ∧~A ∧B ) ∨(C ∧~D ∧~B ∧A )⇔(~C ∧D ∧~B ∧A )∨ (~A ∧~C ∧B ∧D )∨(C ∧~D ∧~B ∧A ) 三种方案:A 和D 、 B 和D 、 A 和C习题 1.51、 (1)需证()(())P Q P P Q →→→∧为永真式()(())~(~)(~())~~(~)(()(~))~(~)(~)()P Q P P Q P Q P P Q P P P Q P Q TP Q P Q T P Q P P Q →→→∧=∨∨∨∧∨=∨∨∧∨=∨∨∨=∴→⇒→∧(3)需证S R P P →∧⌝∧为永真式SR P P T S F S R F S R P P ⇒∧⌝∧∴⇔→⇔→∧⇔→∧⌝∧3A B A B ⇒∴→ 、为永真式。
离散数学第2版课后习题答案

离散数学第2版课后习题答案离散数学是计算机科学和数学领域中一门重要的学科,它研究离散对象及其关系、结构和运算方法。
离散数学的应用非常广泛,包括计算机科学、信息科学、密码学、人工智能等领域。
而离散数学第2版是一本经典的教材,它系统地介绍了离散数学的基本概念、原理和方法。
本文将为读者提供离散数学第2版课后习题的答案,帮助读者更好地理解和掌握离散数学的知识。
第一章:基本概念和原理1.1 命题逻辑习题1:命题逻辑的基本符号有哪些?它们的含义是什么?答:命题逻辑的基本符号包括命题变量、命题联结词和括号。
命题变量用字母表示,代表一个命题。
命题联结词包括否定、合取、析取、条件和双条件等,分别表示“非”、“与”、“或”、“如果...则...”和“当且仅当”。
括号用于改变命题联结词的优先级。
习题2:列举命题逻辑的基本定律。
答:命题逻辑的基本定律包括德摩根定律、分配律、结合律、交换律、吸收律和否定律等。
1.2 集合论习题1:什么是集合?集合的基本运算有哪些?答:集合是由一些确定的对象组成的整体,这些对象称为集合的元素。
集合的基本运算包括并、交、差和补等。
习题2:列举集合的基本定律。
答:集合的基本定律包括幂等律、交换律、结合律、分配律、吸收律和德摩根定律等。
第二章:数理逻辑2.1 命题逻辑的推理习题1:什么是命题逻辑的推理规则?列举几个常用的推理规则。
答:命题逻辑的推理规则是用来推导命题的逻辑规则。
常用的推理规则包括假言推理、拒取推理、假言三段论和析取三段论等。
习题2:使用推理规则证明以下命题:如果A成立,则B成立;B不成立,则A不成立。
答:假言推理规则可以用来证明该命题。
根据假言推理规则,如果A成立,则B成立。
又根据假言推理规则,如果B不成立,则A不成立。
2.2 谓词逻辑习题1:什么是谓词逻辑?它与命题逻辑有何区别?答:谓词逻辑是一种扩展了命题逻辑的逻辑系统,它引入了谓词和量词。
与命题逻辑不同,谓词逻辑可以对个体进行量化和描述。
离散数学第8章课件PPT,高等教育出版社,屈婉玲,耿素云,张立昂主编

证明
(2) 假设存在x1, x2∈A使得 由合成定理有 f g(x1)=f g(x2)
g(f(x1))=g(f(x2)) 因为g:B→C是单射的, 故 f(x1)=f(x2). 又由于f:A→B是单射的, 所 以x1=x2. 从而证明f g:A→C是单射的. (3)由(1)和(2)得证. 注意:定理逆命题不为真, 即如果f g:A→C是单射(或满射、双 射)的, 不一定有 f:A→B 和 g:B→C都是单射(或满射、双射)的.
16
函数复合与函数性质
定理8.2 设f:A→B, g:B→C (1) 如果 f:A→B, g:B→C是满射的, 则 fg:A→C也是满射的 (2) 如果 f:A→B, g:B→C是单射的, 则 fg:A→C也是单射的 (3) 如果 f:A→B, g:B→C是双射的, 则 fg:A→C也是双射的 证 (1) 任取c∈C, 由g:B→C的满射性, b∈B使得 g(b)=c. 对于这个b, 由 f:A→B的满射性,a∈A使得 f(a)=b. 由合成定理有 fg(a) = g(f(a)) = g(b) = c 从而证明了fg:A→C是满射的
4
实例
例1 设A={1,2,3}, B={a,b}, 求BA. 解BA={ f0, f1, … , f7}, 其中 f0 = {<1,a>,<2,a>,<3,a>} f1 = {<1,a>,<2,a>,<3,b>} f2 = {<1,a>,<2,b>,<3,a>} f3 = {<1,a>,<2,b>,<3,b>} f4 = {<1,b>,<2,a>,<3,a>} f5 = {<1,b>,<2,a>,<3,b>} f6 = {<1,b>,<2,b>,<3,a>} f7 = {<1,b>,<2,b>,<3,b>}
(完整版)洪帆《离散数学基础》(第三版)课后习题答案

第1章 集合1、列举下列集合的元素 (1) 小于20的素数的集合 (2) 小于5的非负整数的集合 (3) 2{|,10240515}i i I i i i ∈--<≤≤且 答:(1) {1,3,5,7,11,13,17,19}(2) {0,1,2,3,4} (3) {5,6,7,8,9,10,11}2、用描述法表示下列集合 (1) 12345{,,,,}a a a a a 答:{|,15}i a i I i ∈≤≤ (2) {2,4,8,}L 答:{2|}i i N ∈ (3) {0,2,4,100}L答:{2|,050}i i Z i ∈≤≤3、下面哪些式子是错误的? (1) {}{{}}a a ∈ 答:正确 (2) {}{{}}a a ⊆ 答:错误 (3) {}{{},}a a a ∈ 答:正确 (4) {}{{},}a a a ⊆ 答:正确4、已给{2,,{3},4}S a =和{{},3,4,1}R a =,指出下面哪些论断是正确的?哪些是错误的? (1) {}a S ∈ 错误(2) {}a R ∈ 正确 (3) {,4,{3}}a S ⊆ 正确 (4) {{},1,3,4}a R ⊆ 正确 (5)R S = 错误 (6) {}a S ⊆ 正确 (7) {}a R ⊆错误 (8) R φ⊆正确 (9) {{}}a R φ⊆⊆ 正确 (10) {}S φ⊆错误 (11) R φ∈错误 (12) {{3},4}φ⊆正确5、 列举出集合,,A B C 的例子,使其满足A B ∈,B C ∈且A C ∉答:{}A a =,{{}}B a =,显然A B ∈,{{{}}}C a =,显然B C ∈,但是A C ∉。
6、 给出下列集合的幂集 (1) {,{}}a b答:幂集{,{},{{}},{,{}}a b a b φ (2) {,,{}}a a φ答:幂集{,{},{},{{}},{,},{,{}},{,{}},{,,{}}}a a a a a a a a φφφφφ 7、设{}A a =,给出A 和2A 的幂集答:2{,{}}A a φ= 22{,{{}},{{}},{,{}}}Aa a φφφ=8、 设128{,,,}A a a a =L 由17B 和31B 所表示的A 的子集各是什么?应如何表示子集2,67{,}a a a 和13{,}a a 答:170001000148{,}B B a a ==310001111145678{,,,,}B B a a a a a ==2,670100011070{,}a a a B B ==,1310100000160{,}a a B B ==9、 设{1,2,3,4,5}U =,{1,4}A =,{1,2,5}B =,{2,4}C =,确定集合: (1) A B '⋂ (2) ()A B C '⋂⋃ (3) ()A B C ⋃⋂ (4)()()A B A C ⋃⋂⋃ (5) ()A B '⋂ (6) A B ''⋃ (7) ()B C '⋃ (8)B C ''⋂ (9) 22A C - (10)22A C ⋂ 答:(1) {3,4}B '=,{4}A B '⋂=(2) {1}A B ⋂=,{1,3,5}C '=,(){1,3,5}A B C '⋂⋃= (3) {2}B C ⋂=,(){1,2,4}A B C ⋃⋂=(4) {1,2,4,5}A B ⋃=,{1,2,4}A C ⋃=,()(){1,2,4}A B A C ⋃⋂⋃= (5) (){2,3,4,5}A B '⋂= (6) {2,3,5}A '=,{2,3,4,5}A B ''⋃= (7) {1,2,4,5}B C ⋃=,(){3}B C '⋃= (8) {3,4}B '=,{1,3,5}C '=,{3}B C ''⋂=(9) 2{,{1},{4},{1,4}}A φ=,2{,{2},{4}{24}}C φ=,,,22{{1},{1,4}}A C -= (10) 22{,{4}}A C φ⋂=10、 给定自然数集N 的下列子集:{1,2,7,8}A =,2{|50}B i i =<,{|330}C i i i =≤≤可被整数,0{|2,,06}k D i i k Z k ==∈≤≤求下列集合: (1) (())A B C D ⋃⋃⋃ 答:{1,2,3,4,5,6,7}B =,{0,3,6,9,12,15,18,21,24,27,30}C =,{1,2,4,8,16,32,64}D =(()){0,1,2,3,4,5,6,7,8,9,12,15,16,18,21,24,27,30,32,64}A B C D ⋃⋃⋃= (2) (())A B C D φ⋂⋂⋂=(3) ()B A C -⋃解:{0,1,2,3,6,7,8,9,12,15,18,21,24,27,30}A C ⋃=,(){4,5}B A C -⋃= (4) ()A B D '⋂⋃解:{3,4,5,6}A B B A '⋂=-=,(){1,2,3,4,5,6,8,16,32,64}A B D '⋂⋃=11、 给定自然数集N 的下列子集{|12}A n n =<,{|8}B n n =≤,{|2,}C n n k k N ==∈,{|3,}D n n k k N ==∈ {|21,}E n n k k N ==-∈将下列集合表示为由,,,,A B C D E 产生的集合:(1) {2,4,6,8} (2){3,6,9} (3){10} (4){|369}n n n n ==≥或或 (5) {|109}n n n n n ≤>是偶数且或是奇数且 (6) {|6}n n 是的倍数答:{1,2,3,4,5,6,7,8,9,10,11}A =,{1,2,3,4,5,6,7,8}B ={2,4,6,8,}C =L ,{3,6,9,12,}D =L ,{1,3,5,7,}E =L {2,4,6,8}B C =⋂ {3,6,9}=A D ⋂ {10}=(())A B D E ---(4){|369}n n n n ==≥=或或{3}{6}{9,10,11,12,}⋃⋃L{3,6,9,10,11,12,}()A D B '==⋂⋃L(5) {2,4,6,8,10,11,13,15,}(()())(())A E E B A D B =-⋃--⋂-L (6) {|6}{6,12,18,24,30}n n ==L 是的倍数C D ⋂12、 判断以下哪些论断是正确的,哪些论断是错误的,并说明理由。
离散数学答案版(全)

1.2.4
0 0 1 1 条件联结词→
P
0 1 0 1
Q
0 1 1 1
P Q
0 0 1 1 1.2.5 双条件联结词
P
0 1 0 1
Q
1 1 0 1
P Q
1.2.6
0 0 1 1 与非联结词↑
P
0 1 0 1
Q
1 0 0 1
PQ
1 1 1 0
0 0 1 1
0 1 0 1
性质: (1) P↑P ﹁(P∧P) ﹁P; (2) (P↑Q)↑(P↑Q) ﹁(P↑Q) P∧Q; (3) (P↑P)↑(Q↑Q) ﹁P↑﹁Q P∨Q。 1.2.7 或非联结词↓
P
Q
PQ
1 0 0 0
0 0 1 1
0 1 0 1
性质: (1)P↓P ﹁(P∨Q) ﹁P; (2) (P↓Q)↓(P↓Q) ﹁(P↓Q) P∨Q; (3) (P↓P)↓(Q↓Q) ﹁P↓﹁Q ﹁(﹁P∨﹁Q) P∧Q。
石材加工 红提采摘 2 金刚石磨头
1.5
对偶与范式
1.5.1 对偶 定义 在仅含有联结词 Ø、∧、∨的命题公式 A 中,将联结词∧换成∨,将 ∨换成∧,如果 A 中含有特殊变元 0 或 1,就将 0 换成 1,1 换成 0,所得的命题 公式 A*称为 A 的对偶式。 例:公式( P∨Q)∧(P∨ Q) 的对偶式为: ( P∧Q)∨(P∧ Q) 定理 设 A 和 A*互为对偶式,P1,P2,…,Pn 是出现在 A 和 A*中的所有原子
P
Q
P Q
( P Q)
( P Q) Q
0 0 1 1
0 1 0 1
1 1 0 1
离散数学 第8章 树(祝清顺版)
G的生成树一般不惟一. 余树不一定是树, 因为余树不一定连通, 也可能包 含回路.
离散数学
第八章
树
2007年8月20日
例题
例4 在下图中, 可以看到该图的绿线所示的一个生成树 T. 其中e1, e2, e3, e4, e5, e9都是T的树枝, e6, e7, e8, e10, e11都是T的弦.
树
2007年8月20日
例题
例4 利用破圈法求下图的生成树。
依次删去边e6,e7,e8,e10,e11, 所得到的生成树就是例
9.1.3中所给出一棵生成树T1.
e4 e2 e7 e8 e10 e9 e5 e6 e3 e11
e1 e1
e4
e2
e9
e5 e3
T的余树如右图所示, 余树是不连通的, 同时也包含回路.
e 4 e2 e7 e8 e10 e9 e5 e6 e3 e11
离散数学 第八章 树
e1
e7 e 8 e6 e10 e11
2007年8月20日
生成树的存在条件
定理3 任何无向连通图G 至少存在一棵生成树. [证] 若连通图G中无回路, 则G为自身的生成树. 若G中包含回路, 则随意地删除回路上的一条边, 而 不影响图的连通性. 若上仍有回路, 则再删除回路上的一条边, 直到无 回路为止, 最后得到的图是无回路、连通的且为G的生 成子图, 故为G的生成树.
离散数学 第八章 树 2007年8月20日
树简介
而系统地研究树,把树当成一个纯数学对象来研究的是法 国数学家约当(Jordan)。 1869年,约当(Jordan)作为一个纯数学对象独立地发现 了树,并给出了树的概念。 约当所研究的成果就是凯莱(Caylay Arthur)所要研究的,但他并不知道树
2015春北京航空航天大学《离散数学》在线作业一及答案-最新
2015春北京航空航天大学《离散数学》在线作业一及答案单选题判断题一、单选题(共 10 道试题,共 80 分。
)1. 设A={Φ},B=P(P(A)),以下不正确的式子是()A. {{Φ},Φ}∈BB. {{Φ}}∈BC. {{Φ}}包含于BD. {{{{Φ}},Φ}}包含于B-----------------选择:D2. 无向图G的顶点v作为边的端点的次数之和称为v的度数,记为()A. c(v)B. e(v)C. d(v)D. g(v)-----------------选择:C3. 下列整数集对于整除关系都构成偏序集,而能构成格的是()A. {l,2,3,4,5}B. {1,2,3,6,12}C. {2,3,7}D. {l,2,3,7}-----------------选择:B4. 有界格若还是(),则称为布尔格,或布尔代数。
A. 分配格B. 有补格C. 剩余格D. 有补分配格-----------------选择:D5. PERT图的最早完成时间用TE(vi)表示,最晚完成时间用TL(vi)表示,那么缓存时间 ES(vi)=()A. TL(vi) -TE(vi)B. TL(vi) +TE(vi)C. TL(vi) *TE(vi)D. TE(vi)-TL(vi)-----------------选择:A6. 若通路Г=v0e1v1e2…e1v1 中所有顶点互不相同(所有边自然互不相同)时称为()A. 初级回路B. 路径C. 复杂通路D. 迹-----------------选择:B7. 如题A.B.C.D.-----------------选择:B8. 如题A.B.C.D.-----------------选择:B9. 设R是集合A上的二元关系,IA是A上的恒等关系,如果R?IA,则下面四个命题中为真的是()A. R不是自反的B. R不是传递的C. R不是对称的D. R不是反对称的-----------------选择:A10. 若干能等值地表示出全部(合式)公式(真值函数)的逻辑联结词集合称为()A. 全功能集B. 功能集C. 全功能联结词集合D. 特殊联结词集合-----------------选择:A二、判断题(共 5 道试题,共 20 分。
北航2014年6月《离散数学》试卷A2(答案后附)
北航2014年6月《离散数学》试卷A2(答案后附)北京航空航天大学现代远程教育2014年6月份《离散数学》课程考试试卷(A)注意事项:1、本试卷满分100分;考试时间:90分钟;考试形式:开卷2、请将答案一律写在答题纸上,试卷上作答无效3、考试结束后,考生将试卷及答题纸一并交回4、请将条形码贴在答题纸的指定位置学习中心______________姓名____________学号____________一、单项选择题(本大题共15小题,每小题2分,共30分)1.一个连通的无向图G,如果它的所有结点的度数都是偶数,那么它具有一条( B )A.汉密尔顿回路B.欧拉回路C.汉密尔顿通路D.初级回路2.设G是连通简单平面图,G中有11个顶点5个面,则G中的边是( D )A.10B.12C.16D.143.在布尔代数L中,表达式(a∧b)∨(a∧b∧c)∨(b∧c)的等价式是( A )A.b∧(a∨c)B.(a∧b)∨(a’∧b)C.(a∨b)∧(a∨b∨c)∧(b∨c)D.(b∨c)∧(a∨c)4.设i是虚数,·是复数乘法运算,则G=<{1,-1,i,-i},·>是群,下列是G的子群是( A )A.<{1},·>B.〈{-1},·〉C.〈{i},·〉D.〈{-i},·〉5.设Z为整数集,A为集合,A的幂集为P(A),+、-、/为数的加、减、除运算,∩为集合的交运算,下列系统中是代数系统的有( D )A.〈Z,+,/〉B.〈Z,/〉C.〈Z,-,/〉D.〈P(A),∩〉北航《离散数学》课程考试试卷(A)第 1 页共 4 页。
离散数学课后习题答案
1-1,1-2(1) 解:a) 是命题,真值为T。
b) 不是命题。
c) 是命题,真值要根据具体情况确定。
d) 不是命题。
e) 是命题,真值为T。
f) 是命题,真值为T。
g) 是命题,真值为F。
h) 不是命题。
i) 不是命题。
(2) 解:原子命题:我爱北京天安门。
复合命题:如果不是练健美操,我就出外旅游拉。
(3) 解:a) (┓P ∧R)→Qb) Q→Rc) ┓Pd) P→┓Q(4) 解:a)设Q:我将去参加舞会。
R:我有时间。
P:天下雨。
Q (R∧┓P):我将去参加舞会当且仅当我有时间和天不下雨。
b)设R:我在看电视。
Q:我在吃苹果。
R∧Q:我在看电视边吃苹果。
c) 设Q:一个数是奇数。
R:一个数不能被2除。
(Q→R)∧(R→Q):一个数是奇数,则它不能被2整除并且一个数不能被2整除,则它是奇数。
(5) 解:a) 设P:王强身体很好。
Q:王强成绩很好。
P∧Qb) 设P:小李看书。
Q:小李听音乐。
P∧Qc) 设P:气候很好。
Q:气候很热。
P∨Qd) 设P: a和b是偶数。
Q:a+b是偶数。
P→Qe) 设P:四边形ABCD是平行四边形。
Q :四边形ABCD的对边平行。
PQf) 设P:语法错误。
Q:程序错误。
R:停机。
(P∨ Q)→ R(6) 解:a) P:天气炎热。
Q:正在下雨。
P∧Qb) P:天气炎热。
R:湿度较低。
P∧Rc) R:天正在下雨。
S:湿度很高。
R∨Sd) A:刘英上山。
B:李进上山。
A∧Be) M:老王是革新者。
N:小李是革新者。
M∨Nf) L:你看电影。
M:我看电影。
┓L→┓Mg) P:我不看电视。
Q:我不外出。
R:我在睡觉。
P∧Q∧Rh) P:控制台打字机作输入设备。
Q:控制台打字机作输出设备。
P∧Q1-3(1)解:a) 不是合式公式,没有规定运算符次序(若规定运算符次序后亦可作为合式公式)b) 是合式公式c) 不是合式公式(括弧不配对)d) 不是合式公式(R和S之间缺少联结词)e) 是合式公式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第八章习题答案
1. 证明:S (n ) = 1 + 2 + 3 + … + n = n (n +1)/2
证明 (1) 对于n = 0,S (0) = 0,成立。
(2) 设S (n ) = 1 + 2 + 3 + … + n = n (n +1)/2,则
S (n +1) = S (n ) + n + 1 = n (n +1)/2 + n +1 = (n + 1)( n + 2)/2
6. 用归纳法证明
13 + 23 + 33 + … + n 3 = ( 1 + 2 + 3 + … + n ) 2
证明 (1) 对于n = 0,等式两边均为0。
(2) 设 13 + 23 + 33 + … + n 3 = ( 1 + 2 + 3 + … + n ) 2。
13 + 23 + 33 + … + n 3 + (n +1) 3 = ( 1 + 2 + 3 + … + n ) 2 + (n +1) 3
= n 2 (n +1)2/ 4 + (n +1) 3 = (n + 1)2 ( n + 2)2 /4
= ( 1 + 2 + 3 + … + n + (n +1))2
12. 设A 和B 是可数集合,证明:
(1) A ⨯B 是可数的。
(2) 如果A 是有限集,则B A 是可数的。
证明 (1) 若A 和B 都是有穷集,则A ⨯B 是有穷集。
若A 是可数无穷集,B 是有穷集,
设 A = {a 0, a 1,…},B = {b 1,…, b m }。
可将A ⨯B 中元素排列成序列
< a 0, b 1 >, …, < a 0, b m >, < a 1, b 1 >, …, < a 1, b m >, …
若A 是有穷集,B 是可数无穷集,也可同样证明。
若A 和B 都是可数无穷集,
设 A = {a 0, a 1,…},B = {b 0, b 1,…}。
可将A ⨯B 中元素排列成序列
< a 0, b 0 >, < a 0, b 1 >, < a 1, b 0 >, < a 0, b 2 >,
< a 1, b 1 >, < a 2, b 0 >, …
按照两个元的下标之和递增的顺序排列,对于两个元的下标之和相等的有序偶,第一元下标小的排在前面。
(2) 若B 是有穷集,则B A 是有穷集。
若B 是可数无穷集,设 B = {b 0, b 1,…},A = {a 1,…, a m }。
我们证明B A N 且N B A 。
定义g : B A →N 如下:
任取f ∈ B A ,若m i b a f i k i ,,2,1,)( ==,则令
m k m k k p p p f g 2121)(=,其中p i 是第i 个素数
若f 1, f 2∈ B A ,并且 f 1 ≠ f 2,
则存在1≤ i ≤ m 使得f 1 (a i ) ≠ f 2 (a i )。
设f 1 (a i ) = u ,f 2 (a i ) = v ,并且u < v ,则v i p 能整除g (f 2),但不能整除g (f 1),故g (f 1) ≠ g (f 2)。
g 是单射。
定义h : N → B A 如下:
h (n ) = {< a 1, b n >, …, < a m , b n >}
即h (n )是函数值为b n 的常值函数。
显然,h 是单射。
13. 如果∑是一有限的非空字母表,证明ρ(∑*)是不可数的无限集合。
证明 只需证明∑*~ N 。
设∑ = {a 1,…, a m }。
可将∑*中元素排列成序列
ε, a 1,…, a m , a 1a 1,…, a 1a m , …
按照长度递增的顺序排列∑上的字,对于长度相同的字,按字典序排列。
因为*)(*∑∑ρ ,所以*)(∑ρ N 。