2018届高考数学二轮复习第三部分讲重点解答题专练3_6导数与函数课件理
高考数学二轮复习专题02:函数与导数

B . f(a)<f(b)
C . f(a)=f(b)
D . f(a)f(b)>0
4. (2分) (2019高二上·浙江期中) 已知 ,且 , , 是函数 的两个相邻的零点,且 ,则 的值为( )
A .
B .
C .
D .
5. (2分) 定义在R上的奇函数f(x),当x≥0时,f(x)= , 则关于x的函数F(x)=f(x)﹣a(0<a<1)的所有零点之和为( )
A . 3a﹣1
B . 1﹣3a
C . 3﹣a﹣1
D . 1﹣3﹣a
6. (2分) 已知函数 的图像为曲线C,若曲线C存在与直线 垂直的切线,则实数m的取值范围是( )
A .
B .
C .
D .
7. (2分) (2016高一上·沈阳期中) 已知函数f(x)满足:当f(x)= ,则f(2+log23)=( )
29-2、答案:略
29-3、答案:略
29-4、答案:略
30-1、
高考数学二轮复习专题02:函数与导数
姓名:________班级:________ 成绩:________
一、 单选题 (共17题;共34分)
1. (2分) (2016高一上·厦门期中) 已知函数f(x)=xln(x﹣1)﹣a,下列说法正确的是( )
A . 当a=0时,f(x)没有零点
B . 当a<0时,f(x)有零点x0 , 且x0∈(2,+∞)
A .
B .
C .
D .
17. (2分) ( )
A . 0
B . π
C . -π
D . 2π
二、 填空题 (共7题;共8分)
高考数学一轮总复习第三章一元函数的导数及其应用专题突破5三次函数的图象与性质课件

A. −24,8
)
B.(−24,1]
C.[1,8]
D.[1,8)
√
解:′ = 3 2 − 6 − 9 = 3 − 3 + 1 ,令′ = 0,解得 = −1或 = 3.
当变化时,′ 与 的变化情况如表所示.
3
0
-
极大值
0
极小值
故当 = 3时,函数 取得极小值,为 3 = 33 − 3 × 32 − 9 × 3 + 3 = −24.
又 −2 = −2
3
− 3 × −2
2
− 9 × −2 + 3 = 1,所以 的最小值为 3 ,即
−24.
当 = −1时,函数 取得极大值,为 −1 = −1
3
− 3 × −1
2
− 9 × −1 + 3 = 8.
又 5 = 53 − 3 × 52 − 9 × 5 + 3 = 8,所以函数 的最大值为 5 = −1 = 8.
因为 = + ,所以 的图象是 的图象向上或向下平移得到的,故A不
符合.故选B.
【点拨】当三次函数有两个极值点 Δ > 0 时,若 > 0,则三次函数的图象形状为
“N字形式”;若 < 0,则三次函数的图象形状为“反N字形”.
变式1 (2021年全国乙卷)设 ≠ 0,若 = 为函数 = ( − )2 − 的极大
=
A.
1 3
3
1
−
2
+ 1 2 + − 的大致图象可能为(
B.
√
C.
√
)
D.
高考数学复习考点知识专题讲解课件第18讲 导数与不等式 第2课时 利用导数研究恒成立问题

1<x≤e时,f'(x)>0,此时f(x)单调递增.∴f(x)的单调递减区间为(0,1),单调递增区间
为(1,e],f(x)的极小值为f(1)=1,无极大值.
课堂考点探究
变式题1 已知f(x)=ax-ln
ln
x,x∈(0,e],g(x)= ,x∈(0,e],其中e是自然对数的底数,
a∈R.
1
1
上的最大值为- ,f(x)在 ,2
2
2
上的最小值为ln 2-2.
课堂考点探究
变式题2 [2021·重庆八中模拟] 已知函数f(x)=ln
1 2
x- x .
2
(2)若不等式f(x)>(2-a)x2有解,求实数a的取值范围.
解:原不等式即为ln
1 2
ln
1
ln
1
x- x >(2-a)x2,可化简为2-a< 2 - .记g(x)= 2 - ,则原不等式
用导数研究函数的单调性或求最值,从而证得不等式,而如何根据不等式的结
构特征构造一个可导函数是用导数证明不等式的关键.
课堂考点探究
(2)可化为不等式恒成立问题的基本类型:
类型1:函数f(x)在区间[a,b]上单调递增,只需f'(x)≥0在[a,b]上恒成立.
类型2:函数f(x)在区间[a,b]上单调递减,只需f'(x)≤0在[a,b]上恒成立.
值的过程中常用的放缩方法有函数放缩法、基本不等式放缩法、叠加不等式
放缩法等.
课堂考点探究
探究点一
恒成立与能成立问题
例1 [2022·南京调研] 设函数f(x)=(x2-a)ex,a∈R,e是自然对数的底数.
高考数学第二章函数、导数及其应用第6讲指数式与指数函数课件

=2
f
2 3
,解集中应该有23,排除
D.故选
C.
答案:C
(3)(2017 年北京)已知函数 f(x)=3x-13x,则 f(x)(
)
A.是奇函数,且在 R 上是增函数
B.是偶函数,且在 R 上是增函数
C.是奇函数,且在 R 上是减函数
D.是偶函数,且在 R 上是减函数
解析:因为
答案:C
图 D3
(2)已知实数 a,b 满足等式12a=13b,下列五个关系式: ①0<b<a;②a<b<0;③0<a<b;④b<a<0;⑤a=b.其中不可能
成立的关系式有( )
A.1 个
B.2 个
C.3 个
D.4 个
解析:在同一平面直角坐标系中作出函数 y=13x,y=12x 的图象,如图 D4.
3.(2016年浙江模拟)已知实数 a,b 满足等式 2017a=2018b, 下列五个关系式:①0<b<a;②a<b<0;③0<a<b;④b<a<0;
⑤a=b.其中不可能成立的关系式有( B )
A.1 个
B.2 个
C.3 个
D.4 个
解析:设 2017a=2018b=t,如图 D5,由函数图象,可得, 若 t>1,则有 a>b>0.①成立;
答案:D
(1)
(2)
图2-6-1
【规律方法】(1)在指数函数解析式中,必须时刻注意底数 a>0,且a≠1,对于指数函数的底数a,在不清楚其取值范围时, 应运用分类讨论的数学思想,分a>1 和0<a<1 两种情况进行讨 论,以便确定其性质.
高考数学二轮复习 专题一 集合、常用逻辑用语、不等式、函数与导数 第二讲 函数的图象与性质教案 理-

第二讲函数的图象与性质年份卷别考查角度及命题位置命题分析2018Ⅱ卷函数图象的识别·T3 1.高考对此部分内容的命题多集中于函数的概念、函数的性质及分段函数等方面,多以选择、填空题形式考查,一般出现在第5~10或第13~15题的位置上,难度一般.主要考查函数的定义域,分段函数求值或分段函数中参数的求解及函数图象的判断.2.此部分内容有时出现在选择、填空题压轴题的位置,多与导数、不等式、创新性问题结合命题,难度较大.函数奇偶性、周期性的应用·T11Ⅲ卷函数图象的识别·T72017Ⅰ卷函数单调性、奇偶性与不等式解法·T5Ⅲ卷分段函数与不等式解法·T152016Ⅰ卷函数的图象判断·T7Ⅱ卷函数图象的对称性·T12函数及其表示授课提示:对应学生用书第5页[悟通——方法结论]求解函数的定义域时要注意三式——分式、根式、对数式,分式中的分母不为零,偶次方根中的被开方数非负,对数的真数大于零.底数大于零且不大于1.解决此类问题的关键在于准确列出不等式(或不等式组),求解即可.确定条件时应先看整体,后看部分,约束条件一个也不能少.[全练——快速解答]1.(2016·高考全国卷Ⅱ)以下函数中,其定义域和值域分别与函数y=10lg x的定义域和值域相同的是( )A.y=x B.y=lg xC .y =2xD .y =1x解析:函数y =10lg x的定义域与值域均为(0,+∞).结合选项知,只有函数y =1x的定义域与值域均为(0,+∞).应选D.答案:D2.(2018·某某名校联考)函数f (x )=⎩⎪⎨⎪⎧f (x -4),x >2,e x,-2≤x ≤2,f (-x ),x <-2,那么f (-2 017)=( )A .1B .eC .1eD .e 2解析:由题意f (-2 017)=f (2 017),当x >2时,4是函数f (x )的周期,所以f (2 017)=f (1+4×504)=f (1)=e.答案:B3.函数f (x )=x -1ln (1-ln x )的定义域为________.解析:由函数解析式可知,x 需满足⎩⎪⎨⎪⎧x -1≥01-ln x >0x >01-ln x ≠1,解得1<xf (x )=x -1ln (1-ln x )的定义域为(1,e).答案:(1,e)4.(2017·高考全国卷Ⅲ)设函数f (x )=⎩⎪⎨⎪⎧x +1,x ≤0,2x,x >0,那么满足f (x )+f ⎝ ⎛⎭⎪⎫x -12>1的x 的取值X 围是__________.解析: 当x ≤0时,原不等式为x +1+x +12>1,解得x >-14,∴-14<x ≤0.当0<x ≤12时,原不等式为2x+x +12>1,显然成立.当x >12时,原不等式为2x+2x -12>1,显然成立.综上可知,x 的取值X 围是⎝ ⎛⎭⎪⎫-14,+∞.答案:⎝ ⎛⎭⎪⎫-14,+∞求函数的定义域,其实质就是以函数解析式所含运算有意义为准那么,列出不等式或不等式组,然后求出解集即可.2.分段函数问题的5种常见类型及解题策略 常见类型 解题策略求函数值弄清自变量所在区间,然后代入对应的解析式,求“层层套〞的函数值,要从最内层逐层往外计算求函数最值 分别求出每个区间上的最值,然后比较大小解不等式根据分段函数中自变量取值X 围的界定,代入相应的解析式求解,但要注意取值X 围的大前提求参数 “分段处理〞,采用代入法列出各区间上的方程利用函数性质求值必须依据条件找到函数满足的性质,利用该性质求解函数图象及应用授课提示:对应学生用书第5页[悟通——方法结论]1.作函数图象有两种基本方法:一是描点法、二是图象变换法,其中图象变换有平移变换、伸缩变换、对称变换等.2.利用函数图象可以判断函数的单调性、奇偶性,作图时要准确画出图象的特点.(1)(2017·高考全国卷Ⅰ)函数y =sin 2x1-cos x的部分图象大致为( )解析:令函数f (x )=sin 2x 1-cos x ,其定义域为{x |x ≠2k π,k ∈Z },又f (-x )=sin (-2x )1-cos (-x )=-sin 2x 1-cos x =-f (x ),所以f (x )=sin 2x1-cos x 为奇函数,其图象关于原点对称,故排除B ;因为f (1)=sin 2 1-cos 1>0,f (π)=sin 2π1-cos π=0,故排除A 、D ,选C.答案:C(2)(2017·高考全国卷Ⅲ)函数y =1+x +sin xx2的部分图象大致为( )解析:法一:易知函数g (x )=x +sin xx2是奇函数,其函数图象关于原点对称,所以函数y =1+x +sin xx2的图象只需把g (x )的图象向上平移一个单位长度,结合选项知选D.法二:当x →+∞时,sin x x 2→0,1+x →+∞,y =1+x +sin xx2→+∞,故排除选项B.当0<x <π2时,y =1+x +sin xx2>0,故排除选项A 、C.选D.答案:D由函数解析式识别函数图象的策略[练通——即学即用]1.(2018·高考全国卷Ⅲ)函数y =-x 4+x 2+2的图象大致为( )解析:法一:ƒ′(x )=-4x 3+2x ,那么ƒ′(x )>0的解集为⎝ ⎛⎭⎪⎫-∞,-22∪⎝ ⎛⎭⎪⎫0,22,ƒ(x )单调递增;ƒ′(x )<0的解集为⎝ ⎛⎭⎪⎫-22,0∪⎝ ⎛⎭⎪⎫22,+∞,ƒ(x )单调递减. 应选D.法二:当x =1时,y =2,所以排除A ,B 选项.当x =0时,y =2,而当x =12时,y =-116+14+2=2316>2,所以排除C 选项.应选D. 答案:D 2.函数f (x )=⎝⎛⎭⎪⎫21+e x -1cos x 的图象的大致形状是( )解析:∵f (x )=⎝⎛⎭⎪⎫21+e x -1cos x ,∴f (-x )=⎝ ⎛⎭⎪⎫21+e -x -1cos(-x )=-⎝ ⎛⎭⎪⎫21+e x -1cosx =-f (x ),∴函数f (x )为奇函数,其图象关于原点对称,可排除选项A ,C ,又当x ∈⎝⎛⎭⎪⎫0,π2时,e x >e 0=1,21+ex -1<0,cos x >0,∴f (x )<0,可排除选项D ,应选B.答案:B3.(2018·某某调研)函数f (x )的图象如下图,那么f (x )的解析式可以是( )A .f (x )=ln|x |xB .f (x )=e xxC .f (x )=1x2-1D .f (x )=x -1x解析:由函数图象可知,函数f (xf (x )=x -1x,那么当x →+∞时,f (x )→+∞,排除D ,应选A.答案:A函数的性质及应用授课提示:对应学生用书第6页[悟通——方法结论]1.判断函数单调性的一般规律对于选择、填空题,假设能画出图象,一般用数形结合法;而对于由基本初等函数通过加、减运算或复合运算而成的函数常转化为基本初等函数单调性的判断问题;对于解析式为分式、指数函数式、对数函数式等较复杂的函数,用导数法;对于抽象函数,一般用定义法.2.函数的奇偶性(1)确定函数的奇偶性,务必先判断函数的定义域是否关于原点对称.(2)奇函数的图象关于原点对称,偶函数的图象关于y轴对称.3.记住几个周期性结论(1)假设函数f(x)满足f(x+a)=-f(x)(a>0),那么f(x)为周期函数,且2a是它的一个周期.(2)假设函数f(x)满足f(x+a)=1f(x)(a>0),那么f(x)为周期函数,且2a是它的一个周期.(1)(2017·高考全国卷Ⅱ)函数f(x)=ln(x2-2x-8)的单调递增区间是( )A.(-∞,-2) B.(-∞,1)C.(1,+∞)D.(4,+∞)解析:由x2-2x-8>0,得x>4或x<-2.因此,函数f(x)=ln(x2-2x-8)的定义域是(-∞,-2)∪(4,+∞).注意到函数y=x2-2x-8在(4,+∞)上单调递增,由复合函数的单调性知,f(x)=ln(x2-2x-8)的单调递增区间是(4,+∞).答案:D(2)(2017·高考全国卷Ⅰ)函数f(x)在(-∞,+∞)单调递减,且为奇函数.假设f(1)=-1,那么满足-1≤f(x-2)≤1的x的取值X围是( )A.[-2,2] B.[-1,1]C.[0,4] D.[1,3]解析:∵f(x)为奇函数,∴f(-x)=-f(x).∵f(1)=-1,∴f(-1)=-f(1)=1.故由-1≤f(x-2)≤1,得f(1)≤f(x-2)≤f(-1).又f(x)在(-∞,+∞)单调递减,∴-1≤x-2≤1,∴1≤x≤3.答案:D(3)(2018·高考全国卷Ⅲ)函数ƒ(x )=ln(1+x 2-x )+1,ƒ(a )=4,那么ƒ(-a )=________.解析:∵ƒ(x )+ƒ(-x )=ln(1+x 2-x )+1+ln(1+x 2+x )+1=ln(1+x 2-x 2)+2=2,∴ƒ(a )+ƒ(-a )=2,∴ƒ(-a )=-2. 答案:-21.掌握判断函数单调性的常用方法数形结合法、结论法(“增+增〞得增、“减+减〞得减及复合函数的“同增异减〞)、定义法和导数法.2.熟知函数奇偶性的3个特点(1)奇函数的图象关于原点对称,偶函数的图象关于y 轴对称. (2)确定函数的奇偶性,务必先判断函数的定义域是否关于原点对称. (3)对于偶函数而言,有f (-x )=f (x )=f (|x |).3.周期性:利用周期性可以转化函数的解析式、图象和性质,把不在区间上的问题,转化到区间上求解.4.注意数形结合思想的应用.[练通——即学即用]1.(2018·某某模拟)以下函数中,既是奇函数又在(0,+∞)上单调递增的是( ) A .y =e x+e -xB .y =ln(|x |+1)C .y =sin x |x |D .y =x -1x解析:选项A 、B 显然是偶函数,排除;选项C 是奇函数,但在(0,+∞)上不是单调递增函数,不符合题意;选项D 中,y =x -1x 是奇函数,且y =x 和y =-1x在(0,+∞)上均为增函数,故y =x -1x在(0,+∞)上为增函数,所以选项D 正确.答案:D2.(2018·某某八中摸底)函数y =f (x )在区间[0,2]上单调递增,且函数f (x +2)是偶函数,那么以下结论成立的是( )A .f (1)<f ⎝ ⎛⎭⎪⎫52<f ⎝ ⎛⎭⎪⎫72B .f ⎝ ⎛⎭⎪⎫72<f (1)<f ⎝ ⎛⎭⎪⎫52C .f ⎝ ⎛⎭⎪⎫72<f ⎝ ⎛⎭⎪⎫52<f (1)D .f ⎝ ⎛⎭⎪⎫52<f (1)<f ⎝ ⎛⎭⎪⎫72 解析:因为函数f (x +2)是偶函数, 所以f (x +2)=f (-x +2), 即函数f (x )的图象关于x =2对称. 又因为函数y =f (x )在[0,2]上单调递增, 所以函数y =f (x )在区间[2,4]上单调递减. 因为f (1)=f (3),72>3>52,所以f ⎝ ⎛⎭⎪⎫72<f (3)<f ⎝ ⎛⎭⎪⎫52, 即f ⎝ ⎛⎭⎪⎫72<f (1)<f ⎝ ⎛⎭⎪⎫52. 答案:B授课提示:对应学生用书第116页一、选择题1.以下四个函数: ①y =3-x ;②y =2x -1(x >0);③y =x 2+2x -10;④y =⎩⎪⎨⎪⎧x (x ≤0),1x(x >0).其中定义域与值域相同的函数的个数为( )A .1B .2C .3D .4解析:①y =3-x 的定义域和值域均为R ,②y =2x -1(x >0)的定义域为(0,+∞),值域为⎝ ⎛⎭⎪⎫12,+∞,③y =x 2+2x -10的定义域为R ,值域为[-11,+∞),④y =⎩⎪⎨⎪⎧x (x ≤0),1x(x >0)的定义域和值域均为R ,所以定义域与值域相同的函数是①④,共有2个,应选B.答案:B2.设定义在R 上的奇函数y =f (x )满足对任意的x ∈R ,都有f (x )=f (1-x ),且当x ∈[0,12]时,f (x )=(x +1),那么f (3)+f (-32)的值为( )A .0B .1C .-1D .2解析:由于函数f (x )是奇函数,所以f (x )=f (1-x )⇒f (x )=-f (x +1)⇒f (x +1)=-f (x )⇒f (x +2)=f (x ),所以f (3)=f (1)=f (1-1)=f (0)=0,f (-32)=f (12)=32f (3)+f (-32)=-1.答案:C3.函数f (x )=1+ln ()x 2+2的图象大致是( )解析:因为f (0)=1+ln 2>0,即函数f (x )的图象过点(0,ln 2),所以排除A 、B 、C ,选D.答案:D4.(2017·高考某某卷)奇函数f (x )在R 上是增函数,g (x )=xf (x ).假设a =g (-log 2 5.1),b =g (2),c =g (3),那么a ,b ,c 的大小关系为( )A .a <b <cB .c <b <aC .b <a <cD .b <c <a解析:奇函数f (x )在R 上是增函数,当x >0时,f (x )>f (0)=0,当x 1>x 2>0时,f (x 1)>f (x 2)>0,∴x 1f (x 1)>x 2f (x 2),∴g (x )在(0,+∞)上单调递增,且g (x )=xf (x )是偶函数,∴a =g (-log 2 5.1)=g (log 2 5.1).易知2<log 2 5.1<3,1<2<2,由g (x )在(0,+∞)上单调递增,得g (2)<g (log 2 5.1)<g (3),∴b <a <c ,应选C.答案:C5.(2018·某某模拟)函数f (x )=e xx 的图象大致为( )解析:由f (x )=e x x ,可得f ′(x )=x e x -e x x 2=(x -1)e x x2, 那么当x ∈(-∞,0)和x ∈(0,1)时,f ′(x )<0,f (x )单调递减;当x ∈(1,+∞)时,f ′(x )>0,f (x )单调递增.又当x <0时,f (x )<0,应选B.答案:B6.定义在R 上的奇函数f (x )满足f (x -4)=-f (x ),且在区间[0,2]上是增函数,那么( )A .f (-25)<f (11)<f (80)B .f (80)<f (11)<f (-25)C .f (11)<f (80)<f (-25)D .f (-25)<f (80)<f (11)解析:因为f (x )满足f (x -4)=-f (x ),所以f (x -8)=f (x ),所以函数f (x )是以8为周期的周期函数,那么f (-25)=f (-1),f (80)=f (0),f (11)=f (3).由f (x )是定义在R 上的奇函数,且满足f (x -4)=-f (x ),得f (11)=f (3)=-f (-1)=f (1).因为f (x )在区间[0,2]上是增函数,f (x )在R 上是奇函数,所以f (x )在区间[-2,2]上是增函数,所以f (-1)<f (0)<f (1),即f (-25)<f (80)<f (11).答案:D7.(2018·某某模拟)函数f (x )=ex -1+4x -4,g (x )=ln x -1x ,假设f (x 1)=g (x 2)=0,那么( )A .0<g (x 1)<f (x 2)B .f (x 2)<g (x 1)<0C .f (x 2)<0<g (x 1)D .g (x 1)<0<f (x 2) 解析:易知f (x )=e x -1+4x -4,g (x )=ln x -1x在各自的定义域内是增函数,而f (0)=e -1+0-4=1e -4<0,f (1)=e 0+4×1-4=1>0,g (1)=ln 1-11=-1<0,g (2)=ln 2-12=ln 2e f (x 1)=g (x 2)=0,所以0<x 1<1,1<x 2<2,所以f (x 2)>f (1)>0,g (x 1)<g (1)<0,故g (x 1)<0<f (x 2).答案:D8.函数f (x )=(x 2-2x )·sin(x -1)+x +1在[-1,3]上的最大值为M ,最小值为m ,那么M +m =( )A .4B .2C .1D .0 解析:f (x )=[(x -1)2-1]sin(x -1)+x -1+2,令t =x -1,g (t)=(t 2-1)sin t +t ,那么y =f (x )=g (t)+2,t ∈[-2,2].显然M =g (t)max +2,m =g (t)min +2.又g (t)为奇函数,那么g (t)max +g (t)min =0,所以M +m =4,应选A.答案:A9.g (x )是定义在R 上的奇函数,且当x <0时,g (x )=-ln(1-x ),函数f (x )=⎩⎪⎨⎪⎧ x 3,x ≤0,g (x ),x >0,假设f (2-x 2)>f (x ),那么x 的取值X 围是( ) A .(-∞,-2)∪(1,+∞)B .(-∞,1)∪(2,+∞)C .(-2,1)D .(1,2)解析:因为g (x )是定义在R 上的奇函数,且当x <0时,g (x )=-ln(1-x ),所以当x >0时,-x <0,g (-x )=-ln(1+x ),即当x >0时,g (x )=ln(1+x ),那么函数f (x )=⎩⎪⎨⎪⎧ x 3,x ≤0,ln (1+x ),x >0,作出函数f (x )的图象,如图:由图象可知f (x )=⎩⎪⎨⎪⎧ x 3,x ≤0,ln (1+x ),x >0在(-∞,+∞)上单调递增. 因为f (2-x 2)>f (x ),所以2-x 2>x ,解得-2<x <1,应选C.答案:C10.(2018·高考全国卷Ⅱ)ƒ(x )是定义域为(-∞,+∞)的奇函数,满足ƒ(1-x )=ƒ(1+x ).假设ƒ(1)=2,那么ƒ(1)+ƒ(2)+ƒ(3)+…+ƒ(50)=( )A .-50B .0C .2D .50解析:∵ƒ(x )是奇函数,∴ƒ(-x )=-ƒ(x ),∴ƒ(1-x )=-ƒ(x -1).由ƒ(1-x )=ƒ(1+x ),∴-ƒ(x -1)=ƒ(x +1),∴ƒ(x +2)=-ƒ(x ),∴ƒ(x +4)=-ƒ(x +2)=-[-ƒ(x )]=ƒ(x ),∴函数ƒ(x )是周期为4的周期函数.由ƒ(x )为奇函数得ƒ(0)=0.又∵ƒ(1-x )=ƒ(1+x ),∴ƒ(x )的图象关于直线x =1对称,∴ƒ(2)=ƒ(0)=0,∴ƒ(-2)=0.又ƒ(1)=2,∴ƒ(-1)=-2,∴ƒ(1)+ƒ(2)+ƒ(3)+ƒ(4)=ƒ(1)+ƒ(2)+ƒ(-1)+ƒ(0)=2+0-2+0=0,∴ƒ(1)+ƒ(2)+ƒ(3)+ƒ(4)+…+ƒ(49)+ƒ(50)=0×12+ƒ(49)+ƒ(50)=ƒ(1)+ƒ(2)=2+0=2.应选C.答案:C11.定义在R 上的函数f (x )对任意0<x 2<x 1都有f (x 1)-f (x 2)x 1-x 2<1,且函数y =f (x )的图象关于原点对称,假设f (2)=2,那么不等式f (x )-x >0的解集是( )A .(-2,0)∪(0,2)B .(-∞,-2)∪(2,+∞)C .(-∞,-2)∪(0,2)D .(-2,0)∪(2,+∞) 解析:由f (x 1)-f (x 2)x 1-x 2<1, 可得[f (x 1)-x 1]-[f (x 2)-x 2]x 1-x 2<0.令F (x )=f (x )-x ,由题意知F (x )在(-∞,0),(0,+∞)上是减函数,又是奇函数,且F (2)=0,F (-2)=0,所以结合图象,令F (x )>0,得x <-2或0<x <2,应选C.答案:C12.(2018·某某三市联考)函数f (x )=e |x |,函数g (x )=⎩⎪⎨⎪⎧ e x ,x ≤4,4e 5-x ,x >4对任意的x ∈[1,m ](m >1),都有f (x -2)≤g (x ),那么m 的取值X 围是( )A .(1,2+ln 2) B.⎝ ⎛⎭⎪⎫2,72+ln 2 C .(ln 2,2] D.⎝ ⎛⎦⎥⎤1,72+ln 2 解析:作出函数y 1=e |x -2|和y =g (x )的图象,如下图,由图可知当x=1时,y 1=g (1),又当x =4时,y 1=e 2<g (4)=4e ,当x >4时,由ex -2≤4e 5-x ,得e 2x -7≤4,即2x -7≤ln 4,解得x ≤72+ln 2,又m >1,∴1<m ≤72+ln 2.答案:D二、填空题13.设f (x )是周期为2的奇函数,当0≤x ≤1时,f (x )=2x (1-x ),那么f ⎝ ⎛⎭⎪⎫-52=________.解析:由题意得f ⎝ ⎛⎭⎪⎫-52=f ⎝ ⎛⎭⎪⎫2-52=f ⎝ ⎛⎭⎪⎫-12=-f ⎝ ⎛⎭⎪⎫12=-12. 答案:-1214.假设函数f (x )=x (x -1)(x +a )为奇函数,那么a =________.解析:法一:因为函数f (x )=x (x -1)(x +a )为奇函数,所以f (-x )=-f (x )对x ∈R 恒成立,所以-x ·(-x -1)(-x +a )=-x (x -1)(x +a )对x ∈R 恒成立,所以x (a -1)=0对x ∈R 恒成立,所以a =1.法二:因为函数f (x )=x (x -1)(x +a )为奇函数,所以f (-1)=-f (1),所以-1×(-1-1)×(-1+a )=-1×(1-1)×(1+a ),解得a =1.答案:115.函数f (x )=⎩⎪⎨⎪⎧ (1-2a )x +3a ,x <1,2x -1,x ≥1的值域为R ,那么实数a 的取值X 围是________.解析: 当x ≥1时,f (x )=2x -1≥1,∵函数f (x )=⎩⎪⎨⎪⎧ (1-2a )x +3a ,x <1,2x -1,x ≥1的值域为R ,∴当x <1时,(1-2a )x +3a 必须取遍(-∞,1)内的所有实数,那么⎩⎪⎨⎪⎧ 1-2a >0,1-2a +3a ≥1,解得0≤a <12. 答案:⎣⎢⎡⎭⎪⎫0,12 16.如图放置的边长为1的正方形PABC 沿x 轴滚动,点B 恰好经过原点,设顶点P (x ,y )的轨迹方程是y =f (x ),那么对函数y =f (x )有以下判断:①函数y =f (x )是偶函数;②对任意的x ∈R ,都有f (x +2)=f (x -2);③函数y =f (x )在区间[2,3]上单调递减;④函数y =f (x )在区间[4,6]上是减函数.其中判断正确的序号是________.解析:如图,从函数y =f (x )的图象可以判断出,图象关于y 轴对称,每4个单位图象重复出现一次,在区间[2,3]上,随x 增大,图象是往上的,在区间[4,6]上图象是往下的,所以①②④正确,③错误.答案:①②④。
高考数学总复习 第三篇 三角函数、解三角形 第1讲 导数及导数的计算课件 理

=
( ).
A.-4
B.-2
C.2
D.4
解析 f′(x)=4ax3+2bx,又f′(1)=2,∴4a+2b=2,
∴f′(-1)=-4a-2b=-(4a+2b)=-2.
答案 B
2.下列求导运算正确的是
( ).
A.x+1x′=1+x12 C.(3x)′=3xlog3e
B.(log2x)′=xln1 2 D.(x2cos x)′=-2sin x
【真题探究】► (本小题满分 12 分)(2012·安徽)设定义在(0, +∞)上的函数 f(x)=ax+a1x+b(a>0). (1)求 f(x)的最小值; (2)若曲线 y=f(x)在点(1,f(1))处的切线方程为 y=32x,求 a, b 的值.
[教你审题] 一审 抓住定义域(0,+∞)与a>0这一条件; 二审 利用基本不等式求最小值; 三审 由f(1)=32与f′(1)=32联立求解.
(2)法一 y′=(x+1)′(x+2)(x+3)+(x+1)[(x+2)·(x+3)]′ =(x+2)(x+3)+(x+1)(x+2)+(x+1)(x+3)=3x2+12x+ 11. 法二 y=(x2+3x+2)(x+3)=x3+6x2+11x+6, ∴y′=3x2+12x+11.
考向二 求复合函数的导数 【例2】►求下列复合函数的导数:
2.基本初等函数的导数公式
若f(x)=c,则f′(x)=0;
若f(x)=xn(n∈R),则f′(x)= nxn-1 ;
若f(x)=sin x,则f′(x)= cos x ; 若f(x)=cos x,则f′(x)= -sin x ;
若f(x)=ax,则f′(x)= axln a (a>0且a≠1);
高考数学专题:导数大题专练含答案
高考数学专题:导数大题专练含答案一、解答题1.已知函数()ln ex f x x =,()2ln 1g x a x x =-+,e 是自然对数的底数.(1)求函数()f x 的最小值;(2)若()0g x ≤在()0,∞+上恒成立,求实数a 的值;(3)求证:2022202320232023e 20222022⎛⎫⎛⎫<< ⎪⎪⎝⎭⎝⎭.2.已知函数()()e sin x f x rx r *=⋅∈N ,其中e 为自然对数的底数.(1)若1r =,求函数()y f x =的单调区间;(2)证明:对于任意的正实数M ,总存在大于M 的实数a ,b ,使得当[,]x a b ∈时,|()|1f x ≤.3.已知:()e xf x mx =+.(1)当1m =时,求曲线()y f x =的斜率为2的切线方程;(2)当0x ≥时,()2213222m f x x ≥+-成立,求实数m 的范围4.设函数()1e ln 1xa f x a x -=--,其中0a > (1)当1a =时,讨论()f x 单调性;(2)证明:()f x 有唯一极值点0x ,且()00f x ≥.5.已知函数()ln 1f x x ax =++,R a ∈,函数()()21e ln 2xg x x x x x x =-++-,)2e ,x -∈+∞⎡⎣.(1)试讨论函数()f x 的单调性;(2)若0x 是函数()g x 的最小值点,且函数()()h x xf x =在0x x =处的切线斜率为2,试求a 的值.6.已知函数()()32131.3f x x a x x =-++ (1)若1a =,求函数()f x 的单调区间; (2)证明:函数()2y f x a =-至多有一个零点. 7.已知函数()ln xf x x =, ()()1g x k x =-. (1)证明: R k ∀∈,直线y g x 都不是曲线()y f x =的切线;(2)若2e,e x ⎡⎤∀∈⎣⎦,使()()f x g x ≤恒成立,求实数k 的取值范围.8.2020年9月22日,中国政府在第七十五届联合国大会上提出:“中国将提高国家自主贡献力度,采取更加有力的政策和措施,二氧化碳排放力争于2030年前达到峰值,努力争取2060年前实现碳中和.”为了进一步了解普通大众对“碳中和”及相关举措的认识,某机构进行了一次问卷调查,部分结果如下:(1)根据所给数据,完成下面的22⨯列联表,并根据列联表,判断是否有95%的把握认为“是否了解‘碳中和’及相关措施”与“学生”身份有关?附:()()()()()22n ad bc K a b c d a c b d -=++++,n a b c d =+++.(2)经调查后,有关部门决定加大力度宣传“碳中和”及相关措施以便让节能减排的想法深入人心.经过一段时间后,计划先随机从社会上选10人进行调查,再根据检验结果决定后续的相关举措.设宣传后不了解“碳中和”的人概率都为()01p p <<,每个被调查的人之间相互独立.①记10人中恰有3人不了解“碳中和”的概率为()f p ,求()f p 的最大值点0p ; ②现对以上的10人进行有奖答题,以①中确定的0p 作为答错的概率p 的值.已知回答正确给价值a 元的礼品,回答错误给价值b 元的礼品,要准备的礼品大致为多少元?(用a ,b 表示即可)9.已知函数()321623f x x ax x =+-+在2x =处取得极值.(1)求()f x 的单调区间;(2)求()f x 在[]4,3-上的最小值和最大值.10.已知函数()ln 2f x x x ax =++在点()()1,1f 处的切线与直线220x y 相互垂直.(1)求实数a 的值;(2)求()f x 的单调区间和极值.【参考答案】一、解答题 1.(1)1- (2)2(3)证明见解析 【解析】 【分析】(1)根据导数判断函数()f x 的单调性,进而可得最值;(2)将不等式恒成立转化为求函数()g x 的最大值问题,可得参数取值范围; (3)根据函数()f x 与()g x 的单调性直接可证不等式. (1)函数()ln ln ex f x x x x x ==-的定义域为()0,∞+,()ln f x x '=,当()0,1x ∈时,()0f x '<,()1,x ∈+∞时,()0f x '>, 故()f x 在()0,1上单调递减,在()1,+∞上单调递增, 所以()()min 11f x f ==-. (2)函数()2ln 1g x a x x =-+,0x >,则()()2220a a x g x x x x x-'=-=>,当0a ≤时,()0g x '<,()g x 在()0,∞+上单调递减, 此时存在()00,1x ∈,使得()()010g x g >=,与题设矛盾,当0a >时,x ⎛∈ ⎝时,()0g x '>,x ⎫∈+∞⎪⎪⎭时,()0g x '<,故()g x 在⎛ ⎝上单调递增,在⎫+∞⎪⎪⎭上单调递减,所以()max 1ln 12222a a a ag x g a ==+=-+,要使()0g x ≤在()0,∞+恒成立, 则()max 0g x ≤,即ln 10222aa a -+≤,又由(1)知()ln 1f x x x x =-≥-即ln 10x x x -+≥,(当且仅当1x =时,等号成立).令2a x =有ln 10222a a a -+≥,故ln 1022a a -+=且12a =, 所以2a =. (3)由(1)知()l n 1l n x f x x x x ex ==-≥-(当且仅当1x =时等号成立).令()10t x t t +=>,则1x >,故111ln 1t t t t t t +++->-,即11ln 1tt t ++⎛⎫> ⎪⎝⎭,所以11e tt t ++⎛⎫> ⎪⎝⎭令2022t =,则20232023e 2022⎛⎫> ⎪⎝⎭;由(2)知22ln 1x x ≤-在()0,∞+上恒成立, 所以22ln 1x x ≤-(当且仅当1x =时等号成立).令()210m x m m +=>,则21x >,故11ln 1m m m m ++<-,即1ln 1mm m +⎛⎫< ⎪⎝⎭, 所以1e mm m +⎛⎫< ⎪⎝⎭.令2022m =,则20222023e 2022⎛⎫< ⎪⎝⎭综上,2022202320232023e 20222022⎛⎫⎛⎫<< ⎪⎪⎝⎭⎝⎭.【点睛】导函数中常用的两种常用的转化方法:一是利用导数研究含参函数的单调性,常化为不等式恒成立问题.注意分类讨论与数形结合思想的应用;二是函数的零点、不等式证明常转化为函数的单调性、极(最)值问题处理.2.(1)增区间为32,2,44k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦ 减区间为52,2,44k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦(2)证明过程见解析. 【解析】 【分析】(1)对函数求导,利用辅助角公式合并为同名三角函数,利用单调增减区间代入公式求解即可.(2)将绝对值不等式转化为11sin e e xxrx ⎛⎫⎛⎫-≤≤ ⎪ ⎪⎝⎭⎝⎭,移向构造新函数,利用导数判定单调性,借助零点定理和隐零点证明新构造函数恒正,再结合三角函数的特有的周期特点寻找M 即可. (1)()e (sin cos )sin 4x x f x x x x π⎛⎫'=+=+ ⎪⎝⎭令22242k x k πππππ-≤+≤+,得32,244x k k ππππ⎡⎤∈-+⎢⎥⎣⎦令322242k x k ππππ+≤+≤π+,得24x k ππ⎡∈+⎢⎣,524k ππ⎤+⎥⎦当32,244x k k ππππ⎡⎤∈-+⎢⎥⎣⎦时, ()0f x '>,()f x 单调递增 当24x k ππ⎡∈+⎢⎣,524k ππ⎤+⎥⎦时, ()0,()f x f x '< 单调递減 综上() f x 单调递增区间为32,2,44k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦单调递减区间为 52,2,44k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦(2)要证|()|1f x ≤,即证e sin 1xrx ⋅≤,即证11sin =e e xx rx ⎛⎫≤ ⎪⎝⎭即证 11sin e e xxrx ⎛⎫⎛⎫-≤≤ ⎪ ⎪⎝⎭⎝⎭在[,]x a b ∈时成立即可,[,]x a b ∈时,1sin 0e 1sin 0e xxrx rx ⎧⎛⎫-≤⎪ ⎪⎪⎝⎭⎨⎛⎫⎪+≥ ⎪⎪⎝⎭⎩. 令1()sin e x h x rx ⎛⎫=- ⎪⎝⎭, 1()cos e xh x r rx ⎛⎫'=+ ⎪⎝⎭当222,k k x rr πππ⎛⎫+ ⎪∈⎪ ⎪⎝⎭时, cos 0,r rx > 所以1()cos 0,e xh x r rx ⎛⎫'=+> ⎪⎝⎭所以()h x 单调递增,2210,e k rk h rππ⎛⎫⎛⎫=-< ⎪ ⎪⎝⎭⎝⎭2221210(0)e k r k h k r ππππ+⎛⎫⎛⎫+ ⎪⎪=±>> ⎪⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭0(2)22,k k x rrπππ+∴∃∈ , 满足()00h x =由单调性可知02,k x x r π⎛⎫∈ ⎪⎝⎭, 满足()0()0h x h x <= 又因为当021,,sin 0,0,xk x x rx r e π⎛⎫⎛⎫∈>≥ ⎪ ⎪⎝⎭⎝⎭ 1sin 0xrx e ⎛⎫∴+≥ ⎪⎝⎭,所以1sin 0e 1sin 0e xxrx rx ⎧⎛⎫-≤⎪ ⎪⎪⎝⎭⎨⎛⎫⎪+≥ ⎪⎪⎝⎭⎩能够同时满足, 对于任意的正实数M ,总存在正整数k ,且满足2Mr k π>时, 使得 2k M r π>成立, 所以不妨取 02,,2k Mr a k b x rππ⎛⎫=>= ⎪⎝⎭ 则,a b M >且[,]x a b ∈时,1sin 01sin 0xxrx e rx e ⎧⎛⎫-≤⎪ ⎪⎪⎝⎭⎨⎛⎫⎪+≥ ⎪⎪⎝⎭⎩, 故对于任意的正实数M ,总存在大于M 的实数,a b ,使得当[,]x a b ∈ 时,|()|1f x ≤. 3.(1)21y x =+(2)ln 3m ⎡∈-⎣【解析】 【分析】(1)利用导数的几何意义直接可得切线方程;(2)()2213222m f x x ≥+-恒成立,可转化为()22130222xm g x e mx x =+--+≥恒成立,利用导数判断函数()g x 的单调性与最值情况. (1)当1m =时,()e xf x x =+, 则()e 1xf x '=+,设切点为()()00,x f x ,故()00e 12xk f x '==+=,解得00x =,故()000e e 01x f x x =+=+=,即切点坐标为()0,1,所以切线方程()120y x -=-,即21y x =+; (2)当0x ≥时,()2213222m f x x ≥+-成立,即2213e 0222xm mx x +--+≥恒成立,设()2213e 222xm g x mx x =+--+,()e x g x x m '=-+, ()e 1x g x ''=-,因为0x ≥,故()e 10xg x ''=-≥恒成立, 则()e xg x x m '=-+在()0,∞+上单调递增,所以()()01g x g m ''≥=+,当1m ≥-时,()()010g x g m ''≥=+≥恒成立, 故()g x 在()0,∞+上单调递增,即()()2235012222m m g x g ≥=-+=-,所以25022m -≥,解得m ≤≤故1m -≤≤当1m <-时,()010g m '=+<,()e 2m g m m -'-=+,设()e 2mh m m -=+,1m <-,()e 20m h m -'=-+<恒成立,则()h m 在(),1-∞-上单调递减,所以()()120h m h e >-=->,即()e 20mg m m -'-=+>,所以存在()00,x m ∈-,使()00g x '=,即000xe x m -+=,所以()g x 在()00,x 上单调递减,在()0,x +∞上单调递增, 故()()02200013e 222x m g x g x mx x ≥=+--+()()00000222000011313e e e e e 022222x x x x x x x x x =+----+=-++≥,解得0ln 3x ≤,即00ln 3x ≤≤, 设()e xx m x ϕ==-,0ln3x ≤≤,()1e 0x x ϕ'=-≤恒成立,故()x ϕ在()0,3上单调递减, 故()()3ln33x ϕϕ≥=-, 即ln33m ≥-, 所以ln331m -≤<-,综上所述,ln 3m ⎡∈-⎣.【点睛】导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点,对导数的应用的考查主要从以下几个角度进行: (1)考查导数的几何意义,往往与解析几何、微积分相联系. (2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数. (3)利用导数求函数的最值(极值),解决生活中的优化问题. (4)考查数形结合思想的应用.4.(1)()f x 在0,1上单调递减,在()1,+∞上单调递增; (2)证明见解析. 【解析】 【分析】(1)首先确定()f x 定义域,再应用二阶导数的符号判断f x 的单调性,进而分区间判断f x 的符号,即可确定()f x 的单调性.(2)求()f x 的二阶导,根据其符号知f x 在()0,+∞上单调递增,令0f x 得到ln 1x x a+=,构造()ln 1x h x x a=+-结合其单调性,注意利用导数研究()ln 1x x x ϕ=-+的符号,再用放缩法判断1a h a ⎛⎫⎪+⎝⎭、()1ea h +的符号,即可判断零点0x 的唯一性,进而得到00011ln ln x x a x -==-,结合基本不等式求证()00f x ≥. (1)当1a =时,()1e ln 1xf x x -=--,定义域为()0,+∞,则()11e x f x x -'=-,()121e 0xf x x -+'=>', 所以f x 在()0,+∞上单调递增,又()10f '=, 当01x <<时,0f x ,所以()f x 在区间0,1上单调递减; 当1x >时,0f x,所以()f x 在区间()1,+∞上单调递增.综上,()f x 在0,1上单调递减,在()1,+∞上单调递增. (2)由题意,()11ex af x x -='-,()1211e 0x af x a x-=⋅+'>',则f x 在()0,+∞上单调递增,至多有一个零点,令()ln 1x x x ϕ=-+,其中1x >,则()111xx x xϕ-'=-=, 当()0,1x ∈时,()0ϕ'>x ,()ϕx 单调递增. 当()1,x ∈+∞时,()0ϕ'<x ,()ϕx 单调递减,所以()()10x ϕϕ≤=,即ln 10x x -+≤,于是ln 1≤-x x , 令0f x,则e e x a x ⋅=,两边取自然对数可得ln 1xx a+=,令()ln 1x h x x a=+-,则()h x 在()0,+∞上单调递增. 故11ln 1111011111a a a h a a a a a ⎛⎫=+-≤-+-=-<⎪+++++⎝⎭,又()11111e eln ee 10a a a a h a a a++++=+⋅-=+>, 所以()h x 在()0,+∞上有唯一零点0x ,则f x 有唯一零点0x ,即()f x 有唯一极值点0x .下证()00f x ≥: 因为()01001e0x af x x -'=-=,所以0101e x a x -=,可得00011ln ln x x a x -==-,所以()010000e ln 11120x ax a f x a x x a -=--=+--≥=,当且仅当0x a =时等号成立,综上,()f x 有唯一极值点0x 且()00f x ≥,得证. 【点睛】关键点点睛:第二问,利用二阶导数研究一阶导数的单调性,根据零点所得的等量关系构造()ln 1x h x x a=+-,结合单调性、零点存在性定理判断f x 零点的唯一性,进而利用基本不等式证明不等式. 5.(1)答案见解析; (2)12a =. 【解析】 【分析】(1)由题可得()11ax f x a xx+'=+=,讨论0a ≥,0a <即得; (2)由题可得()g x '是一个单调递增的函数,利用零点存在定理可得()2e ,1t -∃∈,使得()0g t '=,进而可得()0000111ln e e 1ln x x x x ⎛⎫+=+ ⎪⎝⎭,利用导数可得001e x x =,结合条件可得00ln 20x ax +=,即求. (1)()11ax f x a x x+'=+=,0x >, 当0a ≥时,函数()f x 在定义域()0,∞+上单调递增; 当0a <时,函数的单调性如表格所示:由题可得()()()22121e 1ln 2e ln 1x xg x x x x x x x x '=-++-++-=++-,0x >,则()g x '是一个单调递增的函数, 当2e x -=时,()()2242e e e e e 30g ----'=+-<,当1x =时,()12e 10g '=->,故()2e ,1t -∃∈,使得()0g t '=,且所以0x t =,00000e ln 10g x x x x '=++-=,整理该式有()02000e 1ln x xx x +=-,()000001111e ln xx x x x +=+, ∴()000111ln ee1ln x x x x ⎛⎫+=+ ⎪⎝⎭令()()21ln ,e m x x x x -=+>,则()2ln 0m x x '=+>,所以函数在()2e ,-+∞上单调递增,故()000111ln ee1ln x x x x ⎛⎫+=+ ⎪⎝⎭的解满足001e xx =;又()2ln h x x x ax x =++,()1ln 21h x x ax '=+++,()0002ln 22h x x ax '=++=,所以00ln 20x ax +=,由01e xx =知,0020x ax -+=,故12a =.6.(1)()f x 在(,1)-∞-,(3,)+∞上单调递增,在(1,3)-上单调递减 (2)证明见解析 【解析】 【分析】(1)直接求导后判断单调性即可;(2)先变形得到323033x a x x -=++,构造函数,求导后说明单调性即可证明.(1)当1a =时,()()321313f x x x x =-++,2()23f x x x '=--. 令()0f x '=,解得1x =-或3x =,当()(),13,x ∞∞∈--⋃+时,()0f x '>;当(1,3)x ∈-时,()0f x '<, 故()f x 在(,1)-∞-,(3,)+∞上单调递增,在(1,3)-上单调递减.(2)()321()2333y f x a x a x x =-=-++,由于2330x x ++>,所以()20f x a -=等价于3230.33x a x x -=++设()32333x g x a x x =-++, 则()g x '()()222269033x x x xx ++=++,当且仅当0x =或3x =-时,()0g x '=,所以()g x 在(,)-∞+∞上单调递增,故()g x 至多有一个零点,从而()2y f x a =-至多有一个零点. 7.(1)证明见解析 (2)e ,e 1⎡⎫+∞⎪⎢-⎣⎭【解析】 【分析】(1)求出()f x 的导数,设出切点,可得切线的斜率,根据斜率相等,进而构造函数()=ln 1h x x x +-,求出导数和单调区间,即可证明;(2)由2e,e x ⎡⎤∀∈⎣⎦,使()()f x g x ≤恒成立转化为()maxln 1x k x x ⎡⎤≥⎢⎥⎢⎥⎣⎦-2e,e x ⎡⎤∈⎣⎦,再 利用导数法求出()()n 1l xx x x ϕ-=在2e,e ⎡⎤⎣⎦的最大值即可求解.(1)由题意可知,()f x 的定义域为()()0,11,+∞,由()ln x f x x=,得()()2ln 1ln x f x x -'=, 直线y g x 过定点()1,0, 若直线yg x 与曲线()y f x =相切于点()00000,01ln x x x x x ⎛⎫>≠ ⎪⎝⎭且,则()002000ln 1ln 1ln x x x k x x --==-,即00ln 10x x +-=① 设()()=ln 1,0h x x x x +-∈+∞,则()1=10h x x'+>, 所以()h x 在()0+∞上单调递增,又()1ln1110h =+-=, 从而当且仅当01x =时,①成立,这与01x ≠矛盾. 所以,R k ∀∈,直线y g x 都不是曲线()y f x =的切线. (2)由()()f x g x ≤,得()1ln xxk x ≤-, 22e e ,0e 11e 1x x ∴≤≤∴<-≤-≤-,()l 1n xk x x -∴≥若2e,e x ⎡⎤∀∈⎣⎦,使()()f x g x ≤恒成立转化为()maxln 1xk x x ⎡⎤≥⎢⎥⎢⎥⎣⎦-,2e,e x ⎡⎤∈⎣⎦即可. 令()()n 1l x x x x ϕ-=,2e,e x ⎡⎤∈⎣⎦,则()()2ln 1ln 1x x x x x ϕ---+'=⎡⎤⎣⎦,令()ln 1t x x x =--+,2e,e x ⎡⎤∈⎣⎦,则()110t x x'=--<, 所以()t x 在2e,e ⎡⎤⎣⎦上是单调递减;所以()()e lne e 1e<0t x t ≤=--+=-,故()0ϕ'<x()ϕx 在2e,e ⎡⎤⎣⎦上是单调递减;当e x =时,()ϕx 取得最大值为()()e ee e 1ln e e 1ϕ==--,即ee 1k ≥-. 所以实数k 的取值范围为e ,e 1⎡⎫+∞⎪⎢-⎣⎭【点睛】解决此题的关键利用导数的几何意义及两点求斜率,再根据同一切线斜率相等即可证明,对于恒成立问题通常采用分离常数法,进而转化为求函数的最值问题,利用导数法即可求解.8.(1)列联表见解析,没有95%的把握认为“是否了解‘碳中和’及相关措施”与“学生”身份有关; (2)①0310p =;②()73a b + 【解析】(1)对满足条件的数据统计加和即可,然后根据给定的2K 计算公式,将计算结果与195%0.05-=所对应的k 值比较大小即可;(2)①利用独立重复试验与二项分布的特点,写出10人中恰有3人不了解“碳中和”的概率为()f p ,再利用导数求出最值点; ②利用独立重复试验的期望公式代入可求出答案. (1)由题中表格数据完成22⨯列联表如下:()22800125250150275800 3.463 3.841275525400400231K ⨯⨯-⨯==≈<⨯⨯⨯.故没有95%的把握认为“是否了解‘碳中和’及相关措施”与“学生”身份有关. (2)①由题得,()()733101f p C p p =-,()0,1p ∈, ∴()()()()()763236321010C 3171C 1310f p p p p p p p p ⎡⎤'=---=--⎣⎦. 令()0f p '=,得310p =,当30,10p ⎛⎫∈ ⎪⎝⎭时,()0f p '>; 当3,110p ⎛⎫∈⎪⎝⎭时,()0f p '<, ∴当30,10p ⎛⎫∈ ⎪⎝⎭时,()f p '单调选增;当3,110p ⎛⎫∈ ⎪⎝⎭时,()f p '单调递减, ∴()f p 的最大值点0310p =. ②本题求要准备的礼品大致为多少元,即求10个人礼品价值X 的数学期望. 由①知答错的概率为310, 则()33101731010E X a b a b ⎡⎤⎛⎫=-+=+ ⎪⎢⎥⎝⎭⎣⎦, 故要准备的礼品大致为73a b +元.9.(1)增区间为(),3-∞-,()2,+∞,减区间为()3,2- (2)()max 312f x =,()min 163f x =-【分析】(1)根据题意得()20f '=,进而得12a =,再根据导数与单调性的关系求解即可;(2)由(1)知[]4,3x ∈-时,()f x 的增区间为[)4,3--,(]2,3,减区间为()3,2-,进而求解()4f -,()3f -,()2f ,()3f 的值即可得答案. (1)解:(1)()226f x x ax '=+-,因为()f x 在2x =处取得极值,所以()24460f a '=+-=,解得12a =. 检验得12a =时,()f x 在2x =处取得极小值,满足条件.所以()26f x x x '=+-,令()0f x '>,解得3x <-或2x >,令()0f x '<,解得32x -<<, 所以()f x 的增区间为(),3-∞-,()2,+∞,减区间为()3,2-; (2)解:令()260f x x x '=+-=,解得3x =-或2x =,由(1)知()f x 的增区间为(),3-∞-,()2,+∞,减区间为()3,2-; 当[]4,3x ∈-时,()f x 的增区间为[)4,3--,(]2,3,减区间为()3,2- 又()()()()321138444642323f -=⨯-+⨯--⨯-+=, ()()()()321131333632322f -=⨯-+⨯--⨯-+=,()321116222622323f =⨯+⨯-⨯+=-,()32115333632322f =⨯+⨯-⨯+=-,所以()max 312f x =,()min 163f x =-. 10.(1)3a =-;(2)增区间为()2e ,+∞,减区间为()20,e ,极小值22e -,无极大值.【解析】 【分析】(1)根据()1112f '⨯=-,代值计算即可求得参数值;(2)根据(1)中所求参数值,求得()f x ',利用导数的正负即可判断函数单调(1)因为()ln 1f x x a '=++,在点()()1,1f 处的切线斜率为()11k f a '==+, 又()f x 在点()()1,1f 处的切线与直线220x y 相互垂直, 所以()1112f '⨯=-,解得3a =-. (2)由(1)得,()ln 2f x x '=-,()0,x ∈+∞, 令()0f x '>,得2e x >,令()0f x '<,得20e x <<,即()f x 的增区间为()2e ,+∞,减区间为()20,e .又()22222e e ln e 3e 22ef =-+=-,所以()f x 在2e x =处取得极小值22e -,无极大值. 【点睛】本题考查导数的几何意义,以及利用导数研究函数的单调性和极值,属综合中档题.。
2023高考数学二轮复习专项训练《导数在解决实际问题中的应用》(含答案)
2023高考数学二轮复习专项训练《导数在解决实际问题中的应用》一、单选题(本大题共8小题,共40分)1.(5分)若z=−1+√3i,则zzz−−1=()A. −1+√3iB. −1−√3iC. −13+√33i D. −13−√33i2.(5分)命题“∀x∈R,∃x∈N,使得n⩾x2+1”的否定形式是()A. ∀x∈R,∃x∈N,使得n<x2+1B. ∀x∈R,∀x∈N,使得n<x2+1C. ∃x∈R,∃x∈N,使得n<x2+1D. ∃x∈R,∀x∈N,使得n<x2+13.(5分)已知函数y=f(x)的周期为2,当x∈[0,2]时,f(x)=(x−1)2,如果g(x)= f(x)−log5|x−1|,则函数的所有零点之和为()A. 8B. 6C. 4D. 104.(5分)执行如图所示的程序框图,若输入的x为整数,且运行四次后退出循环,则输入的x的值可以是()A. 1B. 2C. 3D. 45.(5分)如图,AB是⊙O的直径,AC是弦,∠BAC的平分线AD交⊙O于点D,DE⊥AC,交AC的延长线于点E,DF⊥AB于点F,且AE=8,AB=10.在上述条件下,给出下列四个结论:①DE=BD;②ΔBDF≌ΔCDE;③CE=2;④DE2=AF⋅BF,则所有正确结论的序号是()A. ①②③B. ②③④C. ①③④D. ①②④6.(5分)已知函数f(x)=sin(ωx+φ)(ω>0,|φ|<π2)的图象如图所示,则()A. 函数f(x)的最小正周期是2πB. 函数f(x)在区间(π2,π)上单调递减C. 函数f(x)的图象与y轴的交点为(0,−12)D. 点(7π6,0)为函数f(x)图象的一个对称中心7.(5分)213,log26,3log32的大小关系是A. 213<log26<3log32 B. 213<3log32<log26C. 3log32<213<log26 D. 3log32<log26<2138.(5分)设函数y=ax2与函数y=|ln x+1ax|的图象恰有3个不同的交点,则实数a的取值范围为()A. (√33e,√e) B. (−√33e,0)∪(0,√33e)C. (0,√33e) D. (√e1)∪{√33e}二、填空题(本大题共5小题,共25分)9.(5分)设A,B是非空集合,定义:A⊗B={x|x∈A∪B且x∉A∩B}.已知集合A={x|0<x<2},B={x|x⩾0},则A⊗B=__________.10.(5分)某中学组织了“党史知识竞赛”活动,已知该校共有高中学生2000人,用分层抽样的方法从该校高中学生中抽取一个容量为50的样本参加活动,其中高一年级抽取了6人,则该校高一年级学生人数为 ______.11.(5分)某几何体的三视图如图所示,则该几何体的表面积是______.12.(5分)记S n为等比数列{a n}的前n项和,若a1=12,a42=a6,则S4=______.13.(5分)已知双曲线C:x2a2−y2b2=1(a>0,b>0)的左焦点为F,过F的一条倾斜角为30°的直线与C在第一象限交于点A,且|OF|=|OA|,O为坐标原点,则该双曲线的离心率为______.三、解答题(本大题共6小题,共72分)14.(12分)某公司计划在今年内同时出售变频空调机和智能洗衣机,由于这两种产品的市场需求量非常大,有多少就能销售多少,因此该公司要根据实际情况(如资金、劳动力)确定产品的月供应量,以使得总利润达到最大.已知对这两种产品有直接限制的因素是资金和劳动力,通过调查,得到关于这两种产品的有关数据如下表:试问:怎样确定两种货物的月供应量,才能使总利润达到最大,最大利润是多少?15.(12分)在ΔABC中,内角A,B,C所对的边分别为a,b,c.已知b+c=2a,3csinB=4asinC.(Ⅰ)求cosB的值;(Ⅱ)求sin(2B+π6)的值.16.(12分)如图,ΔABC中,AC=2,BC=4,∠ACB=90°,D、E分别是AC、AB的中点,将ΔADE沿DE折起成ΔPDE,使面PDE⊥面BCDE,H、F分别是边PD和BE的中点,平面BCH与PE、PF分别交于点I、G.(Ⅰ)求证:IH//BC;(Ⅱ)求二面角P−GI−C的余弦值.17.(12分)设等比数列{a n}的前n项和为S n,a2=18,且S1+116,S2,S3成等差数列,数列{b n}满足b n=2n.(1)求数列{a n}的通项公式;(2)设c n=a n⋅b n,若对任意n∈N∗,不等式c1+c2+⋯+c n⩾12λ+2S n−1恒成立,求λ的取值范围.18.(12分)已知椭圆x2a2+y2b2=1(a>b>0)的离心率e=√32,椭圆上任意一点到椭圆的两个焦点的距离之和为4,设直线l与椭圆相交于不同的两点A,B,点A的坐标为(−a,0).(Ⅰ)求椭圆的标准方程;(Ⅰ)若|AB|=4√2,求直线l的倾斜角.519.(12分)已知a为实数,函数f(x)=a ln x+x2−4x.(1)是否存在实数a,使得f(x)在x=1处取得极值?证明你的结论;,e],使得f(x0)⩽g(x0)成立,求实数a的取值范围.(2)设g(x)=(a−2)x,若∃x0∈[1e答案和解析1.【答案】C;【解析】解:∵z =−1+√3i ,∴z ·z −=|z|2=(√(−1)2+(√3)2)2=4, 则zzz −−1=−1+√3i 4−1=−13+√33i. 故选:C.由已知求得z ·z −,代入zzz −−1,则答案可求.此题主要考查复数代数形式的乘除运算,考查复数模的求法,是基础题.2.【答案】D;【解析】解:因为全称命题的否定是特称命题,所以“∀x ∈R ,∃x ∈N ,使得n ⩾x 2+1”的否定形式为∃x ∈R ,∀x ∈N ,使得n <x 2+1”. 故选:D.直接利用特称命题的否定是全称命题写出结果即可.此题主要考查命题的否定.特称命题与全称命题的否定关系,基本知识的考查.3.【答案】A; 【解析】该题考查函数的零点,考查数形结合的数学思想,正确作出函数的图象是关键. 分别作出函数y =f(x)、y =log 5|x −1|的图象,结合函数的对称性,即可求得结论.解:当x ∈[0,2]时,f(x)=(x −1)2,函数y =f(x)的周期为2,图象关于y 轴对称的偶函数y =log 5|x|向右平移一个单位得到函数y =log 5|x −1|, 则y =log 5|x −1|关于x =1对称,可作出函数的图象:函数y =g(x)的零点,即为函数图象交点横坐标, 当x >6时,y =log 5|x −1|>1,此时函数图象无交点,又两函数在(1,6]上有4个交点,由对称性知它们在[−4,1)上也有4个交点,且它们关于直线x=1对称,所以函数y=g(x)的所有零点之和为:4×2=8,故选:A.4.【答案】A;【解析】解:依题意,S随着x的增大而增大,当x⩾2时,第一次循环时S⩾4,第二次循环时S⩾4+42=20,第三次循环时S⩾20+82=84⩾64,脱离循环,故x<2,故选:A.根据S和x的关系,S随着x的增大而增大,验证当x⩾2时的情况,即可得到结果.此题主要考查了程序框图,考查了循环结构.属于基础题.本题的难点在于逆推x的值,需要借助不等式来完成.5.【答案】B;【解析】解:∵∠BAC的平分线为AD,DE⊥AC,DF⊥AB,∴DE=DF,DC=DB,∴ΔBDF≌ΔCDE,所以①不正确,②正确;∵∠BAC的平分线为AD,DE⊥AC,DF⊥AB,∴AE=AF=8.又∵ΔBDF≌ΔCDE,∴CE=BF=AB−AF=10−8=2,故③正确;∵AB是直径,∴∠ADB=90°.又∵DF⊥AB,∴ΔDBF∽ΔADF,∴DFAF =BFDF,即DF2=AF⋅BF,∴DE2=AF⋅BF,故④正确;故选:B.利用角平分线的性质和全等三角形的判定可以判断①②的正误;利用排除法可以判断③④的正误.此题主要考查了相似三角形的判定与性质.解题时,利用了角平分线的性质和圆周角定理,难度不大.6.【答案】D;【解析】解:由函数图可象知T4=5π12−π6=π4,所以T=π,因为T=2πω,∴ω=2,所以最小正周期为π,故A错误;又函数过点(5π12,1),所以f(5π12)=sin(2×5π12+φ)=1,所以5π6+φ=π2+2kπ,(k∈Z),解得φ=−π3+2kπ,(k∈Z),∵|φ|<π2,所以φ=−π3,所以f(x)=sin(2x−π3),当x∈(π2,π),所以2x−π3∈(2π3,5π3),因为y=sinx在x∈(2π3,5π3)上不单调,故B错误;令x=1,则f(0)=sin(−π3)=−√32,所以与y轴交点为(0,−√32),故C错误;若点(7π6,0)为函数f(x)图象的一个对称中心,则f(7π6)=0,当x=7π6时,f(7π6)=sin(2×7π6−π3)=sin2π=0,所以点(7π6,0)为函数f(x)图象的一个对称中心,故D正确,故选:D.根据函数图像求出函数解析式,再结合选项一一判断即可.此题主要考查了三角函数的图象与性质的应用问题,也考查了数形结合与函数思想,属于中档题.7.【答案】B;【解析】此题主要考查了指数函数与对数函数的大小比较问题,属于基础题.首先根据单调性,将指数值与32比较,其次根据对数函数的递增性质得到两个对数值与2、32大小关系,答案易得.解:213<212<32,3log32=32log34>32,3log32=log38<log39=2,log26>log24=2,所以213<3log32<log26.故选B.8.【答案】C;【解析】解:令ax2=|ln x+1ax|得a2x3=|ln x+1|,显然a>0,x>0.作出y=a2x3和y=|ln x+1|的函数图象,如图所示:设a=a0时,y=a2x3和y=|ln x+1|的函数图象相切,切点为(x0,y0),则{3a02x02=1x0a02x03=ln x0+1,解得x0=e−23,y0=13,a0=√3e3.∴当0<a<√3e3时,y=a2x3和y=|ln x+1|的函数图象有三个交点.故选:C.令ax2=|ln x+1ax|得a2x3=|ln x+1|,作出y=a2x3和y=|ln x+1|的函数图象,利用导数知识求出两函数图象相切时对应的a0,则0<a<a0.此题主要考查了函数图象的交点个数判断,借助函数图象求出临界值是关键.9.【答案】{x|x=0或x⩾2};【解析】此题主要考查集合的新定义,是基础题由集合A={x|0<x<2},B={x|x⩾0},可得A∪B={x|x⩾0},A∩B={x|0<x<2},则A⊗B={x|x=0或x⩾2}.10.【答案】240;【解析】解:设该校高一年级学生人数为n,则6n =502000,即n=240,故答案为:240.由分层抽样方法,按比例抽样即可.此题主要考查了分层抽样方法,重点考查了阅读能力,属基础题.11.【答案】16+8√2;【解析】解:由三视图知:几何体为直三棱柱削去一个三棱锥,如图:其中直棱柱的侧棱长为8,底面为直角三角形,且AB=BC=2,SA=2,SB=2√2,AC=2√2,∴几何体的表面积S=12×2×2+12×2×2√2+4+22×2√2+4+22×2+4×2=16+8√2.故答案为:16+8√2.几何体为直三棱柱削去一个三棱锥,结合直观图判断各面的形状及相关几何量的数据,把数据代入面积公式计算.此题主要考查了由三视图求几何体的表面积,判断几何体的形状及数据所对应的几何量是解答此类问题的关键.12.【答案】152;【解析】解:∵a1=12,a42=a6,∴(12q3)2=12q5,解可得,q=2,则S4=12(1−24)1−2=152.故答案为:152.由已知结合等比数列的通项公式可求公比,然后结合等比数列的求和公式即可求解.这道题主要考查了等比数列的公式及求和公式的简单应用,属于基础试题.13.【答案】√3+1;【解析】解:过F的一条倾斜角为30°的直线与C在第一象限交于点A,且|OF|=|OA|=c,∠AOx=60°,则A(c2,√3c 2)所以c 24a2−3c24b2=1,c2 4a2−3c24(c2−a2)=1,可得e 24−3e24e2−4=1,可得e4−8e2+4=0.解得e=1+√3.故答案为:√3+1.利用已知条件求出A的坐标,代入双曲线方程,结合离心率公式,求解即可.此题主要考查双曲线的定义和性质,主要是离心率的求法,注意运用三角形的中位线定理和勾股定理,考查运算能力,属于中档题.14.【答案】解:设空调机、洗衣机的月供应量分别是x、y台,总利润是P,则P=6x+8y,由题意有30x+20y⩽300,5x+10y⩽110,x⩾0,y⩾0,x、y均为整数由图知直线y=−34x+18P过M(4,9)时,纵截距最大,这时P也取最大值P max=6×4+8×9=96(百元).故当月供应量为空调机4台,洗衣机9台时,可获得最大利润9600元.;【解析】此题主要考查找出约束条件与目标函数,准确地描画可行域,再利用图形直线求得满足题设的最优解.用图解法解决线性规划问题时,分析题目的已知条件,找出约束条件和目标函数是关键,可先将题目中的量分类、列出表格,理清头绪,然后列出不等式组(方程组)寻求约束条件,并就题目所述找出目标函数.然后将可行域各角点的值一一代入,最后比较,即可得到目标函数的最优解.利用线性规划的思想方法解决某些实际问题属于直线方程的一个应用.15.【答案】解:(Ⅰ)在三角形ABC中,由正弦定理得bsinB =csinC,所以bsinC=csinB,又由3csinB=4asinC,得3bsinC=4asinC,即3b=4a,又因为b +c =2a ,得b =4a 3,c =2a3,由余弦定理可得cosB =a 2+c 2−b 22ac=a 2+49a 2−169a 22⋅a⋅23a=−14;(Ⅱ)由(Ⅰ)得sinB =√1−co s 2B =√154,从而sin2B =2sinBcosB =−√158, cos2B =cos 2B −sin 2B =−78,故sin (2B +π6)=sin2Bcos π6+cos2Bsin π6=−√158×√32−78×12=−3√5+716.; 【解析】本小题主要考查同角三角函数的基本关系,两角和的正弦公式,二倍角的正余弦公式,以及正弦定理、余弦定理等基础知识,考查运算求解能力,属于中档题. (Ⅰ)根据正余弦定理可得;(Ⅱ)根据二倍角的正余弦公式以及和角的正弦公式可得.16.【答案】证明:(Ⅰ)∵D ,E 分别是边AC 和AB 的中点,∴DE ∥BC , ∵BC ⊄平面PED ,ED ⊂平面PED , ∴BC ⊂平面BCH , ∴IH ∥BC .解:(Ⅱ)如图,建立空间右手直角坐标系,由题意得:D (0,0,0),E (2,0,0),P (0,0,1),F (3,12,0),C (0,1,0),H (0,0,12),∴EP →=(-2,0,1),EF →=(1,12,0),CH →=(0,-1,12),HI →=12DE →=(1,0,0), 设平面PGI 的一个法向量为n →=(x ,y ,z ),则{EP →.n →=−2x +z =0EF →.n →=x +12y =0,令x=1,解得y=-2,z=2,∴n →=(1,-2,2), 设平面CHI 的一个法向量为m →=(a ,b ,c ),则{CH →.m →=−b +12c =0HI →.m →=a =0,取b=1,得m →=(0,1,2), 设二面角P-GI-C 的平面角为θ, 则cosθ=|m →.n →||m →|.|n →|=3×√5=2√1515.∴二面角P-GI-C的余弦值为2√1515.;【解析】(Ⅰ)推导出DE//BC,从而BC⊂平面BCH,由此能证明IH//BC.(Ⅱ)以D为原点,DE,DC,DP为x,y,z轴,建立空间右手直角坐标系,利用向量法能求出二面角P−GI−C的余弦值.该题考查线线平行的证明,考查二面角的余弦值的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.17.【答案】解:(1)设公比为q的等比数列{ an}的前n项和为S n,a2=18,且S1+116,S2,S3成等差数列,所以:{a1q=182S2=S1+116+S3,解得:a1=14,q=12,所以S n=14(1−12n)1−12=12(1−12n),故a n=14.(12)n−1=(12)n+1,(2)由于:a n=(12)n+1,数列{b n}满足b n=2n.则:C n=a n b n=n2n,则:T n=12+222+323+⋯+n2n①,1 2T n=122+223+324+⋯+n2n+1②,①−②得:12T n=(121+122+⋯+12n)−n2n+1,解得:T n=2−2+n2n,由于S n=14(1−12n)1−12=12(1−12n),所以不等式c1+c2+⋯+c n⩾12λ+2S n−1恒成立,即2−2+n2n ⩾1−12n+12λ−1,则2−n+12n⩾12λ恒成立,令f(n)=n+12n,则f(n +1)−f(n)=n+22n+1−n+12n=−n2n+1<0,所以f(n)关于n 单调递减, 所以(2−n+12n )min=2−1+12,则2−22⩾12λ 解得:λ⩽2.故:λ的取值范围为(−∞,2].;【解析】此题主要考查的知识要点:数列的通项公式的求法及应用,错位相减法在数列求和中的应用,恒成立问题的应用,主要考查学生的运算能力和转化能力,属于较难题.(1)直接利用递推关系式和建立的方程组进一步求出数列的通项公式;(2)利用(1)的结论,进一步利用错位相减法求出数列的和,最后利用恒成立问题求出参数的取值范围.18.【答案】解:(1)∵椭圆x 2a2+y 2b 2=1(a >b >0)的离心率e=√32,椭圆上任意一点到椭圆的两个焦点的距离之和为4, ∴a=2,c=√3,b=1, ∴椭圆的标准方程:x 24+y 21=1,(2)∵设直线l 与椭圆相交于不同的两点A ,B ,点A 的坐标为(-a ,0). ∴点A 的坐标为(-2,0), ∴直线l 的方程为:y=k (x+2),(Ⅱ)(i )由(Ⅰ)可知点A 的坐标是(-2,0). 设点B 的坐标为(x 1,y 1),直线l 的斜率为k . 则直线l 的方程为y=k (x+2).于是A 、B 两点的坐标满足方程组{y =k(x +2)x 24+y 21=1消去y 并整理,得(1+4k 2)x 2+16k 2x+(16k 2-4)=0. 由-2x 1=16k 2−41+4k 2,得x 1=2−8k 21+4k 2.从而y 1=4k1+4k 2. 所以|AB|=4√1+k 21+4k 2 由|AB|=4√25,得4√1+k 21+4k 2=4√25整理得32k 4-9k 2-23=0,即(k 2-1)(32k 2+23)=0,解得k=±1. 所以直线l 的倾斜角为π4或3π4.;【解析】(1)椭圆x 2a 2+y 2b 2=1(a >b >0)根据a 2=b 2+c 2,ca =√32,2a =4,求解.(2)联立方程组{y =k(x +2)x 24+y 21=1消去y 并整理,得(1+4k 2)x 2+16k 2x +(16k 2−4)=0,运用韦达定理,弦长公式求解.此题主要考查了椭圆和直线的位置关系,联立方程组结合弦长公式求解.19.【答案】解:(1)函数f (x )定义域为(0,+∞),f′(x )=ax +2x-4=2x 2−4x +ax假设存在实数a ,使f (x )在x=1处取极值,则f′(1)=0,∴a=2,…(2分) 此时,f′(x )=2(x−1)2x,当x >0时,f′(x )≥0恒成立,∴f (x )在(0,+∞)递增.…(4分) ∴x=1不是f (x )的极值点.故不存在实数a ,使得f (x )在x=1处取极值.…(5分) (2)由f (x 0)≤g (x 0) 得:(x 0-ln x 0)a≥x 02-2x 0 …(6分) 记F (x )=x-lnx (x >0),∴F′(x )=x−1x(x >0),.…(7分)∴当0<x <1时,F′(x )<0,F (x )递减;当x >1时,F′(x )>0,F (x )递增. ∴F (x )≥F (1)=1>0.…(8分) ∴a≥x 02−2x 0x0−ln x 0,记G (x )=x 2−2xx−lnx ,x ∈[1e ,e]∴G′(x )=(2x −2)(x−lnx )−(x−2)(x−1)(x−lnx )2=(x−1)(x−2lnx +2)(x−lnx )2…(9分)∵x ∈[1e,e],∴2-2lnx=2(1-lnx )≥0,∴x-2lnx+2>0∴x ∈(1e ,1)时,G′(x )<0,G (x )递减;x ∈(1,e )时,G′(x )>0,G (x )递增…(10分)∴G (x )min =G (1)=-1∴a≥G (x )min =-1.…(11分) 故实数a 的取值范围为[-1,+∞). …(12分); 【解析】(1)求出函数f(x)定义域,函数的导函数f′(x),假设存在实数a ,使f(x)在x =1处取极值,则f′(1)=0,求出a ,验证推出结果.(2)由f (x 0)⩽g(x 0) 得:(x 0−ln x 0)a ⩾x 02−2x 0,记F(x)=x −ln x(x >0),求出F′(x),推出F(x)⩾F(1)=1>0,转化a ⩾x 02−2x 0x 0−ln x 0,记G(x)=x 2−2x x−ln x,x ∈[1e,e]求出导函数,求出最大值,列出不等式求解即可.该题考查函数的动手的综合应用,函数的最值的求法,极值的求法,考查转化思想以及计算能力.。
高考数学专题:导数大题专练含答案
高考数学专题:导数大题专练含答案一、解答题1.已知函数()ln f x ax x =+ (1)讨论()f x 的单调区间;(2)设()2xg x =,若对任意的[]11,100x ∈,存在[]20,1x ∈,使()()12f x g x <成立,求实数a 的取值范围.2.已知函数1()2ln f x x x x=+-. (1)求函数的单调区间和极值;(2)若12x x ≠且()()12f x f x =,求证:121x x <. 3.已知函数()ln .f x x x ax a =-+(1)若1≥x 时,()0f x ≥恒成立,求a 的取值范围;(2)当1a =,01b <<时,方程()f x b =有两个不相等的实数根12,x x ,求证:12 1.x x <4.设函数()()2()ln 1f x x a x x =++-,其中R a ∈.(1)1a =时,求曲线()y f x =在点()()1,1f 处的切线方程; (2)讨论函数()f x 极值点的个数,并说明理由; (3)若()0,0x f x ∀>成立,求a 的取值范围.5.已知函数1()(1)(0)x f x x e x x=+->,()ln ()x g x xe a x a R =+∈,且1()0f x = (1)若1a =,且0()0g x =,试比较0x 与1x 的大小关系,并说明理由; (2)若1a =-,且222(1)()()x f x g x +=,证明: (i )25593x e <<; (ii )12213232x x x ex -->-.(参考数据:1ln3 1.098,ln5 1.609,0.368e≈≈≈) 6.已知函数()ln f x x =(1)过原点作()f x 的切线l ,求l 的方程;(2)令()()f x g x x=,求()g x a ≥在4⎤⎦恒成立,求a 的取值范围 7.已知函数2()2ln f x x x =-+,()()ag x x a x =+∈R . (1)求函数()f x 的单调区间;(2)若函数()f x 与()g x 有相同的极值点,求函数()g x 在区间1[,3]2上的最值.8.已知函数()322f x x ax bx =++-在2x =-时取得极值,且在点()()1,1f --处的切线的斜率为3- . (1)求()f x 的解析式;(2)若函数()y f x λ=-有三个零点,求实数λ的取值范围. 9.已知函数2()ln (2)(R)f x a x x a x a =+-+∈. (1)若1a =,求()f x 在区间[]1,e 上的最大值; (2)求()f x 在区间[]1,e 上的最小值()g a .10.已知函数()e 2x f x ax =-,()22sin 1g x a x x =-+,其中e 是自然对数的底数,a ∈R .(1)试判断函数()f x 的单调性与极值点个数;(2)若关于x 的方程()()0af x g x +=在[]0,π上有两个不等实根,求实数a 的最小值.【参考答案】一、解答题1.(1)答案见解析 (2)31a e ≤-【解析】 【分析】(1)由()()110ax f x a x xx+=+=>',按0a ≥,0a <进行分类讨论求解; (2)由已知,转化为()()max max f x g x <,由已知得()()max 12g x g ==,由此能求出实数a 的取值范围. (1)()(]110ax f x a x x x+'=+=>, ①当0a ≥时,由于0x >,故10ax +>,()0f x '>, 所以()f x 的单调递增区间为()0,∞+; ②当0a <时,由()0f x '=,得1x a=-,在区间10,a ⎛⎫- ⎪⎝⎭上()0f x '>,在区间1,a∞⎛⎫-+ ⎪⎝⎭上()0f x '<,所以,函数()f x 的单调递增区间为10,a ⎛⎫- ⎪⎝⎭,单调递减区间为1,a∞⎛⎫-+ ⎪⎝⎭;(2)由题目知,只需要()()max max f x g x <即可又因为()()max 12g x g ==,所以只需要()max 2f x <即可()max 2f x <即等价于()2f x <恒成立,由变量分离可知2ln xa x-<,[]1,100x ∈, 令()2ln xh x x -=,下面求()h x 的最小值, 令()23ln xh x x-+'=,所以()0h x '=得3x e =, 所以()h x 在31,e ⎡⎤⎣⎦为减函数,3,100e ⎡⎤⎣⎦为增函数, 所以()()33min 1h x h e e -==,所以31a e ≤-. 2.(1)减区间()0,1,增区间()1,+∞,极小值3, (2)证明见解析 【解析】 【分析】(1)依据导函数与原函数的关系去求函数的单调区间和极值即可; (2)构造新函数利用函数单调性去证明121x x <即可. (1)1()2ln (0)f x x x x x =+->,则()()2221111()2(0)x x f x x x x x +-'=--=>由()0f x '>得1x >,由()0f x '<得01x <<, 即()f x 减区间为()0,1,增区间为()1,+∞,在1x =时()f x 取得极小值(1)2103f =+-=,无极大值. (2)不妨设12x x <且()()12f x f x a ==,则101x <<,21>x ,3a >,2101x <<令1()()2ln (0)h x f x a x x a x x=-=+-->,则()()120h x h x ==()()2221111()2x x h x x x x +-'=--=, 则当1x >时()0h x '>,()h x 单调递增;当01x <<时()0h x '<,()h x 单调递减 由()222212ln 0x x h x a x +=--=,得22212ln a x x x =+-则2222222222211ln 2ln 2ln 1x x x x x h x x x x x ⎛⎫++-+-=-+ ⎪⎛⎫=⎪⎝⎝⎭⎭ 令21t x =,则222112ln 2ln (01)x x t t t x t -+=--<< 令()12ln (01)t m t t t t --<=<,则()()22211210t t tt m t -'=+-=>即()12ln (01)t m t t t t--<=<为增函数,又()11100m =--=,则()12ln 0m t t tt --<=在(0,1)上恒成立.则222212ln 10x x x h x ⎛⎫+ ⎪⎝⎭=-<恒成立,则()211h h x x ⎛⎫⎪< ⎝⎭, 又01x <<时()h x 单调递减,101x <<,2101x <<则211x x >,故121x x <3.(1)(,1].-∞ (2)证明见解析 【解析】 【分析】(1)1x ≥,()0ln 0a f x x a x ≥⇔-+≥,设()ln (1)ag x x a x x=-+≥,求导得221()a x ag x x x x-'=-=,分1a ≤与1a >两类讨论,即可求得a 的取值范围;(2)当1a =时,方程()f xb =有两个不相等的实数根1x ,2x ,不妨设12x x <,则1201x x <<<,要证121x x ⋅<,只需证2111x x <<,而12()()f x f x =,只需证明111()()f x f x <,再构造函数,设1()()()(01)F x f x f x x=-<<,通过求导分析即可证得结论成立. (1)1x ≥,()0f x ∴≥,即ln 0ax a x-+≥, 设()ln (1)ag x x a x x=-+≥,221()a x ag x x x x -'=-=,当1a ≤时,()0g x '≥, ()g x ∴在[1,)+∞上单调递增,()(1)0g x g ∴≥=,满足条件;当1a >时,令()0g x '=,得x a =,当1x a <≤时,()0g x '<;当x a >时,()0g x '>,()g x ∴在区间[1,]a 上单调递减,在区间[,)a +∞上单调递增,min ()()ln 1g x g a a a ∴==-+,()(1)0g a g ∴<=,与已知矛盾.综上所述,a 的取值范围是(,1].-∞(2)证明:当1a =时,()ln f x x '=,则()f x 在区间(0,1]上单调递减,在区间[1,)+∞上单调递增,由方程()f x b =有两个不相等的实数根12,x x , 不妨设12x x <,则1201x x <<<,要证121x x ⋅<,只需证2111x x <<,()f x 在区间[1,)+∞上单调递增,只需证121()()f x f x < 又()()12f x f x =,∴只需证明111()()f x f x <,设1()()()(01)F x f x f x x=-<<, 则22211()ln ln ln 0x F x x x x x x-'=-=>,()F x ∴在区间(0,1)上单调递增,()(1)0F x F ∴<=,1()()0f x f x∴-<,即111()()f x f x <成立, ∴原不等式成立,即121x x ⋅<成立.【点睛】导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点,对导数的应用的考查主要从以下几个角度进行:(1)考查导数的几何意义,往往与解析几何、微积分相联系.(2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数.(3)利用导数求函数的最值(极值),解决生活中的优化问题.(4)考查数形结合思想的应用. 4.(1)322ln230x y -+-=(2)当0a <时,函数()f x 有一个极值点; 当809a ≤≤时,函数()f x 无极值点; 当89a >时,函数()f x 有两个极值点. (3)0,1 【解析】 【分析】(1)将1a =代入函数()f x 中,得出函数()f x 的解析式,进而可以求出切点坐标,再利用导数的几何意义及点斜式即可求解;(2)根据已知条件,对a 进行分类讨论,利用导数法求函数极值的步骤及函数极值的定义即可求解;(3)根据()0,0x f x ∀>成立,转化为()min 0,0x f x ∀>即可,再利用第(2)的结论即可求解. (1)当1a =时,()2()ln 1f x x x x =++-()()21ln 1111ln 2f =++-=,所以切点为()1,ln2,()()11321,12111112f x x k f x ''=+-∴==+⨯-=++, 所以曲线()y f x =在点()()1,1f 处的切线的斜率为()312k f ='=, 所以曲线()y f x =在点()1,ln2处的切线的斜率切线方程为()3ln212y x -=-,即322ln230x y -+-= (2)由题意知函数()f x 的定义域为()1,-+∞,()()21212111ax ax a f x a x x x +-+=+-='++,令()()221,1,g x ax ax a x =+-+∈-+∞,(i )当0a =时,()10f x '=>,函数()f x 在()1,-+∞单调递增,无极值点 (ii )当0a >时,()Δ98a a =-,①当809a <≤时,()()Δ0,0,0g x f x '≤≥≥, 所以函数()f x 在()1,-+∞单调递增,无极值点; ②当89a >时,Δ0>,设方程2210ax ax a +-+=两根1212,,x x x x ==此时12x x <()121211111,,,110,12444x x x x g x +=-∴---=>-<<∴<->()()121,,,x x x ∴∈-+∞时,()()0,0g x f x '>>,函数()f x 单调递增;()12,x x x ∈时,()()0,0g x f x '<<,函数()f x 单调递减. ∴函数有两个极值点;③当0a <时,()Δ980a a =->,设方程2210ax ax a +-+=两根1212,,x x x x ==此时12x x >()12110,1x g x -=>∴-<<()11,x x ∴∈-时,()()0,0g x f x '>>,函数()f x 单调递增; ()1,x x ∈+∞时,()()0,0g x f x '<<,函数()f x 单调递减.∴函数有一个极值点;综上所述:当0a <时,函数()f x 有一个极值点; 当809a ≤≤时,函数()f x 无极值点; 当89a >时,函数()f x 有两个极值点. (3)由()0,0x f x ∀>成立等价于()min 0,0x f x ∀>≥即可. ①当809a ≤≤时,函数()f x 在()0,+∞上单调递增,()()00,0,f x =∴∈+∞时,()0f x >,符合题意;②当819a <≤时,由()00g >,得20x ≤,∴函数()f x 在()0,+∞上单调递增,又()()00,0,f x =∴∈+∞时,()0f x >,符合题意; ③当1a >时,由()00<g ,得20x >()20,x x ∴∈时, ()f x 单调递减,()()200,0,f x x =∴∈时,()0f x <时,不合题意;④当0a <时,设()()ln 1h x x x =-+,()0,x ∈+∞,时,()()110,11x h x h x x x =-=>∴+'+在()0,+∞上单调递增. ∴当()0,x ∞∈+时,()()00h x h >=,即()ln 1x x +<,可得()()()221f x x a x x ax a x <+-=+-,当11x a>-时,()210ax a x +-<,此时()0f x <,不合题意.综上,a 的取值范围是0,1. 【点睛】解决此题的关键是第一问利用导数的几何意义及点斜式即可,第二问主要是对参数进行分类讨论,再结合利用导数法求函数的极值的步骤即可,第三问主要将恒成立问题转化为最值问题再结合第二问的结论即可求解. 5.(1)01x x >,理由见解析(2)(i )证明见解析;(ii )证明见解析 【解析】 【分析】(1)由0x →时,(),()0f x g x →,1()02f >,1()02>g 可得011,(0,)2x x ∈,构造1()ln (0)1m x x x x =+>+,求导分析单调性,由1112()()()ln 2023g x m x m =<=-<,故10()()g x g x <,分析即得解;(2)(i )由题意,22ln 222222(1)(1)(ln )0x x x x e x x x +++-++=,先证明1x e x ≥+,代入分析可得22ln 0x x +=,构造()ln (0)x x x x ϕ=+>,求导分析单调性,结合而5()09ϕ<,5()03eϕ>即得解; (ii )构造1()(1)(2)t x x x x e=---,可得21(1)()f x f x -<,再构造()(32)(0)x h x x e x =->,()()(1)H x h x h x =--,分析即得解(1)对函数()f x ,()g x 求导得:21()(2)0x f x x e x '=++>,1()(1)0xg x x e x'=++> 当0x →时,(),()0f x g x →.而1()22f ,1()ln 22g .由21.5e >,13ln 2ln1644=<知1()02f >,1()02>g因此0x ,1x 唯一且011,(0,)2x x ∈ 由1111(1)0x x ex +-=知1111(1)x e x x =+,1111()ln 1g x x x =++. 构造1()ln (0)1m x x x x =+>+,则221()0(1)x x m x x x ++'=>+. 故()m x 在(0,)+∞单调递增;因此1112()()()ln 223g x m x m =<=-,由12ln 2ln833=>知1()0g x <. 故10()()g x g x <,结合()g x 单调性知01x x >. (2)(i )证明:由题意得22ln 222222(1)(1)(ln )0x x x x e x x x +++-++=.构造()1x r x e x =--,则'()1x r x e =-,()(0)0r x r ≥=. 因此1x e x ≥+.因此22ln 22222222220(1)(1)(ln )(1)(ln )x x x x e x x x x x x +=++-++≥++.故22ln 0x x +≤.因此2222ln ln 2222222220(1)(1)(ln )(1)(1)x x x x x x e x x x x x e ++=++-++≥++-故22ln 0x x +≥.因此22ln 0x x +=.构造()ln (0)x x x x ϕ=+>,则1()10x x ϕ'=+>. 而55()ln52ln3099ϕ=+-<,55()ln5ln31033e e ϕ=+-->,因此25593x e<<. (ii )由22ln 0x x +=知221xe x =. 因此222222221(1)(2)(2)1(1)1(1)xx x x e x e f x e x e x -----=-=--.构造1()(1)(2)t x x x x e=---,则2()362t x x x '=-+. 因此()t x在(1上单调递减. 因此251()()0.3609t x t e<<-<,故2(1)0f x -<.因此21(1)()f x f x -<,结合()f x 单调性知211x x -<,故211x x >-. 构造()(32)(0)x h x x e x =->,()()(1)H x h x h x =--,则()(12)x h x x e '=-. 因此()h x 在1(0,)2上单调增,1(,1)2上单调减.而当102x <≤时,1()(12)()0x x H x x e e -'=--≤,()H x 单调减. 因此11()()02H x H >>,11()(1)h x h x >-.而121112x x <-<<,因此21()(1)h x h x <-,因此12()()h x h x >. 因此12213232x x x ex --<-.6.(1)1ey x =; (2)4e 4a ≤. 【解析】 【分析】(1)设切线的方程为y kx =,设切点为(,ln )t t ,求出e t =即得解;(2)利用导数求出函数()g x在4⎤⎦上的单调区间即得解. (1)解:设切线的方程为y kx =,设切点为(,ln )t t , 因为()1f x x '=,则()1k f t t'==所以切线方程为()1ln y t x t t-=-即1ln 1y x t t =+-由题得ln 10t -=则e t = ∴切线l 的方程为1ey x =. (2) 解:()21ln xg x x -'=,e x <<时,()0g x '>;4e e x <<时,()0g x '<,所以函数()g x 在单调递增,在4(e,e )单调递减,∵g =,()44e e 4g =, 因为44e <=所以最小值()44e e 4g =. 4e 4a ∴≤. 7.(1)单增区间为(0,1),单减区间为(1,)+∞(2)min ()2g x =,max 10()3g x =【解析】 【分析】(1)求导之后,分别令()0f x '>,()0f x '<即可求出()f x 的单调区间; (2)由有相同的极值点求出a 的值,再利用对勾函数的单调性求出()g x 在区间1,32⎡⎤⎢⎥⎣⎦上的最值. (1)()f x 的定义域:()0,∞+()()22122x f x x x x--'=-+=,由()0f x '>得01x <<,由()0f x '<得1x >, ∴()f x 的单增区间为()0,1,单减区间为()1,+∞. (2)()21ag x x ='-,由(1)知()f x 的极值点为1. ∵函数()f x 与()g x 有相同的极值点, ∴()10g '=,即10a -=,∴1a =,从而()1g x x x =+,()g x 在1,12⎡⎤⎢⎥⎣⎦上单调递减,在(]1,3上递增,又1522g ⎛⎫= ⎪⎝⎭,()1033g =, ∴在区间1,32⎡⎤⎢⎥⎣⎦上,()()min 12g x g ==,()max 103g x =. 8.(1)()3232f x x x =+-(2)()2,2-【解析】【分析】(1)由已知可得()()2013f f ⎧-=⎪⎨-=-''⎪⎩,可得出关于实数a 、b 的方程组,解出这两个未知数的值,即可得出函数()f x 的解析式;(2)分析可知,直线y λ=与函数()f x 的图象有3个交点,利用导数分析函数()f x 的单调性与极值,数形结合可得出实数λ的取值范围. (1)解:因为()322f x x ax bx =++-,则()232f x x ax b '=++,由题意可得()()212401323f a b f a b ⎧-=-+=⎪⎨-=-+=-''⎪⎩,解得30a b =⎧⎨=⎩,所以,()3232f x x x =+-. 当3a =,0b =时,()236f x x x '=+,经检验可知,函数()f x 在2x =-处取得极值.因此,()3232f x x x =+-.(2)解:问题等价于()f x λ=有三个不等的实数根,求λ的范围.由()2360f x x x '=+>,得2x <-或0x >,由()2360f x x x '=+<,得20x -<<,所以()f x 在(),2-∞-、()0,∞+上单调递增,在()2,0-上单调递减,则函数()f x 的极大值为()22f -=,极小值为()02f =-,如下图所示:由图可知,当22λ-<<时,直线y λ=与函数()f x 的图象有3个交点, 因此,实数λ的取值范围是()2,2-.9.(1)2e 3e 1-+(2)()()221,2ln ,22e 241e e 2e,2ea a a a g a a a a a a --≤⎧⎪⎪=--<<⎨⎪-+-≥⎪⎩ 【解析】【分析】(1)利用导数求得()f x 在区间[]1,e 上的最大值.(2)由()'f x 对a 进行分类讨论,由此求得()f x 在区间[]1,e 上的最小值()g a .(1)当1a =时,()()2ln 31e f x x x x x =+-≤≤,()()()'123123x x f x x x x--=+-=, 所以()f x 在区间()()'31,,0,2f x f x ⎛⎫< ⎪⎝⎭递减;在区间()()'3,e ,0,2f x f x ⎛⎫> ⎪⎝⎭递增. ()()212,e e 3e 10f f =-=-+>,所以()f x 在区间[]1,e 上的最大值为2e 3e 1-+.(2)2()ln (2)(R,1e)f x a x x a x a x =+-+∈≤≤,()()()()'1222x x a a f x x a x x --=+-+=, 当1,22aa ≤≤时,()f x 在区间()()()'1,e ,0,f x f x >递增,所以()f x 在区间[]1,e 上的最小值为()()1121f a a =-+=--. 当1e,22e 2a a <<<<时,()f x 在区间()()'1,,0,2a f x f x ⎛⎫< ⎪⎝⎭递减; 在区间()',e ,02a f x ⎛⎫> ⎪⎝⎭,()f x 递增. 所以()f x 在区间[]1,e 上的最小值为()22ln 2ln 222224a a a a a a f a a a a ⎛⎫⎛⎫=+-+⋅=-- ⎪ ⎪⎝⎭⎝⎭. 当e,2e 2a a ≥≥时,()f x 在区间()()()'1,e ,0,f x f x <递减,所以()f x 在区间[]1,e 上的最小值为()()()22e e 2e 1e e 2e f a a a =+-+=-+-.所以()()221,2ln ,22e 241e e 2e,2e a a a a g a a a a a a --≤⎧⎪⎪=--<<⎨⎪-+-≥⎪⎩. 【点睛】利用导数求解函数的单调性、最值,若导函数含有参数,则需要对参数进行分类讨论,分类讨论标准的制定,可以考虑利用导函数的零点分布来进行分类. 10.(1)答案见解析(2)e π--【解析】【分析】(1)求出()f x ',分类讨论,分0a ≤和0a >讨论()f x 的单调性与极值; (2)利用分离参数法得到sin 1e x x a -=,令()()sin 10e xx h x x π-=≤≤,利用导数判断 ()h x 的单调性与最值,根据直线y a =与函数()h x 的图像有两个交点,求出实数a 的最小值.(1)()e 2x f x ax =-,则()e 2x f x a '=-.①当0a ≤时,()0f x '>,则()f x 在R 上单调递增,此时函数()f x 的极值点个数为0;②当0a >时,令()20e x f x a '=-=,得()ln 2x a =,当()ln 2x a >时,()0f x '>,则()f x 在()()ln 2,a +∞上单调递增,当()ln 2x a <时,()0f x '<,则()f x 在()(),ln 2a -∞上单调递减,此时函数()f x 的极值点个数为1.综上所述,当0a ≤时,()f x 在R 上单调递增,极值点个数为0;当0a >时,()f x 在()()ln 2,a +∞上单调递增,在()(),ln 2a -∞上单调递减,极值点个数为1.(2)由()()0af x g x +=,得sin 1x x a e -=. 令()()sin 10x x h x x eπ-=≤≤, 因为关于x 的方程()()0af x g x +=在[]0,π上有两个不等实根,所以直线y a =与函数()sin 1xx h x e -=的图像在[]0,π上有两个交点.()1cos sin 14x xx x x h x e e π⎛⎫-+ ⎪-+⎝⎭'==, 令()0h x '=,则sin 42x π⎛⎫-= ⎪⎝⎭[]0,x π∈,所以2x π=或x π=, 所以当02x π<<时,()0h x '>;当2x ππ<<时,()0h x '<, 所以()h x 在0,2π⎛⎫ ⎪⎝⎭上单调递增,在,2ππ⎛⎫ ⎪⎝⎭上单调递减,所以()max 02h x h π⎛⎫== ⎪⎝⎭. 又()01h =-,()e h ππ-=-, e 1π-->- 所以当)e ,0x a -⎡∈-⎣时,直线y a =与函数()h x 的图像有两个交点,所以实数a 的最小值为e π--.【点睛】导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点,对导数的应用的考查主要从以下几个角度进行:(1)考查导数的几何意义,往往与解析几何、微积分相联系;(2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数;(3)利用导数求函数的最值(极值),解决生活中的优化问题;(4)利用导数研究零点问题,考查数形结合思想的应用.。
高考数学热点必会题型第6讲 导数构造函数解决问题类型总结(原卷及答案)
高考数学热点必会题型第5讲 导数构造函数解决问题类型总结——每天30分钟7天掌握一、重点题型目录【题型】一、构造函数)(x f x n型【题型】二、构造函数)(x f e nx型【题型】三、构造函数n xx f )(型 【题型】四、构造函数nxe xf )(型 【题型】五、构造函数x sin 与函数)(x f 型 【题型】六、构造函数x cos 与函数)(x f 型 【题型】七、构造ne 与)()(x bf x af +型 【题型】八、构造()b kx +与)(x f 型 【题型】九、构造()b kx +ln 型 【题型】十、构造综合型 二、题型讲解总结第一天学习及训练【题型】一、构造函数)(x f x n型例1.(2022·四川·盐亭中学模拟预测(文))已知定义在()0,+∞上的函数()f x 满足()()22+<0xf x x f x ',()324f =,则关于x 的不等式()23f x x >的解集为( )A .()0,4B .()2,+∞C .()4,+∞D .()0,2例2.(2022·河北·高三阶段练习)已知奇函数()f x 的定义域为R ,导函数为()f x ',若对任意[)0,x ∈+∞,都有()()30f x xf x '+>恒成立,()22f =,则不等式()()31116x f x --<的解集是__________.【题型】二、构造函数)(x f e nx型例3.(2022·河南·襄城高中高二阶段练习(理))已知奇函数()f x 的定义域为R ,其函数图象连续不断,当0x >时,()()()20x f x xf x '++>,则( ) A .()()124f f e> B .()20f <C .()()310f f -⋅>D .()()142f f e->- 例4.(2022·江苏·南师大二附中高二期末)已知f (x )为R 上的可导函数,其导函数为()'f x ,且对于任意的x ∈R ,均有()()'0f x f x +>,则( )A .e -2 021f (-2 021)>f (0),e 2 021f (2 021)<f (0)B .e -2 021f (-2 021)<f (0),e 2 021f (2 021)<f (0)C .e -2 021f (-2 021)>f (0),e 2 021f (2 021)>f (0)D .e -2 021f (-2 021)<f (0),e 2 021f (2 021)>f (0)例5.(2022·辽宁·大连二十四中模拟预测)已知函数()y f x =,若()0f x >且()()0f x xf x '+>,则有( ) A .()f x 可能是奇函数,也可能是偶函数B .()()11f f ->C .42x ππ<<时,cos22s (os )(in c )x f e f x x <D .(0)(1)f <例6.(2022·黑龙江·哈尔滨三中高三阶段练习)()f x 是定义在R 上的函数,满足()()2e x f x f x x '+=,()112ef -=-,则下列说法错误的是( ) A .()f x 在R 上有极大值B .()f x 在R 上有极小值C .()f x 在R 上既有极大值又有极小值D .()f x 在R 上没有极值第二天学习及训练【题型】三、构造函数n xx f )(型 例7.(2022·山东·潍坊一中高三期中)设函数()f x '是奇函数()(R)f x x ∈的导函数,(1)0f -= ,当0x >时,()()0xf x f x '-> ,则使得()0f x >成立的x 取值范围是( ) A .(,1)(1,)-∞-+∞ B .(1,0)(0,1)-⋃ C .(,1)(0,1)-∞-⋃D .(1,0)(1,+)-⋃∞例8.(2022·安徽·砀山中学高三阶段练习)已知a =,21e b =,ln 2c ππ=则a ,b ,c 的大小关系为( ) A .a c b <<B .b a c <<C .a b c <<D .c<a<b【题型】四、构造函数nxe xf )(型 例9.(2022·陕西·西安中学高二期中)已知定义在R 上的函数()f x 的导函数()f x ',且()()0f x f x <'<,则( )A .()()e 21f f >,()()2e 1f f >B .()()e 21f f >,()()2e 1f f <C .()()e 21f f <,()()2e 1f f <D .()()e 21f f <,()()2e 1f f >例10.(2022·江苏·涟水县第一中学高三阶段练习)()f x 是定义在R 上的函数,()f x '是()f x的导函数,已知()()f x f x '>,且(1)e f =,则不等式()2525e0x f x --->的解集为( ) A .(),3-∞- B .(),2-∞- C .()2,+∞ D .()3,+∞例11.(2023·江西·赣州市赣县第三中学高三期中(理))设()f x '是函数()f x 的导函数,且()()()3R f x f x x '>∈,1e 3f ⎛⎫= ⎪⎝⎭(e 为自然对数的底数),则不等式()3ln f x x <的解集为( )A .e 0,3⎛⎫ ⎪⎝⎭B .1e ,e 3⎛⎫ ⎪⎝⎭C .(D .e 3⎛ ⎝例12.(2022·河北廊坊·高三开学考试)已知定义域为R 的函数()f x 的导函数为fx ,且()()2e x f x f x x '-=,()00=f ,则以下错误的有( ) A .()f x 有唯一的极值点 B .()f x 在3,0上单调递增C .当关于x 的方程()f x m =有三个实数根时,实数m 的取值范围为()10,4e -D .()f x 的最小值为0第三天学习及训练【题型】五、构造函数x sin 与函数)(x f 型例13.(2022·云南师大附中高三阶段练习)已知13sin ,,ln1.11131a b c ===,则( ) A .a b c <<B .a c b <<C .c a b <<D .b a c <<例14.(2022·全国·高三阶段练习)已知函数()f x 及其导函数()f x '的定义域均为R ,且()f x 为偶函数,π26f ⎛⎫=- ⎪⎝⎭,3()cos ()sin 0f x x f x x '+>,则不等式3π1cos 024f x x ⎛⎫+-> ⎪⎝⎭的解集为( ) A .π,3⎛⎫-+∞ ⎪⎝⎭B .2π,3⎛⎫-+∞ ⎪⎝⎭C .2ππ,33⎛⎫- ⎪⎝⎭D .π,3⎛⎫+∞ ⎪⎝⎭【题型】六、构造函数x cos 与函数)(x f 型例15.已知函数()f x 的定义域为,22ππ⎛⎫- ⎪⎝⎭,其导函数是()'f x .有()cos ()sin 0f x x f x x '+<,则关于x ()2cos 6x f x π⎛⎫< ⎪⎝⎭的解集为( )A .,32ππ⎛⎫ ⎪⎝⎭B .,62ππ⎛⎫ ⎪⎝⎭C .,63ππ⎛⎫-- ⎪⎝⎭D .,26ππ⎛⎫-- ⎪⎝⎭例16.(2021·重庆·高二期末)已知()f x 的定义域为(0,)+∞且满足()0f x >,()f x '为()f x 的导函数,()()(cos )xf x f x e x x '-=+,则下列结论正确的是( )A .()f x 有极大值无极小值B .()f x 无极值C .()f x 既有极大值也有极小值D .()f x 有极小值无极大值第四天学习及训练【题型】七、构造ne 与)()(x bf x af +型例17.(2022·陕西·西安中学高二期中)已知定义在R 上的函数()f x 的导函数()f x ',且()()0f x f x <'<,则( )A .()()e 21f f >,()()2e 1f f >B .()()e 21f f >,()()2e 1f f <C .()()e 21f f <,()()2e 1f f <D .()()e 21f f <,()()2e 1f f >例18.(2022·河南·高三阶段练习(文))已知函数()e x f x ax k =--,其中e 为自然对数的底数,若21,e k ⎡⎤∈-⎣⎦时,函数()f x 有2个零点,则实数a 的可能取值为( )A .eB .2eC .2eD .3e例19.(2023·全国·高三专题练习)已知定义在R 上的偶函数()y f x =的导函数为()y f x '=,当0x >时,()()0f x f x x '+<,且(2)3f =-,则不等式6(21)21f x x --<-的解集为( ) A .13,,22⎛⎫⎛⎫-∞+∞ ⎪ ⎪⎝⎭⎝⎭B .3,2⎛⎫+∞ ⎪⎝⎭C .13,22⎛⎫⎪⎝⎭D .1113,,2222⎛⎫⎛⎫-⋃ ⎪ ⎪⎝⎭⎝⎭例20.(2022·全国·高三阶段练习(理))已知函数()32e e x xf x x x -=-++-,其中e 是自然对数的底数,若()()224f a f a -+>,则实数a 的取值范围是( )A .()2,1-B .(),2-∞-C .()1,+∞D .()(),21,-∞-⋃+∞【题型】八、构造()b kx +与)(x f 型例21.(2022·河南·高三阶段练习(文))已知定义在()0,∞+上的函数()f x 的导函数为()f x ',若()2f x '<,且()45f =,则不等式()1223x x f +>-的解集是( )A .()0,2B .()0,4C .(),2-∞D .(),4-∞例22.(2022·河南·襄城高中高二阶段练习(理))已知奇函数()f x 的定义域为R ,其函数图象连续不断,当0x >时,()()()20x f x xf x '++>,则( ) A .()()124f f e> B .()20f <C .()()310f f -⋅>D .()()142f f e->- 第五天学习及训练【题型】九、构造()b kx +ln 型例23.(2023·全国·高三专题练习)定义在(0)+∞,上的函数()f x 满足()()110,2ln2xf x f '+=>,则不等式)(e 0x f x +> 的解集为( ) A .(02ln2), B .(0,ln2) C .(ln21), D .(ln2)+∞,例24.(2022·河南·高三阶段练习(理))设1cos 2a =,78b =,15ln 8c ⎛⎫= ⎪⎝⎭,则a ,b ,c 之间的大小关系为( ) A .c <b <aB .c <a <bC .b <c <aD .a <c <b例25.(2022·贵州·高三阶段练习(理))已知命题p :在ABC 中,若π4A >,则sin A >,命题:1q x ∀>-,ln(1)x x ≥+.下列复合命题正确的是( ) A .p q ∧B .()()p q ⌝∧⌝C .()p q ⌝∧D .()p q ∧⌝【题型】十、构造综合型例26.(2022·全国·高三阶段练习(理))下列命题为真命题的个数是( )∈32log 23>;∈eln ππ<;∈123sin 248>;∈3eln2< A .1B .2C .3D .4例27.(2022·江苏·南京师大附中高三期中)已知函数()2ln f x x ax =-,则下列结论正确的有( ) A .当12ea <时,()y f x =有2个零点 B .当12ea >时,()0f x ≤恒成立 C .当12a =时,1x =是()y f x =的极值点 D .若12,x x 是关于x 的方程()0f x =的2个不等实数根,则12e x x >例28.(2022·黑龙江·齐齐哈尔市实验中学高三阶段练习)已知函数()f x 的定义域是()0,+∞,()f x '是()f x 的导数,若()()f x xf x x '=-,()1=1f ',则下列结论正确的是( )A .()f x 在10,e ⎛⎫⎪⎝⎭上单调递减B .()f x 的最大值为eC .()f x 的最小值为1e-D .存在正数0x ,使得()00ln f x x <参考答案 第一天学习及训练【题型】一、构造函数)(x f x n型例1.(2022·四川·盐亭中学模拟预测(文))已知定义在()0,+∞上的函数()f x 满足()()22+<0xf x x f x ',()324f =,则关于x 的不等式()23f x x >的解集为( )A .()0,4B .()2,+∞C .()4,+∞D .()0,2【答案】D【分析】构造函数()()2h x x f x =,得到函数()h x 的单调性,根据单调性解不等式即可.【详解】令()()2h x x f x =,则()()()220h x xf x x f x ''=+<,所以()h x 在()0,+∞单调递减,不等式()23f x x >可以转化为()()2234224x f x f >⨯=,即()()2h x h >,所以02x <<. 故选:D.例2.(2022·河北·高三阶段练习)已知奇函数()f x 的定义域为R ,导函数为()f x ',若对任意[)0,x ∈+∞,都有()()30f x xf x '+>恒成立,()22f =,则不等式()()31116x f x --<的解集是__________. 【答案】()1,3-【分析】构造新函数()()3g x x f x =,根据()f x 的性质推出()g x 的性质,最后利用()g x 单调性解不等式.【详解】设()()3g x x f x =,x ∈R ,()f x 为奇函数,∈()()()33=()=()=g x x f x x f x g x ---,即()g x 是偶函数,有()()=()=g x g x g x -,∈[)0,+x ∈∀∞,()()30f x xf x '+>恒成立,故[)0,+x ∈∞时,()()()()()()232=3+=3+0g x x f x x f x x f x xf x '''≥,∈函数()g x 在[)0,∞+上为增函数,∈()22f =,∈()()2=2=16g g -,()()311<16x f x --等价于()1<16=(2)g x g -,()(1)=1<(2)g x g x g --,且函数()g x 在[)0,∞+上为增函数,∈1<2x -,解得13x . 故答案为:()1,3-【题型】二、构造函数)(x f e nx型例3.(2022·河南·襄城高中高二阶段练习(理))已知奇函数()f x 的定义域为R ,其函数图象连续不断,当0x >时,()()()20x f x xf x '++>,则( ) A .()()124f f e> B .()20f <C .()()310f f -⋅>D .()()142f f e->- 【答案】D 【解析】 【分析】令()()2xg x x e f x =,根据导数可知其在[)0,∞+上单调递增,由()()()2100g g g >>=可知AB 错误,同时得到()()142f f e<,()10f >,()30f >,结合奇偶性知C 错误,D 正确. 【详解】对于AB ,令()()2xg x x e f x =,则()00g =,()()()()22x x g x x x e f x x e f x ++'=',当0x ≥时,()()()()20xg x xe x f x xf x ''=+⋅+≥⎡⎤⎣⎦,()g x ∴在[)0,∞+上单调递增,()()()012g g g ∴<<,即()()20142ef e f <<,()20f ∴>,()()124f f e<,AB 错误; 对于C ,由A 的推理过程知:当0x >时,()()20xg x x e f x =>,则当0x >时,()0f x >,∴()10f >,()30f >,又()f x 为奇函数,()()330f f ∴-=-<,()()310f f ∴-⋅<,C 错误. 对于D ,由A 的推理过程知:()()142f f e<,又()()11f f -=-,()()22f f -=-,()()142f f e-∴-<--,则()()142f f e->-,D 正确. 故选:D.例4.(2022·江苏·南师大二附中高二期末)已知f (x )为R 上的可导函数,其导函数为()'f x ,且对于任意的x ∈R ,均有()()'0f x f x +>,则( )A .e -2 021f (-2 021)>f (0),e 2 021f (2 021)<f (0)B .e -2 021f (-2 021)<f (0),e 2 021f (2 021)<f (0)C .e -2 021f (-2 021)>f (0),e 2 021f (2 021)>f (0)D .e -2 021f (-2 021)<f (0),e 2 021f (2 021)>f (0)【答案】D 【解析】 【分析】通过构造函数法,结合导数确定正确答案. 【详解】构造函数()()()()()''e ,e 0x xF x f x F x f x f x ⎡⎤=⋅=+⋅>⎣⎦,所以()F x 在R 上递增,所以()()()()20210,02021F F F F -<<, 即()()()()20212021e20210,0e 2021f f f f -⋅-<<⋅.故选:D例5.(2022·辽宁·大连二十四中模拟预测)已知函数()y f x =,若()0f x >且()()0f x xf x '+>,则有( ) A .()f x 可能是奇函数,也可能是偶函数 B .()()11f f ->C .42x ππ<<时,cos22s (os )(in c )xf ef x x <D .(0)(1)f <【答案】D 【解析】 【分析】根据奇函数的定义结合()0f x >即可判断A ;令()()22ex g x f x =,利用导数结合已知判断函数()g x 的单调性,再根据函数()g x 的单调性逐一判断BCD 即可得解. 【详解】解:若()f x 是奇函数,则()()f x f x -=-, 又因为()0f x >,与()()f x f x -=-矛盾, 所有函数()y f x =不可能时奇函数,故A 错误; 令()()22ex g x f x =,则()()()()()()222222e eex x x g x x f x f x xf x f x '''=+=+,因为22e0x >,()()0f x xf x '+>,所以()0g x '>,所以函数()g x 为增函数, 所以()()11g g -<,即()()1122e 1e 1f f -<, 所以()()11f f -<,故B 错误;因为42x ππ<<,所以0cos x <sin 12x <<,所以sin cos x x >, 故()()sin cos g x g x >,即()()22sin cos 22e sin ecos x x f x f x >,所以()()()22cos sin cos222sin ecos ecos x xx f x f x f x ->=,故C 错误;有()()01g g <,即()()01f <,故D 正确. 故选:D.例6.(2022·黑龙江·哈尔滨三中高三阶段练习)()f x 是定义在R 上的函数,满足()()2e x f x f x x '+=,()112ef -=-,则下列说法错误的是( ) A .()f x 在R 上有极大值B .()f x 在R 上有极小值C .()f x 在R 上既有极大值又有极小值D .()f x 在R 上没有极值【答案】ABC【分析】先由题意得()10f '-=,再构造()()2e xg x f x =,得到()3e x g x x '=,进而再构造()()()23e e 2x x h x f x x g x '==-,判断出()0h x >,即0fx ,由此得到选项.【详解】根据题意,()()2e x f x f x x '+=,故()()1211e f f -'-+-=-,又()112e f -=-,得()11212e e f ⎛⎫'-+-=- ⎪⎝⎭,故()10f '-=,令()()2e xg x f x =,则()()()()()222232e e e 2e e e x x x x x x g x f x f x f x f x x x '''⎡⎤=+=+=⋅=⎣⎦,又()()2232e e e x x x f x f x x '+=,记()()()()2323e e 2e e 2x x x xh x f x x f x x g x '==-=-,所以()()()333333e 3e 2e 3e 2e e 1x x x x x xh x x g x x x x ''=+-=+-=+,当1x <-时,()0h x '<,()h x 单调递减;当1x >-时,()0h x '>,()h x 单调递增,所以()()()21e 10h x h f -'>-=-=,即()2e 0xf x '>,即0fx ,所以()f x 在R 上单调递增,故()f x 在R 上没有极值. 故选项ABC 说法错误,选项D 说法正确. 故选:ABC第二天学习及训练【题型】三、构造函数nx x f )(型 例7.(2022·山东·潍坊一中高三期中)设函数()f x '是奇函数()(R)f x x ∈的导函数,(1)0f -= ,当0x >时,()()0xf x f x '-> ,则使得()0f x >成立的x 取值范围是( )A .(,1)(1,)-∞-+∞B .(1,0)(0,1)-⋃C .(,1)(0,1)-∞-⋃D .(1,0)(1,+)-⋃∞【答案】D【分析】根据题意构造函数()()f x g x x=,由求导公式和法则求出()g x ',结合条件判断出()g x '的符号,即可得到函数()g x 的单调区间,根据()f x 奇函数判断出()g x 是偶函数,由(1)0f -=求出(1)0g -=,结合函数()g x 的单调性、奇偶性,再转化()0f x >,由单调性求出不等式成立时x 的取值范围. 【详解】由题意设()()f x g x x =,则2()()()xf x f x g x x '-'=当0x >时,有()()0xf x f x '->,∴当0x >时,()0g x '>,∴函数()()f x g x x=在(0,)+∞上为增函数, 函数()f x 是奇函数,()()g x g x ∴-=,∴函数()g x 为定义域上的偶函数,()g x 在(,0)-∞上递减, 由(1)0f -=得,(1)0g -=, 不等式()0()0f x x g x >⇔>,∴>0()>(1)x g x g ⎧⎨⎩或<0()<(1)x g x g -⎧⎨⎩,即有1x >或10x -<<,∴使得()0f x >成立的x 的取值范围是:(1-,0)(1⋃,)+∞, 故选:D例8.(2022·安徽·砀山中学高三阶段练习)已知a =,21e b =,ln 2c ππ=则a ,b ,c 的大小关系为( ) A .a c b <<B .b a c <<C .a b c <<D .c<a<b【分析】构造函数,根据函数的单调性比较大小. 【详解】令()2ln x f x x =,则()42ln x x xf x x -'=,令()0f x '<,解得x >因此()2ln x f x x =在)∞+上单调递减,又因为()ln 4416a f ===,()221ln e e e e b f ===,ln 2c f ππ===,因为4e >>a b c <<. 故选:C.【题型】四、构造函数nxex f )(型 例9.(2022·陕西·西安中学高二期中)已知定义在R 上的函数()f x 的导函数()f x ',且()()0f x f x <'<,则( )A .()()e 21f f >,()()2e 1f f >B .()()e 21f f >,()()2e 1f f <C .()()e 21f f <,()()2e 1f f <D .()()e 21f f <,()()2e 1f f >【答案】D【分析】据已知不等式构造函数,结合导数的性质进行求解即可. 【详解】构造函数()()()()()e e x xf x f x f xg x g x '-'=⇒=,因为()()f x f x '<,所以()0g x '>,因此函数()g x 是增函数, 于是有2(2)(1)(2)(1)(2)e (1)e ef fg g f f >⇒>⇒>, 构造函数()()e ()e [()()]x x h x f x h x f x f x ''=⋅⇒=+,因为()()0f x f x <'<, 所以()0h x '<,因此()h x 是单调递减函数, 于是有2(2)(1)e (2)e (1)e (2)(1)h h f f f f <⇒<⇒<,例10.(2022·江苏·涟水县第一中学高三阶段练习)()f x 是定义在R 上的函数,()f x '是()f x 的导函数,已知()()f x f x '>,且(1)e f =,则不等式()2525e0x f x --->的解集为( ) A .(),3-∞- B .(),2-∞- C .()2,+∞ D .()3,+∞【答案】D【分析】根据已知条件构造函数,利用导数法求函数的单调性,结合函数的单调性即可求解. 【详解】由()()f x f x '>,得()()0f x f x '->, 设()()x f x g x =e ,则()()()0e xf x f xg x '-'=>, 所以函数()g x 在(),-∞+∞上单调递增,因为()1e f =,所以()()1111f g ==e , 所以不等式()2525e0x f x --->等价于()25251e x f x -->即()()251g x g ->,所以251x ->,解得3x >,所以不等式()2525e0x f x --->的解集为()3,+∞. 故选:D.例11.(2023·江西·赣州市赣县第三中学高三期中(理))设()f x '是函数()f x 的导函数,且()()()3R f x f x x '>∈,1e 3f ⎛⎫= ⎪⎝⎭(e 为自然对数的底数),则不等式()3ln f x x <的解集为( )A .e 0,3⎛⎫ ⎪⎝⎭B .1e ,e 3⎛⎫ ⎪⎝⎭C .(D .e 3⎛ ⎝【答案】C【分析】构造函数()()3exf xg x =,由已知可得函数()g x 在R 上为增函数,不等式()3ln f x x <即为()1ln 3g x g ⎛⎫< ⎪⎝⎭,根据函数的单调性即可得解.【详解】解:令()()3e x f x g x =,则()()()33e xf x f xg x '-'=,因为()()()3R f x f x x '>∈, 所以()()()330e xf x f xg x '-'=>,所以函数()g x 在R 上为增函数, 不等式()3ln f x x <即不等式()3ln <1>0f x x x ⎧⎪⎨⎪⎩,又()()()3ln 3ln ln ln e x f x f x g x x ==,11313e f g ⎛⎫ ⎪⎛⎫⎝⎭== ⎪⎝⎭, 所以不等式()3ln f x x <即为()1ln 3g x g ⎛⎫< ⎪⎝⎭,即1ln 3x <,解得0x <<所以不等式()3ln f x x <的解集为(.故选:C.例12.(2022·河北廊坊·高三开学考试)已知定义域为R 的函数()f x 的导函数为fx ,且()()2e x f x f x x '-=,()00=f ,则以下错误的有( ) A .()f x 有唯一的极值点 B .()f x 在3,0上单调递增C .当关于x 的方程()f x m =有三个实数根时,实数m 的取值范围为()10,4e -D .()f x 的最小值为0 【答案】ABC 【分析】构造()()ex f x g x =,结合已知求()g x 的解析式,进而可得2()e x f x x =,再利用导数研究()f x 的极值点、单调性,并判断其值域范围,即可判断各选项的正误. 【详解】令()()e x f x g x =,则()()()2exf x f xg x x '-'==,故2()g x x C =+,(C 为常数),所以2()e ()x f x x C =+,而()()00e 00f C =+=,故0C =,所以2()e x f x x =,则2()(2)e x f x x x '=+, 令()0f x '=,可得2x =-或0x =,在(,2)-∞-、(0,)+∞上()0f x '>,()f x 递增;在(2,0)-上()0f x '<,()f x 递减; 所以()f x 有2个极值点,在3,0上不单调,A 、B 错误;由x 趋于负无穷时()f x 趋向于0,24(2)e f -=,(0)0f =,x 趋于正无穷时()f x 趋向于正无穷, 所以()f x m =有三个实数根时m 的范围为()20,4e -,()f x 的最小值为0,C 错误,D 正确;故选:ABC第三天学习及训练【题型】五、构造函数x sin 与函数)(x f 型例13.(2022·云南师大附中高三阶段练习)已知13sin ,,ln1.11131a b c ===,则( ) A .a b c << B .a c b <<C .c a b <<D .b a c <<【答案】B【分析】根据结构构造函数()sin ,0,2f x x x x π⎡⎤=-∈⎢⎥⎣⎦,利用导数判断单调性,即可得到a b <;根据结构构造函数()ln 1g x x x =+-,利用导数判断单调性,即可得到a c <;根据结构构造函数3()ln(1)3xh x x x=+-+,利用导数判断单调性,即可得到c b <. 【详解】构造函数()sin ,0,2f x x x x π⎡⎤=-∈⎢⎥⎣⎦,则()1cos 0f x x =-≥',故函数=()y f x 在0,2π⎡⎤⎢⎥⎣⎦上单调递增,故1(0)011f f ⎛⎫>= ⎪⎝⎭,即11sin 1111>,又313111>,故a b <.构造函数()ln 1g x x x =+-,则1()1g x x'=-,易知函数=()y g x 在=1x 处取得最大值(1)0g =,故10011g ⎛⎫< ⎪⎝⎭,即1010ln 101111+-<,即11011ln ln ln1.1111110<-==,由前面知11sin 1111<,故a c <.构造函数3()ln(1)3x h x x x =+-+,则222219(3)9(1)(3)()1(3)(1)(3)(1)(3)x x x x h x x x x x x x +-+-=-==++++++',故知函数()y h x =在(0,3)上单调递减,故(0.1)(0)0h h <=,即0.33ln1.1 3.131<=,故c b <.综上,a c b <<. 故选:B .例14.(2022·全国·高三阶段练习)已知函数()f x 及其导函数()f x '的定义域均为R ,且()f x 为偶函数,π26f ⎛⎫=- ⎪⎝⎭,3()cos ()sin 0f x x f x x '+>,则不等式3π1cos 024f x x ⎛⎫+-> ⎪⎝⎭的解集为( ) A .π,3⎛⎫-+∞ ⎪⎝⎭B .2π,3⎛⎫-+∞ ⎪⎝⎭C .2ππ,33⎛⎫- ⎪⎝⎭D .π,3⎛⎫+∞ ⎪⎝⎭【答案】B【分析】令()()31sin 4g x f x x =-,结合题设条件可得()g x 为R 上的增函数,而原不等式即为π02g x ⎛⎫+> ⎪⎝⎭,从而可求原不等式的解集.【详解】3π1cos 024f x x ⎛⎫+-> ⎪⎝⎭可化为3ππ1sin 0224f x x ⎛⎫⎛⎫++-> ⎪ ⎪⎝⎭⎝⎭,令()()31sin 4g x f x x =-, 则()()()()()322sin 3sin cos sin ()sin 3cos g x f x x f x x x x f x x f x x '''=+=+,因为3()cos ()sin 0f x x f x x '+>,故0g x (不恒为零),故()g x 为R 上的增函数,故3π1cos 024f x x ⎛⎫+-> ⎪⎝⎭即为π02g x ⎛⎫+> ⎪⎝⎭,而33πππ1ππ1sin sin 06664664g f f ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-=---=--= ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,故π02g x ⎛⎫+> ⎪⎝⎭的解为ππ26x +>-,故2π3x >-即3π1cos 024f x x ⎛⎫+-> ⎪⎝⎭的解为2π,3⎛⎫-+∞ ⎪⎝⎭.故选:B.【题型】六、构造函数x cos 与函数)(x f 型例15.已知函数()f x 的定义域为,22ππ⎛⎫- ⎪⎝⎭,其导函数是()'f x .有()cos ()sin 0f x x f x x '+<,则关于x()2cos 6x f x π⎛⎫< ⎪⎝⎭的解集为( )A .,32ππ⎛⎫ ⎪⎝⎭B .,62ππ⎛⎫ ⎪⎝⎭C .,63ππ⎛⎫-- ⎪⎝⎭D .,26ππ⎛⎫-- ⎪⎝⎭【答案】B 【分析】 令()()cos f x F x x=,根据题设条件,求得()F'0x <,得到函数()()cos f x F x x=在,22ππ⎛⎫- ⎪⎝⎭内的单调递减函数,再把不等式化为()6cos cos 6f f x x ππ⎛⎫ ⎪⎝⎭<,结合单调性和定义域,即可求解.【详解】由题意,函数()f x 满足()()'cos sin 0f x x f x x +<, 令()()cos f x F x x=,则()()()2'cos sin '0cos f x x f x xF x x+=<函数()()cos f x F x x=是定义域,22ππ⎛⎫- ⎪⎝⎭内的单调递减函数,由于cos 0x >,关于x的不等式()2cos 6x f x π⎛⎫< ⎪⎝⎭可化为()6cos cos 6f f x x ππ⎛⎫ ⎪⎝⎭<,即()6F x F π⎛⎫< ⎪⎝⎭,所以22x ππ-<<且6x π>,解得26x ππ>>,()2cos 6x f x π⎛⎫< ⎪⎝⎭的解集为,62ππ⎛⎫ ⎪⎝⎭.故选:B例16.(2021·重庆·高二期末)已知()f x 的定义域为(0,)+∞且满足()0f x >,()f x '为()f x 的导函数,()()(cos )xf x f x e x x '-=+,则下列结论正确的是( )A .()f x 有极大值无极小值B .()f x 无极值C .()f x 既有极大值也有极小值D .()f x 有极小值无极大值 【答案】B 【解析】 【分析】 令()()xf x F x e=,根据题意得到()cos F x x x '=+,设()cos ,0g x x x x =+>,利用导数求得()g x 在区间(0,)+∞单调递增,得到()0F x '>,由()()x f x e F x =⋅,得到()0f x '>,即函数()f x 为单调递增函数,得到函数无极值.【详解】 令()(),0x f x F x x e =>,可得()()()xf x f x F x e'-'=, 因为()()(cos )xf x f x e x x '-=+,可得()cos F x x x '=+,设()cos ,0g x x x x =+>,可得()1sin 0g x x '=-≥, 所以()g x 在区间(0,)+∞单调递增,又由()01g =,所以()()01g x g >=,所以()0F x '>,所以()F x 单调递增, 因为()0f x >且0x e > ,可得()0F x >,因为()()xf x F x e =,可得()(),0xf x e F x x =⋅>, 则()()()[]0xf x e F x F x ''=+>,所以函数()f x 为单调递增函数,所以函数()f x 无极值. 故选:B.第四天学习及训练【题型】七、构造ne 与)()(x bf x af +型例17.(2022·陕西·西安中学高二期中)已知定义在R 上的函数()f x 的导函数()f x ',且()()0f x f x <'<,则( )A .()()e 21f f >,()()2e 1f f >B .()()e 21f f >,()()2e 1f f <C .()()e 21f f <,()()2e 1f f <D .()()e 21f f <,()()2e 1f f >【答案】D【分析】据已知不等式构造函数,结合导数的性质进行求解即可. 【详解】构造函数()()()()()e ex xf x f x f xg x g x '-'=⇒=,因为()()f x f x '<, 所以()0g x '>,因此函数()g x 是增函数, 于是有2(2)(1)(2)(1)(2)e (1)e ef fg g f f >⇒>⇒>, 构造函数()()e ()e [()()]x x h x f x h x f x f x ''=⋅⇒=+,因为()()0f x f x <'<, 所以()0h x '<,因此()h x 是单调递减函数,于是有2(2)(1)e (2)e (1)e (2)(1)h h f f f f <⇒<⇒<,故选:D例18.(2022·河南·高三阶段练习(文))已知函数()e xf x ax k =--,其中e 为自然对数的底数,若21,e k ⎡⎤∈-⎣⎦时,函数()f x 有2个零点,则实数a 的可能取值为( )A .eB .2eC .2eD .3e【答案】D【分析】由题意可知方程2e ,1,e x ax k k ⎡⎤-=∈-⎣⎦有两个实数根,令()e xg x ax =-,则()g x 的图象与直线2,1,e y k k ⎡⎤=∈-⎣⎦有两个交点,结合导数分析函数()g x 的单调性与极值情况即可解决问题.【详解】由题意可知方程2e ,1,e x ax k k ⎡⎤-=∈-⎣⎦有两个实数根,令()e x g x ax =-,则()g x 的图象与直线2,1,e y k k ⎡⎤=∈-⎣⎦有两个交点,()e xg x a '=-.(1)若0,()0a g x '≤<在R 上恒成立,所以()g x 在R 上单调递减,()g x 的图象与直线2,1,e y k k ⎡⎤=∈-⎣⎦至多只有一个交点,不合题意;(2)若0a >,当ln x a <时,()0g x '>,当ln x a >时,()0g x '<, 所以()g x 的单调递增区间是(,ln )a -∞,单调递减区间是(ln ,)a +∞, 所以当ln x a =时,()g x 取得极大值,也是最大值,为ln a a a -. 当x →-∞时,()g x →-∞,当x →+∞时,()g x →-∞,所以要使()g x 的图象与直线2,1,e y k k ⎡⎤=∈-⎣⎦有两个交点,只需2ln e a a a ->.ln (ln 1)a a a a a -=-,当0e a <≤时,ln 0a a a -≤,当e a >时,ln 0a a a ->,所以2ln e ,e a a a a ->>,设()ln ,e h a a a a a =->,则()ln 0h a a '=>,所以()h a 在(e,)+∞上单调递增,而()22e e h =,所以2ln e a a a ->的解为2e a >,而23e e >, 故选:D .例19.(2023·全国·高三专题练习)已知定义在R 上的偶函数()y f x =的导函数为()y f x '=,当0x >时,()()0f x f x x '+<,且(2)3f =-,则不等式6(21)21f x x --<-的解集为( ) A .13,,22⎛⎫⎛⎫-∞+∞ ⎪ ⎪⎝⎭⎝⎭B .3,2⎛⎫+∞ ⎪⎝⎭C .13,22⎛⎫ ⎪⎝⎭D .1113,,2222⎛⎫⎛⎫-⋃ ⎪ ⎪⎝⎭⎝⎭【答案】A【分析】根据题干中的不等式,构造函数()()F x xf x =,结合()y f x =在在R 上为偶函数,得到()()F x xf x =在R 上单调递减,其中()()2226F f ==-,分12x >与12x <,对6(21)21f x x --<-变形,利用函数单调性解不等式,求出解集. 【详解】当0x >时,()()()()0f x xf x f x f x x x'+'+=<, 所以当0x >时,()()0xf x f x '+<,令()()F x xf x =,则当0x >时,()()()0F x xf x f x +''=<, 故()()F x xf x =在0x >时,单调递减, 又因为()y f x =在在R 上为偶函数, 所以()()F x xf x =在R 上为奇函数, 故()()F x xf x =在R 上单调递减, 因为(2)3f =-,所以()()2226F f ==-, 当12x >时,6(21)21f x x --<-可变形为()21(21)6x f x --<-, 即()()212F x F -<,因为()()F x xf x =在R 上单调递减, 所以212x ->,解得:32x >, 与12x >取交集,结果为32x >;当12x <时,6(21)21f x x --<-可变形为()21(21)6x f x -->-, 即()()212F x F ->,因为()()F x xf x =在R 上单调递减, 所以212x -<,解得:32x <, 与12x <取交集,结果为12x <; 综上:不等式6(21)21f x x --<-的解集为13,,22⎛⎫⎛⎫-∞+∞ ⎪ ⎪⎝⎭⎝⎭.故选:A例20.(2022·全国·高三阶段练习(理))已知函数()32e e x xf x x x -=-++-,其中e 是自然对数的底数,若()()224f a f a -+>,则实数a 的取值范围是( )A .()2,1-B .(),2-∞-C .()1,+∞D .()(),21,-∞-⋃+∞【答案】D【分析】构造函数()()2g x f x =-,利用奇偶性的定义、导数的符号变化判定其奇偶性和单调性,再将2(2)()4f a f a -+>变为2(2)()g a g a ->-,利用()g x 的单调性进行求解.【详解】构造函数()3()2e e x xg x f x x x -=-=-+-,因为()g x 的定义域为(,)-∞+∞,且()()()33e e e e x x x x g x x x x x ---=---+-=-+-+ 3e )()e (x x g x x x -=--+-=-,即()g x 是奇函数,又()22231e +e 31310x x g x x x x -=-+≥-+=+>', 所以()g x 在 (,)-∞+∞上单调递增;因为2(2)()4f a f a -+>,所以2(2)2[()2]f a f a -->--, 即2(2)()g a g a ->-,即2(2)()g a g a ->-,所以22a a ->-, 即220a a +->,解得1a >或2a <-, 即(,2)(1,)a ∈-∞-+∞. 故选:D.【点睛】方法点睛:利用函数的性质解决不等式问题时,往往要利用题干中的表达式或不等式的结构特点合理构造函数,如本题中,构造函数()()2g x f x =-,将问题转化为利用函数的奇偶性和单调性求2(2)()g a g a ->-的解集. 【题型】八、构造()b kx +与)(x f 型例21.(2022·河南·高三阶段练习(文))已知定义在()0,∞+上的函数()f x 的导函数为()f x ',若()2f x '<,且()45f =,则不等式()1223x x f +>-的解集是( )A .()0,2B .()0,4C .(),2-∞D .(),4-∞【答案】C【分析】根据所求不等式()1223x x f +>-的形式,构造函数()()23g x f x x =-+,利用题目中的条件判断出()g x 在()0,∞+上单调递减,进而将所求转化为()()24xg g >,再利用单调性求出解集.【详解】设()()23g x f x x =-+,则()()2g x f x ''=-.因为()2f x '<,所以()20f x '-<,即()0g x '<,所以()g x 在()0,∞+上单调递减.不等式()1223x x f +>-等价于不等式()22230x x f -⨯+>,即()20xg >.因为()45f =,所以()()442430g f =-⨯+=,所以()()24xg g >.因为()g x 在()0,∞+上单调递减,所以24x <,解得2x <. 故选:C .例22.(2022·河南·襄城高中高二阶段练习(理))已知奇函数()f x 的定义域为R ,其函数图象连续不断,当0x >时,()()()20x f x xf x '++>,则( ) A .()()124f f e> B .()20f <C .()()310f f -⋅>D .()()142f f e->- 【答案】D 【解析】令()()2xg x x e f x =,根据导数可知其在[)0,∞+上单调递增,由()()()2100g g g >>=可知AB 错误,同时得到()()142f f e<,()10f >,()30f >,结合奇偶性知C 错误,D 正确. 【详解】对于AB ,令()()2xg x x e f x =,则()00g =,()()()()22x x g x x x e f x x e f x ++'=',当0x ≥时,()()()()20xg x xe x f x xf x ''=+⋅+≥⎡⎤⎣⎦,()g x ∴在[)0,∞+上单调递增,()()()012g g g ∴<<,即()()20142ef e f <<,()20f ∴>,()()124f f e<,AB 错误; 对于C ,由A 的推理过程知:当0x >时,()()20xg x x e f x =>,则当0x >时,()0f x >,∴()10f >,()30f >,又()f x 为奇函数,()()330f f ∴-=-<,()()310f f ∴-⋅<,C 错误. 对于D ,由A 的推理过程知:()()142f f e<,又()()11f f -=-,()()22f f -=-,()()142f f e-∴-<--,则()()142f f e->-,D 正确. 故选:D.第五天学习及训练【题型】九、构造()b kx +ln 型例23.(2023·全国·高三专题练习)定义在(0)+∞,上的函数()f x 满足()()110,2ln2xf x f '+=>,则不等式)(e 0x f x +> 的解集为( ) A .(02ln2), B .(0,ln2) C .(ln21), D .(ln2)+∞,【分析】构造新函数()()ln ,(0)g x f x x x =+>,利用导数说明其单调性,将)(e 0x f x +>变形为)>(e (2)x g g ,利用函数的单调性即可求解. 【详解】令()()ln ,(0)g x f x x x =+> , 则()11()()xf x g x f x x x'+''=+=,由于()10xf x '+>, 故()0g x '>,故()g x 在(0)+∞,单调递增, 而1(2)(2)ln2ln ln 202g f =+=+= ,由)(e 0x f x +>,得)>(e (2)x g g , ∈e 2x > ,即ln2x > ,∈不等式)(e 0x f x +>的解集为(ln2)+∞,, 故选:D .例24.(2022·河南·高三阶段练习(理))设1cos 2a =,78b =,15ln 8c ⎛⎫= ⎪⎝⎭,则a ,b ,c 之间的大小关系为( ) A .c <b <a B .c <a <bC .b <c <aD .a <c <b【答案】A【分析】构造函数()()ln 1g x x x =+-,()212cos f x x x ⎛⎫-- ⎝=⎪⎭,借助函数的单调性分别得出c <b 与a >b ,从而得出答案.【详解】构造函数()()ln 1g x x x =+-, x >-1,则()1111xg x x x -'=-=++, 当-1<x <0时,()0g x '>,()g x 单调递增,当x >0时,()0g x '<,()g x 单调递减, ∈()()00g x g ≤=,∈()ln 1x x ≤+(当x =0时等号成立), ∈1577ln ln 1888⎛⎫⎛⎫=+< ⎪ ⎪⎝⎭⎝⎭,则c <b ,构造函数()21cos 12f x x x ⎛⎫=-- ⎪⎝⎭,0<x <1,则()sin f x x x '=-,令()sin x x x ϕ=-,0<x <1,∈()1cos 0x x ϕ'=->,()x ϕ单调递增, ∈()()00ϕϕ>=x ,∈0fx,()f x 单调递增,从而()()00f x f >=,∈102f ⎛⎫> ⎪⎝⎭,即21117cos 12228⎛⎫>-⋅= ⎪⎝⎭,则a >b .∈c <b <a . 故选:A .例25.(2022·贵州·高三阶段练习(理))已知命题p :在ABC 中,若π4A >,则sin A >,命题:1q x ∀>-,ln(1)x x ≥+.下列复合命题正确的是( ) A .p q ∧ B .()()p q ⌝∧⌝C .()p q ⌝∧D .()p q ∧⌝【答案】C【分析】命题p 可举出反例,得到命题p 为假命题,构造函数证明出:1q x ∀>-,ln(1)x x ≥+成立,从而判断出四个选项中的真命题.【详解】在ABC 中,若5π6A =,此时满足π4A >,但1sin 2A =<p 错误; 令()()ln 1,1f x x x x =-+>-, 则()1111xf x x x '=-=++, 当0x >时,0f x,当10x -<<时,()0f x '<,所以()f x 在0x >上单调递增,在10x -<<上单调递减, 所以()f x 在0x =处取得极小值,也是最小值,()()00ln 010f =-+=,所以:1q x ∀>-,ln(1)x x ≥+成立,为真命题;故p q ∧为假命题,()()p q ⌝∧⌝为假命题,()p q ⌝∧为真命题,()p q ∧⌝为假命题.故选:C【题型】十、构造综合型例26.(2022·全国·高三阶段练习(理))下列命题为真命题的个数是( )∈32log 23>;∈eln ππ<;∈123sin 248>;∈3eln2< A .1 B .2C .3D .4【答案】C【分析】利用指数式与对数的互化、对数函数的单调性推得∈错误;构造函数()ln xf x x=,利用导数研究其单调性和最值,进而判定∈∈正确;构造函数31()=sin 6h x x x x -+,π(0,)2x ∈,利用二次求导确定其单调性,利用1()>(0)2h h 得到∈正确.【详解】对于∈:若32log 23>,则2323>,即89>, 显然不成立,故∈错误; 对于∈:将eln ππ<变为ln πlne <πe, 构造()ln x f x x =,则()21ln xf x x -'=, 则当0e x <<时,0f x,e x >时,()0f x '<,所以()ln xf x x=在(0,e)上单调递增,在(e,+)∞上单调递减, 则e x =时,()f x 取得最大值1e,由()()πe f f <得ln πlne <πe, 即eln ππ<成立,故∈正确;对于∈:令31()=sin 6h x x x x -+,π(0,)2x ∈,。