高等代数试题(附答案)
高等代数考试题库及答案

高等代数考试题库及答案一、单项选择题(每题2分,共10题,共20分)1. 以下哪个选项是矩阵的秩?A. 矩阵中非零行的数量B. 矩阵中非零列的数量C. 矩阵中最大的线性无关行(或列)的数量D. 矩阵的行列式值答案:C2. 线性方程组有解的充分必要条件是什么?A. 系数矩阵的行列式非零B. 增广矩阵的行列式非零C. 系数矩阵与增广矩阵的秩相等D. 系数矩阵与增广矩阵的秩不相等答案:C3. 对于一个n阶方阵A,下列哪个选项是正确的?A. A的行列式为0,则A可逆B. A的行列式不为0,则A可逆C. A的行列式为0,则A不可逆D. A的行列式不为0,则A不可逆答案:C4. 矩阵A和B相乘,下列哪个选项是正确的?A. AB=BAB. AB=0当且仅当A=0或B=0C. AB=0当且仅当A和B中至少有一个为零矩阵D. AB=0当且仅当A和B的行列式都为0答案:C5. 向量组α1,α2,…,αn线性无关的充分必要条件是?A. 由这些向量构成的矩阵的行列式非零B. 由这些向量构成的矩阵的秩等于向量的个数C. 由这些向量构成的矩阵的行列式为0D. 由这些向量构成的矩阵的秩小于向量的个数答案:B6. 向量组α1,α2,…,αn线性相关的充分必要条件是?A. 由这些向量构成的矩阵的行列式非零B. 由这些向量构成的矩阵的秩小于向量的个数C. 由这些向量构成的矩阵的行列式为0D. 由这些向量构成的矩阵的秩等于向量的个数答案:B7. 矩阵A的特征值是指?A. 满足|A-λI|=0的λB. 满足|A+λI|=0的λC. 满足|A-λE|=0的λD. 满足|A+λE|=0的λ答案:A8. 矩阵A的特征向量是指?A. 满足Ax=0的非零向量xB. 满足Ax=λx的非零向量xC. 满足Ax=0的向量xD. 满足Ax=λx的向量x答案:B9. 矩阵A和B相似的充分必要条件是?A. A和B的行列式相等B. A和B的秩相等C. 存在一个可逆矩阵P,使得P^-1AP=BD. A和B的迹相等答案:C10. 矩阵A和B合同的充分必要条件是?A. A和B的行列式相等B. A和B的秩相等C. 存在一个可逆矩阵P,使得P^TAP=BD. A和B的迹相等答案:C二、填空题(每题2分,共5题,共10分)1. 若矩阵A的行列式为3,则矩阵A的逆矩阵的行列式为______。
高等代数试卷含答案

1 1.已知)2,1,2,1(1-=a ,3),(1,2,2,(2,3,1,0),32-==a a 则),,(321a a a L 的维数为的维数为①① , ,此生成空间的一组基为此生成空间的一组基为此生成空间的一组基为 ②② . 2.已知)0,0,1(),0,1,1(),1,1,1(321===a a a 是3P 的一个基,由基)0,0,1(1=e ,)1,0,0(),0,1,0(32==e e 到基321,,a a a 的过渡矩阵为① ,向量),,(c b a =b关于基321,,a a a 的坐标为的坐标为② .3.3. 设123,,a a a 是3维欧氏空间V 的一组基,这组基的度量矩阵为212121212-æöç÷--ç÷ç÷-èø, 则向量12x a a =+的长度x 为 .三.(16分)已知复系数矩阵=A ÷÷÷øöçççèæ100021032104321,(1) 求矩阵A 的行列式因子、不变因子和初等因子;的行列式因子、不变因子和初等因子; (2) 求矩阵A 的若当标准形;的若当标准形; (3)求矩阵A 的有理标准形。
的有理标准形。
2 三.解:(1)÷÷÷÷øöççççèæ--------=-1000210032104321λλλλλA E 因因为)1(4210321432+--------λλλλ=-,而3)1(100210321-=------λλλλ ………………………44分 故故行列式因子1)(3=λD ,显然,1)(,1)(12==λλD D 44)1()(-=λλD …………22分 不不变因子为 )(1λd =)(2λd =1)(3=λd ,44)1()(-=λλd ………………22分初初等因子为4)1(-λ ………………22分(2)若当标准型ççççèæ÷÷÷÷øö=1100011000110001J ………………………………33分 (3)1464)(2344+-+-=λλλλλd故有理标准型为:3 ççççèæ÷÷÷÷øö--4100601040011000 ………………………………33分七.七.(10(10分) 1、设σ是n 维欧式空间V 的一个线性变换。
高等代数考试题和答案

高等代数考试题和答案一、单项选择题(每题3分,共30分)1. 向量空间中,线性无关的定义是()。
A. 向量空间中的任意向量不能表示为其他向量的线性组合B. 向量空间中的任意向量可以表示为其他向量的线性组合C. 向量空间中的所有向量可以表示为其他向量的线性组合D. 向量空间中的部分向量可以表示为其他向量的线性组合答案:A2. 矩阵A的行列式为0,则矩阵A()。
A. 可逆B. 不可逆C. 可逆或不可逆D. 不能确定答案:B3. 对于实数域上的多项式f(x),其根的个数()。
A. 等于其次数B. 小于其次数C. 大于其次数D. 不确定答案:D4. 线性变换T:V→W,若对于V中的任意向量v,都有T(v)=0,则称T为()。
A. 可逆变换B. 非奇异变换C. 零变换D. 恒等变换答案:C5. 矩阵A与矩阵B相似,则()。
A. A和B具有相同的秩B. A和B具有相同的行列式C. A和B具有相同的特征值D. A和B具有相同的迹答案:C6. 向量组α1, α2, ..., αs在向量空间V中张成V,则称向量组()。
A. 线性相关B. 线性无关C. 基D. 零向量组答案:C7. 矩阵A的转置记作()。
A. A'B. A^TC. A^HD. A*答案:B8. 矩阵A的特征多项式为f(λ)=det(A-λI),则f(λ)的根称为矩阵A的()。
A. 特征值B. 特征向量C. 特征多项式D. 特征函数答案:A9. 向量空间V的维数等于V的任意一组基的向量个数,这称为()。
A. 基定理B. 维数定理C. 线性空间定理D. 向量空间定理答案:B10. 矩阵A和B可以进行矩阵乘法,则()。
A. A的列数等于B的行数B. A的行数等于B的列数C. A的行数等于B的行数D. A的列数等于B的列数答案:A二、填空题(每题4分,共20分)11. 矩阵A的秩是指矩阵A中线性无关的行(或列)向量的最大个数,记作rank(A)。
12. 矩阵A和B的乘积记作AB,其中A的列数必须等于B的行数。
高等代数期末试题及答案

高等代数期末试题及答案1. 选择题1.1 题目:解线性方程组已知线性方程组:\[\begin{cases}2x - 3y + z = 7 \\4x + y - 2z = -1 \\3x - 2y + 2z = 5\end{cases}\]其中,x、y、z为实数。
求解该线性方程组的解。
1.1 答案:解线性方程组的步骤如下:通过高斯消元法,将方程组化为行简化阶梯形式:\[\begin{cases}x - \frac{12}{7}z = 5 \\y - \frac{5}{7}z = 2 \\0 = 0\end{cases}\]由最后一行可以看出,方程存在自由变量z。
令z为任意实数,可以得到:\[\begin{cases}x = 5 + \frac{12}{7}z \\y = 2 + \frac{5}{7}z \\z = z\end{cases}\]因此,该线性方程组的解为:\[\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 5 +\frac{12}{7}z \\ 2 + \frac{5}{7}z \\ z \end{pmatrix}\]2. 填空题2.1 题目:求行列式的值计算行列式的值:\[D = \begin{vmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{vmatrix}\]2.1 答案:计算行列式的值,可以通过按任意行或列展开的方法来求解。
选择第一行进行展开计算:\[D = 1 \cdot \begin{vmatrix} 5 & 6 \\ 8 & 9 \end{vmatrix} - 2 \cdot\begin{vmatrix} 4 & 6 \\ 7 & 9 \end{vmatrix} + 3 \cdot \begin{vmatrix} 4 & 5 \\ 7 & 8 \end{vmatrix}\]计算上述三个二阶行列式的值,得到:\[D = 1 \cdot (5 \cdot 9 - 6 \cdot 8) - 2 \cdot (4 \cdot 9 - 6 \cdot 7) + 3\cdot (4 \cdot 8 - 5 \cdot 7) = 0\]因此,行列式的值为0。
高等代数期末考试试卷及答案

高等代数(II )期末考试试卷及答案(A 卷) 一、 填空题(每小题3分,共15分)1、线性空间[]Px 的两个子空间的交()()11L x L x -+=2、设12,,...,n εεε与12,,...,n εεε'''是n 维线性空间 V 的两个基, 由12,,...,n εεε到12,,...,n εεε'''的过渡矩阵是C ,列向量X 是V 中向量ξ在基12,,...,n εεε下的坐标,则ξ在基12,,...,n εεε'''下 的坐标是3、设A 、B 是n 维线性空间V 的某一线性变换在不同基下的矩阵, 则A 与B 的关系是4、设3阶方阵A 的3个行列式因子分别为:()21,,1,λλλ+则其特征矩阵E A λ-的标准形是5、线性方程组AX B =的最小二乘解所满足的线性方程组是:二、 单项选择题(每小题3分,共15分)1、 ( )复数域C 作为实数域R 上的线性空间可与下列哪一个 线性空间同构:(A )数域P 上所有二级对角矩阵作成的线性空间; (B )数域P 上所有二级对称矩阵作成的线性空间; (C )数域P 上所有二级反对称矩阵作成的线性空间; (D )复数域C 作为复数域C 上的线性空间。
2、( )设 是非零线性空间 V 的线性变换,则下列命题正确的是:(A ) 的核是零子空间的充要条件是 是满射; (B ) 的核是V 的充要条件是 是满射; (C ) 的值域是零子空间的充要条件是 是满射; (D ) 的值域是V 的充要条件是 是满射。
3、( )λ-矩阵()A λ可逆的充要条件是: ()()()()0;A AB A λλ≠是一个非零常数;()()C A λ是满秩的;()()D A λ是方阵。
4、( )设实二次型f X AX '=(A 为对称阵)经正交变换后化为:2221122...n n y y y λλλ+++, 则其中的12,,...n λλλ是:()()1;A B ±全是正数;()C 是A 的所有特征值;()D 不确定。
高等代数考试题库及答案

高等代数考试题库及答案一、单项选择题(每题2分,共20分)1. 行列式的定义中,n阶行列式是由n个元素组成的()。
A. 矩阵B. 多项式C. 线性方程组D. 线性方程组的解答案:B2. 矩阵的秩是指矩阵中()的最大数量。
A. 线性无关的行向量B. 线性无关的列向量C. 线性无关的行向量和列向量D. 线性相关的行向量答案:C3. 对于一个n阶方阵A,若A的行列式为0,则A是()。
A. 可逆矩阵B. 非可逆矩阵C. 正定矩阵D. 负定矩阵答案:B4. 矩阵A和矩阵B相乘,结果矩阵的阶数是()。
A. A的阶数乘以B的阶数B. A的行数乘以B的列数C. A的列数乘以B的行数D. A的行数乘以B的列数答案:B5. 向量组的线性相关性是指()。
A. 向量组中至少有一个向量可以由其他向量线性表示B. 向量组中所有向量都线性无关C. 向量组中所有向量都相等D. 向量组中至少有一个向量与其他向量正交答案:A6. 特征值和特征向量是针对()的概念。
A. 矩阵B. 行列式C. 线性方程组D. 向量空间答案:A7. 一个矩阵A是正交矩阵的充分必要条件是()。
A. A的行列式为1B. A的行列式为-1C. A的转置等于A的逆矩阵D. A的逆矩阵等于A的转置答案:D8. 线性空间的基是一组()的向量。
A. 线性相关的B. 线性无关的C. 正交的D. 单位向量答案:B9. 两个向量α和β,如果它们的数量积为0,则它们是()。
A. 线性相关的B. 线性无关的C. 正交的D. 共线的答案:C10. 一个n维线性空间中,基的向量个数是()。
A. nB. n+1C. n-1D. 1答案:A二、填空题(每题2分,共20分)11. 如果矩阵A的行列式为|A|=3,那么矩阵A的逆矩阵的行列式为|A^-1|=______。
答案:1/312. 矩阵A和矩阵B相似,当且仅当存在一个可逆矩阵P,使得A=PBP^-1,此时称矩阵A和B______。
高等代数试题及参考答案
高等代数试题及参考答案The document was prepared on January 2, 2021高等代数(一)考试试卷一、单选题(每一小题备选答案中,只有一个答案是正确的,请把你认为正确答案的题号填入答题纸内相应的表格中。
错选、多选、不选均不给分,6小题,每小题4分,共24分)1. 以下乘积中( )是4阶行列式ij D a =展开式中取负号的项. A 、11223344a a a a . B 、14233142a a a a . C 、12233144a a a a . D 、23413214a a a a .2.行列式13402324a --中元素a 的代数余子式是( ).A 、0324-. B 、0324--. C 、1403-. D 、1403. 3.设,A B 都是n 阶矩阵,若AB O =,则正确的是( ). A 、()()r A r B n +≤. B 、0A =. C 、A O =或B O =. D 、0A ≠. 4.下列向量组中,线性无关的是( ). A 、{}0. B 、{},,αβ0. C 、{}12,,,r ααα,其中12m αα=. D 、{}12,,,r ααα,其中任一向量都不能表示成其余向量的线性组合.5.设A 是n 阶矩阵且()r A r n =<,则A 中( ). A 、必有r 个行向量线性无关. B 、任意r 个行向量线性无关.C 、任意r 个行向量构成一个极大线性无关组.D 、任意一个行向量都能被其它r 个行向量线性表出.6.n 阶矩阵A 具有n 个不同的特征值是A 与对角阵相似的( )条件. A 、充要. B 、充分非必要. C 、必要非充分. D 、非充分非必要. 二、判断题(正确的打√,错误的打×,5小题,每小题2分,共10分). 1.若A 为n 阶矩阵,k 为非零常数,则kA k A =. ( ) 2.若两个向量组等价,则它们包含的向量个数相同. ( ) 3.对任一排列施行偶数次对换后,排列的奇偶性不变. ( ) 4.正交矩阵的逆矩阵仍是正交矩阵. ( ) 5.任何数域都包含有理数域. ( )三、填空题(每空4分,共24分).1.行列式000100201000D n n==- . 2.已知5(1,0,1)3(1,0,2)(1,3,1),(4,2,1)αβ---=--=-,则α= ,(,)αβ= .3.矩阵12311211022584311112A ---⎡⎤⎢⎥--⎢⎥=⎢⎥---⎢⎥--⎣⎦,则()r A = . 4.设线性方程组11112211211222221122n n n n n n nn n na x a x a xb a x a x a x b a x a x a x b +++=⎧⎪+++=⎪⎨⎪⎪+++=⎩有解,其系数矩阵A 与增广矩阵A 的秩分别为s 和t ,则s 与t 的大小关系是 .5.设111123111,124111051A B ⎡⎤⎡⎤⎢⎥⎢⎥=-=--⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦,则1A B -= . 四、计算题(4小题,共42分)1.计算行列式(1)111111111111a a a a;(2)111116541362516121612564.(每小题6分,共12分)2.用基础解系表出线性方程组123451234512345123452321236222223517105x x x x x x x x x x x x x x x x x x x x ++-+=⎧⎪+++-=⎪⎨+++-=⎪⎪+--+=⎩的全部解.(10分)3.求与向量组123(1,1,1,1),(1,1,0,4),(3,5,1,1)ααα==-=-等价的正交单位向量组.(10分)4.求矩阵211020413A -⎡⎤⎢⎥=⎢⎥⎢⎥-⎣⎦的特征根和特征向量.(10分)一、单选题(每题4分,共24分)二、判断题(每题2分,共10分)三、填空题(每空4分,共24分)1.(1)2(1)!n n n --⋅; 2.(1 (2)0;3.3; 4.s t =;5.351222312212112-⎡⎤⎢⎥-⎢⎥⎢⎥-⎣⎦. 四、计算题(共42分)1.(12分,每小题各6分) (1)解:11131111111111311111(3)111311111111311111a a a a a a a a a a a aa a a++==+++ ..............(3分)311110100(3)(3)(1)001001a a a a a a -=+=+--- ...................(3分)注:中间步骤形式多样,可酌情加分 (2)解:222233331111111116541654136251616541216125641654=,此行列式为范德蒙行列式 ......(3分)进而2222333311111654=(61)(51)(41)(56)(46)(45)12016541654=------=-原式 .......(3分)2.(10分)解:用初等变换把增广矩阵化为阶梯形1213211213211213212111360317740115411122220115410317742351710501711630171163---⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥-------⎢⎥⎢⎥⎢⎥→→⎢⎥⎢⎥⎢⎥------⎢⎥⎢⎥⎢⎥--------⎣⎦⎣⎦⎣⎦1213211213210115410115410317740048510171163000000--⎡⎤⎡⎤⎢⎥⎢⎥------⎢⎥⎢⎥→→⎢⎥⎢⎥-----⎢⎥⎢⎥---⎣⎦⎣⎦..................(3分) 得同解方程组取45,x x 为自由未知量,得方程的一般解为12345234534521321544185x x x x x x x x x x x x++=+-⎧⎪-=+-⎨⎪=--+⎩(其中45,x x 为自由未知量) 将450,0x x ==代入得特解01551(,,,0,0)444γ=--. ................(3分)用同样初等变换,得到与导出组同解的方程组12345234534523205404850x x x x x x x x x x x x ++-+=⎧⎪--+=⎨⎪+-=⎩仍取45,x x 为自由未知量,得一般解12345234534523254485x x x x x x x x x x x x++=-⎧⎪-=-⎨⎪=-+⎩,将451,0x x ==和450,4x x ==分别代入得到一个基础解系:12(1,3,2,1,0),(9,11,5,0,4)ηη=--=- ...............(3分)所以,原方程组的全部解为01122k k γηη++,12,k k 为数域P 中任意数。
高等代数期末考试题库及答案解析
高等代数期末考试题库及答案解析第一部分:选择题(共10题,每题2分,总分20分)1.高等代数是一门研究什么的数学学科?a.研究高等数学b.研究代数学c.研究线性代数d.研究数论–答案:b2.什么是矩阵的秩?a.矩阵中非零行的个数b.矩阵中非零列的个数c.矩阵中线性无关的行向量或列向量的最大个数d.矩阵的行数与列数的乘积3.给定一个方阵A,如果存在非零向量x使得Ax=0,那么矩阵A的秩为多少?a.0b.1c.方阵A的行数d.方阵A的列数–答案:a4.什么是特征值和特征向量?a.矩阵A与它的转置矩阵的乘积b.矩阵A的负特征值和负特征向量的乘积c.矩阵A与它的逆矩阵的乘积d.矩阵A与一个非零向量的乘积等于该向量的常数倍,并且这个向量成为特征向量,该常数成为特征值。
5.什么是行列式?a.矩阵A所有元素的和b.矩阵A中所有元素的乘积c.矩阵A的转置矩阵与它自身的乘积d.矩阵A的行列式是一个标量,表示矩阵A所表示的线性变换的倍数比例。
–答案:d6.什么是矩阵的逆?a.矩阵的行向量与列向量交换位置b.矩阵A的转置矩阵c.存在一个矩阵B,使得矩阵AB=BA=I(单位矩阵)d.矩阵的所有元素取倒数7.给定一个2x2矩阵A,当且仅当什么时候矩阵A可逆?a.矩阵A的行列式为0b.矩阵A的行列式不为0c.矩阵A的特征值为0d.矩阵A的特征值不为0–答案:b8.什么是矩阵的转置?a.矩阵的行与列互换b.矩阵的行与行互换c.矩阵的列与列互换d.矩阵的所有元素取相反数–答案:a9.对于矩阵A和B,满足AB=BA,则矩阵A和B是否可逆?a.可逆b.不可逆c.只有A可逆d.只有B可逆–答案:b10.什么是矩阵的秩-零空间定理?a.矩阵中非零行的个数加上零行的个数等于行数b.矩阵中非零列的个数加上零列的个数等于列数c.矩阵的秩加上矩阵的零空间的维数等于列数d.矩阵的秩加上矩阵的零空间的维数等于行数–答案:c第二部分:计算题(共4题,每题15分,总分60分)1.计算矩阵的秩: A = \[1, 2, 3; 4, 5, 6; 7, 8, 9\]–答案:矩阵A的秩为22.计算特征值和特征向量: A = \[1, 2; 3, 4\]–答案:矩阵A的特征值为5和-1,对应的特征向量分别为\[1; 1\]和\[-2; 1\]3.计算行列式: A = \[3, 1, 4; 1, 5, 9; 2, 6, 5\]–答案:矩阵A的行列式为-364.计算逆矩阵: A = \[1, 2; 3, 4\]–答案:矩阵A的逆矩阵为\[-2, 1/2; 3/2, -1/2\]第三部分:证明题(共2题,每题25分,总分50分)1.证明:当矩阵A为可逆矩阵时,有出现在矩阵A的行列式中的每个元素,将该元素与其对应的代数余子式相乘之后的结果,再求和得到的值等于矩阵A的行列式的值。
高代一期末考试试题及答案
高代一期末考试试题及答案高等代数一期末考试试题一、选择题(每题2分,共10分)1. 以下哪个不是线性代数中的基本概念?A. 向量空间B. 线性变换C. 矩阵D. 微积分2. 矩阵的秩是指:A. 矩阵中非零行的最大数量B. 矩阵中非零列的最大数量C. 矩阵中线性无关行的最大数量D. 矩阵中线性无关列的最大数量3. 线性方程组有唯一解的条件是:A. 系数矩阵的行列式不为零B. 系数矩阵的秩等于增广矩阵的秩C. 系数矩阵的秩等于未知数的个数D. 所有选项都是4. 以下哪个矩阵是可逆的?A. 零矩阵B. 单位矩阵C. 行阶梯形矩阵D. 非方阵5. 特征值和特征向量的计算与下列哪个矩阵运算相关?A. 矩阵的加法B. 矩阵的乘法C. 矩阵的转置D. 矩阵的行列式二、填空题(每空1分,共10分)6. 一个向量空间 \( V \) 的基 \( B \) 包含 \( n \) 个线性无关向量,则 \( V \) 的维数为 _______。
7. 若 \( A \) 是 \( m \times n \) 矩阵,\( B \) 是 \( n\times p \) 矩阵,则 \( AB \) 是 _______ 矩阵。
8. 线性变换 \( T: V \rightarrow W \) 的核是所有满足 \( T(v) = 0 \) 的向量 \( v \) 的集合,记为 _______。
9. 矩阵 \( A \) 与 \( B \) 相等,当且仅当它们具有相同的_______。
10. 一个 \( n \) 阶方阵的迹是其对角线上元素的 _______。
三、简答题(每题5分,共20分)11. 解释什么是线性相关和线性无关,并给出一个线性无关向量组的例子。
12. 描述矩阵的行列式计算的几何意义。
13. 说明如何使用高斯消元法求解线性方程组。
14. 什么是特征值分解?它在哪些领域有应用?四、证明题(每题10分,共20分)15. 证明如果矩阵 \( A \) 可逆,则 \( A \) 的行列式不为零。
高等代数考试题库及答案
高等代数考试题库及答案一、单项选择题(每题3分,共30分)1. 以下哪个矩阵是可逆的?A. \(\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}\)B. \(\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}\)C. \(\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}\)D. \(\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}\)答案:C2. 行列式的性质中,以下哪个描述是错误的?A. 交换两行,行列式的值不变。
B. 将一行乘以一个常数,行列式的值也乘以该常数。
C. 将一行加到另一行,行列式的值不变。
D. 将两行交换,行列式的值取反。
答案:A3. 以下哪个矩阵的特征值是1?A. \(\begin{pmatrix} 2 & 0 \\ 0 & 3 \end{pmatrix}\)B. \(\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}\)C. \(\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}\)D. \(\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}\)答案:C4. 向量\(\alpha = (1, 2, 3)\)和\(\beta = (4, 5, 6)\)是否线性相关?A. 是B. 否答案:A5. 以下哪个不是初等矩阵?A. 单位矩阵B. 将一行乘以非零常数得到的矩阵C. 将一行加到另一行得到的矩阵D. 将两行交换得到的矩阵答案:A6. 矩阵\(A\)和\(B\)的乘积\(AB\)等于\(BA\)的条件是什么?A. \(A\)和\(B\)都是方阵B. \(A\)和\(B\)都是对角矩阵C. \(A\)和\(B\)都是对称矩阵D. \(A\)和\(B\)都是正交矩阵答案:D7. 以下哪个矩阵是正交矩阵?A. \(\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}\)B. \(\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}\)C. \(\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}\)D. \(\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}\)答案:A8. 矩阵的秩是指什么?A. 矩阵中非零元素的个数B. 矩阵中最大的非零子式C. 矩阵中线性无关的行或列的最大个数D. 矩阵的行列式值答案:C9. 以下哪个矩阵是对称矩阵?A. \(\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}\)B. \(\begin{pmatrix} 1 & 2 \\ 2 & 4 \end{pmatrix}\)C. \(\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}\)D. \(\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}\)答案:C10. 矩阵\(A\)的特征多项式是\(\lambda^2 - 2\lambda + 1\),则\(A\)的特征值是什么?A. 1, 1B. 1, 2C. 1, 3D. 2, 2答案:A二、填空题(每题2分,共20分)1. 矩阵\(A\)的行列式为0,则矩阵\(A\)是不可逆的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
科目名称:《高等代数》
姓名: 班级: 考试时间:120分钟 考试形式:闭卷 ≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌
≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌
一、填空题(每小题5分,共25分)
1、 在[]X P 中,向量21x x ++关于基23,1,12+--x x x 的坐标为 。
2、 向量组()()()()()8,3,5,2,1,1,3,0,3,2,4,2,1,2,154321-=-==-=-=ααααα的秩 为 ,一个最大无关组为 .。
3、 (维数公式)如果21,V V 是线性空间V 的两个子空间,那么 。
4、 假设⎪⎪⎪
⎭
⎫
⎝⎛-----=175131023A 的特征根是 ,特征向量分别为 。
5、实二次型()323121321224,,x x x x x x x x x f ++-= 的秩为
二、是非题(每小题2分,共20分)
1、如果r a a a ,,,21 线性无关,那么其中每一个向量都不是其余向量的线性组合。
( )
2、在][x P 中,定义变换)()(0x f x Af =,其中P x ∈0,是一固定的数,那么变换A 是线性变换。
( )
3、设21,W W 是向量空间V 的两个子空间,那么它们的并 21W W 也是V 的一个子空间。
( )
4、两个欧氏空间同构的充分且必要条件是它们有相同的维数。
( )
5、 令),,,(4321x x x x =ξ是4R 的任意向量,那么δ是4R 到自身的线性变换。
其中
),,,()(2
4232221x x x x =ξδ。
( )
6、 矩阵A 的特征向量的线性组合仍是A 的特征向量。
( )
7、 若矩阵A 与B 相似,那么A 与B 等价。
( ) 8、 n 阶实对称矩阵A 有n 个线性无关的特征向量。
( )
9、 在)(2R M 中,若W 由所有满足迹等于零的矩阵组成,那么W 是)(2R M 的
子空间。
( )
10、齐次线性方程组0)(=-X A E λ的非零解向量是A 的属于λ的特征向量。
( )
三、明证题(每小题××分,共31分)
1、设n εεε,,,21 是线性空间V 的一组基,A 是V 上的线性变换,证明:A 可逆当且仅当n A A A εεε,,,21 线性无关。
(10)
2、设δ是n 维欧氏空间V 的一个线性变幻,证明:如果δ是对称变幻,2δ=l 是单位变幻,那么δ是正交变换。
(11)
3、设V 是一个n 维欧氏空间,证明:如果21,W W 都是V 得子空间,那么() ⊥⊥⊥=+2121W W W W 。
(10) 四、计算题(每小题8分,共24分)
1、 求矩阵⎪⎪⎪
⎭
⎫
⎝⎛---=466353331A 的特征根与特征向量,并求满秩矩阵P 使得AP P 1-为对
角形矩阵。
2、 求一个正交矩阵U ,使得AU U '
使对角形式,其中⎪⎪⎪⎭
⎫ ⎝⎛--=52024202
3A 。
3、 化二次型 ()323121321224,,x x x x x x x x x f ++-=为平方和,并求所用的满秩线性变换。
科目名称:《高等代数》
姓名: 班级: 考试时间:120分钟 考试形式:闭卷 ≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌
≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌
一、填空题(每小题5分,共25分)
1、 (3,4,1)
2、 秩为2,一个最大无关组为31,αα
3、 维(1V )+维(2V )=维(21V V +)+维( 21V V )
4、 特征根是1,1,2,特征向量分别为()(),1,1,2,1,1,121-==αα
5、秩为 3
二、是非题(每小题2分,共20分)
1、(是 )
2、(是 )
3、(是 )
4、(否 )
5、 (否 )
6、 (否 )
7、 (是 )
8、 (是 )
9、 (是 )
10、(是 )
三、明证题(每小题××分,共31分)
1、证明 设A 可逆,则1-A 存在,且1-A 也是V 的线性变换,(1) 若n A A A εεε,,,21 线性相关,则)(,),(),(12111n A A A A A A εεε--- ,(2)
即n εεε,,,21 也线性相关,这与假设n εεε,,,21 是基矛盾,故n A A A εεε,,,21 线性无关。
(5)反之,若n A A A εεε,,,21 线性无关,因V 是n 维线性空间,故它也是V 的一组基,(7) 故对V
中任意向量1α有)(22111n n k k k A εεεα+++= ,即存在
)(2211n n k k k εεεα+++= ,使1)(αα=A ,故A 为V 到V 上的变换。
(8) 若
又
有
n
n l l l εεεβ+++= 2211,使
1
)(αβ=A ,即
)(22112211n n n n A k A k A k A l A l A l A εεεεεεβ+++=+++= ,
因为n A A A εεε,,,21 是基,),,2,1(,n i k l i i ==,即βα=,从而A 又是一一的变换,故A 为可逆变换。
(10) 2、证:()()()()()()ξξξξδξδξξξδξξδξ
ξδ,,2,,2
+-=--=-,(4)
=()()()()ξξδξξξδξ,,2,2+- ,(8)
=()()()()ξδξδξδξ2,2,2-, (10) =0 ,(11)
3、证:(1)()() ⊥⊥⊥
⊥⊥⊥
⊆+⇒∈⇒+∈∀21212121W W W W W W W W ξξ,(5)
同理() ⊥⊥⊥
⊇+2121W W W W , (8)
则() ⊥⊥⊥
=+2121W W W W 。
(10)
四、计算题(每小题8分,共24分)
1、解:A E -λ=)4()2(2-+λλ,则A 的特征根为22,1-=λ,43=λ, (3)
i λ)3,2,1(=i ,它们对应的特征向量分别为⎪⎪⎪
⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛-=211,011,101321ααα, (6)
易知321,,ααα线性无关,取⎪⎪⎪⎭⎫ ⎝⎛-=201110111P ,那么就得⎪⎪⎪
⎭
⎫
⎝⎛--=-4000200021AP P 。
(8)
2、解:)7)(4)(1(---=-λλλλA E ,则特征根为7,4,1321===λλλ, (3)
对应它们的线性无关的特征向量分别为⎪⎪⎪⎭
⎫
⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛-=221,212,122321ααα,
(6)
他们单位化后分别为
⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛-=323231332313223132321,,βββ,取正交矩阵⎪⎪⎪
⎭
⎫ ⎝⎛--=323
23
13
2313
23132
3
2U , (7) 则,⎪⎪⎪⎭
⎫ ⎝⎛=700040001'
AU U 。
(8)
3、解 332122
11y x y y x y y x =-=+= ,⎪⎪⎪
⎭
⎫
⎝⎛-=1000110111C ,得 (2)
3
213212121)(2)(2))((4y y y y y y y y y y f -+++-+-=
整理得2322232112231214)(4444y y y y y y y y f ++--=++-= (4)
在令3
32
23
2111y z y z y y z ==-=,⎪⎪⎪
⎭
⎫ ⎝⎛=10001001212C , (6)
23222144z z z f ++-=,⎪⎪⎪⎭
⎫ ⎝⎛-==100111121
2121C C C , (8)。