同济高等数学第七版下册

合集下载

高等数学同济第七版7版下册习题全解

高等数学同济第七版7版下册习题全解

第十章重积分9 5y2D2-1 O i T-2图 10 - 1数,故/, = Jj( x 2 + y 1 ) 3 d(j = 2jj ( x2 + y1 )3 dcr.fh i)i又由于 D 3关于 ; t 轴对称,被积函数 ( / + r2) 3关于 y 是偶函数,故jj( x2+ j2 ) 3dcr =2j( x2+ y2) 3 da =2/ 2 .Dy 1):从而得/, =4/ 2 .( 2)利用对称性来计算二重积分还有以下两个结论值得注意:如果积分区域关于 ^ 轴对称,而被积函数 / ( x, y) 关于 y 是奇函数,即 fix, -y) = -f(x,y) , PJjf/ ( x, y)da = 0;D如果积分区域 D 关于: K 轴对称,而被积函数 / ( x, y) 关于:c 是奇函数,即/ ( ~x, y) = - / ( 太, y) ,则= 0.D?3.利用二重积分定义证明:( 1 ) jjda= ( 其中(7为的面积 ) ;IJ(2)JJ/c/(X , y) drr = Aj | y’ (A: , y) do■( 其中A :为常数 ) ;o n(3 ) JJ/( x,y)clcr =JJ/( x,y)drr+jJ/( x ,y)dcr,其中/) =/)!U /) 2,, A 为两个I) b\lh尤公共内点的 WK域 .证 ( 丨 ) 由于被枳函数. / U,y) =1 , 故山二t 积分定义得n "9 6 一、 《高等数学》 (第七版 )下册习题全解jj'ltr = Hm y^/( ,rji) A<r, = lim ^ Ac,= l i m cr = a.A — 0n( 2) / ( , )( Ic7 = lim ^ Ji x ji)1 n= A lim y/ ( ^ ( , i7, ) A ( 7- , = kf{ x, y) Aa.A- ° 台? { !( 3) 因 为 函 数 / U , y) 在 闭 区 域 / ) 上 可 积 ,故 不 论 把 £? 怎 样 分 割 ,积 分 和 的 极 限 总是 不 变 的 . 因 此 在 分 割 D 时 , 可 以 使 和 / ) 2 的 公 共 边 界 永 远 是 一 条 分 割 线 .这 样 fix. y) 在 A U D 2 上 的 积 分 和 就 等 于 & 上 的 积 分 和 加 D 2 上 的 积 分 和 , 记 为^/(^, , 17,) A , = ^/( ^, , 17,) A C T , + ^/(^, , 17,) A ,.CT CT/) ( , ", l : )U0 令 所 有 的 直 径 的 最 大 值 A - 0, 上 式 两 端 同 时 取 极限 , 即 得 Jf( x, y) i\a = jj f( x,y)da + JJ/( xf y)da.p,un } V, n ;4. 试 确 定 积 分 区 域 / ) , 使 二重 积 分][(1 - 2x 2 - y 2 ) d? l y 达 到 最 大 值 . SaI)解 由 二 重 积 分 的 性 质 可 知 , 当 积 分 区 域 / > 包 含 了 所 有 使 被 积 函 数 1 - 2. v 2- V 2大于 等 于 零 的 点 , 而 不 包 含 使 被 积 函 数 1 - 2/ - y 2小 于 零 的 点 , 即 当 £? 是 椭 圆 2/ + y 2= l 所 围 的 平 面 闭 区 域 时 , 此 二 重 积 分 的 值 达 到 最 大 .& 5. 根 据 二 重 积 分 的 性 质 , 比 较 下 列 积 分 的 大 小 :( 1) Ju+ y) 2山 7 与 J[ U , 其 中 积 分 区 域 D 是 由 x 轴 、 ^ 轴 与 直 线 A + . 、 =D I) 1 所 围 成 ;( 2) J(x + 7) 2如 与 ■ , 其 中 积 分 区 域 0 是 由 圆 周 (. r- 2)2+ (. v-l) 2= t) n 2 所 围 成 ;( 3 ) I' MA ; + y)( lor与 ! " [ In(X + y) ] 2 ( 1 ( 7 ,其中 Z >是三角形闭 K 域,三顶点分别为l) "(1 , 0) , (1 ,1) , (2,0);( 4) Jpn(:r +y)dcr与I n(:t+ ) ] 2 fW ,其中 / ) = |(.r ,. v) | 3 , 0彡、彡y1.i ) i)解 ( 1) 在积分 K 域 0 上,故有(x + j) 3 ^ (x + y) 2 .根据二重积分的性质 4 ,可得J(.r + y) \lrx ^ J (.\ + v)0 D( 2) 由于积分区域0 位于半平面 | ( A:, V ) | .V + ? 、彡 1 1 内,故在 / ) | : &(.f + y) 2彡 ( A + y) 3? 从『("? J( v + > ) : drr ^ jj ( x + y) \l f r.第 十 章 重 积 分 9 7( 3) 由 于 积 分 区域 D 位 于 条 形 区 域 1 U , ) | 1 彡 1 + 7 彡 2 丨 内 , 故 知 区 域 / ) 上 y 的 点 满 足 0 彡 InU + y) 彡1, 从 而 有 [ lnU + y ) ] 2彡 lnU +. y ). 因 此 jj [ ln( A: + y) ]2( Jo- ^ + y)d( 4) 由 于 积 分 区 域 / ) 位 于 半 平 面 丨 ( x , y) | . v+ y 彡 e|内 ,故 在 Z) 上 有 ln( x+ y) 彡 1, 2 In (:c + ) ' ).因 此从 而 : In (-v + ) ' ) ] 彡 Jj^ 1 n(.r + y) ] 2dcr ^Jln( x + y) da.i) a 3 6. 利 用 二 重 积 分 的 性 质 估 计 下 列 积 分 的 值 :(1) / = |^ 7( 文 + 7 )心,其中 /)= \ (x ,y) 1,0 1|; n( 2 ) / = j ^ ^ sin^d o ■ , 其 中 / ) = j ( : ) | 0 ^ ^ ^ ,0 ^ y ^ 1 ; sin A ,y TT TT i)( 3) / = J*(A : +y + l ) d( 7, 其 中 />= { {x,y) | 0 ^ x^ l , 0 ^ j ^ 2 [ ;it( 4) / = J(x 2+ 4y 2+ 9 ) ? , 其 中 D = 2 2 ^ 4|. do x + y I)解 ( 1 ) 在 积 分 区 域 D 上 , 0 矣 ; < : 矣 1 , 0英 y 矣 1 , 从 而 0 矣 巧 ? ( * + y ) 矣 ? 又 £? 2 的 面 积 等 于1, 因此( 2 ) 在 积 分 区 域 / ) 上 , 0 矣 sin J: 矣 1 ,0 ^ sin 1, 从 而 0 彡sin 2A : sin 2y 彡 1, 又 0 的面 积 等 于 TT 2, W 此( 3 ) 在 积 分 K 域 " 上 有 ^ x+y + ? 4 , / ) 的 而 积 等 于 2 , 因 此( 4 ) W 为 在 积 分 K 域 / > ? 上有 0矣 ; t 2 + y 2苳 4, 所 以 有 9 ^ + 4 r 2+ 9 ^ 4( x + y ) + 9 矣 25.2 23 4 I) 的 酣 枳 等 于4TT , W 此3 6 2+ 9 ) (Ur ^ lOO - ir .TT ^ [ [ ( x + 4/二重 积分的 计算 法. ^ 1. 计 算 下 列 二 甩 积 分 :--于区是域9 8 (. 43 A COS)可用JC 2 2 2 2 r 2 -x JC+ 2 x 2 3 2 2 2 ) 围dx 成 的j 闭20区 域 ; 3 +不等式表示为 | ( 4 m2| )(1:lD< 3 x( 十 +2)y)(;x+dcrda3x4,=-y+其VI+x 中y)y"d(T+是)3xyv"=cos(da 由-两f=.dxfvy 坐+i>标](vl~(文轴X)dx 及-h=+直V3线.r)dx-Xdv+-V+2 、xv-、=2x)2ch 听. b cos .v —rus TT rTI 卜 ( [ {高等数学> TT. fh( 第七叛 )下册习题全第- ) + ) ] Q( ) ^ = ^J V ( ^sin 2.v sin .v <1 3 0sin^ V(.t ^ Ay : , 0 .t ;( 3 J jj( x J 2 + v ) 7 T ,. 其 中 D = ( X v) 0 ^ A :^ 1 . 0 ^ v ^ 1 + 3 x da x ,u 1 X( -( 4 ) jjxcas( 的 三 角 形 闭& 2. _ 出枳分 ix: 域,斤x x( ( cos .v — 丄 (.<, s 2. v)X + Y j do ■ , 其 中 Z > 是 顶 点 分 别 为 ( 0 . 0 j < 77 , 0 ) 和 ( 77 , 77 )i 卜 r): v 列 m 分 :--第 十 章 重 积 分 9 9 ( 1 ) J^ ^ do ■ , 其 中 / ) 是 由 两 条 抛物 线 7 = v^,y = * 2所 围 成 的 闭 区 域 ; ( 2 ) D = 4 及 y 轴 所 围 成 的 右 半 闭 区 域 ;jfxy dcr, 其 中 D 是 由 圆 周 x 2 + J 22 I) (3 ) JV + 'dcr , 其 中 / ) = I ( % , ) ? ) | | A ; | + | J | ^ 1 ! ; D2矣矣(图- ).x ^ y^ J^, 0 x 1 10 2( 4 ) |" U 2 + / - x)<lo ? , 其 中D解 ( 1) 0 可 用 不 等 式 表 示 为 D 是 由 直 线 y :l 、 y 二xh :2* 所 围 成 的 闭 区 域 . 于 是 ( 2 )D 可 用 不 等 式 表 示 为 0 ? ^ ^ / 4 - y 2 , - 2 矣 7 矣 2 (图1 0 - 3 ) ,( 3 ) 如 阁 I ( ) - 4 , W = / U " 2, 其 中/>1 I ) 2= =-- ( x ,y ) - x -( x ,y ) |*-1^y+^Jc+1,-1^a;^|,因此--1 0 0 一、 《高等数学》 (第七版 )下册习题全解Ea3. 如 果 二 重 积 分 |/ ( . r, y) 心 办 的 被 积 函 数 / ( x , v) 是 两 个 函 数/ ] ( O 及 ) 的 乘n积 , 即 /(X , y) = f\(x) ./ “y) , 积 分 区 域 / ) = { (. V , ) I (1 ^ V ^ / > , r ^ , 证 叫y 这 个 二 重 积 分 等 于 两 个 单 积 分 的 乘枳 , 即|*/|U) -/ 2 (r) fl atly = [ J/, (. v)(l.v] - [ [/ : ( > ) ^v]- 证 Jj. /1 ( x ) ? .,2 ( / ) dvd V ~ J [ f J ( v )■ . / : t ^ ] l ^ x *在 上 式 右 端 的 第 一 次 单 枳 分f / , ( .V ) ?/2 ( .V ) dv中,./ ,( A .)1Jfu t 变招 : 、无关, nn见为常数提到积分5 外, W 此上式“端笏T第十章重积分 1 0 1 而在这个积分中,由于 f/ 2 ( y) d y 为常数,故又可提到积分号外,从而得到? f 2 < ,y) ^ xAy= [ | / 2( y) dj] - [ Jn / , (x)dx ]证毕 .^4. 化二重积分/= Jf(x , y )daI)为二次积分 ( 分别列出对两个变量先后次序不同的两个二次积分 ) ,其中积分区域£>是:( 1 ) 由直线及抛物线y2 = 4 x 所围成的闭区域;( 2 ) 由 x 轴及半圆周 / + y2 = r2(y 英 0) 所围成的闭区域;( 3 ) 由直线 y = x,; c = 2 及双曲线: K = ^ - ( * > 0 ) 所围成的闭区域;X( 4 ) 环形闭区域IU , y) | 1 + y2^ 4(.解 ( 1 ) 直线y= x 及抛物线 y2 = 4; c的交点为 ( 0, 0 ) 和 ( 4 , 4 ) ( 图 1 0 - 6).于是fixf( x, y) dy,/ = j[ dy^ / ( * , y) tk.( 2 ) 将 / ) 用不等式表示2/ 化为如下的先对y、' fyO^ y^ r - x2, - r ^ W/ ?,于是可将后对 * 的二次积分:r/ = J ( 1文 Jf(x ,y)(\y ;2 2 2 2 如 将 0 叫 不 等 式 表 示 为 ~ Vr - y ^ x^ Vr - y, 0 各 / ?, 则 可 将 / 化 为 如 卜 的先 对* 、后 对 y 的 二 次 枳 分 :--( 3) 如图 10- 7.( 2, 21).0于2是:条边界曲线dr 两两相交,先x,y)求dx得. 3 个交点为 ( 1 , 1 ) , 2, y 和一、《高等数学》 (第七版 )下册习题全解| dxj[f(x,y)dy.注本题说明,将二重积分化为二次积分时,需注意根据积分区域的边界曲线的情况,选取恰当的积分次序 . 本题中的积分区域 / )的上、下边界曲线均分别由—个方程给dy (i_/(^,y) + tlj /( x ,y)dx.出,而左边界曲线却分为两段,由两个不同的方程给出,在这种情况下采取先对 y、后对^ 的积分次序比较有利,这样只需做一个二次积分,而如果采用相反的枳分次序则需计算两个二次积分 .需要指出,选择积分次序时,还需考虑被积函数 /U , y) 的特点 .具体例子 n] ' 见教材下册第 1 44 页上的例 2.?\/4dx J\x y y)dy + d.vl / (. r, v) d> -f( 1■y2/ ( A : , y)clr +d.vl A -x/(.v Vv)dv.%/T/ (. v, v) d.v -f-v^ W". /4 厂/ ( , > ) d.v 、/4 -、?'- 、/ ( v , y)( l . \.-f ?I( 4 ) 将D 按图 10 - 8( a) 和图 10 - 8( 1 > ) 的两种不同方式則分为 4 块,分別得重 积1 0 3d.t.图 10 -8, 5. 设 / U , Y ) 在 D上 连 续 , 其 中/ ) 是 由 直 线; ==所 围 成 的 闭 区域 , 证 明dx |f(x,y)Ay证 等 式 两 端 的 二 次 积 分 均 等 于 二 重 积 分 J/ U , y ) d o? , 因 而 它 们 相 等 .I )^ 6.改 换 下 列 二 次 积 分 的 积 分 次 序 :(2) J) dj |: f(x,y)dx ;解 ( 丨 ) 所 给 二 次 积 分 等 于 二 重 积 分 J[ / U , ; K ) ( ^ , 其 中 o = 丨 h , y ) 1°^ ^ ^广 2f yix -x 2 ( 4 ) | 叫 2 f{x, y)dy- , fix /-sin x(5) (lx\ f{x,y)Ay\ ( 6 ) I J(x, y) Ay.JO J - sinyr- " 0 ^ j ^ I ( . /> n|■改写为 | Uj ) | * 矣 y 矣 1, 0 ^ ^ I | (罔 10 - 9 ) ,于 是原 式 = 丄 <ixj/(x,y)dy.( 2 ) 所 给 一 . 次 枳 分 等 于 二 ' Ti 积 分 |/ U , y) 山 , . K : 中 / ) = I|. y 2^ ^ < 2y,0 ^21. M I) njm 为 {u ’y) I 音 矣 j ^ 7^,0 ^ x 在 4)( 1 冬 1 1(> - I0) , W 此原式 = J, xjy/ ( x, y) y.1 0 4 《高等数学> (第七版)下册习题全解( 3 ) 所 给 二 次 积 分 等 于 二 重 积 分 .其 中 D = : (. . ) | - 1 v v VU X ^ 1 - y 2,0 彡 > ? 彡 1 ; ? 又 D 可 表 示 为 : ( JC , )*) 丨 0 彡 y 彡 V 1 - . r 2 , - 1 = J ( 图 10 - 11) , 因此 f 1 f V1 -X~ 原 式 =J ^ dxj / ( x,v) dy.( 4 ) 所 给 二 次 积 分 等 于 二 重 积 分其 中 D = : (. v. v) ' 2 -h1彡 .r 彡 2 :. 又 D 可 表 示 为 : ( A: , V ) | 2 - 1 彡 .t?彡 1 + Y 1 — v 2 , 0 :( 图s/lx - x % 故原 式 = 丄 d)jf(x % y)dx. ( 5 ) 所 给 二 次 积 分 等 于 二 重 积 分 ] |/ (. 10 ) ( 1^ , ) 1 : 中 / )= 1(. v. v) | 0 ^ v ^I)-y 2 ^ .V ^ 1$ 、 飞V 彡 110 - 12) ,x 彡 e | ? 又 / ) 可 表 示 为 | ( A : , > ? ) | e 、 彡 A? 彡 e , 0 彡 、 彡 1 i ( |劄 10 - 1, 故原 式 = L ( I. 、 | ,./X . 、 , .、 ) ( l. v.( 6 ) m 1 ( ) - 1 4, 将积分 | > < : 域 / ) 丧示为 / ), U/ ) 2 ,其中A) , = j U,、 ) | arcsin > ^--广 1 r ir - arcsin >1 一 , 一 彡 彡 | .于 T T - arcsin y , 0 彡 y 彡 1 | ,D 2 = | (.r,2arcsi n 1 )'0 y) 原 式 = I dy/( x, y) dx.是 y1 0 5 第f( 十xy 章 重 积y) c\xJO Jarcsin )^ 7. 设 平 面 薄 片 所 占 的 闭 区 域 D 由 直 线 ;t = 2, y = 和 ; r 轴 所 围 成 , 它 的 面 密 度/ x(. t, v) = x 2 + y 2, 求 该 薄 片 的 质 量 .解 D 如 图 1 0 - 15 所 示 . 所 求 薄 片 的 质M = jJ/ Lt( x 9 y) dcr = ^ 2 2dyj ( x + y ) dxrt dr Ay-x + xy r[ +(2 3 2”)+ ,1 2| 冬 | 1 0- 1 5 8. i | 灯 |l |四 个 平 而 A: = 0 , y = 0 , ;t =I , v = I 所 闲 成 的 柱 休 被 平 面 z = 0 及 2.r + 3 y + z 6 藏 得 的 立 休 的 体 积 .Y = s i n A 的 反 闲 数 足 A =i i r r s?M y- - 1 x ( 子 ? 中 , c\) ''i x E | o?? TT足 ih y - H in x = sin ( T T - x)"n! J TT - x ^ ar cKin y,从 ifii 得 T T - iin- Hin ~ 反 闲 数 ^y.解江力一 E J .它??芪是; c 0:. S 二苎泛 7:省 ?。

高等数学(同济第七版下)课后习题及解答

高等数学(同济第七版下)课后习题及解答

1.设u =a -b +2c ,v =-a +3b -c .试用a ,b ,c 表示2u -3v .解2u -3v =2(a -b +2c )-3(-a +3b -c )=5a -11b +7c .2.如果平面上一个四边形的对角线互相平分,试用向量证明它是平行四边形.证如图8-1,设四边形ABCD 中AC 与BD 交于M ,已知AM =MC ,MB DM =.故DC DM MC MB AM AB =+=+=.即DC AB //且|AB |=|DC |,因此四边形ABCD是平行四边形.3.把△ABC 的BC 边五等分,设分点依次为D 1,D 2,D 3,D 4,再把各分点与点A 连接.试以AB =c ,BC =a 表向量A D 1,A D 2,A D 3,A D4.证如图8-2,根据题意知511=BD a,5121=D D a,5132=D D a,5143=D D a,故A D 1=-(1BD AB +)=-51a -cA D 2=-(2BD AB +)=-52a -c A D 3=-(3BD AB +)=-53a -c A D 4=-(4BD AB +)=-54a -c.4.已知两点M 1(0,1,2)和M 2(1,-1,0).试用坐标表示式表示向量21M M 及-221M M .解21M M =(1-0,-1-1,0-2)=(1,-2,-2).-221M M =-2(1,-2,-2)=(-2,4,4).5.求平行于向量a =(6,7,-6)的单位向量.解向量a 的单位向量为a a ,故平行向量a 的单位向量为±a a =111±(6,7,-6)=⎪⎭⎫ ⎝⎛-±116,117,116,其中11)6(76222=-++=a .6.在空间直角坐标系中,指出下列各点在哪个卦限?A (1,-2,3),B (2,3,-4),C (2,-3,-4),D (-2,-3,1).解A 点在第四卦限,B 点在第五卦限,C 点在第八卦限,D 点在第三卦限.7.在坐标面上和在坐标轴上的点的坐标各有什么特征?指出下列各点的位置:A (3,4,0),B (0,4,3),C (3,0,0),D (0,-1,0).解在坐标面上的点的坐标,其特征是表示坐标的三个有序数中至少有一个为零,比如xOy 面上的点的坐标为(x 0,y 0,0),xOz 面上的点的坐标为(x 0,0,z 0),yOz 面上的点的坐标为(0,y 0,z 0).在坐标轴上的点的坐标,其特征是表示坐标的三个有序数中至少有两个为零,比如x 轴上的点的坐标为(x 0,0,0),y 轴上的点的坐标为(0,y 0,0),z 轴上的点的坐标为(0,0,z 0).A 点在xOy 面上,B 点在yOz 面上,C 点在x 轴上,D 点在y 轴上.8.求点(a ,b ,c )关于(1)各坐标面;(2)各坐标轴;(3)坐标原点的对称点的坐标.解(1)点(a ,b ,c )关于xOy 面的对称点(a ,b ,-c ),为关于yOz 面的对称点为(-a ,b ,c ),关于zOx 面的对称点为(a ,-b ,c ).(2)点(a ,b ,c )关于x 轴的对称点为(a ,-b ,-c ),关于y 轴的对称点为(-a ,b ,-c ),关于z 轴的对称点为(-a ,-b ,c ).(3)点(a ,b ,c )关于坐标原点的对称点是(-a ,-b ,-c ).9.自点P 0),,(000z y x 分别作各坐标面和各坐标轴的垂线,写出各垂足的坐标.解设空间直角坐标系如图8-3,根据题意,P 0F 为点P 0关于xOz面的垂线,垂足F 坐标为),,000(z x ;P 0D 为点P 0关于xOy 面的垂线,垂足D 坐标为),,0(00y x ;P 0E 为点P 0关于yOz 面的垂线,垂足E 坐标为)0(0o z y ,,.P 0A 为点P 0关于x 轴的垂线,垂足A 坐标为),0,0(o x ;P 0B 为点P 0关于y 轴的垂线,垂足B 坐标为)0,,0(0y ;P 0C 为点P 0关于z 轴的垂线,垂足C 坐标为),0,0(0z .10.过点P 0),,(000z y x 分别作平行于z 轴的直线和平行于xOy 面的平面,问在它们上面的点的坐标各有什么特点?解如图8-4,过P 0且平行于z 轴的直线l 上的点的坐标,其特点是,它们的横坐标均相同,纵坐标也均相同.而过点P 0且平行于xOy 面的平面 上的点的坐标,其特点是,它们的竖坐标均相同.11.一边长为a 的正方体放置在xOy 面上,其底面的中心在坐标原点,底面的顶点在x 轴和y 轴上,求它各顶点的坐标.解如图8-5,已知AB=a ,故OA=OB=a 22,于是各顶点的坐标分别为A )0022(,,a ,B (),022,0(a ),C (-a 22,0,0),D (0,-a 22,0),E (a 22,0,a ),F (0,a 22,a ),G (-a 22,0,a ),H (0,-a 22,a ).12.求点M (4,-3,5)到各坐标轴的距离.解点M 到x 轴的距离为d 1=345)3(22=+-,点M 到y 轴的距离为d 2=415422=+,点M 到z 轴的距离为d 3=525)3(422==-+.13.在yOz 面上,求与三点A (3,1,2),B (4,-2,-2),C (0,5,1)等距离的点.解所求点在yOz 面上,不妨设为P (0,y ,z ),点P 与三点A ,B ,C,)2()1(3222-+-+=z y,)2()2(4222++++=z y.)1()5(22-+-=z y==222222)2()2(4)2()1(3++++=-+-+z y z y 22)1()5(-+-=z y ,即.)1()5()2()1(9,)2()2(16)2()1(922222222-+-=-+-+++++=-+-+z y z y z y z y 解上述方程组,得y=1,z=-2.故所求点坐标为(0,1,-2).14.试证明以三点A (4,1,9),B (10,-1,6),C (2,4,3)为顶点的三角形是等腰直角三角形.证由2798)63()14()102(,7)93()14()42(,7)96()11()410(222222222==-+++-==-+-+-==-+--+-=.+==故△ABC 为等腰直角三角形.15.设已知两点为M 1(4,2,1),M 2(3,0,2),计算向量21M M 的模、方向余弦和方向角.解向量21M M =(3-4,0-2,2-1)=(-1,-2,-1),2412-1-222==++=)()(.其方向余弦分别为cos α=-21,cos β=-22,cos γ=21.方向角分别为3,43,32πγπβπα===.16.设向量的方向余弦分别满足(1)cos α=0;(2)cos β=1;(3)cos α=cos β=0,问这些向量与坐标轴或坐标面的关系如何?解(1)由cos α=0得知2πα=,故向量与x 轴垂直,平行于yOz 面.(2)由cos β=1得知β=0,故向量与y 轴同向,垂直于xOz 面.(3)由cos α=cos β=0知2πβα==,故向量垂直于x 轴和y 轴,即与z 轴平行,垂直于xOy 面.17.设向量r 的模是4,它与u 轴的夹角为3π,求r 在u 轴上的投影.解已知|r |=4,则Prj u r=|r |cos θ=4∙cos 3π=4×21=2.18.一向量的终点在点B (2,-1,7),它在x 轴、y 轴和z 轴上的投影依次为4,-4和7,求这向量的起点A 的坐标.解设A 点坐标为(x ,y ,z ),则AB =(2-x ,-1-y ,7-z ),由题意知2-x=4,-1-y=-4,7-z=7,故x=-2,y=3,z=0,因此A 点坐标为(-2,-3,0).19.设m =3i +4j +8k ,n =2i -4j -7k 和p =5i +j -4k .求向量a =4m +3n -p 在x 轴上的投影及在y轴上的分向量.解a=4m+3n-p=4(3i+5j+8k)+3(2i-4j-7k)-(5i+j-4k)=13i+7j+15k,a在x轴上的投影为13,在y轴上的分向量为7j.1.设k j i b k j i a -+=--=2,23,求(1)b a b a ⨯⋅及;(2)b a 2b 3a 2-⨯⋅及)(;(3)b a ,的夹角的余弦.解(1)),(),,(1-2,12-1-3⋅=⋅b a ,)()()(31-2-21-13=⨯+⨯+⨯==⨯b a 121213---kj i =(5,1,7).(2)1836)(63)2(-=⨯-=⋅-=⋅-b a b a )14,2,10()7,1,5(2)(22==⨯=⨯b a b a (3222222)1(21)2()1(33),cos(-++-+-+=⋅=b a b a b a 21236143==2.设c b a ,,为单位向量,满足.,0a c c b b a cb a ⋅+⋅+⋅=++求解已知,0,1=++===c b a c b a 故0=++⋅++)()(c b a c b a .即0222222=⋅+⋅+⋅+++a c c b b a c b a .因此23-21222=++-=⋅+⋅+⋅)(c b a a c c b b a 3.已知M 1(1,-1,2),M 2(3,3,1)M 3(3,1,3).求与3221,M M M M 同时垂直的单位向量.解21M M =(3-1,3-(-1),1-2)=(2,4,-1)32M M =(3-3,1-3,3-1)=(0,-2,2)由于3221M M M M ⨯与3221,M M M M 同时垂直,故所求向量可取为M M M M a =)(由3221M M M M ⨯=220142--k j i=(6,-4,-4),17268)4()4(6222==-+-+=⨯知).172,172,173()4,4,6(1721--±=--±=a 4.设质量为100kg 的物体从点M1(3,1,8)沿直线移动到点M2(1,4,2),计算重力所作的功(坐标系长度单位为m ,重力方向为z 轴负方向).解21M M =(1-3,4-1,2-8)=(-2,3,-6)F=(0,0,-100×9.8)=(0,0,-980)W=F ∙21M M =(0,0,-980)∙(-2,3,-6)=5880(J).5.在杠杆上支点O 的一侧与点O 的距离为x 1的点P 1处,有一与1OP 成角1θ的力F 1作用着;在O 的另一侧与点O 的距离为x 2的点P 2处,有一与2OP 成角2θ的力F 2作用着(图8-6),问1θ,2θ,x 1,x 2,21,F F 符合怎样的条件才能使杠杆保持平衡?解如图8-6,已知有固定转轴的物体的平衡条件是力矩的代数和为零,又由对力矩正负符号的规定可得杠杆保持平衡的条件为0sin sin 222111=-θθx F x F ,即222111sin sin θθx F x F =.6.求向量),(4,3-4=a在向量)(1,2,2=b 上的投影.解236122)1,2,2()4,3,4(Pr 222==++⋅-=⋅=b b a a j b .7.设)4,1,2(),2,5,3(=-=b a,问μλ与有怎样的关系,能使b a μλ+与z 轴垂直?解b a μλ+=λ(3,5,-2)+μ(2,1,4)=(μλμλμλ42,5,23+-++).要b a μλ+与z 轴垂直,即要(b a μλ+)⊥(0,0,1),即(b a μλ+)∙(0,0,1)=0,亦即(μλμλμλ42,5,23+-++)∙(0,0,1)=0,故(μλ42+-)=0,因此μλ2=时能使b a μλ+与z 轴垂直.8.试用向量证明直径所对的圆周角是直角.证如图8-7,设AB 是圆O 的直径,C 点在圆周上,要证∠ACB=2π,只要证明0=⋅BCAC 即可.由BC AC ⋅=)()(OC BO OC AO +⋅+=BO OC OC AO BO AO ⋅+⋅+⋅=0=+⋅-⋅+OC AO OC AO .故BC AC⊥,∠ACB为直角.9.已知向量j i c k j i b k j i a 23,32-=+-=+-=和,计算:(1)b c a c b a )()(⋅-⋅(2))()(c b b a +⨯+(3)cb a ⋅⨯)(解(1)8)3,1,1()1,3,2(=-⋅-=⋅ba ,8)0,2,1()1,3,2(=-⋅-=⋅c a ,b c a c b a )()(⋅-⋅)24,8,0()3,1,1(8)0,2,1(8--=---=k i 248--=.(2)b a +=(2,-3,1)+(1,-1,3)=(3,-4,4),c b +=(1,-1,3)+(1,-2,0)=(2,-3,3),)()(c b b a +⨯+332443--=kj i k j --=--=)1,1,0(.(3)c b a ⋅⨯)(.2021311132=---=10.已知k j OBk i OA 3,3+=+=,求△OAB 的面积.解由向量积的几何意义知S △OAB⨯)1,3,3(310301--==⨯kj i OB OA,⨯191)3()3(22=+-+-=S △OAB219=11.已知),,(),,,(),,,(z y x z y x z y x c c c c b b b b a a a a ===,试利用行列式的性质证明:ba c a cbc b a ⋅⨯=⋅⨯=⋅⨯)()()(证因为,)(z yxz y xz y xc c c b b b a a a cb a =⋅⨯zyxz y x z y x a a a c c c b b b a c b =⋅⨯)(=⋅⨯b a c )(zyxz yxz y xb b b a a ac c c ,而由行列式的性质知z yxz y x z y x c c c b b b a a a z yx z y x z y x a a a c c c b b b ==zyxz y x z y x b b b a a a c c c ,故b ac a c b c b a ⋅⨯=⋅⨯=⋅⨯)()()(.12.试用向量证明不等式:332211232221232221b a b a b a b b b a a a ++≥++++,其中321321,,,,,b b b a a a 为任意实数.并指出等号成立的条件.证设向量=a (321,,a a a ),=b (321,,b b b ).由),cos(b a b a ba =⋅b a ≤,从而232221232221332211b b b a a a b a b a b a ++++≤++,当321,,a a a 与321,,b b b 成比例,即332211b a b a b a ==时,上述等式成立.1.求过点(3,0,-1)且与平面012573=-+-z y x 平行的平面方程.解所求平面与已知平面012573=-+-z y x 平行.因此所求平面的法向量可取为n=(3,-7,5),设所求平面为0573=++-D z y x .将点(3,0,-1)代入上式得D=-4.故所求平面方程为04573=-+-z y x .2.求过点M 0(2,9,-6)且与连接坐标原点及点M 0的线段OM 0垂直的平面方程.解.6,9,2(0)-=OM 所求平面与0OM 垂直,可取n=0OM ,设所求平面方程为0692=+-+D z y x .将点M 0(2,9,-6)代入上式得D=-121.故所求平面方程为0121692=--+z y x .3.求过(1,1,-1),(-2,-2,2)和(1,-1,2)三点的平面方程.解由0121111121212111=+---+----+--z y x ,得023=--z y x ,即为所求平面方程.注设M (x,y,z )为平面上任意一点,)3,2,1)(,,(==i z y x M i i i i 为平面上已知点.由,0)(31211=⨯⋅M M M M MM 即,0131313121212111=---------z z y y x x z z y y x x z z y y x x 它就表示过已知三点M i (i=1,2,3)的平面方程.4.指出下列各平面的特殊位置,并画出各平面:(1)x=0;(2)3y-1=0;(3)2x-3y-6=0;(4)x-3y=0;(5)y+z=1;(6)x-2z=0;(7)6x+5y-z=0.解(1)—(7)的平面分别如图8—8(a )—(g ).(1)x=0表示yOz 坐标面.(2)3y-1=0表示过点(0,31,0)且与y 轴垂直的平面.(3)2x-3y-6=0表示与z 轴平行的平面.(4)x-3y=0表示过z 轴的平面.(5)y+z=1表示平行于x 轴的平面.(6)x-2z=0表示过y 轴的平面.(7)6x+5y-z=0表示过原点的平面.5.求平面0522=++-z y x 与各坐标面的夹角的余弦.解平面的法向量为n=(2,-2,1),设平面与三个坐标面xOy ,yOz ,zOx 的夹角分别为321,,θθθ.则根据平面的方向余弦知,3111)2(2)1,0,0()1,2,2(cos cos 2221=⋅+-+⋅-=⋅==k n k n γθ,3213)0,0,1()1,2,2(cos cos 2=⋅⋅-=⋅==i n i n αθ3213)0,1,0()1,2,2(cos cos 3-=⋅⋅-=⋅==j n j n βθ.6.一平面过点(1,0,-1)且平行于向量)1,1,2(=a 和)0,1,1(-=b ,试求这个平面方程.解所求平面平行于向量a 和b ,可取平面的法向量)3,1,1(011112-=-=⨯=kj i b a n .故所求平面为0)1(3)0(1)1(1=+--⋅+-⋅z y x ,即043=--+z y x .7.求三平面322,02,13=++-=--=++z y x z y x z y x 的交点.解联立三平面方程.322,02,13=++-=--=++z y x z y x z y x 解此方程组得.3,1,1=-==z y x故所求交点为(1,-1,3).8.分别按下列条件求平面方程:(1)平行于xOz 面且经过点(2,-5,3);(2)通过z 轴和点(-3,1,-2);(3)平行于x 轴且经过两点(4,0,-2)和(5,1,7).解(1)所求平面平行于xOz 面,故设所求平面方程为0=+D By .将点(2,-5,3)代入,得05=+-D B ,即B D 5=.因此所求平面方程为05=+B By ,即05=+y .(2)所求平面过z 轴,故设所求平面为0=+By Ax .将点(-3,1,-2)代入,得03=+-B A ,即A B 3=.因此所求平面方程为03=+Ay Ax ,即03=+y x .(3)所求平面平行于x 轴,故设所求平面方程为0=++D Cz By .将点(4,0,-2)及(5,1,7)分别代入方程得2=+-D C 及07=++D C B .D B D C 29,2-==.因此,所求平面方程为0229=++-D z DDy ,即029=--z y .9.求点(1,2,1)到平面01022=-++zy x 的距离.解利用点),,(00o o z y x M 到平面0=+++D Cz By Ax 的距离公式222000C B A DCz By Ax d +++++=.1332211012221222=-=++-⋅+⋅+=1.求过点(4,-1,3)且平行于直线51123-==-z y x 的直线方程.解所求直线与已知直线平行,故所求直线的方向向量)5,1,2(=s ,直线方程即为531124-=+=-z y x .2.求过两点)1,2,3(1-M 和)2,0,1(2-M 的直线方程.解取所求直线的方向向量)1,2,4()12),2(0,31(21-=-----==M M s ,因此所求直线方程为112243-=+=--z y x .3.用对称式方程及参数方程表示直线.42,1=++=+-z y x z y x 解根据题意可知已知直线的方向向量112111-=kj i s ).3,1,2(-=取x=0,代入直线方程得.4,1=+=+-z y z y 解得.25,23==z y 这样就得到直线经过的一点(25,23,0).因此直线的对称式方程为.32512320-=-=--z y x 参数方程为.325,23,2t z t y t x +=+=-=注由于所取的直线上的点可以不同,因此所得到的直线对称式方程或参数方程得表达式也可以是不同的.4.求过点(2,0,-3)且与直线1253,0742=+-+=-+-z y x z y x 垂直的平面方程.解根据题意,所求平面的法向量可取已知直线的方向向量,即),11,14,16(253421-=--==kj i s n 故所求平面方程为.0)3(11)0(14)2(16=++-+--z y x 即.065111416=---z y x 5.求直线0123,09335=-+-=-+-z y x z y x 与直线01883,02322=-++=+-+z y x z y x 的夹角的余弦.解两已知直线的方向向量分别为),1,4,3(1233351-=--=k j i s ),10,5,10(1831222-=-=kj i s 因此,两直线的夹角的余弦212121),(cos cos s s s s s s ⋅== .010)5(10)1(4310154103222222=+-+-++⨯-⨯-⨯=6.证明直线72,72=++-=-+z y x z y x 与直线02,8363=--=-+z y x z y x 平行.证已知直线的方向向量分别是),15,3,9(112363),5,1,3(11212121---=---==--=kj i s k j i s 由123s s -=知两直线互相平行.7.求过点(0,2,4)且与两平面12=+zx 和23=-z y 平行的直线方程.解所求直线与已知的两个平面平行,因此所求直线的方向向量可取),1,3,2(31020121-=-=⨯=kj i n n s 故所求直线方程为.143220-=-=-z y x 注本题也可以这样解:由于所求直线与已知的两个平面平行,则可视所求直线是分别与已知平面平行的两平面的交线,不妨设所求直线为.3,2b z y a z x=-=+将点(0,2,4)代入上式,得.10,8-==b a 故所求直线为.103,82-=-=+z y z x 8.求过点(3,1,-2)且通过直线12354z y x =+=-的平面方程.解利用平面束方程,过直线12354z y x =+=-的平面束方程为,0)23(2354=-+=+=-z y y x λ将点(3,1,-2)代入上式得.2011=λ因此所求平面方程为,0)23(20112354=-+=+=-z y y x即.0592298=---z y x 9.求直线0,03=--=++z y x z y x 与平面01=+--z y x 的夹角.解已知直线的方向向量),2,4,2(111311-=--=k j is 平面的法向量).1,1,1(--=n 设直线与平面的夹角为,ϕ则,0)1()1(1)2(42)1()2()1(412),cos(sin 222222=-+-+-++-⋅-+-⋅+⋅=⋅==n s n s s n ϕ即.0=ϕ10.试确定下列各组中的直线和平面间的关系;(1)37423z y x =-+=-+和3224=--z y x ;(2)723z y x =-=和8723=+-z y x ;(3)431232--=+=-z y x 和.3=++z y x 解设直线的方向向量为s ,平面的法向量为n ,直线与平面的夹角为,ϕ且ns n s s n ⋅==),cos(sin ϕ.(1)),2,2,4(),3,7,2(--=--=ns,0)2()2(43)7()2()2(3)2()7(4)2(sin 222222=-+-+⋅+-+--⋅+-⋅-+⋅-=ϕ则.0=ϕ故直线平行于平面或在平面上,现将直线上的点A (-3,-4,0)代入平面方程,方程不成立.故点A 不在平面上,因此直线不在平面上,直线与平面平行.(2)),7,2,3(),7,2,3(-=-=n s 由于n s =或,17)2(37)2(377)2()2(33sin 222222=+-+⋅+-+⋅+-⋅-+⋅=ϕ知2πϕ=,故直线与平面垂直.(3)),1,1,1(),4,1,3(=-=n s 由于0=⋅n s 或,0111)4(131)4(1113sin 222222=++⋅-++⋅-+⋅+⋅=ϕ知,0=ϕ将直线上的点A (2,-2,3)代入平面方程,方程成立,即点A 在平面上.故直线在平面上.11.求过点(1,2,1)而与两直线1,012=-+-=+-+z y x z y x 和0,02=+-=+-z y x z y x 平行的平面的方程.解两直线的方向向量为),1,1,0(111112),3,2,1(11112121--=--=--=--=kj i s k j is取),1,1,1(11032121--=----=⨯=k j i s s n 则过点(1,2,1),以n 为法向量的平面方程为,0)1(1)2(1)1(1=-⋅--⋅+-⋅-z y x 即.0=+-z y x 12.求点(-1,2,0)在平面012=+-+z y x 上的投影.解作过已知点且与已知平面垂直的直线.该直线与平面的交点即为所求.根据题意,过点(-1,2,0)与平面012=+-+z y x 垂直的直线为,102211--=-=+z y x 将它化为参数方程,,22,1t z t y t x -=+=+-=代入平面方程得,01)()22(21=+--+++-t t t 整理得32-=t .从而所求点(-1,2,0)在平面012=+-+z y x 上的投影为(32,32,35-).13.求点P (3,-1,2)到直线042,01=-+-=+-+z y x z y x 的距离.解直线的方向向量).3,3,0(112111--=--=kj i s 在直线上取点(1,-2,0),这样,直线的方程可表示成参数方程形式.3,32,1t z t y x -=--==(1)又,过点P (3,-1,2),以)3,3,0(--=s 为法向量的平面方程为,0)2(3)1(3=--+-z y 即.01=-+z y (2)将式(1)代入式(2)得21-=t ,于是直线与平面的交点为(23,21,1-),故所求距离为.223)232()211()13(222=-++-+-=d 14.设M 0是直线L 外一点,M 是直线L 上任意一点,且直线的方向向量为s ,试证:点M 0到直线L的距离d =.证如图8-9,点M 0到直线L 的距离为d.由向量积的几何意义知s ⨯表示以M M 0,s 为邻边的平行四边形的面积.而表示以s 为边长的该平面四边形的高,即为点M 0到直线L 的距离.于是d =15.求直线0923,042=---=+-z y x z y x 在平面14=+-z y x 上的投影直线的方程.解作过已知直线的平面束,在该平面束中找出与已知平面垂直的平面,该平面与已知平面的交线即为所求.设过直线0923,042=---=+-z y x z y x 的平面束方程为,0)923(42=---++-z y x z y x λ经整理得.09)21()4()32(=--+--++λλλλz y x 由,01)21()1()4(4)32(=⋅-+-⋅--+⋅+λλλ得1113-=λ.代入平面束方程,得.0117373117=--+z y x 因此所求投影直线的方程为.14,0117373117=+-=--+z y x z y x 16.画出下列各平面所围成的立体的图形.(1);012243,1,2,0,0,0=-++=====z y x y x z y x(2).4,2,1,0,0yz y x z x =====解(1)如图8-10(a );(2)如图8-10(b ).1.一球面过原点及A (4,0,0),B (1,3,0)和C (0,0,-4)三点,求球面的方程及球心的坐标和半径.解设所求球面的方程为2222)()()(R c z b y a x =-+-+-,将已知点的坐标代入上式,得,2222R c b a =++(1),)4(2222R c b a =++-(2),)3()1(2222R c b a =+-+-(3)2222)4(R c b a =+++,(4)联立(1)(2)得,2=a 联立(1)(4)得,2-=c 将2=a 代入(2)(3)并联立得b=1,故R=3.因此所求球面方程为,9)2()1()2(222=++-+-z y x 其中球心坐标为),2,1,2(-半径为3.2.建立以点(1,3,-2)为球心,且通过坐标原点的球面方程.解设以点(1,3,-2)为球心,R 为半径的球面方程为,)2()3()1(2222R z y x =++-+-球面经过原点,故,14)20()30()10(2222=++-+-=R 从而所求球面方程为.14)2()3()1(222=++-+-z y x 3.方程0242222=++-++z y x z y x 表示什么曲面?解将已知方程整理成,)6()1()2()1(2222=++++-z y x所以此方程表示以(1,-2,-1)为球心,以6为半径的球面.4.求与坐标原点O 及点(2,3,4)的距离之比为1:2的点的全体所组成的曲面的方程,它表示怎样的曲面?解设动点坐标为(z y x ,,),根据题意有,21)4()3()2()0()0()0(222222=-+-+--+-+-z y x z y x 化简整理得.)2932()34()1()32(2222=+++++z y x 它表示以(34,1,32---)为球心,以2932为半径的球面.5.将xOz 坐标面上的抛物线x z 52=绕x 轴旋转一周,求所生成的旋转曲面的方程.解以22z y +±代替抛物线方程x z 52=中的z ,得222)(z y +±x 5=,即x z y 522=+.注xOz 面上的曲线0),(=z x F 绕x 轴旋转一周所生成的旋转曲面方程为0),(22=+±z y x F .6.将xOz 坐标面上的圆922=+z x 绕z 轴旋转一周,求所生成的旋转曲面的方程.解以22y x +±代替圆方程922=+z x 中的x ,得,9)(2222=++±z y x 即.9222=++z y x7.将xOy 坐标面上的双曲线369422=-y x分别绕x 轴及y 轴旋转一周,求所生成的旋转曲面的方程.解以22zy +±代替双曲线方程369422=-y x中的y ,得该双曲线绕x 轴旋转一周而生成的旋转曲面方程为,36)(942222=+±-z y x 即.36)(94222=+-z y x 以22zx +±代替双曲线方程369422=-y x中的x ,得该双曲线绕y 轴旋转一周而生成的旋转曲面方程为,369)(42222=-+±y z x 即.369)(4222=-+y z x 8.画出下列各方程所表示的曲面:(1);)2()2(222a y a x =+-(2);19422=+-y x (3);14922=+z x (4);02=-z y (5)22x z-=.解(1)如图8-11(a );(2)如图8-11(b );(3)如图8-11(c );(4)如图8-11(d );(5)如图8-11(e ).9.指出下列方程在平面解析几何中和在空间解析几何中分别表示什么图形:(1);2=x (2);1+=x y (3);422=+y x(4).122=-y x解(1)2=x 在平面解析几何中表示平行于y 轴的一条直线,在空间解析几何中表示与yOz 面平行的平面.(2)1+=x y在平面解析几何中表示斜率为1,y 轴截距也为1的一条直线,在空间解析几何中表示平行于z 轴的平面.(3)422=+y x在平面解析几何中表示圆心在原点,半径为2的圆,在空间解析几何中表示母线平行于z 轴,准线为0,422==+z y x 的圆柱面.(4)122=-y x在平面解析几何中表示以x 轴为实轴,y 轴为虚轴的双曲线,在空间解析几何中表示母线平行于z轴,准线为,122==-z y x 的双曲柱面.10.说明下列旋转曲面是怎样形成的:(1);1994222=++z y x (2);14222=+-z y x (3);1222=--z y x (4).)(222y x a z+=-解(1)1994222=++z y x 表示xOy 面上的椭圆19422=+y x 绕x轴旋转一周而生成的旋转曲面,或表示xOz 面的椭圆19422=+z x 绕x 轴旋转一周而生成的旋转曲面.(2)14222=+-z y x 表示xOy 面上的双曲线1422=-y x 绕y 轴旋转一周而生成的旋转曲面,或表示yOz 面的双曲线1422=+-z y 绕y 轴旋转一周而生成的旋转曲面.(3)1222=--z y x表示xOy 面上的双曲线122=-y x 绕x 轴旋转一周而生成的旋转曲面,或表示xOz 面的双曲线122=-z x 绕x 轴旋转一周而生成的旋转曲面.(4)222)(y x a z+=-表示xOz 面上的直线a x z +=或a x z +-=绕z 轴旋转一周而生成的旋转曲面,或表示yOz 面的直线a y z+=或a y z +-=绕z 轴旋转一周而生成的旋转曲面.11.画出下列方程所表示的曲面:(1);44222=++z y x(2);44222=--z y x(3).94322y x z +=解(1)如图8-12(a );(2)如图8-12(b );(3)如图8-12(c );12.画出下列各曲面所围立体的图形:(1)1,03,0,3,022=+=-=-==y x y x y x z z(在第一卦限内);(2)222222,,0,0,0R z y R y x z y x =+=+===(在第一卦限内).解(1)如图8-13所示;(2)如图8-14所示.1.画出下列曲线在第一卦限内的图形;(1);2,1==y x (2);0,422=---=yxyx z(3).,222222a z x a y x =+=+解(1)如图8-15(a );(2)如图8-15(b );(3)如图8-15(c ).2.指出下列方程组在平面解析几何中与在空间解析几何中分别表示什么图形:(1);32,15-=+=x y x y (2).3,19422==+y y x 解(1)32,15-=+=x y x y 在平面解析几何中表示两直线的交点.在空间解析几何中表示两平面的交线,即空间直线.(2)3,19422==+y y x 在平面解析几何中表示椭圆19422=+y x 与其切线3=y 的交点,即切点.在空间解析几何中表示椭圆柱面19422=+y x 与其切平面3=y 的交线,即空间直线.3.分别求母线平行于x 轴及y 轴而且通过曲线0,162222222=-+=++y z x z y x 的柱面方程.解在,162222222=-+=++y z x z y x 中消去x ,得,16322=-z y 即为母线平行于x 轴且通过已知曲线的柱面方程.在,162222222=-+=++y z x z y x 中消去y ,得,162322=+z x 即为母线平行于y 轴且通过已知曲线多的柱面方程.4.求球面9222=++z y x 与平面1=+z x 的交线在xOy 面上的投影的方程.解在1,9222=+=++z x z y x 中消去z ,得,9)1(222=-++x y x 即,82222=+-y x x它表示母线平行于z轴的柱面,故0,82222==+-z y x x 表示已知交线在xOy 面上的投影的方程.5.将下列曲线的一般方程化为参数方程:(1);,9222x y z y x ==++(2).0,4)1()1(222==+++-z z y x解(1)将x y=代入,9222=++z y x 得,9222=+z x 取,cos 23t x =则,sin 3t z =从而可得该曲线的参数方程tz t y t x sin 3,cos 23,cos 23===(t ≤0˂π2)(2)将z=0代入,4)1()1(222=+++-z y x 得,3)1(22=+-y x 取,cos 31t x =-则,sin 3t y =从而可得该曲线的参数方程0,sin 3,cos 31==+=z t y t x (t ≤0˂π2)6.求螺旋线θθθb z a y a x ===,sin ,cos 在三个坐标面上的投影曲线的直角坐标方程.解由θθsin ,cos a y a x==得,222a y x =+故该螺旋线在xOy 面上的投影曲线的直角坐标方程为,222==+z a y x 由θθb z a y ==,sin 得bza y sin =,故该螺旋线在yOz 面上的投影曲线的直角坐标方程为0,sin ==x bza y 由θθb z a x ==,cos 得,cos b za x =故故该螺旋线在yOz 面上的投影曲线的直角坐标方程为.0,cos ==y bza x 7.求上半球2220y x a z --≤≤与圆柱体a ax y x (22≤+>0)的公共部分在xOy 面和xOz 面上的投影.解如图8-16.所求立体在xOy 面上的投影即为ax y x ≤+22,而由axy x y x a z =+--=22222,得.2ax a z -=故所求立体在xOz 面上的投影为由x 轴,z 轴及曲线ax a z-=2所围成的区域.8.求旋转抛物面)40(22≤≤+=z y x z在三坐标面上的投影解联立422=+=z y x z ,得422=+y x.故旋转抛物面在xOy面上的投影为.0,422=≤+z y x 如图8-17.联立0,22=+=x y x z 得,2y z=故旋转抛物面在yOz 面上的投影为2y z=及4=z 所围成的区域.同理,联立0,22=+=y y x z 得,2x z =故旋转抛物面在xOz 面上的投影为2x z=及4=z 所围成的区域.。

同济大学《高等数学》第七版上、下册答案(详解),DOC

同济大学《高等数学》第七版上、下册答案(详解),DOC
(4)2 12 (7 z)2 32 52 (2 z)2
解得 z 14
9
即所求点为 M(0,0,14 ).
9
7. 试证:以三点 A(4,1,9),B(10,-1,6),C(2,4,3)为顶点的三角形是等腰直角三角形. 证明:因为|AB|=|AC|=7.且有 |AC|2+|AB|2=49+49=98=|BC|2. 故△ABC 为等腰直角三角形. 8. 验证: (a b) c a (b c) .
3 i 14
1 j 14
2 k.
14
14. 三个力 F1=(1,2,3), F2=(-2,3,-4), F3=(3,-4,5)同时作用于一点. 求合力 R 的大小和方向余弦.
解:R=(1-2+3,2+3-4,3-4+5)=(2,1,4)
| R | 22 12 42 21
cos 2 , cos 1 , cos 4 .
故 A 的坐标为 A(-2, 3, 0).
13. 一向量的起点是 P1(4,0,5),终点是 P2(7,1,3),试求:
(1) P1P2 在各坐标轴上的投影; (2) P1P2 的模;
(3) P1P2 的方向余弦;
(4) P1P2 方向的单位向量.
解:(1) ax Pr jx P1P2 3,
ay Pr jy P1P2 1,
练习 5-2
练习 5-3
练习 5-4
总习题五
练习 6-2
练习 6-3
(2) s 22 (3)2 (4)2 29
(3) s (1 2)2 (0 3)2 (3 4)2 67
(4) s (2 4)2 (1 2)2 (3 3)2 3 5 .
5. 求点(4,-3,5)到坐标原点和各坐标轴间的距离.

高等数学下册同济第七版

高等数学下册同济第七版
链式法则
复合函数的求导法则,即一个复合函数的导数等于其内部函数的导数乘以外部函数的导数。
乘法法则
复合函数的求导法则,即两个函数的乘积的导数等于第一个函数的导数乘以第二个函数加上第二个函 数的导数乘以第一个函数。
隐函数的求导公式
隐函数
一个方程可以确定一个函数,这样的函 数称为隐函数。
VS
隐函数的求导公式
曲面及其方程
曲面的概念
曲面是一维图形在三维空间中的表现形式,它由多个点组成,每个 点都对应于空间中的一个位置。
曲面方程
曲面方程是描述曲面形状和大小的数学表达式。对于给定的曲面, 可以通过在其上任取一点,并建立该点的坐标系来得到该曲面的方 程。
常见曲面及其方程
例如,球面、锥面、柱面等都有对应的方程式。这些方程式描述了这 些曲面的形状和大小,并且可以通过图形来直观地表现出来。
VS
详细描述
对坐标的曲面积分主要用于计算曲面图形 上某部分区域内某物理量的累积值,如流 量、速度等。求解方法通常为定义法、参 数方程法、公式法等。在具体问题中,还 需考虑积分曲面的方向、不同部分的分界 线等因素。
THANK YOU
重积分的应用
总结词
重积分的应用非常广泛,包括求面积、求体 积、求质量等。
详细描述
重积分的应用包括求曲顶柱体的体积、求空 间物体的质量、求平面的面积等。例如,利 用二重积分可以求出平面区域的面积,利用 三重积分可以求出空间物体的质量。此外, 重积分还可以用于求解某些物理问题,如力
学、电磁学、光学等问题。
两个向量的向量积是一个向量,记作 $\overset{\longrightarrow}{a} \times \overset{\longrightarrow}{b}$,其 大小等于两个向量对应分量乘积的矢 量和,其方向垂直于两个向量所确定 的平面。

高等数学同济第七版下课后习题及解答

高等数学同济第七版下课后习题及解答

高等数学同济第七版下课后习题及解答高等数学作为大学理工科专业的重要基础课程,对于学生的逻辑思维和数学素养的培养起着至关重要的作用。

而《高等数学同济第七版》更是众多高校广泛采用的教材,其课后习题是巩固知识、提升能力的重要途径。

接下来,我们就来详细探讨一下这本教材下册的课后习题及解答。

下册的内容主要包括多元函数微积分学、向量代数与空间解析几何、无穷级数等重要章节。

这些章节的知识点相互关联,构成了一个较为完整的高等数学知识体系。

在多元函数微积分学这一部分,课后习题涵盖了多元函数的概念、偏导数、全微分、多元函数的极值与条件极值等重要知识点。

例如,有这样一道习题:求函数\(z = x^2 + 2y^2 4x + 8y\)的极值。

解答这道题,首先需要求出函数的偏导数\(z_x\)和\(z_y\),分别为\(2x 4\)和\(4y + 8\)。

令偏导数等于零,得到方程组\(2x 4 = 0\),\(4y + 8 = 0\),解得\(x = 2\),\(y =-2\)。

然后,计算二阶偏导数\(z_{xx} = 2\),\(z_{yy} =4\),\(z_{xy} = 0\)。

由于\(z_{xx} > 0\),且\(z_{xx}z_{yy} z_{xy}^2 = 8 > 0\),所以函数在点\((2, -2) \)处取得极小值,极小值为\( 12\)。

向量代数与空间解析几何这一章节的习题则注重考查学生对向量运算、空间直线和平面方程的理解和掌握。

比如,给定两个向量\(\vec{a} =(1, 2, -1) \)和\(\vec{b} =(3, 1, 2) \),求它们的叉积\(\vec{a} \times \vec{b} \)。

首先,根据叉积的计算公式,得到\(\vec{a} \times \vec{b} =\begin{vmatrix} \vec{i} &\vec{j} &\vec{k} \\ 1 & 2 &-1 \\ 3 & 1 & 2 \end{vmatrix} = 5\vec{i} 5\vec{j} 5\vec{k} =(5, -5, -5) \)。

高等数学同济第七版7版下册习题 全解

高等数学同济第七版7版下册习题 全解

第十章重积分95数,故/, = Jj( x2 + y1)3d(j = 2jj(x2+ y1) 3dcr.fh i)i又由于D3关于;t轴对称,被积函数(/+r2)3关于y是偶函数,故jj(x2+j2)3dcr=2j(x2+y2)3da=2/2.Dy1):从而得/, = 4/2.(2)利用对称性来计算二重积分还有以下两个结论值得注意:如果积分区域关于^轴对称,而被积函数/(x,y)关于y是奇函数,即fix, -y) = -f(x,y) ,PJjf/(x,y)da =0;D如果积分区域D关于:K轴对称,而被积函数/(x,y)关于:c是奇函数,即/(~x,y)=-/(太,y),则=0.D«3.利用二重积分定义证明:(1)jj da=(其中(7为的面积);IJ(2)JJ/c/( X ,y)drr =Aj|y’(A:,y)do■(其中A:为常数);o n(3 ) JJ/( x,y)clcr = JJ/( x,y)drr + jJ/( x ,y) dcr ,其中 /) = /)! U /)2,, A 为两个I)b\lh尤公共内点的WK域.96一、《高等数学》(第七版)下册习题全解jj'ltr = Hm y^/( ,rji) A<r, = lim ^ Ac,=l i m cr= a.A—0n(2)Ji/(x,j)(Ic7=lim^i)1n=A lim y/(^(,i7,)A(7-,=k\\f{x,y)Aa.A-°台•{!(3)因为函数/U,y)在闭区域/)上可积,故不论把£»怎样分割,积分和的极限总是不变的.因此在分割D时,可以使和/)2的公共边界永远是一条分割线.这样fix.y)在A U D2上的积分和就等于&上的积分和加D2上的积分和,记为^/(^, ,17,) A CT, = ^/( ^, , 17,) A CT, + ^/(^, ,17,) A CT,./)(U0,",l):令所有的直径的最大值A-0,上式两端同时取极限,即得Jf(x,y)i\a=jjf(x,y)da+JJ/(x f y)da.p,un}V,n;Sa4.试确定积分区域/),使二重积分][(1-2x2-y2)d«l y达到最大值.I)解由二重积分的性质可知,当积分区域/>包含了所有使被积函数1-2.v2-V2 大于等于零的点,而不包含使被积函数1-2/-y2小于零的点,即当£»是椭圆2/+y2= l所围的平面闭区域时,此二重积分的值达到最大.& 5.根据二重积分的性质,比较下列积分的大小:(1)Ju+y)2山7与J[U,其中积分区域D是由x轴、^轴与直线A+.、=D I)1所围成;(2)J(x+7)2如与■,其中积分区域0是由圆周(.r-2)2+(.v-l)2=t)n2所围成;(3)I'M A;+y)(lor与!"[In(X+y)]2(1(7,其中Z>是三角形闭K域,三顶点分别为l)"(1,0),(1,1),(2,0);(4)Jpn(:r+y)dcr与In(:t+y)]2fW,其中/)=|(.r,.v)|3,0彡、彡1 .i)i)解(1)在积分K域0上,故有(x + j) 3 ^ (x + y) 2.根据二重积分的性质4,可得J(.r + y) \lrx ^ J (.\ + v)0D(2)由于积分区域0位于半平面|(A:,V) | .V+ •、彡1第十章重积分97(3)由于积分区域D位于条形区域1U,y)|1彡1+7彡2丨内,故知区域/)上的点满足0彡InU+y)彡1,从而有[lnU+y)]2彡lnU+.y).因此jj[ln(A:+y)]2(Jo-^+y)d(4)由于积分区域/)位于半平面丨(x,y)| .v+y彡e|内,故在Z)上有ln(x+y)彡1,从而:In(-v+)')]2彡In(:c+)').因此Jj^ 1 n(.r + y) ] 2dcr ^ Jln( x + y) da.i)a36.利用二重积分的性质估计下列积分的值:(1) / = |^7(文+7)心,其中/)= \ (x ,y)1,01|;n(2)/=j^sin^sin^do■,其中/)=j(A:,y)|0^^^TT,0^y^TT1;i)(3)/= J*(A:+y + l)d(7,其中/>= { {x,y) |0^x^l,0^j^2[;it(4)/=J(x2 +4y2 +9)do•,其中D= \{x,y) \x2 +y2 ^ 4|.I)解(1)在积分区域D上,0矣;<:矣1,0英y矣1,从而0矣巧•(*+y)矣2•又£»的面积等于1,因此(2)在积分区域/)上,0矣sin J:矣1,0^sin1,从而0彡sin2A:sin2y彡1,又0的面积等于TT2,W此(3)在积分K域"上有\^x+y +\«4,/)的而积等于2,因此(4)W为在积分K域/>»上有0矣;t2+y2苳4,所以有9^+4r2+9^4( x2+y2)+9矣25.34I)的酣枳等于4TT,W此36TT^[[(x2+4/+9)(Ur^lOO-ir.二重积分的计算法.^1.计算下列二甩积分:98{高等数学> (第七叛)下册习题全第十) ;,其中"是由两坐标轴及直线-- + =听围成的闭区域;b ( 3 J jj( x J + 3x 2 \ + v 3 ) da ,其中 D =( x , v )0 ^ A : ^ 1 .0 ^ v ^ 1;u( 4 ) jjxcas( X + Y j do ■,其中Z >是顶点分别为( 0 .0 j < 77 ,0 )和( 77 , 77 )的三角形闭区域. 4- 2 2 ) dx fh 2) D 可用不等式表示为 2 r 3xy +y 2 ]l~x dx = | (4 + 2x - 2x 2 ) dx 203(+ + 3 > (文3+ 3.2 +、、).+ + "JC di (4l )可用不等式表示为0 ^ V ^ A : ,0 ^ .t ^ 7T .于是|A :COS JC + ) = + ) d I [ sin (.t + y ) ]Q ()^ = J V ( sin 2.v - sin .v ) <1 x x(\( cos .v —丄(.<,s 2.v )卜(1X (-TT r T X cos .v —rus TT.& 2. _出枳分ix:域,斤i 卜r): v 列m 分:第十章重积分99 x2^y^J^,0矣x矣1(图10-2).0«^^/4-y2,-2矣7矣2(图10-3),(1)J^^do■,其中/)是由两条抛物线7=v^,y=*2所围成的闭区域;D(2)jfxy2dcr,其中D是由圆周x2+J2=4及y轴所围成的右半闭区域;I)(3)JV+'dcr,其中/)=I(%,)•)||A;|+|J|^1!;D(4)|"U2+/-x)<lo•,其中D是由直线y:l、y二xh :2*所围成的闭区域.D解(1)0可用不等式表示为于是(2)D可用不等式表示为(3)如阁I()-4,W=/\U"2,其中/>1= \(x,y)\-x-\ ^y^Jc + 1,-1 ^a;^0|,I)2=\(x,y) |*-1+因此100一、《高等数学》(第七版)下册习题全解Ea 3.如果二重积分|/( .r ,y )心办的被积函数/( x ,v )是两个函数/] ( O 及)的乘n积,即/(X ,y) = f\(x) ./“y ),积分区域/) = { (.V , y ) I (1 ^ V ^ />, r ^,证叫这个二重积分等于两个单积分的乘枳,即|*/|U) -/2(r) flatly = [ J/, (.v)(l.v] - [ [/:( > )^v]-证Jj./1 ( x ) • .,2 ( / ) dvd V ~ J [ f J \ ( v ) ■ ./: t ^] l ^x *在上式右端的第一次单枳分f /,(.V )•/2(.V )dv 中,./,(A .)1Jfut 变招:、无关,nn 见为 常数提到积分5外,W 此上式“端笏T第十章重积分101fix/ = j [ dy ^/(*,y )tk.而在这个积分中,由于f/2 (y ) d y 为常数,故又可提到积分号外,从而得到• f 2<,y)^xAy= [| /2(y )dj ] - [ J n /, (x )dx ]证毕.^4.化二重积分/ = Jf(x ,y )daI)为二次积分(分别列出对两个变量先后次序不同的两个二次积分),其中积分区域£>是:(1)由直线及抛物线y 2 =4x 所围成的闭区域;(2)由x 轴及半圆周/ +y 2 =r 2(y 英0)所围成的闭区域;(3)由直线y =x ,;c = 2及双曲线:K = ^-(*>0)所围成的闭区域;X(4)环形闭区域 IU ,y ) | 1+y 2^4(.解(1)直线y =x 及抛物线y 2 =4;c 的交点为(0,0)和(4,4)(图10-6).于是f(x,y)dy,(2)将/)用不等式表示'fyO^y^r 2 -x 2,- r ^ W /•,于是可将/化为如下的先对y 、后对*的二次积分:r/ = J (1文Jf(x ,y)(\y ;如将0叫不等式表示为~Vr 2 -y 2^x^Vr 2 - y 2 ,0各/•,则可将/化为如卜的先对*、后对y 的二次枳分:102一、《高等数学》(第七版)下册习题全解dr x,y) dx.(3)如图 10-7.:条边界曲线两两相交,先求得3个交点为(1 ,1 ),2,y 和(2,2).于是dy (i_/(^,y)+ tlj /( x ,y)dx.dx • \/4J\x y y)dy + d.vl(1%/T /(A :,y)clr +d.vl■ yA -x 2/(.r ,v )d > -f/(.v V v ) dv ./(.v ,v )d.v -f.\/4-、/( \ , > ) d.v -f厂、/4 -、•'•I-v^ W"/( v , y) (l .\.| dxj[f(x,y)dy.注本题说明,将二重积分化为二次积分时,需注意根据积分区域的边界曲线的情况,选取恰当的积分次序.本题中的积分区域/)的上、下边界曲线均分别由—个方程给出,而左边界曲线却分为两段,由两个不同的方程给出,在这种情况下采取先对y 、后对^的积分次序比较有利,这样只需做一个二次积分,而如果采用相反的枳 分次序则需计算两个二次积分.需要指出,选择积分次序时,还需考虑被积函数/U , y )的特点.具体例子n ]'见教材下册第144页上的例2.(4)将D 按图10 - 8( a )和图10 - 8( 1>)的两种不同方式則分为4块,分別得o 第十章重积分103x ,r)d.t.(5) (lx\ f{x,y)Ay\广2 f yix -x2(4)|叫2f{x,y)dy-,fix /-sin x(6)I Ax\J(x,y)Ay.JO J - siny图10-8,5.设/U,Y)在D上连续,其中/)是由直线;==所围成的闭区域,证明dx| f(x,y)Ay证等式两端的二次积分均等于二重积分J/U,y)d o•,因而它们相等.I)^6.改换下列二次积分的积分次序:(2) J) dj|:f(x,y)dx;解(丨)所给二次积分等于二重积分J[/U,;K)(^,其中o=丨h,y)1°^^^r-"0 ^ j ^ I(. /> n|■改写为 | Uj) | * 矣y矣 1,0 ^^ I | (罔 10 - 9),于是原式=丄<ixj/(x,y)dy.(2)所给一.次枳分等于二'Ti积分|/U,y)山,.K:中/)=I|.y2^^<2y,0^21. M I) njm为{u’y) I 音矣 j ^ 7^,0 ^ x 在4)( 1冬1 1(> - I0),W此原式=J,i\xjy/(x,y)i\y.104一、《高等数学>(第七版)下册习题全解-y2^.V ^1$、飞V彡1(3)所给二次积分等于二重积分.其中D=:(.v.v)|-V 1UX^J1-y2,0彡>•彡1;•又D可表示为:(JC,)*)丨0彡y 彡V 1- .r2,-1=(图10-11),因此f 1 f V1 -X~原式=J^dxj/(x,v)dy.(4)所给二次积分等于二重积分其中D=:(.v.v)'2-hs/lx -x1%\彡.r彡2:.又D可表示为:(A:,V)|2-1彡.t•彡1+Y1—v2,0:(图10-12),故原式=丄d)j f(x %y)dx.(5)所给二次积分等于二重积分]|/(.10)(1^,)1:中/)=1(.v.v)|0^v^I)x彡e|•又/)可表示为|(A:,>•)|e、彡A•彡e,0彡、彡1i(|劄10-1,故原式=L(I.、|,./X .、,.、)(l.v.(6)m1()-14,将积分|><:域/)丧示为/),U/)2,其中A),=j U,、)|arcsin>^o 第十章重积分105/(x,y)dx.y广 1r ir - arcsin >原式=I dyf(x y y)c\xJO Jarcsin )T T - arcsin y ,0彡 y 彡 1 | 1 ,D 2 = |(.r, y)一 2arcsin, 一1彡)'彡0|.于是rt-x + xydrAy~d\2x c\)''i x E | o»•Y = s i n A 的反闲数足A = i i r r s »M y- -1 x足ih y - H in x = sin ( T T - x) "n!J T T - x ^ arcKiny,从ifii 得反闲数 ^(子•中,TTT T - iin-Hiny.^7.设平面薄片所占的闭区域D 由直线;t = 2,y = 和;r 轴所围成,它的面密度/x (.t ,v ) = x 2 +y 2,求该薄片的质量.解 D 如图10-15所示.所求薄片的质M = jJ/Lt( x 9y) dcr = ^ dyj ( x 2 + y 2 ) dxr[+(2”)3+2,12| 冬| 10 - 158. i |灯|l |四个平而A : = 0,y = 0,;t = I ,v = I 所闲成的柱休被平面z = 0及2.r +3y+z6藏得的立休的体积.V - (I 6 - ^ x 2 + y 2 ) dx(\y6 ( 1 - x ) - x 2 +——f 1\1_6"*10-17m 10 - 18解江力一 E J .它??芪是;c 0:. S 二苎泛7:省•。

高等数学第七版下册教学大纲

高等数学第七版下册教学大纲

高等数学第七版下册教学大纲一、课程简介本课程为高等数学下册,主要内容为多元函数微积分学,包括多元函数的极限、连续、偏导数及其应用、多元函数的微分、多元函数的泰勒展开公式等。

通过学习本课程,学生将会深入理解高维空间中的函数、方向导数、梯度、散度、旋度等概念,并学习应用于物理、工程等领域的典型问题。

二、教学目标本课程的教学目标是:1.掌握多元函数的极限、连续、偏导数及其应用;2.理解多元函数的微分、泰勒展开公式;3.能够应用多元函数微积分学知识解决物理、工程等领域的相关实际问题。

三、教学内容3.1 多元函数的极限、连续、偏导数及其应用• 3.1.1 二元函数的极限、连续、偏导数及其应用• 3.1.2 三元函数的极限、连续、偏导数及其应用• 3.1.3 多元函数的极限、连续、偏导数及其应用3.2 多元函数的微分、泰勒展开公式• 3.2.1 二元函数的微分、全微分• 3.2.2 三元函数的微分、全微分• 3.2.3 多元函数的微分、全微分• 3.2.4 多元函数的泰勒展开公式3.3 多元函数微积分学的应用• 3.3.1 高维空间中的方向导数• 3.3.2 高维空间中的梯度、散度、旋度• 3.3.3 多元函数的最值与最优化四、教学方法本课程采用讲授、案例分析、课堂思考与演示、互动式探究等教学方法。

其中,案例分析将重点介绍一些典型的物理、工程等建模问题,丰富学生的数学应用能力;课堂思考与演示将通过小组或单独讨论的方式,促进学生理解、运用多元函数微积分学知识的能力。

同时,互动式探究也将为学生提供更多自主学习的机会。

五、评测方式评测方式采用平时成绩与期末考试成绩结合的方式,其中平时成绩占总成绩的30%、期末考试成绩占总成绩的70%。

其中,平时成绩包括参与课堂讨论及小组报告等。

六、教材及参考书目6.1 教材高等数学第七版下册,同济大学出版社6.2 参考书目1.微积分学,J. Stewart,第七版,机械工业出版社2.多元函数微积分学及其应用,R. Adams,第七版,机械工业出版社七、教学进度教学进度根据具体学期情况而定。

高等数学(同济第七版下)课后习题及解答

高等数学(同济第七版下)课后习题及解答

高等数学(同济第七版下)课后习题及解答哎呀,这道题真是让人头疼啊!不过,别担心,我这个“数学大侠”来帮你解决这个问题。

我们来看一下题目的要求:求解一元二次方程的根。

这个问题可不简单,但是只要你掌握了一些基本的方法,就能轻松搞定它。

我们要明确一元二次方程的基本形式:ax^2 + bx + c = 0。

其中,a、b、c分别是二次项系数、一次项系数和常数项。

接下来,我们要分情况讨论方程的根的情况。

1. 当Δ > 0时,方程有两个不相等的实根;2. 当Δ = 0时,方程有两个相等的实根。

3. 当Δ < 0时,方程无实根。

好了,现在我们来看一下具体的解答过程吧!我们要计算判别式Δ = b^2 4ac。

这个值可以帮助我们判断方程的根的情况。

接下来,我们根据Δ的值来进行分类讨论。

1. 如果Δ > 0,那么方程有两个不相等的实根。

这时候,我们可以使用求根公式:x1 = (-b + √Δ) / 2a 和 x2 = (-b √Δ) / 2a。

这两个公式可以帮助我们求出方程的两个不相等的实根。

2. 如果Δ = 0,那么方程有两个相等的实根。

这时候,我们只需要将b除以2a,就可以得到方程的一个实根。

3. 如果Δ < 0,那么方程无实根。

这时候,我们可以告诉大家一个好消息:这个方程没有实根!但是,如果你非要让它有实根的话,可以尝试对方程进行变换,比如把它变成关于某个变量的一元二次方程,然后再求解。

这种方法并不是很常用,因为有时候对方程进行变换可能会使得方程变得更复杂。

好了,现在我们已经知道了如何求解一元二次方程的根。

下面我来给大家讲一个有趣的故事吧!从前,有一个叫小明的学生,他非常喜欢学习数学。

有一天,老师给他出了一道很难的数学题,要求他求解一元二次方程的根。

小明看了看题目,觉得有点难度,但是他并没有放弃。

他认真思考了一下,然后开始运用刚才学到的方法来求解这道题。

经过一番努力,小明终于把这道题给解决了!老师看到小明做得非常好,非常高兴地表扬了他。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

同济高等数学第七版下册
1. 引言
《同济高等数学第七版下册》是同济大学数学系编写的一本高等数学教材。

本教材是数学专业本科生的必修课程,主要涵盖了微分方程、多元函数积分学、曲线积分与曲面积分等内容。

本文将对该教材进行全面的介绍和评价。

2. 教材概述
《同济高等数学第七版下册》共分为十个章节,分别是:
1.微分方程初步
2.二阶线性常微分方程
3.欧拉方程和二阶齐次线性微分方程
4.变量分离方程和一阶线性微分方程
5.常系数齐次线性微分方程
6.变系数线性微分方程
7.高阶线性微分方程
8.多元函数微分学初步
9.多元函数的偏导数与全微分
10.曲线积分与曲面积分
每个章节都有详细的讲解和例题,并配有练习题供读者练习。

3. 教材特点
《同济高等数学第七版下册》的特点主要体现在以下几个方面:
3.1. 内容全面
教材内容全面涵盖了微分方程、多元函数积分学、曲线积分与曲面积分等重要的数学知识点。

每个章节的讲解都循序渐进,结构清晰,易于理解。

3.2. 理论与实践相结合
教材不仅讲解了理论知识,还通过大量的例题和习题来巩固和应用所学知识。

这种理论与实践相结合的方式有助于学生更好地理解难点和掌握解题技巧。

3.3. 题目分类明确
教材中的习题按照题型和难度进行分类,有助于学生选择适合自己水平的习题进行巩固训练。

每个章节还配有习题的解答,方便学生自我检验和纠正。

4. 教材优势
4.1. 知识点详尽
在每个章节的讲解中,教材都对重要的知识点进行了详尽的讲解,包括基本概念、性质、定理和定律等。

学生通过学习教材,可以全面了解和掌握数学中的基本概念和知识。

4.2. 解题方法详细
教材中的例题和习题都给出了详细的解题方法和步骤,对于学生来说非常有帮助。

通过学习教材,学生可以了解到不同类型题目的解题思路和技巧。

4.3. 知识扩展
教材还提供了一些扩展知识和拓展阅读的内容,进一步丰富了教材的知识面。

这对于对数学有浓厚兴趣的学生来说,可以提供更多的学习资源和学习机会。

5. 教材不足
虽然《同济高等数学第七版下册》在内容和讲解方面都有一定的优势,但也存在一些不足之处:
5.1. 难度适应问题
教材的难度适应的问题不够良好,有些章节的内容对于一些学生来说可能较难理解,而有些章节的内容又相对简单。

希望在后续的版本中能够更好地解决这个问题,使得教材难度更加平衡。

5.2. 解题步骤简化
教材中的一些题目的解题步骤过于简化,给出的解法可能不够详细和全面。

希望在后续版本中能够更加注重解题步骤的详细讲解,使学生能够更好地理解和掌握解题思路。

6. 总结
《同济高等数学第七版下册》是一本内容全面、结构清晰、理论与实践相结合的高等数学教材。

它涵盖了微分方程、多元函数积分学、曲线积分与曲面积分等重要内容。

教材中的讲解详细且配有大量的例题和习题,有助于学生理解和应用所学知识。

然而,教材在难度适应和解题步骤方面还有一些不足之处,希望在后续版本中能够得到改进。

总体来说,《同济高等数学第七版下册》是一本值得推荐的高等数学教材。

相关文档
最新文档