[推荐学习]2011中考数学一轮复习(几何篇)26.正多边形和圆

合集下载

2011届中考数学第一轮专题复习圆的有关计算课件14最新版

2011届中考数学第一轮专题复习圆的有关计算课件14最新版

13.如图,庆祝祖国六十华诞,某单位排练的节 目需用到如图所示的扇形布扇,布扇完全打开 后,外侧两竹条AB、AC夹角为120°,AB的 长为30cm,贴布部分BD的长为20cm,则贴 布部分的面积约为__________cm2。(∏取3)
【例题解析】
例1.如图,在矩形ABCD中,AB=1, AD= 3 ,以BC的中点E为圆心的弧MPN 与AD相切,求图中阴影部分的面积?
120°,其外接圆的半径为
.
5.一个正方形同时外切和内接于两个同心 圆,当小圆的半径为r时,大圆的半径 为.
6.圆的内接四边形ABCD中,四个角的度 数比可顺次为 ( )
A. 4:3:2:1 B. 4:3:1:2 C 4:2:3:1 D.4:1:3:2
7.一个圆锥的轴截面是一个边长为6cm 的等边三角形,圆锥的侧面积是 .
10、下列叙述错误的是( ) A、圆的内接平行四边形为矩形 B、圆内接梯形为等腰梯形 C、度数相等的弧是等弧 D、圆既是轴对称图形,又是中心对称图形
11.如图,
(1)若点O是△ABC的外心, ∠A=70º,则
∠BOC=
º.
(2)若点O是△ABC的内心, ∠A=70º,则
∠BOC= º.
12、母线为5cm的圆锥的全面积为14∏cm2,则 这个圆锥的底面半径为 cm.
8.如图,直线l经过⊙O的圆心O,且与⊙O 交于A、B两点,点C在⊙O上,且∠AOC= 30°,点P是直线l上的一个动点(与圆心O不 重合),直线CP与⊙O相交于另一点Q,如果 QP=QO,则∠OCP=___________.
9.在Rt△ABC中,∠C=90º,AB=5, BC=4, 以AC所在直线为轴旋转一周所得的圆锥的侧 面积是 .
——华罗庚

正多边形和圆及正多边形的有关计算

正多边形和圆及正多边形的有关计算

中考数学辅导之—正多边形和圆及正多边形的有关计算正多边形和圆是初中几何课本中的最后一单元,它包括正多边形的定义、正多边形的判定、性质,正多边形的有关计算,圆周长及弧长公式,圆、扇形、弓形的面积。

今天我们一起学习正多边形的定义、判定、性质及有关计算.一、基础知识及其说明:1.正多边形的定义:各边相等、各角也相等的多边形叫做正多边形.此定义中的条件各边相等,各角也相等 “缺一不可”.如:菱形各边相等,因四个角不等,所以菱形不一定是正多边形.矩形的四个角相等,但因四条边不一定相等,故矩形不一定是正四边形,只有正方形是正四边形.2.正多边形的判定,正多边形的定义当然是正多边形的判定方法之一,但如同全等三角形的判定一样,用定义来证明两个三角形全等显然不可取,因此需用判定定理来证.判定定理:把圆几等分()①依次连结各分点所得的多边形是这个圆的内接正边形②经过各分点做圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正边形.也就是说,若要证明一个多边形是圆内接正多边形,只要证明这个多边形的顶点是圆的等分点即可, 如:要证明一个圆内接边形ABCDEF ……是圆内接正边形,就要证A 、B 、C 、D 、E 、F ……各点是圆的n 等分点,就是要证AB=BC=CD=DE=EF=…….同样,要证明一个圆外切边形是圆外切正边形,只要证明各切点是圆的等分点即可例1:证明:各边相等的圆内接多边形是正多边形.已知:在⊙O 中,多边形ABCDE ……是⊙O 的内接n 边形 且AB=BC=CD=DE=…….求证:n 边形ABCDE ……是正n 边形证明: AB=BC=CD=DE=…… ∴ AB=BC=CD=DE ……∴OEB=AEC= BED=COE=……∴ =∠=∠=∠=∠D C B A又∵AB=BC=CD=DE=……∴n 边形ABCDE ……是正n 边形.例2:证明:各角相等的圆外切n 边形是正n 边形.已知:多边形……是圆外切n 边形,切点分别是A,B,C,D,E ……,=…….求证:n 边形……是正n 边形.证明:连结OB,OC,OD ……,在四边形COD 和四边形BOC 中∵切⊙O 于B,C,D∴∴ 0''180=∠+∠=∠+∠COD C BOC B而……∴∴BC=CD(在同圆中,相等的圆 B O心角所对的弧相等).同理BC=CD=DE=FE=……'B D∴A,B,C,D,E,F……是圆的n等分点 C∴多边形ABCDEF……是圆外切n正多边形3.正多边都是轴对称图形,若n是奇数,正n边形是轴对称图形,n是偶数,正n边形既是轴对称图形又是中心图形.4.正多边形的性质:任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆.5.正多边形的外接圆(或内切圆)的圆心叫正多边形的中心.外接圆半径叫正多边形的半径.内切圆的半径叫正多边形的边心距.正多边形的每一边所对的圆心角叫中心角,中心角的度数是.如图:OA,OB是半径,O是中心,OH⊥AB于H,OH是边心距,是中心角6.正多边形的有关计算,一般是围绕正边形的半径R,边长,边心距,周长及面积来进行,但关健是之间的计算,因为正边形的边心距把正边形的一边与该边所对应的两条半径所围成的等腰三角形分成两个全等的直角三角形,所以在Rt△AOH中,斜边是R,直角边分别是和,锐角,利用直角三角形的有关知识(勾股定理,锐角三角函数等)来解直角三角形即可.例:已知正六边形ABCDEF的半径是R,求正六边形的边长S6.解:作半径OA、OB,过O做OH⊥AB,则∠AOH==30°∵∴∴∴∵∴S6=同学们在进行正多边形的计算时,应很好的理解、掌握如何用解直角三角形的方法进行计算,但也可以推出公式,然后利用公式变形进行计算.则这是已知半径R,求的公式,若记住公式则正多边形的计算就简单了很多,如已知半径R,求解:再如:已知正三角形的边长为,可以先由,求出半径,再将求得的R代入;若已知边心距求边长,则先用,求出R,再代入求边长公式即可求出,此法好处是不用画图,只需将上面两个公式反复变形即可.7.如何求同圆的圆内接正边形与圆外切正边形的边长比,半径比,边心距比.如:求同圆的圆内接正边形和圆外切正边形的边长比.设⊙O的半径的为R则圆内接正边形的边长是而在Rt△OBC中,OB=R,则,即外切正边形的边长是,∴=实际上,=,OB是的邻边,OC是Rt△BOC的斜边,,希望同学们记住此结论.如圆内接正四边形的边心距与圆外切正四边形的边心距之比是,圆内接正六边形与圆外切正六边形的边长之比是,而圆内接正三角形与圆外切正三角形的面积之比是.(注意:①此结论必须是同圆的边数相同的圆内接正边形与圆外切正边形的相似比是.②若求圆外切正边形与圆内接正边形的相似比则是).二、练习题:1.判断题:①各边相等的圆外切多边形一定是正多边形.( )②各角相等的圆内接多边形一定是正多边形.( )③正多边形的中心角等于它的每一个外角.( )④若一个正多边形的每一个内角是150°,则这个正多边形是正十二边形.( )⑤各角相等的圆外切多边形是正多边形.( )2.填空题:①一个外角等于它的一个内角的正多边形是正____边形.②正八边形的中心角的度数为____,每一个内角度数为____,每一个外角度数为____.③边长为6cm的正三角形的半径是____cm,边心距是____cm,面积是____cm.④面积等于cm2的正六边形的周长是____.⑤同圆的内接正三角形与外切正三角形的边长之比是____.⑥正多边形的面积是240cm2,周长是60cm2,则边心距是____cm.⑦正六边形的两对边之间的距离是12cm,则边长是____cm.⑧同圆的外切正四边形与内接正四边形的边心距之比是____.⑨同圆的内接正三角形的边心距与正六边形的边心距之比是____.3.选择题:①下列命题中,假命题的是( )A.各边相等的圆内接多边形是正多边形.B.正多边形的任意两个角的平分线如果相交,则交点为正多边形的中心.C.正多边形的任意两条边的中垂线如果相交,则交点是正多边形的中心.D.一个外角小于一个内角的正多边形一定是正五边形.②若一个正多边形的一个外角大于它的一个内角,则它的边数是( )A.3B.4C.5D.不能确定③同圆的内接正四边形与外切正四边形的面积之比是( )A.1:B.1:C.1:2D.:1④正六边形的两条平行边间距离是1,则边长是( )A. B. C. D.⑤周长相等的正三角形、正四边形、正六边形的面积S3、S4、S6之间的大小关系是:( )A.S3>S4>S6B.S6>S4>S3C.S6>S3>S4D.S4>S6>S3⑥正三角形的边心距、半径和高的比是( )A.1:2:3B.1::C.1::3D.1:2:三、练习答案:1.判断题①×②×③√④√⑤√2.填空题①四②45°,135°,45°③④12⑤1:2 1:4 ⑥8 ⑦⑧:1 ⑨1:3.选择题①D ②A ③C ④C ⑤B ⑥A。

人教2011版初中数学九年级上册《正多边形和 正多边形的有关概念、正多边形与圆的关系》教案_63

人教2011版初中数学九年级上册《正多边形和 正多边形的有关概念、正多边形与圆的关系》教案_63

24.3 正多边形和圆(一) 教学目标: 在掌握正多边形和圆的关系下: 1.了解正多边形的相关概念:正多边形的外接圆、正多边形的中心、•正多边形的半径、正多边形的中心角、正多边形的边心距. 2.掌握正多边形相关计算. 教学重点:正多边形的相关概念和计算. 教学难点: 概念多、内容杂,教学时间少. 教学关键: 抓住正多边形和圆的关系. 教学过程 一、复习引入 复习练习: 1.各边 ,各角 的多边形是正多边形. 2. n边形内角和= 3. n边形外角和= 4. 正n边形每一个内角= 5. 正n边形每一个外角= 二、探索新知 1.正多边形和圆的关系及正多边形的相关概念. a.、图(1)—(4)分别把圆分成三等份, 四等份,五等份,六等份.同学们将这些分点依次连一连,看你会得到什么图形,为什么? b.我们以圆内接正六边形为例证明 c.结合上图给出以下概念,要求学生在具体图中找出 一个正多边形的外接圆的圆心叫做这个多边形的中心:O 外接圆的半径叫做正多边形的半径:R 正多边形每一边所对的圆心角叫做正多边形的中心角:αn 中心到正多边形的一边的距离叫做正多边形的边心距:r间 2.正多边形相关计算. 例(见P114) a.分析提问: 1.怎样求正六边形的边长? 2. 怎样求正六边形的面积?

b.解:∵中心角∠BOC=63600=600 ,OB=OC ∴△OBC是等边三角形 ∴亭子地基的周长L=6×4=24(m) 作OP⊥BC于P,在Rt△ABC , R=4 PC=2BC=2 r=322422 ∴亭子地基的面积=6×21×4×23 三、巩固练习 1.矩形是正多边形吗?菱形呢?正方形呢?为什么? 2.各边相等的圆内接多边形是正多边形吗?各角相等的圆内接 多边形呢?如果是,说明为什么,如果不是,举出反例.。 3. 正n边形的中心角= ,它与正n边形外角 4、OB叫正△ABC的 ,它是正△ABC的 圆 的半径。OD叫作正△ABC的 。 5、∠AOB叫做正五边形ABCDE的 角, 它的度数是 6、如图,是正三角形ABC的半径是2,点O是中心。 (1)求它的边长、边心距; (2)求它的周长和面积。

正多边形和圆(一)

正多边形和圆(一)

正多边形和圆(一)在几何学中,正多边形和圆是两个常见的几何形状。

它们有着许多有趣的性质和特点。

本文将介绍正多边形和圆的定义、性质以及它们之间的关系。

正多边形的定义正多边形是指所有边相等且所有角度相等的多边形。

简单来说,正多边形是一个边和角都相等的多边形。

以正n边形为例,它有n个边和n个角,每个角的度数为(180(°) - 360(°)/n)。

常见的正多边形有正三边形、正四边形、正五边形等。

正多边形有一些有趣的性质。

首先,正多边形的内角和公式为:(n - 2) *180(°)。

这意味着正三边形的内角和为180(°),正四边形的内角和为360(°),以此类推。

其次,正多边形具有对称性,任意两条边或角之间都有对称关系。

此外,正多边形的对角线数目可以通过公式n(n-3)/2来计算,其中n表示正多边形的边数。

圆的定义圆是几何学中的一个重要概念,也是一种特殊的椭圆。

圆由一个固定点(圆心)和到这个点的距离相等的所有点(圆上的点)组成。

圆的直径是通过圆心并且两端点都在圆上的线段的长度的两倍。

圆心到圆上任意一点的距离被称为半径。

直径是半径的两倍。

圆也有一些有趣的性质。

首先,圆的周长公式为2πr,其中r表示半径。

其次,圆的面积公式为πr^2。

这些公式是圆的重要特征,可以用于计算圆的周长和面积。

另外,圆具有无限个对称轴,即通过圆心的任意直线都是圆的对称轴。

正多边形与圆的关系正多边形和圆之间存在着紧密的关系。

事实上,正多边形可以视为圆的一种特例。

当正多边形的边数越多时,它的形状越接近于一个圆。

具体而言,当正多边形的边数n趋向于无穷大时,正多边形的内角趋向于180度,并且边的长度趋向于相等。

这就是说,正多边形逐渐接近于一个圆。

因此,我们可以认为圆是一个具有无限多边形的特殊情况。

另外,正多边形和圆的周长和面积也存在着一定的关系。

当正多边形的边数增大时,其周长逐渐接近于圆的周长,即2πr。

(名师整理)最新中考数学专题复习《正多边形与圆的位置关系》精品教案

(名师整理)最新中考数学专题复习《正多边形与圆的位置关系》精品教案

中考数学人教版专题复习:正多边形与圆的位置关系一、教学内容正多边形和圆1.正多边形的有关概念.2.正多边形和圆的关系.3.正多边形的有关计算.二、知识要点1.正多边形的定义各边相等、各角也相等的多边形叫做正多边形.如正三角形(即等边三角形)、正四边形(即正方形)、正五边形、正六边形、正n边形等.2.正多边形与圆的关系(1)从圆的角度看:等分圆周可获得正多边形,把圆分成n(n≥3)等份.①依次连结各分点所得的多边形是这个圆的内接正n边形.②经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形.(2)从正多边形的角度看:任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆.13.正多边形的有关概念(1)正多边形的中心:正多边形的外接圆(或内切圆)的圆心.(2)正多边形的半径:正多边形外接圆的半径.(3)正多边形的边心距:中心到正多边形的一边的距离(即正多边形的内切圆的半径).(4)正多边形的中心角:正多边形每一边所对的圆心角.正多边形的每一个中心角的度数是360°n.ORB1A1B2A2B3A3Cr4.正n边形的对称性当n为奇数时,正n边形只是轴对称图形;当n为偶数时,正n边形既是轴对称图形,也是中心对称图形.5.一些特殊正多边形的计算公式边数n内角A n中心角αn半径R 边长a n边心距r n周长P n面积S n360°120°R3R12R 33R343R2490°90°R2R22R42R 2R26120°60°R R32R6R323R22三、重点难点重点是正多边形的概念和计算,难点是正确理解正多边形和圆的关系.【典型例题】例1.如图所示,既是轴对称图形,又是中心对称图形的有__________.线段正三角形正方形正五边形正六边形(1)(2)(3)(4)(5)解:(1)(3)(5)评析:因正方形、正六边形的边数为偶数,所以线段、正方形、正六边形既是轴对称图形,又是中心对称图形.例2.(1)如果一个正多边形的中心角为24°,那么它的边数是__________.(2)正多边形的一个外角等于45°,那么这个正多边形的内角和等于__________,中心角是__________.分析:利用正多边形的内角和及中心角的计算公式求解.(1)依题意得360°n=24°,∴n=15.(2)n×45°=360°,∴n=8.由内角和公式得(8-2)·180°=1080°,∴中心角为360°8=45°.解:(1)15,(2)1080°,45°.例3.如图所示,小明同学在手工制作中,把一个边长为12cm的等边三角形纸片贴在一个圆形纸片上.若三角形的三个顶点恰好都在这个圆上,求该圆的半径.34A BCOD分析:由题意知这个三角形是圆的内接正三角形.解:如图所示,连结OB ,过O 作OD ⊥BC 于D ,则正△ABC 的中心角=360°3=120°,∠BOD =12×120°=60°,∠OBD =90°-∠BOD =30°,∴OD =12BO .又BD =12BC =12×12=6(cm ),∴OB 2-OD 2=62,即OB 2-(12OB )2=62, ∴OB =43cm .评析:把实际问题转化为正三角形的外接圆的问题是解题的关键.例4. 已知圆内接正方形的面积为8,求同圆内接正六边形的面积.分析:解决问题的关键是“同圆”,通过圆的半径可以把正方形的条件转化为正六边形的条件,从而解决问题.解:由正方形的面积为8,可知正方形的边长为22,设该圆半径为R ,正六边形的边长和边心距分别为a 6和r 6. 则2R =4,a 6=R ,r 6=32·a 6.∴S 6=6×12a 6·r 6=6×12×2×32×2=63.例5. 用折纸的方法,可直接剪出一个正五边形(如图所示)方法是:拿一张长方形纸对折,折痕为AB ,以AB 的中点O 为顶点将平角五等分,并沿五等份的线折叠,再沿CD 剪5开,使展开后的图形为正五边形,则∠OCD 等于( )A . 108°B . 90°C . 72°D . 60°AB ABOOCD分析:本题考查学生的动手能力和灵活运用所学知识的能力,这里的O 点是所剪正五边形的中心,由题可知∠COD =36°,所以剪得的三角形正好是五边形一边和两条半径所构成的三角形的一半,所以∠OCD =90°. 解:B例6. 如图(1)、(2)、(3)、…、(n ),M 、N 分别是⊙O 的内接正三角形ABC 、正方形ABCD 、正五边形ABCDE 、…、正n 边形ABCDE …的边AB 、BC 上的点,且BM =CN ,连接OM 、ON .(1)求图(1)中∠MON 的度数;(2)图(2)中∠MON 的度数是__________,图(3)中∠MON 的度数是__________; (3)试探究∠MON 的度数与正n 边形边数n 的关系(直接写出答案).分析:(1)连接OB 、OC ,注意△OBM ≌△OCN ,可得∠MON =∠BOC =120°. (2)同理,由△OBM ≌△OCN ,可得∠MON =∠BOC =90°. (3)由(1)(2)知,∠MON =∠BOC ,即∠MON =∠BOC =90°.A BCO M N A B C DOM N BC D E O MN ABOM…(1)(2)(3)(n )A解:(1)方法一:连接OB 、OC ,∵正△ABC 内接于⊙O ,∴∠OBM =∠OCN =30°,∠BOC =120° 又∵BM =CN ,OB =OC ,∴△OBM ≌△OCN ,6∴∠BOM =∠CON ,∴∠MON =∠BOC =120°. 方法二:连接OA 、OB ,∵正△ABC 内接于⊙O . AB =BC ,∠OAM =∠OBN =30°,∠AOB =120°. 又∵BM =CN ,∴AM =BN , 又∵OA =OB ,∴△AOM ≌△BON ,∴∠AOM =∠BON ,∴∠MON =∠AOB =120°. (2)图(2)中,∠MON =360°4=90°,图(3)中,∠MON =360°5=72°. (3)图(n )中,∠MON =360°n .评析:(1)△OBM 与△O CN 是旋转全等三角形. 图(1)中△OCN 绕点O 顺时针旋转120°,与△OBM 重合;图(2)旋转90°,图(3)旋转72°……. (2)注意由特殊到一般的思想,归纳出∠MON =360°n .【方法总结】1. 正n 边形的中心角为360°n ,与正n 边形的一个外角相等,与正n 边形的一个内角互补. 求中心角常用以上方法.2. 正多边形的外接圆半径R 与边长a 、边心距r 之间的关系式为R 2=r 2+(12a )2,这是把正n 边形分成了2n 个全等的直角三角形,把正n 边形的有关计算转化为直角三角形中的问题.【模拟试题】(答题时间:50分钟) 一、选择题1. 若一个正多边形的一个外角是40°,则这个正多边形的边数是( )A. 10B. 9C. 8D. 62.下列命题中正确的是()A.正多边形都是中心对称图形B.正多边形一个内角的大小与边数成正比C.正多边形一个外角的大小随边数的增加而减小D.边数大于3的正多边形对角线都相等3.一个正多边形的中心角是36°,则其一定是()A.正五边形B.正八边形C.正九边形D.正十边形4.正多边形的一边所对的中心角与该正多边形一个内角的关系是()A.两角互余B.两角互补C.两角互余或互补D.不能确定5.圆内接正三角形的边心距与半径的比是()A. 2∶1B. 1∶2C.3∶4D.3∶26.下列命题中:①三边都相等的三角形是正三角形;②四边都相等的四边形是正四边形;③四角都相等的四边形是正四边形;④各边都相等的圆的内接多边形是正多边形.其中正确的有()A. 1个B. 2个C. 3个D. 4个*7.已知四边形ABCD内接于⊙O,给出下列三个条件:①︵AB=︵BC=︵CD=︵DA;②AB=BC=CD=DA;③∠A=∠B=∠C=∠D.则在这些条件中,能够判定四边形ABCD是正四边形的条件共有()A. 0个B. 1个C. 2个D. 3个**8. A点是半圆上一个三等分点,B点是︵AN的中点,P是直径MN上一动点,⊙O的半径为1,则AP+BP的最小值为()7M NA. 1B.22C. 2 D.3-1二、填空题1.用一张圆形的纸片剪一个边长为4cm的正六边形,则这个圆形纸片的半径最小为__________cm.2.如果一个正多边形的内角和是900°,则这个多边形是正__________边形.3.正十边形至少绕中心旋转__________度,它与原正十边形重合.4.若正三角形、正方形、正六边形的周长都相等,它们的面积分别为S3、S4、S6,则S3、S4、S6由大到小的排列顺序是__________.5.正六边形DEFGHI的顶点都在边长为6cm的正三角形ABC的边上,则这个正六边形的边长是__________cm.*6.如图是某广场地面的一部分,地面的中央是一块正六边形地砖,周围用正三角形和正方形的大理石密铺,从里向外共铺了12层(不包括正六边形地砖),每一层的外边界都围成一个多边形.若正中央正六边形地砖的边长为0.5米,则第12层的外边界所围成的多边形的周长是__________.三、解答题1.解答下列各题:89(1)分别求出正十边形、正十二边形的中心角.(2)已知一个正多边形的一个中心角为18°,求它的内角的度数. (3)正六边形的两条平行边间的距离为12cm ,求它的外接圆的半径.2. 如图所示,求中心为原点O ,顶点A 、D 在x 轴上,半径为4cm 的正六边形ABCDEF 的各个顶点坐标.3. 用一块半径R =60cm 的圆形木料,做“八仙桌”(正方形)桌面或“八角桌”(正八边形)桌面,哪个面积大?大多少?(结果保留三个有效数字)**4. 请阅读,完成证明和填空. 九年级数学兴趣小组在学校的“数学长廊”中兴奋地展示了他们小组探究发现的结果,内容如下:A A A BBB CCCD DO OOM M M NNN E图1图2图3…(1)如图1,正三角形ABC 中,在AB 、AC 边上分别取点M 、N ,使BM =AN ,连接BN 、CM ,发现BN =CM ,且∠NOC =60°. 请证明:∠NOC =60°.(2)如图2,正方形ABCD 中,在AB 、BC 边上分别取点M 、N ,使AM =BN ,连接AN 、DM ,那么AN =__________,且∠DON =__________度.(3)如图3,正五边形ABCDE 中,在AB 、BC 边上分别取点M 、N ,使AM =BN ,连接AN 、EM ,那么AN =__________,且∠EON =__________度.(4)在正n边形中,对相邻的三边实施同样的操作过程,也会有类似的结论.请大胆猜测,用一句话概括你的发现:______________________________.1011【试题答案】一、选择题1. B2. C3. D4. B5. B6. B7. C8. C (解析:如图所示,作点B 关于直线MN 的对称点B ’,连结OB ’,PB ’,BB ’.M N二、填空题1. 42. 七3. 364. S 6>S 4>S 35. 26. 39米三、解答题1. (1)正十边形的中心角为360°10=36°,正十二边形的中心角是360°12=30°. (2)中心角为18°的正多边形的边数为36018=20,正二十边形的内角为(20-2)·180°20=162°. (3)由题意得r 6=6(cm ),由于正六边形的边长与半径相等,∴R 2=(12R )2+r 62,∴34R 2=36,R =43(cm ).2. A (-4,0)、B (-2,-23)、C (2,-23)、D (4,0)、E (2,23)、F (-2,23)3. “八仙桌”的面积为7200平方厘米,“八角桌”的面积为72002平方厘米,所以“八角桌”比“八仙桌”的面积大2980平方厘米.4. (1)证明:∵△ABC 是正三角形,∴∠A =∠ABC =60°,AB =BC ,在△ABN 和△BCM 中,⎩⎨⎧AB =BC∠A =∠ABCAN =BM,∴△ABN ≌△BCM . ∴∠ABN =∠BCM . 又∵∠ABN +∠OBC =60°,∴∠BCM+∠OBC=60°,∴∠NOC=60°.(2)在正方形中,AN=DM,∠DON=90°.(3)在正五边形中,AN=EM,∠EON=108°.(4)以上所求的角恰好等于正n边形的内角(n-2)·180°n.12。

2025年九年级中考数学一轮复习课件:第26讲 与圆有关的计算(河北专用)

2025年九年级中考数学一轮复习课件:第26讲 与圆有关的计算(河北专用)
第2题图
解:是的切线, . , , .
第3题图
3.(2018,河北)如图,点 在数轴上表示的数为26,以原点为圆心, 长为半径作优弧,使点在点 的右下方,且,在优弧上任取一点 ,
且能过点作直线交数轴于点.设点在数轴上表示的数为 ,连接 .
第3题图
(1)若上的一段的长为 ,求的度数及 的值;
解:由 ,解得 . ., . .. .
(2)求的最小值,并指出此时直线与 所在圆的位置关系;
第3题图
解:如答图.当点在点的左边,直线与相切时, 的值最小.
第3题图
在中, , .此时的值为 .
(3)若线段的长为,直接写出这时 的值.
第3题图
解:的值为31.5或或 .
_
圆锥的侧面积
______
圆锥的全面积
____________
半径
母线长
周长
3.正多边形和圆如果正多边形的边数为,外接圆的半径为 ,那么这个正多边形的中心角是_____,边长是___________,边心距是__________.【总结】 1. 牢记圆的有关计算公式,并灵活处理好公式之间的转换.当求不规则图形的面积时,先利用割补法或等积变换把不规则图形转化为规则图形,再利用规则图形的面积计算公式求解. 2. 圆柱或圆锥中的最短路线问题,应利用侧面展开图来解决.
ቤተ መጻሕፍቲ ባይዱ
关联设问素养进阶
例 (原创)如图,在中,,是的直径,于点 , .
例题图
(1)求图中阴影部分的面积.
例答图
解:如答图①,连接 .
, , .在中, , . . .为直径, .在中, . 的半径为6. 阴影部分的面积为 .
例题图
(2)若用阴影部分围成一个圆锥的侧面,请求出这个圆锥的全面积.

正多边形与圆

九年级上24.3 正多边形和圆一:知识点导入1. 圆上各点到圆心的距离都等于 .2. 垂直于弦的直径平分,并且平分;平分弦(不是直径)的垂直于弦,并且平分 .3. 在同圆或等圆中,如果两个圆心角,两条弧,两条弦,两条弦心距,两个圆周角中有一组量,那么它们所对应的其余各组量都分别 .4. 同弧或等弧所对的圆周角,都等于它所对的圆心角的 .5. 直径所对的圆周角是,90°所对的弦是 .二:新知识回顾(一)正多边形:各边相等,各角也相等的多边形是正多边形正多边形的性质:1.正多边形各边相等;正多边形各角相等。

2.正多边形都是轴对称图形,一个正n边形共有n条对称轴,每条对称轴都通过正n边形的中心.边数是偶数的正多边形还是中心对称图形,它的中心就是对称中心.3.边数相同的正多边形相似.它们周长的比,边心距的比,半径的比都等于相似比,面积的比等于相似比的平方.正多边形的判定:1.依次连结圆的n(n≥3)等分点,所得的多边形是正多迫形2.经过圆的n(n≥3)等分点作圆的切线,相邻切线相交成的多边形是正多边形(二)正多边形和圆的关系:1.将一个圆n(n≧)3等分(可以借助量角器),依次连接各等分点所得的多边形就叫做这个圆的内接正多边形,这个圆是这个正多边形的外接圆.①正多边形的中心:把一个正多边形的外接圆的圆心叫做这个正多边形的中心②正多边形的半径:外接圆的半径叫做正多边形的半径③正多边形的中心角:正多边形每一边所对的圆心角叫做正多边形的中心,中心角的度数是n360.④正多边形的边心距:中心到正多边形的一边的距离叫做正多边形的边心距2.经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形,这个圆叫做这个正多边形的内接圆,这个多边形叫做外接正多边形。

3.正多边形外接圆和内接圆的关系定理:任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆.(三)正多边形的有关计算1.正n边形每一个内角的度数是;2.正n边形每个中心角的度数是;3.正n边形每个外角的度数是.(四)正多边形的画法1.用量角器等分圆由于在同圆中相等的圆心角所对的弧相等,因此作相等的圆心角可以等分圆.2.用尺规等分圆对于一些特殊的正n边形,可以用圆规和直尺作图.三:例题剖析(至少10个例题与习题)【例1】已知正六边形ABCDEF,如图所示,其外接圆的半径是a,•求正六边形的周长和面积.分析:要求正六边形的周长,只要求AB的长,已知条件是外接圆半径,因此自然而然,边长应与半径挂上钩,很自然应连接OA ,过O 点作OM ⊥AB 垂于M ,在Rt △AOM •中便可求得AM ,又应用垂径定理可求得AB 的长.正六边形的面积是由六块正三角形面积组成的.解:如图所示,由于ABCDEF 是正六边形,所以它的中心角等于3606︒=60°,•△OBC 是等边三角形,从而正六边形的边长等于它的半径.因此,所求的正六边形的周长为6a在Rt △OAM 中,OA=a ,AM=12AB=12aOM=221()2a a -=123a【变式练习】已知,如图,正八边形ABCDEFGH 内接于半径为R 的⊙O ,求这个八边形的面积.四:思维误区判断一个多边形是否是正多边形,必须满足两个条件:(1)各边相等;(2)各角相等;缺一不可.如菱形的各边都相等,矩形的各角都相等,但它们都不是正多边形(正方形).例2.如图,在正方形ABCD 中,对角线AC 、BD 交于O 点,若分别以A 、B 、C 、D 为圆心,以OA 长为半径作弧,分别与各边交于E 、F 、G 、H 、K 、L、M、N点.求证:八边形EFGHKLMN是正八边形..例3:已知:如图,△ABC是⊙O的内接等腰三角形,顶角∠A=36°,弦BD、CE分别平分∠ABC、∠ACB.求证:五边形AEBCD是正五边形AE DOCB【变式练习】某学习小组在探索“各内角都相等的圆内接多边形是否为正多边形”时,进行如下讨论:甲同学:这种多边形不一定是正多边形,如圆内接矩形;乙同学:我发现边数是6时,它也不一定是正多边形,如图1,是正三角形,,可以证明六边形ADBECF的各内角相等,但它未必是正六边形;丙同学:我能证明边数是5时,它是正多边形,我想,边数是7时,它可能也是正多边形;……(1)请你说明乙同学构造的六边形各内角相等;(2)请你证明,各内角都相等的圆内接七边形ABCDEFG(如图2)是正七边形(不必写已知、求证);(3)根据以上探索过程,提出你的猜想(不必证明).例4(2013•内江)如图,正六边形硬纸片ABCDEF在桌面上由图1的起始位置沿直线l不滑行地翻滚一周后到图2位置,若正六边形的边长为2cm,则正六边形的中心O运动的路程为cm.五:难点讲解例5:已知⊙O的半径为R,求它的内接正三角形ABC的内切圆的内接正方形DEFG的面积例6:右图的花环状图案中,ABCDEF和A1B1C1D1E1F1都是正六边形.(1)求证:∠1=∠2;(2)找出一对全等的三角形并给予证明.例7:如图M、N分别是⊙O的内接正三角形ABC、正方形ABCD、正五边形ABCDE 、…、正n 边形ABCDE …的边AB 、BC 上的点,且BM=CN ,连结OM 、ON 。

数字中考总复习:正多边形与圆的有关的证明和计算--知识讲解(基础)

中考总复习:正多边形与圆的有关的证明和计算—知识讲解(基础)【考纲要求】1.了解正多边形的概念,掌握用等分圆周画圆的内接正多边形的方法;会计算弧长及扇形的面积、圆锥的侧面积及全面积;2.结合相关图形性质的探索和证明,进一步培养合情推理能力,发展逻辑思维能力和推理论证的表达能力;通过这一章的学习,进一步培养综合运用知识的能力,运用学过的知识解决问题的能力.【知识网络】【考点梳理】考点一、正多边形和圆1、正多边形的有关概念:(1) 正多边形:各边相等,各角也相等的多边形叫做正多边形.(2)正多边形的中心——正多边形的外接圆的圆心.(3)正多边形的半径——正多边形的外接圆的半径.(4)正多边形的边心距——正多边形中心到正多边形各边的距离.(正多边形内切圆的半径)(5)正多边形的中心角——正多边形每一边所对的外接圆的圆心角.2、正多边形与圆的关系:(1)将一个圆n(n≥3)等分(可以借助量角器),依次连结各等分点所得的多边形是这个圆的内接正多边形.(2)这个圆是这个正多边形的外接圆.(3)把圆分成n(n≥3)等分,经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形.这个圆叫做正n边形的内切圆.(4)任何正n边形都有一个外接圆和一个内切圆,这两个圆是同心圆.3、正多边形性质:(1)任何正多边形都有一个外接圆.(2) 正多边形都是轴对称图形,一个正n边形共有n条对称轴,每条对称轴都通过正n边形的中心.当边数是偶数时,它又是中心对称图形,它的中心就是对称中心.(3)边数相同的正多边形相似.它们周长的比,边心距的比,半径的比都等于相似比,面积的比等于相似比的平方.(4)任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆.要点诠释:(1)正n边形的有n个相等的外角,而正n边形的外角和为360度,所以正n边形每个外角的度数是360n;所以正n边形的中心角等于它的外角.(2)边数相同的正多边形相似.周长的比等于它们边长(或半径、边心距)的比.面积比等于它们边长(或半径、边心距)平方的比.考点二、圆中有关计算1.圆中有关计算圆的面积公式:,周长.圆心角为、半径为R的弧长.圆心角为,半径为R,弧长为的扇形的面积.弓形的面积要转化为扇形和三角形的面积和、差来计算.圆柱的侧面图是一个矩形,底面半径为R,母线长为的圆柱的体积为,侧面积为,全面积为.圆锥的侧面展开图为扇形,底面半径为R,母线长为,高为的圆锥的侧面积为,全面积为,母线长、圆锥高、底面圆的半径之间有.要点诠释:(1)对于扇形面积公式,关键要理解圆心角是1°的扇形面积是圆面积的,即;(2)在扇形面积公式中,涉及三个量:扇形面积S、扇形半径R、扇形的圆心角,知道其中的两个量就可以求出第三个量.(3)扇形面积公式,可根据题目条件灵活选择使用,它与三角形面积公式有点类似,可类比记忆;(4)扇形两个面积公式之间的联系:.【典型例题】类型一、正多边形有关计算1.(2015•镇江)图①是我们常见的地砖上的图案,其中包含了一种特殊的平面图形﹣正八边形.(1)如图②,AE是⊙O的直径,用直尺和圆规作⊙O的内接正八边形ABCDEFGH(不写作法,保留作图痕迹);(2)在(1)的前提下,连接OD,已知OA=5,若扇形OAD(∠AOD<180°)是一个圆锥的侧面,则这个圆锥底面圆的半径等于.【思路点拨】(1)作AE的垂直平分线交⊙O于C,G,作∠AOG,∠EOG的角平分线,分别交⊙O于H,F,反向延长 FO,HO,分别交⊙O于D,B顺次连接A,B,C,D,E,F,G,H,八边形ABCDEFGH即为所求;(2)由八边形ABCDEFGH是正八边形,求得∠AOD=3=135°得到的长=,设这个圆锥底面圆的半径为R,根据圆的周长的公式即可求得结论.【答案与解析】(1)如图所示,八边形ABCDEFGH即为所求,(2)∵八边形ABCDEFGH是正八边形,∴∠AOD=3=135°,∵OA=5,∴的长=,设这个圆锥底面圆的半径为R,∴2πR=,∴R=,即这个圆锥底面圆的半径为.故答案为:.【总结升华】本题考查了尺规作图,圆内接八边形的性质,弧长的计算,圆的周长公式的应用,会求八边形的内角的度数是解题的关键.举一反三:【变式1】如图是三根外径均为1米的圆形钢管堆积图和主视图,则其最高点与地面的距离是______米.【答案】31+.解析:如图,以三个圆心为顶点等边三角形O1O2O3的高O1C=3,所以AB=AO1+O1C+BC=1313122++=+.【高清课堂:正多边形与圆的有关证明与计算自主学习4】【变式2】同一个圆的内接正三角形、正方形、正六边形的边长的比是__________.32::【高清课堂:正多边形与圆的有关证明与计算自主学习2】【变式3】(2015•广西自主招生)一张圆心角为45°的扇形纸板和圆形纸板按如图方式剪得一个正方形,边长都为2,则扇形纸板和圆形纸板的面积比是()A.5:4 B.5:2 C.:2 D.:【答案】A.【解析】解:如图1,连接OD,∵四边形ABCD是正方形,∴∠DCB=∠ABO=90°,AB=BC=CD=2,∵∠AOB=45°,∴OB=AB=2,由勾股定理得:OD==2,∴扇形的面积是=π;如图2,连接MB、MC,∵四边形ABCD是⊙M的内接四边形,四边形ABCD是正方形,∴∠BMC=90°,MB=MC,∴∠MCB=∠MBC=45°,∵BC=2,∴MC=MB=,∴⊙M的面积是π×()2=2π,∴扇形和圆形纸板的面积比是π÷(2π)=.故选:A.类型二、正多边形与圆有关面积的计算2.(1)如图(a),扇形OAB 的圆心角为90°,分别以OA ,OB 为直径在扇形内作半圆,P 和Q分别表示阴影部分的面积,那么P 和Q 的大小关系是( ).A .P =QB .P >QC .P <QD .无法确定(2)如图(b),△ABC 为等腰直角三角形,AC =3,以BC 为直径的半圆与斜边AB 交于点D ,则图中阴影部分的面积是________.(3)如图(c),△AOB 中,OA =3cm ,OB =1cm ,将△AOB 绕点O 逆时针旋转90°到△A ′OB ′,求AB 扫过的区域(图中阴影部分)的面积.(结果保留π)【思路点拨】 直接使用公式计算阴影部分面积比较困难时,可采用和差法、转化法、方程法等,有时也需要运用变换的观点来解决问题.【答案与解析】解:(1)阴影部分的面积直接求出十分困难,可利用几个图形面积的和差进行计算:2OAB OCA P S S Q =-+扇形半圆2211()42R R Q Q ππ=-+=; (2)(转化法“凑整”)利用BmD CnD S S =弓形弓形,则阴影部分的面积可转化为△ACD 的面积,等于△ABC 面积的一半,答案为94; (3)(旋转法)将图形ABM 绕点O 逆时针旋转到A ′B ′M ′位置,则A OA MOM S S S ''=-阴影扇形扇形2211244OA OM πππ=-=. 【总结升华】求阴影面积的几种常用方 (1)公式法;(2)割补法;(3)旋转法;(4)拼凑法;(5)等积变形法;(6)构造方程法.举一反三:【变式】如图,在△ABC 中,AB =AC ,AB =8,BC =12,分别以AB 、AC 为直径作半圆,则图中阴影部分的面积是( )A .64π127-B .16π32-C .16π247-D .16π127-【答案】解:如图,由AB ,AC 为直径可得AD ⊥BC ,则BD =DC =6.在Rt △ABD 中,228627AD =-=,∴ 211246271612722S ππ⎛⎫=⨯⨯⨯-⨯⨯=-⎪⎝⎭阴影. 答案选D.3.如图所示,A 是半径为2的⊙O 外一点,OA =4,AB 是⊙O 的切线,B 为切点,弦BC ∥OA ,连AC ,求阴影部分的面积.【思路点拨】图中的阴影是不规则图形,不易直接求出,如果连接OB 、OC ,由BC ∥OA ,根据同底等高的三角形面积相等,于是所求阴影可化为扇形OBC 去求解.【答案与解析】解:如图所示,连OB 、OC∵ BC ∥OA .∴ △OBC 和△ABC 同底等高,∴ S △ABC =S △OBC ,∴∵ AB 为⊙O 的切线,∴ OB ⊥AB .∵ OA =4,OB =2,∴ ∠AOB =60°.∵ BC ∥OA ,∴ ∠AOB =∠OBC =60°.∵ OB =OC ,∴ △OBC 为正三角形.∴ ∠COB =60°,∴ 260223603OBC S S ππ⨯===阴影扇形.【总结升华】通过等积替换化不规则图形为规则图形,在等积转化中①可根据平移、旋转或轴对称等图形变换;②可根据同底(等底)同高(等高)的三角形面积相等进行转化.举一反三:【变式】如图所示,半圆的直径AB =10,P 为AB 上一点,点C ,D 为半圆的三等分点,则阴影部分的面积等于________.【答案】 解:连接OC 、OD 、CD .∵ C 、D 为半圆的三等分点,∴ ∠AOC =∠COD =∠DOB =180603=°°. 又∵ OC =OD ,∴ ∠OCD =∠ODC =60°,∴ DC ∥AB ,∴ PCD OCD S S =△△,∴ 2605253606S S ππ===g g 阴影扇形OCD .4.(2015秋•江都市期中)如图,在边长为4的正方形ABCD中,以AB为直径的半圆与对角线AC 交于点E.(1)求弧BE所对的圆心角的度数.(2)求图中阴影部分的面积(结果保留π).【思路点拨】(1)连接OE,由条件可求得∠EAB=45°,利用圆周角定理可知弧BE所对的圆心角∠EOB=2∠EAB=90°;(2)利用条件可求得扇形AOE的面积,进一步求得弓形的面积,利用Rt△ADC的面积减去弓的面积可求得阴影部分的面积.【答案与解析】解:(1)连接OE,∵四边形ABCD为正方形,∴∠EAB=45°,∴∠EOB=2∠EAB=90°;(2)由(1)∠EOB=90°,且AB=4,则OA=2,∴S扇形AOE==π,S△AOE=OA2=2,∴S弓形=S扇形AOE﹣S△AOE=π﹣2,又∵S△ACD=AD•CD=×4×4=8,∴S阴影=8﹣(π﹣2)=10﹣π.【总结升华】本题主要考查扇形面积的计算和正方形的性质,掌握扇形的面积公式是解题的关键,注意弓形面积的计算方法.»AB)对应5.将一块三角板和半圆形量角器按图中方式叠放,重叠部分(阴影)的量角器圆弧(的中心角(∠AOB)为120°,AO的长为4cm,求图中阴影部分的面积.【思路点拨】看是否由“规则的”三角形、四边形、圆、扇形、弓形等可求面积的图形,经过怎样的拼凑、割补、叠合而成,这是解决这类题的关键.【答案与解析】阴影部分的面积可看成是由一个扇形AOB 和一个Rt △BOC 组成,其中扇形AOB 的中心角是120°,AO 的长为4,Rt △BOC 中,OB =OA =4,∠BOC =60°,∴ 可求得BC 长和OC 长,从而可求得面积,阴影部分面积=扇形AOB 面积+△BOC 面积=21623cm 3π⎛⎫+ ⎪⎝⎭. 【总结升华】本题是求简单组合图形的面积问题,解答时,常常是寻找这些“不规则的图形”是由哪些“可求面积的、规则的图形”组合而成.举一反三:【变式】如图,矩形ABCD 中,AB =1,2AD =.以AD 的长为半径的⊙A 交BC 于点E ,则图中阴影部分的面积为________.【答案】1224π--. 解析:连接AE ,易证AB =BE =1,∠BAE =45°,所以∠EAD =45°, 所以21112(2)22824ABE ABCD DAE S S S S ππ=--=--=--△阴影矩形扇形.6.如图,AB 是⊙O 的直径,点P 是AB 延长线上一点,PC 切⊙O 于点C ,连接AC ,过点O 作AC 的垂线交AC 于点D ,交⊙O 于点E .已知AB ﹦8,∠P=30°.(1)求线段PC 的长;(2)求阴影部分的面积.【思路点拨】(1)连接OC,由PC为圆O的切线,根据切线的性质得到OC与PC垂直,可得三角形OCP为直角三角形,同时由直径AB的长求出半径OC的长,根据锐角三角函数定义得到tanP为∠P的对边OC与邻边PC的比值,根据∠P的度数,利用特殊角的三角函数值求出tanP的值,由tanP及OC的值,可得出PC 的长;(2)由直角三角形中∠P的度数,根据直角三角形的两个锐角互余求出∠AOC的度数,进而得出∠BOC的度数,由OD与BC垂直,且OC=OB,利用等腰三角形的三线合一得到OD为∠BOC的平分线,可求出∠COD度数为60°,再根据直角三角形中两锐角互余求出∠OCD度数为30°,根据30°角所对的直角边等于斜边的一半,由斜边OC的长求出OD的长,先由∠COD的度数及半径OC的长,利用扇形的面积公式求出扇形COE的面积,再由OD与CD的长,利用直角三角形两直角边乘积的一半求出直角三角形COD 的面积,用扇形COE的面积减去三角形COD的面积,即可求出阴影部分的面积.【答案与解析】解:(1)连接OC,∵PC切⊙O于点C,∴OC⊥PC,∵AB=8,∴OC=12AB=4,又在直角三角形OCP中,∠P=30°,∴tanP=tan30°=OCPC,即PC=433=43;(2)∵∠OCP=90°,∠P=30°,∴∠COP=60°,∴∠AOC=120°,又AC⊥OE,OA=OC,∴OD为∠AOC的平分线,∴∠COE=12∠AOC=60°,又半径OC=4,∴S扇形OCE=26048=3603ππ⨯,在Rt△OCD中,∠COD=60°,∴∠OCD=30°,∴OD=12OC=2,根据勾股定理得:CD=22OC-OD=23,【总结升华】此题考查了切线的性质,含30°角的直角三角形的性质,等腰三角形的性质,锐角三角函数定义,以及扇形的面积公式,遇到已知切线的类型题时,常常连接圆心与切点,利用切线的性质得出垂直,利用直角三角形的性质来解决问题.。

中考正多边形和圆知识点

正多边形和圆知识点学习要求:了解正多边形的概念,掌握用等分圆周画圆内接正多边形的方法,能熟练地进行正三角形、正方形、正六边形有关的计算.内容分析:1.正多边形的定义:各边相等,各角也相等的多边形叫做正多边形。

2.正多边形与圆的有关定理把圆分成n(n≥3)等份:(1)依次连结各分点所得的多边形是这个圆的内接正n边形;(2)经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形;(3)任何正多边形都有一个外接圆与一个内切圆,这两个圆是同心圆。

注意:①依据正多边形与圆的有关定理(1)、(2),只要能将一个圆分成n(n≥3)等份,就可以得到这个圆的内接正n边形及外切正n边形,想一想,你能否利用直尺和圆规作已知圆的内接(或外切)正三角形、正方形、正六边形、正十二边形;②如何证明任何一个正多边形A1A2A3……A n-1A n都有一个外接圆呢?我们可过A1、A2、A3三点作一个⊙O,分别连结OA1、OA2、OA3,OA4,通过证明△OA1A2≌△OA3A4,得到OA4=OA3=OA2=OA1.从而点A4在⊙O上,同理可证A5、A6……A n-1、A n其余各点也都在⊙O上,则可推出此正多边形有一个外接圆。

想一想,在此基础上如何证明⊙O的圆心O点也是其内切圆的圆心呢?3. 正多边形的其它性质(1)正多边形都是轴对称图形,一个正n边形共有n条对称轴,每条对称轴都通过正n 边形的中心,边数为偶数的正多边形还是中心对称图形,它的中心就是对称中心。

(2)边数相同的正多边形相似。

4. 正多边形的有关计算正多边形的外接圆(或内切圆)的圆心叫做正多边形的中心,外接圆的半径叫做正多边形的半径,内切圆的半径叫做正多边形的边心距,正多边形每一边所对的外接圆的圆心角叫做正多边形的中心角。

正n边形的有关计算公式(1)(2)(3)注意:①同一个圆的内接正n边形和外切正n边形是相似形,相似比是圆的内接正n边形边心距与它的半径之比。

中考数学一轮复习 第六单元 圆 第26讲 与圆有关的计算课件


2
180 3
2021/12/9
第二十二页,共二十五页。
故选B. 答案 B
错解 A 错误(cuòwù)鉴定 在应用弧长公式时分母为180,误用成360.
2021/12/9
第二十三页,共二十五页。
如图,正方形ABCD内接于半径(bànjìng)为2的☉O,则图中阴影部分的面积为
( D)
A.π+1 C.π-1
2021/12/9
第26讲 与圆有关 的计算 (yǒuguān)
第一页,共二十五页。
夯基础·学易
考点(kǎo 一 diǎn) 圆的弧长的计算(5年2考) 1.半径为R的圆的周长C=①2πR.
2.若一条弧所对的圆心角为n°,半径为R,则弧长l=②
n R . 180
2021/12/9
第二页,共二十五页。
3
3
利用阴影(yīnyǐng)部分的面积=2S△AOSD-扇形进DOF行计算.
开放解答
2021/12/9
第十四页,共二十五页。
解析 (1)证明(zhèngmíng):连接OD,作OF⊥AC于F,如图,
∵△ABC为等腰三角形,O是底边(dǐ biān)BC的中点, ∴AO⊥BC,AO平分∠BAC, ∵AB与☉O相切于点D,
1.半径为R的圆的面积S=③πR2.
2.圆心角为n°,半径为R的扇形的面积S=④
.n R 2
360
1
3.弧长为l,半径为R的扇形面积(miàn jī)S=⑤2
Rl.
4.圆与三角形,平行四边形,正多边形组成的图形中阴影部分面积的计算.
2021/12/9
第四页,共二十五页。
2.(2018·山东德州)如图,从一块直径为2 m的圆形铁皮上剪出一个(yī ɡè)圆心角为90
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

26.正多边形和圆知识考点:1、掌握正多边形的边长、半径、中心角、边心距、周长、面积等的计算;2、掌握圆周长、弧长的计算公式,能灵活运用它们来计算组合图形的周长;3、掌握圆、扇形、弓形的面积计算方法,会通过割补、等积变换求组合图形的面积;4、掌握圆柱、圆锥的侧面展开图的有关计算。

精典例题:【例1】如图,两相交圆的公共弦AB 为32,在⊙O 1中为内接正三角形的一边,在⊙O 2中为内接正六边形的一边,求这两圆的面积之比。

分析:欲求两圆的面积之比,根据圆的面积计算公式,只须求出两圆的半径3R 与6R 的平方比即可。

解:设正三角形外接圆⊙O 1的半径为3R ,正六边形外接圆⊙O 2的半径为6R ,由题意得:AB R 333=,AB R =6,∴3R ∶6R =3∶3;∴⊙O 1的面积∶⊙O 2的面积=1∶3。

【例2】已知扇形的圆心角为1500,弧长为π20,求扇形的面积。

分析:此题欲求扇形的面积,想到利用扇形的面积公式,lR R n S 213602=π=扇形,由条件n =1500,π20=l 看到,不管是用前者还是用后者都必须求出扇形的半径,怎么求?由条件想到利用弧长公式不难求出扇形半径。

解:设扇形的半径为R ,则180R n l π=,n =1500,π20=l ∴18015020Rππ=,24=R ∴ππ24024202121=⨯⨯=lR S =扇形。

【例3】如图,已知PA 、PB 切⊙O 于A 、B 两点,PO =4cm ,∠APB =600,求阴影部分的周长。

分析:此题欲求阴影部分的周长,须求PA 、PB 和⋂AB 的长,连结OA 、OB ,根据切线长定理得PA =PB ,∠PAO =∠PBO =Rt ∠,∠APO =∠BPO =300,在Rt △PAO 中可求出PA 的长,根据四边形内角和定理可得∠AOB =1200,因此可求出⋂AB 的长,从而能求出阴影部分的周长。

解:连结OA 、OB∵PA 、PB 是⊙O 的切线,A 、B 为切点 ∴PA =PB ,∠PAO =∠PBO =Rt ∠∠APO =21∠APB =3002O 1O ∙∙例1图B A在Rt △PAO 中,AP =3223430cos 0=⨯=⋅PO OA =21PO =2,∴PB =32 ∵∠APO =300,∠PAO =∠PBO =Rt ∠ ∴∠AOB =300,∴ππ341802120=⨯=⋂ABl∴阴影部分的周长=PA +PB +⋂AB =π343232++=)3434(π+cm 答:阴影部分的周长为)3434(π+cm 。

【例4】如图,已知直角扇形AOB ,半径OA =2cm ,以OB 为直径在扇形内作半圆M ,过M 引MP ∥AO 交⋂AB 于P ,求⋂AB 与半圆弧及MP 围成的阴影部分面积阴S 。

分析:要求的阴影部分的面积显然是不规则图形的面积,不可能直接用公式,只有用“割补法”,连结OP 。

PO A PMO BMQ AO B S S S S S 扇扇扇阴---∆= 解:连结OP∵AO ⊥OB ,MP ∥OA ,∴MP ∥OB 又OM =BM =1,OP =OA =2∴∠1=600,∠2=300∴PM =323=OP而ππ31360302==R S POA 扇,2321=⋅⋅=∆PM OM S PMO 设PM 交半圆M 于Q ,则直角扇形BMQ 的面积为ππ41412==r S BMQ 扇 ∴)(PO A PMO BMQ AO B S S S S S 扇扇扇阴-++=∆ =⎪⎪⎭⎫ ⎝⎛++-πππ312341412R =23125-π探索与创新:【问题】如图,大小两个同心圆的圆心为O ,现任作小圆的三条切线分别交于A 、B 、C 点,记△ABC 的面积为S ,以A 、B 、C 为顶点的三个阴影部分的面积分别为1S 、2S 、3S ,试判断S S S S -++321是否为定值,若是,求出这个定值;若不是,请说明理由。

分析:这是一道开放性试题,所考查的结果是否为定值,我们首先应明白已知条件中有哪些定值。

为此设大小圆半径分别为R 和r (R 和r 均为定值),小圆的每条切线与大圆所夹小弓形的面积相等且为定值,设这个定值为P ,如图有:P S S S ='++321,P S S S =++'321,P S S S =+'+321 例4图OBA∴P S S S S S S 3)()(2321321='+'+'+++………① 又∵2321321)()(R S S S S S S S π=+'+'+'+++ ∴S S S S R S S S -++-='+'+')(3212321π………② 把②代入①得:23213)(R P S S S S π-=-++(定值) ∴S S S S -++321为定值,这个定值为23R P π-。

跟踪训练:一、选择题:1、正六边形的两条平行边之间的距离为1,则它的边长为( )A 、63 B 、43 C 、332 D 、33 2、如图,两同心圆间的圆环的面积为π16,过小圆上任一点P 作大圆的弦AB ,则PB PA ⋅ 的值是( ) A 、16 B 、π16 C 、4 D 、π4 3、如图,AB 为半圆O 的直径,C 为半圆上一点,且⋂AC 为半圆的31,设扇形AOC 、△COB 、弓形B m C 的面积分别为1S 、2S 、3S ,则下列结论正确的是( ) A 、1S <2S <3S B 、2S <1S <3SC 、2S <3S <1SD 、3S <2S <1S∙第2题图OP BA3S 2S 1S m 第3题图OCBA∙∙2O1O 第4题图PB4、如图,⊙O 1和⊙O 2外切于P ,它们的外公切线与两圆分别相切于点A 、B ,设⊙O 1的半径为1r ,⊙O 2的半径为2r ,⋂AP 的长为1l ,⋂BP 的长为2l ,若213r r =,则( ) A 、213l l = B 、212l l = C 、2123l l =D 、21l l = 5、如图,A 是半径为1的⊙O 外一点,OA =2,AB 切⊙O 于B ,弦BC ∥OA ,连结AC ,则图中阴影部分的面积为( ) A 、π92 B 、π61 C 、8361+π D 、8341-π问题图第5题图 第6题图 COBA6、如图,在△ABC 中,∠BAC =300,AC =a 2,BC =b ,以直线AB 为轴旋转一周得到一个几何体,则这个几何体的表面积是( )A 、22a πB 、ab πC 、ab a ππ+23 D 、)2(b a a +π二、填空题:1、扇形的圆心角为1500,扇形的面积为π240cm 2,则扇形的弧长为 。

2、一个圆锥形零件底面圆半径r 为 4 cm ,母线l 长为12 cm ,则这个零件的展开图的圆心角α的度数是 。

3、如图,正△ABC 的中心O 恰好为扇形ODE 的圆心,要使扇形ODE 绕O 无论怎样旋转,△ABC 与扇形重叠部分的面积总等于△ABC 的面积的31,则扇形的圆心角应为。

第3题图第4题图第5题图4、如图,A 、B 、C 、D 是圆周上的四个点,⋂⋂⋂⋂+=+BD AC CD AB ,且弦AB =8,CD =4,则图中两个弓形(阴影)面积的和是 (结果保留三个有效数字)。

5、目前,全国人民都在积极支持北京的申奥活动,你们知道吗?国际奥委会会旗上的图案是由代表五大洲的五个圆环组成,每个圆环的内、外圆直径分别为8和10,图中两两相交成的小曲边四边形(阴影部分)的面积相等,已知五个圆环覆盖的面积是122.5平方单位,请你计算出每个小曲边四边形的面积为 平方单位(π取3.14) 三、计算或证明题:1、如图,⊙O 内切于△ABC ,切点分别为D 、E 、F ,若∠C =90,AD =4,BD =6,求图中阴影部分的面积。

第1题图∙第2题图EA BOCD第3题图C2、如图,在Rt △ABC 中,∠C =900,O 点在AB 上,半圆O 切AC 于D ,切BC 于E ,AO =15cm ,BO =20cm ,求⋂DE 的长。

3、如图,有一个直径是1米圆形铁皮,要从中剪出一个最大的圆心角为900的扇形ABC ,求: (1)被剪掉(阴影)部分的面积;(2)用所留的扇形铁皮围成一个圆锥,该圆锥的底面半径是多少?4、如图,⊙O 与⊙O '外切于M ,AB 、CD 是它们的外公切线,A 、B 、C 、D 为切点,E O '⊥OA 于E ,且∠AOC =1200。

(1)求证:⊙O '的周长等于⋂AMC 的弧长; (2)若⊙O '的半径为1cm ,求图中阴影部分的面积。

第4题图跟踪训练参考答案一、选择题:DABCBD 二、填空题:1、π20cm ;2、1200;3、1200;4、15.4;5、2.35 三、计算或证明题:1、π-4;2、π6;3、(1)π81平方米,(2)82米; 4、(1)证明:由已知得∠AO O '=600,AB O 'O 为直角梯形,设⊙O 与⊙O '的半径分别为R 、r ,则cos600=r R r R +-,即r R 3=,∴⊙O '的周长为r π2,而⋂A M C =180120R π=r π2,∴⊙O '的周长等于⋂AMC的弧长。

(2))61134(π-=阴影S cm 2。

相关文档
最新文档