分段函数最值问题及解题技巧
分段函数知识点及例题解析

分段函数常见题型例析所谓“分段函数”是指在定义域的不同部分,有不同对应关系的函数,因此分段函数不是几个函数而是一个函数,它在解题中有着广泛的应用,不少同学对此认识不深,解题时常出现错误.现就分段函数的常见题型例析如下:1.求分段函数的定义域、值域例1.求函数)(x f =⎪⎩⎪⎨⎧->-≤+)2(,2)2(,42x x x x x 的值域.解:当x ≤-2时,4)2(422-+=+=x x x y , ∴ y ≥-4.当x >-2时,y =2x , ∴y >22-=-1. ∴ 函数)(x f 的值域是{y ∣y ≥-4,或y >-1}={y ∣y ≥-4}. 评注:分段函数的定义域是各段函数解析式中自变量取值集合的并集;分段函数的值域是各段函数值集合的并集.2.作分段函数的图象例2 已知函数2(2)()3[22)3[2)x f x x x x -∈-∞-⎧⎪=+∈-⎨⎪∈+∞⎩,,,,,,,画函数(f x 解:函数图象如图1所示.评注:分段函数有几段,其图象就由几条曲线组成,作图的关键是根据定义域的不同,分别由表达式做出其图象.作图时,一要注意每段自变量的取值范围;二要注意间断函数的图象中每段的端点的虚实. 3.求分段函数的函数值例3.已知)(x f =⎪⎩⎪⎨⎧<=>+)0.(0)0(,)0(,1x x x x π 求(((3)))f f f -的值.解:∵ -3<0 ∴ f (-3)=0,∴ f (f (-3))=f (0)=π又π>0 ∴(((3)))f f f -=f (π)=π+1. 评注:求分段函数的函数值时,首先应确定自变量在定义域中所在的范围,然后按相应的对应关系求值.4.求分段函数的最值x 图1例4.已知函数)(x f =22(0)(0)x x x ⎧⎨<⎩,≥, 求出这个函数的最值.解:由于本分段函数有两段,所以这个函数的图象由两部分组成,其中一部分是一段抛物线,另一部分是一条射线,如图2所示.因此易得,函数最小值为0,没有最大值.5.表达式问题例5. 如图3,动点P 从边长为1的正方形ABCD 的顶点A 出发顺次经过B C D ,,再回到A ,设x 表示P 点的行程,y 表示PA 的长度,求y 关于x 的表达式.解:如图3所示,当P 点在AB 上运动时,PA x =;当P 点在BC 上运动时,由PBA △Rt ,求得PA =;当P 点在CD 上运动时,由PDA Rt △求出PA =;当P 点在DA 上运动时,4PA x =-,所以y 关于x的表达式是01122343 4.x x x y x x x ⎧<=<-<⎩, ≤≤,≤, ≤,, ≤ 在此基础上,强调“分段”的意义,指出分段函数的各段合并成一个整体,必须用符号“{”来表示,以纠正同学们的错误认识. A BP 图3。
分段函数的几种常见题型和解法

函数的概念和性质考点 分段函数分段函数是指自变量在两个或两个以上不同的围, 有不同的对应法则的函数, 它是一个函数, 却又常常被学生误认为是几个函数; 它的定义域是各段函数定义域的并集, 其值域也是各段函数值域的并集. 由于它在理解和掌握函数的定义、函数的性质等知识的程度的考察上有较好的作用, 时常在高考试题中“闪亮”登场, 本文就几种具体的题型做了一些思考, 解析如下:1.求分段函数的定义域和值域例1.求函数1222[1,0];()(0,2);3[2,);x x f x xx x +∈-⎧⎪=-∈⎨⎪∈+∞⎩的定义域、值域.2.求分段函数的函数值例2.已知函数2|1|2,(||1)()1,(||1)1x x f x x x --≤⎧⎪=⎨>⎪+⎩求12[()]f f .3.求分段函数的最值例3.求函数43(0)()3(01)5(1)x x f x x x x x +≤⎧⎪=+<≤⎨⎪-+>⎩的最大值.4.求分段函数的解析式例4.在同一平面直角坐标系中, 函数()y f x =和()y g x =的图象关于直线y x =对称, 现将()y g x =的图象沿x 轴向左平移2个单位, 再沿y 轴向上平移1个单位, 所得的图象是由两条线段组成的折线(如图所示), 则函数()f x 的表达式为( )222(10).()2(02)xx x A f x x +-≤≤⎧=⎨+<≤⎩ 222(10).()2(02)xx x B f x x --≤≤⎧=⎨-<≤⎩ 222(12).()1(24)x x x C f x x -≤≤⎧=⎨+<≤⎩226(12).()3(24)x x x D f x x -≤≤⎧=⎨-<≤⎩5.作分段函数的图像yx例5.函数|ln ||1|x y ex =--的图像大致是( )ACD6.求分段函数得反函数例6已知()y f x =是定义在R 上的奇函数, 且当0x >时, ()31xf x =-, 设()f x 的反函数为()y g x =, 求()g x 的表达式.7.判断分段函数的奇偶性例7.判断函数22(1)(0)()(1)(0)x x x f x x x x ⎧-≥⎪=⎨-+<⎪⎩的奇偶性.8.判断分段函数的单调性例8.判断函数32(0)()(0)x x x f x xx ⎧+≥⎪=⎨-<⎪⎩的单调性.例9.写出函数()|12||2|f x x x =++-的单调减区间.9.解分段函数的方程例10.设函数812(,1]()log (1,)x x f x x x -⎧∈-∞=⎨∈+∞⎩, 则满足方程1()4f x =的x 的值为10.解分段函数的不等式例11.设函数1221(0)()(0)x x f x x x -⎧-≤⎪=⎨⎪>⎩, 若0()1f x >, 则0x 得取值围是( ).(1,1)A -.(1,)B -+∞.(,2)(0,)C -∞-⋃+∞.(,1)(1,)D -∞-⋃+∞例12.设函数2(1)(1)()4(1)x x f x x ⎧+<⎪=⎨-≥⎪⎩, 则使得()1f x ≥的自变量x 的取值围为( )A .(,2][0,10]-∞-⋃ B. (,2][0,1]-∞-⋃ C. (,2][1,10]-∞-⋃ D. [2,0][1,10]-⋃反馈练习1.(2013新课标全国Ⅰ,5分)已知函数f (x )=⎩⎪⎨⎪⎧-x 2+2x ,x ≤0,ln x +1,x >0.若|f (x )|≥ax ,则a 的取值围是( )A .(-∞,0]B.(-∞,1] C .[-2,1] D .[-2,0]2.(2013,4分)已知函数f (x )=⎩⎪⎨⎪⎧2x 3,x <0,-tan x ,0≤x <π2,则f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫π4=________.3.(2013,5分)函数f (x )=⎩⎪⎨⎪⎧log 12x , x ≥1,2x , x <1的值域为________.4.(2012,5分)若函数f (x )=⎩⎪⎨⎪⎧x 2+1,x ≤1,lg x ,x >1,则f (f (10))=( )A .lg 101B .2C .1D .05.(2011,5分)根据统计,一名工人组装第x 件某产品所用的时间(单位:分钟)为f (x )=⎩⎪⎨⎪⎧cx,x <A ,cA ,x ≥A(A ,c 为常数).已知工人组装第4件产品用时30分钟,组装第A 件产品用时15分钟,那么c 和A 的值分别是( )A .75,25B .75,16C .60,25D .60,166.(2012,5分)设f (x )是定义在R 上且周期为2的函数,在区间[-1,1]上,f (x )=⎩⎪⎨⎪⎧ax +1,-1≤x <0,bx +2x +1,0≤x ≤1,其中a ,b ∈R .若f (12)=f (32),则a +3b 的值为________.7.(2011,5分)已知实数a ≠0,函数f (x )=⎩⎪⎨⎪⎧2x +a ,x <1,-x -2a ,x ≥1.若f (1-a )=f (1+a ),则a 的值为________.函数的概念和性质考点一 分段函数分段函数是指自变量在两个或两个以上不同的围, 有不同的对应法则的函数, 它是一个函数, 却又常常被学生误认为是几个函数; 它的定义域是各段函数定义域的并集, 其值域也是各段函数值域的并集. 由于它在理解和掌握函数的定义、函数的性质等知识的程度的考察上有较好的作用, 时常在高考试题中“闪亮”登场, 本文就几种具体的题型做了一些思考, 解析如下:1.求分段函数的定义域和值域例1.求函数1222[1,0];()(0,2);3[2,);x x f x xx x +∈-⎧⎪=-∈⎨⎪∈+∞⎩的定义域、值域. 【解析】作图, 利用“数形结合”易知()f x 的定义域为[1,)-+∞, 值域为(1,3]-.2.求分段函数的函数值例2.已知函数2|1|2,(||1)()1,(||1)1x x f x x x--≤⎧⎪=⎨>⎪+⎩求12[()]f f .【解析】因为311222()|1|2f =--=-, 所以312223214[()]()1()13f f f =-==+-.3.求分段函数的最值例3.求函数43(0)()3(01)5(1)x x f x x x x x +≤⎧⎪=+<≤⎨⎪-+>⎩的最大值.【解析】当0x ≤时, max ()(0)3f x f ==, 当01x <≤时, max ()(1)4f x f ==,当1x >时, 5154x -+<-+=, 综上有max ()4f x =.4.求分段函数的解析式例4.在同一平面直角坐标系中, 函数()y f x =和()y g x =的图象关于直线y x =对称, 现将()y g x =的图象沿x 轴向左平移2个单位, 再沿y 轴向上平移1个单位, 所得的图象是由两条线段组成的折线(如图所示), 则函数()f x 的表达式为( )222(10).()2(02)xx x A f x x +-≤≤⎧=⎨+<≤⎩ 222(10).()2(02)xx x B f x x --≤≤⎧=⎨-<≤⎩ 222(12).()1(24)xx x C f x x -≤≤⎧=⎨+<≤⎩ 226(12).()3(24)xx x D f x x -≤≤⎧=⎨-<≤⎩ 【解析】当[2,0]x ∈-时, 121y x =+, 将其图象沿x 轴向右平移2个单位, 再沿y 轴向下平移1个单位, 得解析式为1122(2)111y x x =-+-=-, 所以()22([1,0])f x x x =+∈-, 当[0,1]x ∈时, 21y x =+, 将其图象沿x 轴向右平移2个单位, 再沿y 轴向下平移1个单位, 得解析式2(2)1124y x x =-+-=-, 所以12()2([0,2])f x x x =+∈, 综上可得222(10)()2(02)x x x f x x +-≤≤⎧=⎨+<≤⎩, 故选A .5.作分段函数的图像 例5.函数|ln ||1|x y ex =--的图像大致是( )y xACD解析:在定义围讨论,当0<x<1时,11y x x=+-;当x>1时1y =,故选D 6.求分段函数得反函数例6已知()y f x =是定义在R 上的奇函数, 且当0x >时, ()31xf x =-, 设()f x 的反函数为()y g x =, 求()g x 的表达式.【解析】设0x <, 则0x ->, 所以()31xf x --=-, 又因为()f x 是定义在R 上的奇函数,所以()()f x f x -=-, 且(0)0f =, 所以()13xf x -=-, 因此31(0)()0(0)13(0)x x x f x x x -⎧->⎪==⎨⎪-<⎩, 从而可得33log (1)(0)()0(0)log (1)(0)x x g x x x x +>⎧⎪==⎨⎪--<⎩.7.判断分段函数的奇偶性例7.判断函数22(1)(0)()(1)(0)x x x f x x x x ⎧-≥⎪=⎨-+<⎪⎩的奇偶性.【解析】当0x >时, 0x -<, 22()()(1)(1)()f x x x x x f x -=---+=-=, 当0x =时,(0)(0)0f f -==, 当0x <, 0x ->, 22()()(1)(1)()f x x x x x f x -=---=-+=因此, 对于任意x R ∈都有()()f x f x -=, 所以()f x 为偶函数.8.判断分段函数的单调性例8.判断函数32(0)()(0)x x x f x xx ⎧+≥⎪=⎨-<⎪⎩的单调性.【解析】显然()f x 连续. 当0x ≥时, '2()311f x x =+≥恒成立, 所以()f x 是单调递增函数, 当0x <时, '()20f x x =->恒成立, ()f x 也是单调递增函数, 所以()f x 在R 上是单调递增函数; 或画图易知()f x 在R 上是单调递增函数.例9.写出函数()|12||2|f x x x =++-的单调减区间.【解析】121231()()3(2)31(2)x x f x x x x x -+≤-⎧⎪=+-<<⎨⎪-≥⎩, 画图易知单调减区间为12(,]-∞-.9.解分段函数的方程例10.(01年)设函数812(,1]()log (1,)x x f x x x -⎧∈-∞=⎨∈+∞⎩, 则满足方程1()4f x =的x 的值为【解析】 若142x-=, 则222x--=, 得2(,1]x =∉-∞, 所以2x =(舍去), 若1814log x =,则1481x =, 解得3(1,)x =∈+∞, 所以3x =即为所求.10.解分段函数的不等式例11.设函数1221(0)()(0)x x f x xx -⎧-≤⎪=⎨⎪>⎩, 若0()1f x >, 则0x 得取值围是( )x.(1,1)A -.(1,)B -+∞ .(,2)(0,)C -∞-⋃+∞ .(,1)(1,)D -∞-⋃+∞【解析1】首先画出()y f x =和1y =的大致图像, 易知0()1f x >时, 所对应的0x 的取值围是(,1)(1,)-∞-⋃+∞.【解析2】因为0()1f x >, 当00x ≤时, 0211x -->, 解得01x <-, 当00x >时,1201x >, 解得01x >, 综上0x 的取值围是(,1)(1,)-∞-⋃+∞. 故选D.例12.设函数2(1)(1)()41(1)x x f x x x ⎧+<⎪=⎨--≥⎪⎩, 则使得()1f x ≥的自变量x 的取值围为( )A .(,2][0,10]-∞-⋃ B. (,2][0,1]-∞-⋃ C. (,2][1,10]-∞-⋃ D. [2,0][1,10]-⋃ 【解析】当1x <时, 2()1(1)120f x x x x ≥⇔+≥⇔≤-≥或, 所以21x x ≤-≤<或0, 当1x ≥时, ()14111310f x x x x ≥⇔--≥⇔-≤⇔≤, 所以110x ≤≤, 综上所述,2x ≤-或010x ≤≤, 故选A 项.【点评:】以上分段函数性质的考查中, 不难得到一种解题的重要途径, 若能画出其大致图像, 定义域、值域、最值、单调性、奇偶性等问题就会迎刃而解, 方程、不等式等可用数形结合思想、等价转化思想、分类讨论思想及函数思想来解, 使问题得到大大简化, 效果明显.反馈练习1.(2013新课标全国Ⅰ,5分)已知函数f (x )=⎩⎪⎨⎪⎧-x 2+2x ,x ≤0,ln x +1,x >0.若|f (x )|≥ax ,则xy1-11a 的取值围是( )A .(-∞,0]B.(-∞,1]C .[-2,1]D .[-2,0]解析:本题考查一次函数、二次函数、对数函数、分段函数及由不等式恒成立求参数的取值围问题,意在考查考生的转化能力和利用数形结合思想解答问题的能力.当x ≤0时,f (x )=-x 2+2x =-(x -1)2+1≤0,所以|f (x )|≥ax 化简为x 2-2x ≥ax ,即x 2≥(a +2)x ,因为x ≤0,所以a +2≥x 恒成立,所以a ≥-2;当x >0时,f (x )=ln(x +1)>0,所以|f (x )|≥ax 化简为ln(x +1)>ax 恒成立,由函数图象可知a ≤0,综上,当-2≤a ≤0时,不等式|f (x )|≥ax 恒成立,选择D.答案:D2.(2013,4分)已知函数f (x )=⎩⎪⎨⎪⎧ 2x 3,x <0,-tan x ,0≤x <π2,则f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫π4=________. 解析:本题主要考查分段函数的求值,意在考查考生的应用能力和运算求解能力.∵f ⎝ ⎛⎭⎪⎫π4=-tan π4=-1,∴f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫π4=f (-1)=2×(-1)3=-2. 答案:-2 3.(2013,5分)函数f (x )=⎩⎪⎨⎪⎧ log 12x , x ≥1,2x , x <1的值域为________.解析:本题主要考查分段函数的概念、性质以及指数函数、对数函数的性质,意在考查考生对函数定义域、值域掌握的熟练程度.分段函数是一个函数,其定义域是各段函数定义域的并集,值域是各段函数值域的并集.当x ≥1时,log 12x ≤0,当x <1时,0<2x<2,故值域为(0,2)∪(-∞,0]=(-∞,2).答案:(-∞,2)4.(2012,5分)若函数f (x )=⎩⎪⎨⎪⎧ x 2+1,x ≤1,lg x ,x >1,则f (f (10))=( )A .lg 101B .2C .1D .0解析:f (10)=lg 10=1,故f (f (10))=f (1)=12+1=2.答案:B5.(2011,5分)根据统计,一名工人组装第x 件某产品所用的时间(单位:分钟)为f (x )=⎩⎪⎨⎪⎧ c x ,x <A ,c A ,x ≥A (A ,c 为常数).已知工人组装第4件产品用时30分钟,组装第A 件产品用时15分钟,那么c 和A 的值分别是( )A .75,25B .75,16C .60,25D .60,16 解析:因为组装第A 件产品用时15分钟,所以c A =15(1),所以必有4<A ,且c 4=c 2=30(2),联立(1)(2)解得c =60,A =16.答案:D6.(2012,5分)设f (x )是定义在R 上且周期为2的函数,在区间[-1,1]上,f (x )=⎩⎪⎨⎪⎧ ax +1,-1≤x <0,bx +2x +1,0≤x ≤1,其中a ,b ∈R .若f (12)=f (32),则a +3b 的值为________. 解析:因为f (x )是定义在R 上且周期为2的函数,所以f (32)=f (-12),且f (-1)=f (1),故f (12)=f (-12),从而12b +212+1=-12a +1,3a +2b =-2. ① 由f (-1)=f (1),得-a +1=b +22,故b =-2a . ②由①②得a =2,b =-4,从而a +3b =-10.答案:-107.(2011,5分)已知实数a ≠0,函数f (x )=⎩⎪⎨⎪⎧ 2x +a ,x <1,-x -2a ,x ≥1.若f (1-a )=f (1+a ),则a 的值为________.解析:①当1-a <1,即a >0时,此时a +1>1,由f (1-a )=f (1+a ),得2(1-a )+a =-(1+a )-2a ,计算得a =-32(舍去);②当1-a >1,即a <0时,此时a +1<1,由f (1-a )=f (1+a ),得2(1+a )+a =-(1-a )-2a ,计算得a =-34,符合题意,所以综上所述,a =-34. 答案:-34。
(完整word版)分段函数的几种常见题型及解法

分段函数的几种常见题型及解法分段函数是指自变量在两个或两个以上不同的范围内, 有不同的对应法则的函数, 它是一个函数, 却又常常被学生误认为是几个函数; 它的定义域是各段函数定义域的并集, 其值域也是各段函数值域的并集. 由于它在理解和掌握函数的定义、函数的性质等知识的程度的考察上有较好的作用, 时常在高考试题中“闪亮”登场, 笔者就几种具体的题型做了一些思考, 解析如下:1.求分段函数的定义域和值域例1.求函数1222[1,0];()(0,2);3[2,);x x f x xx x +∈-⎧⎪=-∈⎨⎪∈+∞⎩的定义域、值域.【解析】作图, 利用“数形结合”易知()f x 的定义域为[1,)-+∞, 值域为(1,3]-.2.求分段函数的函数值例2.(05年浙江理)已知函数2|1|2,(||1)()1,(||1)1x x f x x x --≤⎧⎪=⎨>⎪+⎩求12[()]f f .【解析】因为311222()|1|2f =--=-, 所以312223214[()]()1()13f f f =-==+-.3.求分段函数的最值例3.求函数43(0)()3(01)5(1)x x f x x x x x +≤⎧⎪=+<≤⎨⎪-+>⎩的最大值.【解析】当0x ≤时, max ()(0)3f x f ==, 当01x <≤时, max ()(1)4f x f ==, 当1x >时, 5154x -+<-+=, 综上有max ()4f x =.4.求分段函数的解析式例4.在同一平面直角坐标系中, 函数()y f x =和()y g x =的图象关于直线y x =对称, 现将()y g x =的图象沿x 轴向左平移2个单位, 再沿y 轴向上平移1个单位, 所得的图象是由两条线段组成的折线(如图所示), 则函数()f x 的表达式为( )222(10).()2(02)xx x A f x x +-≤≤⎧=⎨+<≤⎩ 222(10).()2(02)xx x B f x x --≤≤⎧=⎨-<≤⎩ 222(12).()1(24)xx x C f x x -≤≤⎧=⎨+<≤⎩ 226(12).()3(24)xx x D f x x -≤≤⎧=⎨-<≤⎩ 【解析】当[2,0]x ∈-时, 121y x =+, 将其图象沿x 轴向右平移2个单位, 再沿y 轴向下平移1个单位, 得解析式为1122(2)111y x x =-+-=-, 所以()22([1,0])f x x x =+∈-, 当[0,1]x ∈时, 21y x =+, 将其图象沿x 轴向右平移2个单位, 再沿y 轴向下平移1个单位, 得解析式2(2)1124y x x =-+-=-, 所以12()2([0,2])f x x x =+∈, 综上可得222(10)()2(02)x x x f x x +-≤≤⎧=⎨+<≤⎩, 故选A .5.作分段函数的图像 例5.函数|ln ||1|x y ex =--的图像大致是( )y xACD6.求分段函数得反函数例6已知()y f x =是定义在R 上的奇函数, 且当0x >时, ()31xf x =-, 设()f x 得反函数为()y g x =, 求()g x 的表达式.【解析】设0x <, 则0x ->, 所以()31xf x --=-, 又因为()f x 是定义在R 上的奇函数,所以()()f x f x -=-, 且(0)0f =, 所以()13xf x -=-, 因此31(0)()0(0)13(0)x x x f x x x -⎧->⎪==⎨⎪-<⎩, 从而可得33log (1)(0)()0(0)log (1)(0)x x g x x x x +>⎧⎪==⎨⎪--<⎩.7.判断分段函数的奇偶性例7.判断函数22(1)(0)()(1)(0)x x x f x x x x ⎧-≥⎪=⎨-+<⎪⎩的奇偶性.【解析】当0x >时, 0x -<, 22()()(1)(1)()f x x x x x f x -=---+=-=, 当0x =时,(0)(0)0f f -==, 当0x <, 0x ->, 22()()(1)(1)()f x x x x x f x -=---=-+=因此, 对于任意x R ∈都有()()f x f x -=, 所以()f x 为偶函数.8.判断分段函数的单调性例8.判断函数32(0)()(0)x x x f x xx ⎧+≥⎪=⎨-<⎪⎩的单调性.【解析】显然()f x 连续. 当0x ≥时, '2()311f x x =+≥恒成立, 所以()f x 是单调递增函数, 当0x <时, '()20f x x =->恒成立, ()f x 也是单调递增函数, 所以()f x 在R 上是单调递增函数; 或画图易知()f x 在R 上是单调递增函数.例9.写出函数()|12||2|f x x x =++-的单调减区间.【解析】121231()()3(2)31(2)x x f x x x x x -+≤-⎧⎪=+-<<⎨⎪-≥⎩, 画图易知单调减区间为12(,]-∞-.9.解分段函数的方程例10.(01年上海)设函数812(,1]()log (1,)x x f x x x -⎧∈-∞=⎨∈+∞⎩, 则满足方程1()4f x =的x 的值为【解析】 若142x-=, 则222x--=, 得2(,1]x =∉-∞, 所以2x =(舍去), 若1814log x =,则1481x =, 解得3(1,)x =∈+∞, 所以3x =即为所求.10.解分段函数的不等式例11.设函数1221(0)()(0)x x f x xx -⎧-≤⎪=⎨⎪>⎩,若xy0()1f x >, 则0x 得取值范围是( ).(1,1)A - .(1,)B -+∞ .(,2)(0,)C -∞-⋃+∞ .(,1)(1,)D -∞-⋃+∞【解析1】首先画出()y f x =和1y =的大致图像, 易知0()1f x >时, 所对应的0x 的取值范围是(,1)(1,)-∞-⋃+∞.【解析2】因为0()1f x >, 当00x ≤时, 0211x-->, 解得01x <-, 当00x >时, 1201x >, 解得01x >, 综上0x 的取值范围是(,1)(1,)-∞-⋃+∞. 故选D.例12.设函数2(1)(1)()4(1)x x f x x ⎧+<⎪=⎨-≥⎪⎩, 则使得()1f x ≥的自变量x 的取值范围为( )A .(,2][0,10]-∞-⋃ B. (,2][0,1]-∞-⋃ C. (,2][1,10]-∞-⋃ D. [2,0][1,10]-⋃ 【解析】当1x <时, 2()1(1)120f x x x x ≥⇔+≥⇔≤-≥或, 所以21x x ≤-≤<或0, 当1x ≥时, ()141310f x x ≥⇔⇔⇔≤, 所以110x ≤≤, 综上所述, 2x ≤-或010x ≤≤, 故选A 项.【点评:】以上分段函数性质的考查中, 不难得到一种解题的重要途径, 若能画出其大致图像, 定义域、值域、最值、单调性、奇偶性等问题就会迎刃而解, 方程、不等式等可用数形结合思想、等价转化思想、分类讨论思想及函数思想来解, 使问题得到大大简化, 效果明显.。
分段函数的几种常见题型及解法

分段函数的几种罕睹题型及解法之阳早格格创做分段函数是指自变量正在二个或者二个以上分歧的范畴内, 有分歧的对付应规则的函数, 它是一个函数, 却又常常被教死误认为是几个函数; 它的定义域是各段函数定义域的并集, 其值域也是各段函数值域的并集. 由于它正在明白战掌握函数的定义、函数的本量等知识的程度的观察上有较佳的效率, 常常正在下考查题中“闪明”登场, 笔者便几种简曲的题型干了一些思索, 剖析如下:1.供分段函数的定义域战值域例1.供函数1222[1,0];()(0,2);3[2,);x x f x xx x +∈-⎧⎪=-∈⎨⎪∈+∞⎩的定义域、值域.【剖析】做图, 利用“数形分离”易知()f x 的定义域为[1,)-+∞, 值域为(1,3]-.2.供分段函数的函数值例2.(05年浙江理)已知函数2|1|2,(||1)()1,(||1)1x x f x x x --≤⎧⎪=⎨>⎪+⎩供12[()]f f .【剖析】果为311222()|1|2f =--=-, 所以312223214[()]()1()13f f f =-==+-. 3.供分段函数的最值例3.供函数43(0)()3(01)5(1)x x f x x x x x +≤⎧⎪=+<≤⎨⎪-+>⎩的最大值.【剖析】当x ≤时,max ()(0)3f x f ==, 当01x <≤时,max ()(1)4f x f ==, 当1x >时, 5154x -+<-+=, 综上有max ()4f x =.4.供分段函数的剖析式例4.正在共一仄里曲角坐标系中, 函数()y f x =战()y g x =的图象闭于曲线y x =对付称, 现将()y g x =的图象沿x 轴背左仄移2个单位, 再沿y 轴进与仄移1个单位, 所得的图象是由二条线段组成的合线(如图所示), 则函数()f x 的表白式为( )【剖析】当[2,0]x ∈-时, 121y x =+, 将其图象沿x 轴背左仄移2个单位, 再沿y轴背下仄移1个单位, 得剖析式为1122(2)111y x x =-+-=-, 所以()22([1,0])f x x x =+∈-,当[0,1]x ∈时,21y x =+, 将其图象沿x 轴背左仄移2个单位, 再沿y 轴背下仄移1个单位, 得剖析式2(2)1124y x x =-+-=-, 所以12()2([0,2])f x x x =+∈, 综上可得222(10)()2(02)xx x f x x +-≤≤⎧=⎨+<≤⎩, 故选A .5.做分段函数的图像 例5.函数|ln ||1|x y e x =--的图像大概是( )6.供分段函数得反函数 例6已知()y f x =是定义正在R 上的奇函数, 且当0x >时,()31x f x =-, 设()f x 得反函数为()y g x =, 供()g x 的表白式.【剖析】设0x <, 则0x ->, 所以()31xf x --=-, 又果为()f x 是定义正在R 上的奇函数, 所以()()f x f x -=-, 且(0)0f =, 所以()13xf x -=-, 果此31(0)()0(0)13(0)x x x f x x x -⎧->⎪==⎨⎪-<⎩, 进而可得33log (1)(0)()0(0)log (1)(0)x x g x x x x +>⎧⎪==⎨⎪--<⎩.7.推断分段函数的奇奇性 例7.推断函数22(1)(0)()(1)(0)x x x f x x x x ⎧-≥⎪=⎨-+<⎪⎩的奇奇性.【剖析】当0x >时, 0x -<,22()()(1)(1)()f x x x x x f x -=---+=-=, 当0x =时,(0)(0)0f f -==, 当x <,x ->,22()()(1)(1)()f x x x x x f x -=---=-+=果此,对付于任性x R ∈皆有()()f x f x -=, 所以()f x 为奇函数.8.推断分段函数的单调性 例8.推断函数32(0)()(0)x x x f x x x ⎧+≥⎪=⎨-<⎪⎩的单调性.【剖析】 隐然()f x 连绝. 当0x ≥时, '2()311f x x =+≥恒创造, 所以()f x是单调递加函数, 当0x <时, '()20f x x =->恒创造, ()f x 也是单调递加函数, 所以()f x 正在R 上是单调递加函数; 或者绘图易知()f x 正在R 上是单调递加函数.例9.写出函数()|12||2|f x x x =++-的单调减区间.【剖析】121231()()3(2)31(2)x x f x x x x x -+≤-⎧⎪=+-<<⎨⎪-≥⎩, 绘图易知单调减区间为12(,]-∞-. 9.解分段函数的圆程例10.(01年上海)设函数812(,1]()log (1,)x x f x x x -⎧∈-∞=⎨∈+∞⎩, 则谦脚圆程1()4f x =的x 的值为【剖析】若142x -=, 则222x --=, 得2(,1]x =∉-∞, 所以2x =(舍去), 若1814log x =, 则1481x =, 解得3(1,)x =∈+∞, 所以3x =即为所供.10.解分段函数的没有等式例11.设函数1221(0)()(0)x x f x x x -⎧-≤⎪=⎨⎪>⎩,若0()1f x >, 则0x 得与值范畴是( )【剖析1】 最先绘出()y f x =战1y =的大概图xxy像, 易知0()1f x >时, 所对付应的0x 的与值范畴是(,1)(1,)-∞-⋃+∞.【剖析2】果为0()1f x >, 当00x ≤时, 0211x-->, 解得01x <-, 当00x >时,1201x >, 解得01x >, 综上0x 的与值范畴是(,1)(1,)-∞-⋃+∞. 故选D.例12.设函数2(1)(1)()4(1)x x f x x ⎧+<⎪=⎨-≥⎪⎩, 则使得()1f x ≥的自变量x 的与值范畴为( )A .(,2][0,10]-∞-⋃ B. (,2][0,1]-∞-⋃ C. (,2][1,10]-∞-⋃ D. [2,0][1,10]-⋃ 【剖析】 当1x <时,2()1(1)120f x x x x ≥⇔+≥⇔≤-≥或, 所以21x x ≤-≤<或0, 当1x ≥时,()141310f x x ≥⇔≥≤⇔≤,所以110x ≤≤, 综上所述, 2x ≤-或者010x ≤≤, 故选A 项.【面评:】以上分段函数本量的考查中, 没有罕见到一种解题的要害道路, 若能绘出其大概图像, 定义域、值域、最值、单调性、奇奇性等问题便会迎刃而解, 圆程、没有等式等可用数形分离思维、等价转移思维、分类计划思维及函数思维去解, 使问题得到大大简化, 效验明隐.。
含参的复杂分段函数的最值求解方法探究

含参的复杂分段函数的最值求解方法探究复杂分段函数一般可以表示为多个函数片段的组合。
每个函数片段通常在一些区间内有不同的定义域和表达式。
求解含参的复杂分段函数的最值可以采用以下方法。
一、通过分段讨论法求解最值1.确定分段函数的定义域和各个函数片段的定义域范围。
2.将整个定义域按照各个函数片段的定义域范围进行划分。
这样,可以将复杂的分段函数划分为多个简单的分段函数。
3.在每个分段函数的定义域内,求解最值。
可以通过绘制函数图像、列出函数表格或者进行函数性质分析等方法来求解。
4.将每个分段函数的最值进行比较,得到整个复杂函数的最值。
二、通过参数化的方式求解最值1.针对含参的复杂分段函数,设置参数的取值范围。
2.将参数作为变量,构建一个含参的函数。
根据参数的取值范围,可以将含参的函数划分为多个函数片段。
3.按照分段讨论法的步骤,在每个函数片段的定义域内求解最值。
4.将每个函数片段的最值与参数的取值进行比较,得到整个含参的复杂分段函数的最值。
三、通过求导数的方式求解最值1.将含参的复杂分段函数进行数学表达。
2.对整个函数进行求导,并求出导函数。
3.对导函数进行求解,得到导函数的极值点。
4.将极值点带入原函数,得到对应的函数值。
通过对比不同区间的函数值,可以确定最大值或最小值的位置。
需要注意的是,对于含参的复杂分段函数,最值求解可能需要结合多种方法进行综合分析。
对于更复杂的分段函数,可能需要借助计算机软件进行辅助求解。
在实际应用中,可以根据具体的函数形式和求解要求,选择合适的方法来解决最值问题。
考点03 分段函数的4种求法(解析版)

专题二 函数考点3 分段函数的4种求法【方法点拨】分段函数的4种求法1. 求函数值或解不等式:由自变量所属区间,选定相应的解析式求解.2. 求函数值域:分别求每一段的值域取并集.3. 求函数最值:分别求每一段的最值,然后比较大小.4.求参数的值(或参数范围):分段处理,分类讨论,综合作答. 三、【高考模拟】1.已知函数()2,0x x f x x ⎧≤⎪=⎨>⎪⎩,则()()4f f =( )A .-4B .14-C .14D .4【答案】C 【分析】根据分段函数的解析式,先求()4f ,再求()2f -即可求解.【解析】由()2,0x x f x x ⎧≤⎪=⎨>⎪⎩,则()42f ==-,所以()()()214224ff f -=-==. 故选:C2.已知函数(2),2()(2),2x x x f x f x x +⎧=⎨+<⎩,则(1)f =( )A .3B .6C .15D .12【答案】C 【分析】根据分段函数解析式代入计算即可; 【解析】解:因为(2),2()(2),2x x x f x f x x +⎧=⎨+<⎩,所以()()()11233215f f =+=⨯+=故选:C3.已知函数()()1,1 23,1xx f x f x x ⎧⎛⎫≥⎪ ⎪=⎨⎝⎭⎪+<⎩,则()1f -=( )A .12B .2C .14D .18【答案】C 【分析】根据函数的解析式,代入计算,即可求解. 【解析】由题意,函数()()1,1 23,1xx f x f x x ⎧⎛⎫≥⎪ ⎪=⎨⎝⎭⎪+<⎩,可得()()()211113224f f f ⎛⎫-=-+=== ⎪⎝⎭.故选:C.4.已知20()(1)0x x f x f x x ⎧>=⎨+≤⎩,则()1f -=( )A .0B .1C .2D .4【答案】C 【分析】根据分段函数各段的定义域求解. 【解析】因为20()(1)0x x f x f x x ⎧>=⎨+≤⎩,所以()()()110122f f f -====,故选:C 5.已知5,6()(4),6x x f x f x x -≥⎧=⎨+<⎩,则(1)f -的值为( )A .6-B .2-C .2D .3【答案】C【分析】利用解析式可有()()(1)37f f f -==,利用已有的解析式可得(1)f -的值. 【解析】由题设有()()(1)372f f f -===, 故选:C.6.已知21,0()2,0x x f x x x ⎧+≤=⎨->⎩,则()()2f f =( )A .26B .17C .8D .-10【答案】B 【分析】利用分段函数的解析式,将自变量代入即可求解. 【解析】由21,0()2,0x x f x x x ⎧+≤=⎨->⎩,则()2224f =-⨯=-, 所以()()()()2244117ff f =-=-+=.故选:B7.已知函数()222,12,1x x x f x x ++<⎧⎪=⎨≥⎪⎩,则()()0f f =( )A .4B .16C .32D .64【答案】D 【分析】直接根据分段函数解析式代入计算可得; 【解析】解:因为()222,12,1x x x f x x ++<⎧⎪=⎨≥⎪⎩,所以()0022f =+=,()()()2226022264f f f +==== 故选:D8.已知1,(1)()3,(1)x x f x x x +≤⎧=⎨-+>⎩,那么12f f ⎡⎤⎛⎫ ⎪⎢⎥⎝⎭⎣⎦的值是( )A .52 B .32C .92D .12-【答案】B 【分析】 先根据12所在区间计算出12f ⎛⎫ ⎪⎝⎭的结果,然后再根据12f ⎛⎫ ⎪⎝⎭所在区间计算出12f f ⎡⎤⎛⎫ ⎪⎢⎥⎝⎭⎣⎦的值. 【解析】 因为112≤,所以1131222f ⎛⎫=+= ⎪⎝⎭,又因为312>,所以133332222f f f ⎡⎤⎛⎫⎛⎫==-+= ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,故选:B.9.设函数()()2221log (1)x x f x x x ⎧+≤=⎨>⎩,则()()0f f ( )A .0B .3C .1D .2 【答案】C 【分析】将自变量代入对应的分段函数中,即可求得答案. 【解析】由题意得2(0)022f =+=,所以2((0))(2)log 21f f f ===,故选:C10.已知函数()2,125,1x ax x f x ax x ⎧-+≤=⎨->⎩若存在12,x x R ∈,且12x x ≠,使得()()12f x f x =成立,则实数a 的取值范围是( ) A .4a < B .2a <C .2a >D .R【答案】A 【分析】首先确定1x ≤时()f x 的对称轴2a x =,分别在12a <和12a≥两种情况下,结合二次函数的对称性和数形结合的方式确定不等关系求得结果. 【解析】当1x ≤时,()2f x x ax =-+是开口方向向下,对称轴为2ax =的二次函数, ①当12a<,即2a <时,由二次函数对称性知:必存在12x x ≠,使得()()12f x f x =; ②当12a≥,即2a ≥时,若存在12x x ≠,使得()()12f x f x =,则函数图象需满足下图所示:即125a a -+>-,解得:4a <,24a ∴≤<; 综上所述:4a <. 故选:A. 【点睛】思路点睛:根据()()12f x f x =可知分段函数某一段自身具有对称轴或两个分段的值域有交集,通过函数图象进行分析即可确定结果.11.已知函数24,2()25,2x x x f x ax x ⎧-+≤=⎨->⎩,若存在x 1,x 2∈R ,且x 1≠x 2,使得12()()f x f x =,则实数a 的取值范围为( ) A .(),0-∞ B .9,4⎛⎫-∞ ⎪⎝⎭C .9,2⎛⎫-∞ ⎪⎝⎭D .90,2⎛⎫ ⎪⎝⎭【答案】B 【分析】转化条件为()f x 在(],2-∞上的取值范围与在()2,+∞上的有交集,结合二次函数及一次函数的性质分类讨论即可得解. 【解析】当2x ≤时,2()4f x x x =-+,由二次函数的性质可得()f x 单调递增且(](),4f x ∈-∞;若要满足题意,只需使()f x 在(],2-∞上的取值范围与在()2,+∞上的有交集, 当2x >时,若0a >,则()()2545,f x ax a =-=-+∞, 则454a -<,解得94a <,此时904a <<;若0a =,()5f x =-,符合题意;若0a <,则()()25,45f x ax a =-=-∞-,符合题意; 综上,实数a 的取值范围为9,4⎛⎫-∞ ⎪⎝⎭. 故选:B. 【点睛】关键点点睛:解决本题的关键是转化条件为()f x 在(],2-∞上的取值范围与在()2,+∞上的有交集,再结合一次函数、二次函数的性质即可得解.12.已知()()()23200x x x f x x x ⎧-≥⎪=⎨<⎪⎩,方程()()2210f x f x +-=⎡⎤⎣⎦的根x 的个数是 ( ) A .1 B .2 C .3 D .4【答案】C 【分析】画出函数的图象,求出22[()]()10f x f x +-=的根,结合函数的图象,求解即可.【解析】232(0)()(0)x x x f x x x ⎧-=⎨<⎩的图象如图:方程22[()]()10f x f x +-=,可得()1f x =-,或1()2f x =, 由函数的图象可知:()1f x =-,有2个x 的值,1()2f x =,有一个x 的值, 所以方程22[()]()10f x f x +-=的根x 的个数是3.故选:C . 【点睛】关键点点睛:本题考查函数零点与方程根问题,考查分段函数的图象,解决本题的关键点是先由关于()f x 的一元二次方程解出方程根()1f x =-或1()2f x =,再画出分段函数的图象可得与1y =和12y =的交点个数,即为根x 的个数,考查学生数形结合思想和计算能力,属于中档题. 13.已知函数()1,01,0x x f x x +≥⎧=⎨<⎩,若()()2f f a =,则( )A .1a =±B .1a =-C .0a ≤D .0a <【答案】C 【分析】分0a <,0a =,0a >三种情况求解即可 【解析】当0a <时,()1f a =,得()()()12f f a f ==,当0a =时,()01f =,()()()12ff a f ==,成立,当0a >时,()1f a a =+,得()()()1112ff a f a a =+=++=,得0a =,不成立;所以0a ≤. 故选:C14.已知函数()22,1,,12,2,2,x x f x x x x x +≤-⎧⎪=-<<⎨⎪≥⎩,若()3f a =,则a =( )A .1 BC.D .32【答案】B 【分析】根据分段函数解析式,将各段等于3,解方程即可得出结果. 【解析】当1a ≤-时,由23a +=,得1a =,舍去; 当1a 2-<<时,由23a =得a =a =当2a ≥时,由23a =得32a =舍去,综上,a =故选:B.15.已知函数()232,1,1x x f x x ax x +<⎧=⎨+≥⎩若()()06f f a =,则实数a =( )A .1B .2C .4D .8【答案】A 【分析】由函数解析式,先计算()0f 的值,然后将其代入,由此得到关于a 的方程,求解即可. 【解析】 (0)2f =2((0))(2)226f f f a a ==+=,解得:1a =故选:A 【点睛】方法点睛:(1)求分段函数的函数值,要先确定要求值的自变量属于哪一段区间,然后代入该段的解析式求值,当出现()()ff a 的形式时,应从内到外依次求值.(2)求某条件下自变量的值,先假设所求的值在分段函数定义区间的各段上,然后求出相应自变量的值,切记代入检验,看所求的自变量的值是否满足相应段自变量的取值范围.16.设f (x )=,012(1),1x x x x ⎧<<⎪⎨-≥⎪⎩,若f (a )=12,则a =( )A .14B .54C .14或54D .2【答案】C 【分析】根据解析式分段讨论可求出. 【解析】解:∵(),012(1),1x x f x x x ⎧<<⎪=⎨-≥⎪⎩,1()2f a =,∴由题意知,0112a a <<⎧⎪⎨=⎪⎩或()11212a a ≥⎧⎪⎨-=⎪⎩,解得14a =或54a =. 故选:C . 17.已知函()f x ={222,0,,0,x mx m x x m x -+≤+>,若()()12ff =,则实数m的值为( ) A .1- B .12C .1D .2【答案】B 【分析】首先求()11f m =+,分1m ≤-和1m >-,两种情况求()()1f f ,再计算实数m 的值.【解析】()11f m =+,当1m ≤-时,()10f ≤,此时()()()()()221112112f f f m m m m m =+=+-++=≠,故不成立;当1m >-时,()10f >,此时()()()()1112f f f m m m =+=++=,解得:12m =,成立. 故选:B【点睛】关键点点睛:本题考查分段函数求自变量,本题的关键是求出()11f m =+后,需分两种情况,求实数m 的值.18.已知函数222,0,()1,0,x x f x x x ⎧->=⎨+⎩,若()2f a =,则a =( )A .2B .1C .2或1-D .1或1-【答案】C 【分析】分类讨论a ,代入解析式可解得结果. 【解析】当0a >时,()222af a =-=,解得2a =;当0a 时,2()12f a a =+=,解得1a =-.综上,2a =或1a =-. 故选:C19.已知()22,1log ,1x x f x x x ⎧≤=⎨>⎩,若()()1f f a =,则实数a 的值是( )A .0或2B .4C .1或4D .1【答案】C 【分析】讨论()1f a ≤与()1f a >先计算()f a 的值;再讨论1a ≤与1a >计算a 值. 【解析】 由()()1ff a =,当()1f a ≤时,有()21f a=,则()0f a = ;当()1f a >时,有()2log 1f a =,则()2f a = ;由()0f a =,当1a ≤时,有20a =,a 无解;当1a >时,有2log 0a =,1a =不符合; 由()2f a =,当1a ≤时,有22a =,1a =;当1a >时,有2log 2a =,4a =; 综上所述:1a =或4a = 故选:C20.已知函数()221,031,0x x f x x x +>⎧=⎨-≤⎩,若()()18f a f +-=,则实数a 的值是( ) A .52B .213±或52 C.21或52D .213-或52 【答案】D 【分析】分0a >和0a ≤两种情况求解 【解析】 解:当0a >时,因为()()18f a f +-=,所以2213(1)18a ++⨯--=,解得52a =, 当0a ≤时,因为()()18f a f +-=,所以22313(1)18a -+⨯--=,解得21a =(舍去),或21a =-, 综上52a =或213a =-, 故选:D21.某数学兴趣小组从商标中抽象出一个函数图象如图,其对应的函数()f x 可能是( )A .()11f x x =- B .()11f x x =- C .()11tan2f x xπ=-D .()211f x x =+ 【答案】A 【分析】根据函数对称性及定义域,直接利用排除法求出结果. 【解析】选项A :函数的图象的渐近线为 1x =或1x =-与原图象相符; 选项B :1x =-时,()111112-==--f 与原图不相符; 选项C :3x =时,函数无意义与原图不相符; 选项D :1x =时,()111112f ==+与原图不相符; 故选:A22.函数图象如图,其对应的函数可能是( )A .1()|||1|f x x =-B .1()|1|f x x =-C .21()1f x x =- D .21()1f x x =+ 【答案】A 【分析】根据定义域可排除BD ,根据()01f =可排除C. 【解析】由图可知()f x 的定义域为{}1x x ≠±,故BD 错误;()01f =,故C 错误.故选:A.23.已知函数()f x 的图象如图所示,则()f x 的解析式可能是( )A .()212x f x x -=⋅ B .()212x f x x -=⋅C .()()1)f x x x =⋅- D .()221x f x x =-【答案】A 【分析】利用()10f >可排除CD ,利用奇偶性可排除B ,由此得到结果. 【解析】当1x =时,()10f >,CD 中的函数()10f =,可排除CD ;由图象关于原点对称可知()f x 为奇函数,A 中()()212x f x x f x --=-⋅=-,满足奇函数定义;B中()()221122x x f x x x f x ---=⋅-=⋅=,满足偶函数定义,可排除B.故选:A.24.已知函数2()121()f x ax x ax a =+++-∈R 在32,53x ⎛⎫∈- ⎪⎝⎭有最大值和最小值,则a 的取值范围为___________. 【答案】122675a <≤ 【分析】令2()()1()()21g x h x ax g x h x x ax +=+⎧⎨-=+-⎩,得到()()()2,()()2,()()g x g x h x f x h x g x h x ⎧≥⎪=⎨<⎪⎩,结合函数()g x 和()h x 的图象,根据()f x 在32,53x ⎛⎫∈- ⎪⎝⎭有最大值和最小值求解. 【解析】因为函数2()121()f x ax x ax a =+++-∈R ,令2()()1()()21g x h x ax g x h x x ax +=+⎧⎨-=+-⎩, 解得22()()1g x x ax h x x ⎧=+⎨=-⎩, 所以()()()2,()()()()()()2,()()g x g x h x f x g x h x g x h x h x g x h x ⎧≥⎪=++-=⎨<⎪⎩,其中()g x 过点()()0,0,,0a -,()h x 过点()()1,0,1,0-,因为2()121()f x ax x ax a =+++-∈R 在32,53x ⎛⎫∈- ⎪⎝⎭有最大值和最小值,当0a -≤,即0a ≥时,3933916,1525552525g a h ⎛⎫⎛⎫-=--=-= ⎪ ⎪⎝⎭⎝⎭,所以3355h g ⎛⎫⎛⎫->- ⎪ ⎪⎝⎭⎝⎭,所以()f x 在3,05⎛⎫- ⎪⎝⎭上取不到最小值,要在20,3⎛⎫ ⎪⎝⎭上取到最小值,则2233g h ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭,且2335g h ⎛⎫⎛⎫≤- ⎪ ⎪⎝⎭⎝⎭,即425939a +>,且42169325a +≤, 解得122675a <≤, 当0a ->,即0a <时,242245,1393399g a h ⎛⎫⎛⎫=+=-= ⎪ ⎪⎝⎭⎝⎭,所以2233g h ⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭,所以()f x 在20,3⎛⎫ ⎪⎝⎭上取不到最小值,要在3,05⎛⎫- ⎪⎝⎭上取不到最小值, 则3355g h ⎛⎫⎛⎫->- ⎪ ⎪⎝⎭⎝⎭,且3253g h ⎛⎫⎛⎫-≤ ⎪ ⎪⎝⎭⎝⎭,即931625525a ->,且9352559a -≤, 即715a <-,且44135a ≥-时,无解, 综上:a 的取值范围为122675a <≤.故答案为:122675a <≤ 【点睛】关键点点睛:本题关键是由函数()f x 解析式的结构特征,令2()()1()()21g x h x ax g x h x x ax +=+⎧⎨-=+-⎩,将函数转化为()()()2,()()2,()()g x g x h x f x h x g x h x ⎧≥⎪=⎨<⎪⎩,利用二次函数22(),()1g x x ax h x x =+=-的图象和性质求解.25.已知函数22,0(),0x a x f x x ax x ⎧+≥=⎨-<⎩,若()f x 的最小值是a ,则a 的值为__________.【答案】4- 【分析】利用指数函数的单调性,可得0x ≥时,()f x 的最小值为1a +,由题意可得()f x 在(),0-∞时取得最小值a ,求得对称轴,可得224a a f a ⎛⎫=-= ⎪⎝⎭,解得即可; 【解析】解:当0x ≥时,()2xf x a =+在定义域上单调递增,所以()()01f x f a ≥=+即0x =时,()f x 的最小值为1a +;当0x <时,()22224a a f x x ax x ⎛⎫=-=--⎪⎝⎭ 由题意可得()f x 在(),0-∞时取得最小值a ,即有02a<,所以0a <,则224a a f a ⎛⎫=-= ⎪⎝⎭,解得4a =- 故答案为:4-26.已知函数2223,2()log ,2x x x f x a x x ⎧-+≤=⎨+>⎩有最小值,则1f a ⎛⎫⎪⎝⎭的取值范围为__________. 【答案】[2,3) 【分析】函数()f x 有最小值,所以求出1a ≥,则有101a<≤,代入()f x 求出()f x 的取值范围. 【解析】当2x ≤时,2()(1)2f x x =-+的最小值为2.当x 2>时,要使()f x 存在最小值,必有2log 22a +≥,解得1a ≥.101a ∴<≤,21112[2,3)f a a ⎛⎫⎛⎫∴=-+∈ ⎪ ⎪⎝⎭⎝⎭. 故答案为:[2,3). 【点睛】本题考查分段函数求函数值的范围,属于中档题. 易错点睛:(1)分段函数是一个函数,只有一个最值; (2)分段函数已知函数值求自变量的取值,要分段讨论.27.已知函数21(),0()22,04x a x f x x x x ⎧-≤<⎪=⎨⎪-+≤≤⎩的值域是[]8,1-,则实数a 的取值范围是________. 【答案】[3,0)- 【分析】由二次函数的性质可得当04x 时,函数的值域刚好为[8-,1],故只需1()2xy =-,0a x <的值域为[8-,1]的子集,可得a 的不等式,结合指数函数的单调性可得. 【解析】解:当04x 时,22()2(1)1f x x x x =-+=--+,图象为开口向下的抛物线,对称轴为1x =,故函数在[0,1]单调递增,[1,4]单调递减,011()8,()122a ---当1x =时,函数取最大值1,当4x =时,函数取最小值8-,又函数()f x 的值域为[8-,1],1()2xy ∴=-,0a x <的值域为[8-,1]的子集,1()2x y =-,0a x <单调递增,∴只需0182112a⎧⎛⎫--⎪ ⎪⎪⎝⎭⎨⎛⎫⎪- ⎪⎪⎝⎭⎩, 解得30a -<故答案为:[3,0)-.28.设函数()()222,0,21,0.x a a x f x x x a x ⎧--+≤⎪=⎨-++->⎪⎩若()0f 是()f x 的最大值,则a 的取值范围为__________.【答案】[)2+∞,【分析】由题可得要使()0f 是()f x 的最大值,只需满足020a a ≥⎧⎨-≤⎩即可.【解析】()0=0f ,当0x ≤时,()22y x a a =--+,对称轴为x a =,开口向下,当0x >时,221y x x a =-++-对称轴为1x =,开口向下,则此时在1x =取得最大值为2a -,要使()0f 是()f x 的最大值,则020a a ≥⎧⎨-≤⎩,解得2a ≥,则a 的取值范围为[)2+∞,. 故答案为:[)2+∞,. 【点睛】本题主要考查分段函数的最值问题及其应用,其中解答题中涉及到二次函数的图象与性质的应用,以及分段函数的最值问题的求解方法,此类问题解答的关键在于正确理解分段的性质,合理列出相应的不等关系式.29.函数()2,12,1x x a x f x x x ⎧++<=⎨-≥⎩的值域为R ,则实数a 的取值范围是_____________.【答案】54a ≤ 【分析】根据分段函数的解析式,先求出1≥x 时,函数的值域;再求出1x <时,函数的值域;根据题中条件,即可得出结果. 【解析】由题意,当1≥x 时,()2f x x =-显然单调递减,则()(]2,1f x x =-∈-∞;当1x <时,()2f x x x a =++是开口向,对称轴为12x =-的二次函数,则()1124f x f a ⎛⎫≥-=- ⎪⎝⎭,又函数()2,12,1x x a x f x x x ⎧++<=⎨-≥⎩的值域为R ,所以只需114a -≤,解得54a ≤. 故答案为:54a ≤.30.设函数31,0,()1,0x x f x x x ⎧+≤=⎨->⎩,则()()1f f 的值为______.【答案】1 【分析】先计算(1)f ,再计算()()1f f 可得.【解析】由题意(1)110f =-=,所以((1))(0)1==f f f . 故答案为:1.。
初中数学,分段函数最值型的应用问题,例题详解及方法攻略

初中数学,分段函数最值型的应用问题,例题详解及方法攻略分段函数最值型的应用问题一般地,化归为一次、二次函数的最值问题,我们需要注意⑴分段表示解析式,分别确定该区段内的最值;⑵分类讨论思想的运用。
真题详解例1.(利润最大化型问题)在黄州服装批发市场,某种品牌的时装当季节将来临时,价格呈上升趋势,设这种时装开始时定价为20元,并且每周(7天)涨价2元,从第6周开始保持30元的价格平稳销售;从第12周开始,当季节即将过去时,平均每周减价2元,直到第16周周末,该服装不再销售。
⑴ 试建立销售价y与周次x之间的函数关系式;⑵ 若这种时装每件进价Z与周次x次之间的关系为Z=-0.125(x-8)*2+12,1<x≤16,且x为整数,试问该服装第几周出售时,每件销售利润最大?最大利润为多少?解题思路提示依题意知本题是分段函数问题:注意到“每周涨价2元”丧示价的上涨部分与时间成正比例,从而售价是时间的一次函数。
“价格平稳销售”表示价格不变。
“每周降价2元”表示价格的减少部分与时间成正比例,从而售价是时间的一次函数。
则注意到每种情况下自变量的取值范围可建立函数关系式。
解题步骤解⑴依题意得,可建立的函数关系式为:y=20+2(x-1) (1≤x<6),y=30 (6≤x≤11),y=30-2(x-11)(12≤x<16);∴y=2x+18 (1≤ⅹ<6),y=30 (6≤x≤11),y=-2x+52 (12≤x≤16)⑵ 设利润为W,则W=售价-进价故:W=20+20x+1/8(ⅹ-8)*2-14 (1≤x<6).W=30+1/8(x-8)*2-12 (6≤x≤11).W=1/8(x-8)*2-2x+40 (12<x≤16).化简得:W=1/8x*2+14 (1≤x<6),W=1/8x*2-2x+26 (6≤x≤11)W=1/8x*2-4ⅹ+48 (12≤x≤16)①当W=1/8x*2+14时,∵当x≥0,函数W随着x增大而增大,∵1≤x<6∴当x=5时,W有最大值,最大值=17.125②当W=1/8x*2-2x+26时,∵W=1/8(x-8)*2+18,当x≥8时,函数W随x增大而增大,∴在x=11时,函数有最大值为153/8.③当W=1/8ⅹ*2-4x时∵W=1/8(x-16)*2+16,∵12≤x≤16,当x≤16时,函数W随x增大而减小,∴在x=12时,函数有最大值为18综上所述,当x=11时,函数有最大值为153/8。
第15招 分段函数常见题型解法

【知识要点】分段函数问题是高中数学中常见的题型之一,也是高考经常考查的问题.主要考查分段函数的解析式、求值、解不等式、奇偶性、值域(最值)、单调性和零点等问题.1、 求分段函数的解析式,一般一段一段地求,最后综合.即先分后总.注意分段函数的书写格式为:1122()()()()n n n f x x D f x x D f x x D f x x D ∈⎧⎪∈⎪=⎨∈⎪⎪∈⎩,不要写成1122()()()()n n ny f x x D y f x x D f x x D y f x x D =∈⎧⎪=∈⎪=⎨∈⎪⎪=∈⎩.注意分段函数的每一段的自变量的取值范围的交集为空集,并集为函数的定义域D .一般左边的区域写在上面,右边的区域写在下面.2、分段函数求值,先要看自变量在哪一段,再代入那一段的解析式计算.如果不能确定在哪一段,就要分类讨论.注意小分类要求交,大综合要求并.3、分段函数解不等式和分段函数求值的方法类似,注意小分类要求交,大综合要求并.4、分段函数的奇偶性的判断,方法一:定义法.方法二:数形结合.5、分段函数的值域(最值),方法一:先求每一段的最大(小)值,再把每一段的最大(小)值比较,即得到函数的最大(小)值. 方法二:数形结合.6、分段函数的单调性的判断,方法一:数形结合,方法二:先求每一段的单调性,再写出整个函数的单调性.7、分段函数的零点问题,方法一:解方程,方法二:图像法,方法三:方程+图像法. 和一般函数的零点问题的处理方法是一样的.虽然分段函数是一种特殊的函数,在处理这些问题时,方法其实和一般的函数大体是一致的. 【方法讲评】题型一 分段函数的解析式问题解题方法 一般一段一段地求,最后综合.即先分后总.【例1】已知函数)(x f 对实数R x ∈满足)1()1(,0)()(+=-=-+x f x f x f x f ,若当[)1,0∈x 时,21)23(),1,0()(-=≠>+=f a a b a x f x .(1)求[]1,1-∈x 时,)(x f 的解析式;(2)求方程0log )(4=-x x f 的实数解的个数.(2) )()2()1()1(,0)()(x f x f x f x f x f x f =+∴+=-=-+ )(x f ∴是奇函数,且以2为周期.方程0log )(4=-x x f 的实数解的个数也就是函数x y x f y 4log )(==和的交点的个数.在同一直角坐标系中作出这俩个函数的图像,由图像得交点个数为2,所以方程0log )(4=-x x f 的实数解的个数为2.【点评】(1)本题的第一问,根据题意要把[1,1]-分成三个部分,即(1,0),1,(0,1)x x x ∈-=±∈,再一段一段地求. 在求函数的解析式时,要充分利用函数的奇偶性、对称性等. (2)本题第2问解的个数,一般利用数形结合解答.【检测1】已知定义在R 上的函数()()22f x x =-.(Ⅰ)若不等式()()223f x t f x +-<+对一切[]0,2x ∈恒成立,求实数t 的取值范围; (Ⅱ)设()()g x x f x =,求函数()g x 在[]0,(0)m m >上的最大值()m ϕ的表达式.题型二 分段函数的求值解题方法先要看自变量在哪一段,再代入那一段的解析式计算.如果不能确定在哪一段,就要分类讨论.注意小分类要求交,大综合要求并. 学.科.网【例2】已知函数()()22log 3,2{21,2x x x f x x ---<=-≥ ,若()21f a -= ,则()f a = ( )A. 2-B. 0C. 2D. 9【解析】当22a -< 即0a >时, ()()211log 3211,22a a a ---=⇒+==- (舍); 当22a -≥ 即0a ≤时, ()2222111log 42a a f a ---=⇒=-⇒=-=- ,故选A.【点评】(1)要计算(2)f a -的值,就要看自变量2a -在分段函数的哪一段,但是由于无法确定,所以要就2222a a -<-≥和分类讨论. (2)分类讨论时,注意数学逻辑,小分类要求交,大综合要求并.当0a >时 ,解得12a =-,要舍去.【例3】【2017山东,文9】设()(),0121,1x x f x x x ⎧<<⎪=⎨-≥⎪⎩,若()()1f a f a =+,则1f a ⎛⎫= ⎪⎝⎭( ) A. 2 B. 4 C. 6 D. 8【点评】(1)要化简()()1f a f a =+,必须要讨论a 的范围,要分1a ≥和01a <<讨论.当1a ≥时,可以解方程2(1)2(11)a a -=+-,得方程没有解.也可以直接由2(1)y x =-单调性得到()()1f a f a ≠+.【检测2】已知函数210()0xx f x xx -⎧-≤⎪=>,若0[()]1f f x =,则0x = .题型三 分段函数解不等式解题方法先要看自变量在哪一段,再代入那一段的解析式计算.如果不能确定在哪一段,就要分类讨论.注意小分类要求交,大综合要求并.【例3】已知函数则的解集为( )A.B.C.D.【点评】(1)本题中()f x 的自变量x 不确定它在函数的哪一段,所以要分类讨论. (2)当20x -<<时,计算()f x -要注意确定x -的范围,02x <-<,所以求()f x -要代入第一段的解析式.数学思维一定要注意逻辑和严谨. (3)分类讨论时,一定要注意数学逻辑,小分类要求交,大综合要求并.【检测3】已知函数()()()22log 2,02,{2,20,x x f x f x x --+≤<=---<<则()2f x ≤的解集为__________.【检测4】【2017课标3,理15】设函数10()20x x x f x x +≤⎧=⎨>⎩,,,,则满足1()()12f x f x +->的x 的取值范围是_________.【例4】判断函数⎩⎨⎧>+-<+=)0()0()(22x x x x x x x f 的奇偶性 【解析】由题得函数的定义域关于原点对称.设0,x <2()f x x x =+,则0x ->,222()()()()f x x x x x x x f x -=---=--=-+=- 设0,x >2()f x x x =-+则0x -<,222()()()()f x x x x x x x f x -=--=-=--+=- 所以函数()f x 是奇函数.【点评】(1)对于分段函数奇偶性的判断,也是要先看函数的定义域,再考虑定义,由于它是分段函数,所以要分类讨论. (2)注意,当0x <时,求()f x -要代入下面的解析式,因为0x ->,不是还代入上面一段的解析式.【检测5】已知函数()f x 是定义在R 上的奇函数,且当0x ≥时22)(+=x xx f . (1)求()f x 的解析式;(2)判断()f x 的单调性(不必证明);(3) 若对任意的t R ∈,不等式0)2()3(22≤++-t t f t k f 恒成立,求k 的取值范围.【例5】若函数62()3log 2a x x f x x x -+≤⎧=⎨+>⎩(01)a a >≠且的值域是[4,)+∞,则实数a 的取值范围是 .【点评】(1)分段函数求最值(值域),方法一:先求每一段的最大(小)值,再把每一段的最大(小)值比较,即得到函数的最大(小)值. 方法二:数形结合.(2)本题既可以用方法一,也可以利用数形结合分析解答. (3)对于对数函数log a y x =,如果没有说明a 与1的大小关系,一般要分类讨论.【检测6】设()()2,014,0x a x f x x a x x ⎧-≤⎪=⎨+++⎪⎩,>若()0f 是()f x 的最小值,则a 的取值范围为( ) A. []2,3- B. []2,0- C. []1,3 D. []0,3【检测7】已知函数()()222log 23,1{1,1x ax a x f x x x -+≥=-<的值域为R ,则常数a 的取值范围是( )A. ][()1123-,,B. ][()12-∞+∞,,C. ()[)1123-,,D. (,0]-∞{}[)123,题型六 分段函数单调性解题方法 方法一:数形结合,方法二:先求每一段的单调性,再写出整个函数的单调性.【例6】若()()3,1{log ,1a a x a x f x x x --<=> 是(),-∞+∞上的增函数,那么a 的取值范围是( ).A. ()1,+∞B. 3,32⎡⎫⎪⎢⎣⎭C. (),3-∞D. ()1,3【点评】(1)函数是一个分段函数是增函数必须满足两个条件,条件一:分段函数的每一段必须是增函数;条件二:左边一段的最大值必须小于等于右边一段的最小值. 函数是一个分段函数是减函数必须满足两个条件,条件一:分段函数的每一段必须是减函数;条件二:左边一段的最小值必须大于等于右边一段的最大值. (3)一个分段函数是增函数,不能理解为只需每一段是增函数. 这是一个必要不充分条件.【检测8】已知函数()[)()232,0,32,,0x x f x x a a x ⎧∈+∞⎪=⎨+-+∈-∞⎪⎩在区间(),-∞+∞上是增函数,则常数a 的取值范围是 ( )A .()1,2B .(][),12,-∞+∞C .[]1,2D .()(),12,-∞+∞题型七 分段函数零点问题解题方法方法一:解方程,方法二:图像法,方法三:方程+图像法. 和一般函数的零点问题的处理方法是一样的.【例7】已知函数()21,0,{log ,0,x x f x x x +≤=>则函数()()1y ff x =+的所有零点构成的集合为__________.【点评】(1)分段函数的零点问题,一般有三种方法,方法一:解方程,方法二:图像法,方法三:方程+图像法. 和一般函数的零点问题的处理方法是一样的. (2)本题由于函数()()1y f f x =+的图像不方便作出,所以选择解方程的方法解答. (3)在函数()()1y f f x =+中,由于没有确定x 的取值范围,所以要分类讨论.【例8】已知函数()()22,191,1x x f x x x x ⎧>⎪=⎨⎪-≤⎩,若函数()()g x f x k =-仅有一个零点,则k 的取值范围是________.【解析】函数()()22,1{91,1x xf x x x x >=-≤ ,若函数()()g x f x k =- 仅有一个零点,即()f x k = ,只有一个解,在平面直角坐标系中画出, ()y f x =的图象,结合函数图象可知,方程只有一个解时,()4,0,23k ⎛⎫∈-∞ ⎪⎝⎭ ,故答案为()4,0,23⎛⎫-∞ ⎪⎝⎭.【点评】(1)直接画()()g x f x k =-的图像比较困难,所以可以利用方程+图像的方法. 分离参数得到()f x k =,再画图数形结合分析. 学.科.网【例9】已知函数关于的方程,有不同的实数解,则的取值范围是( )A. B.C. D.【解析】【点评】本题考查了类二次方程实数根的相关问题,以及数形结合思想方法的体现,这种嵌入式的方程形式也是高考考查的热点,这种嵌入式的方程首先从二次方程的实数根入手,一般因式分解后都能求实根,得到和,然后再根据导数判断函数的单调性和极值等性质,画出函数的图象,若直线和函数的交点个数得到参数的取值范围.【检测9】已知函数()()1114{(1)x x f x lnx x +≤=>,则方程()f x ax =恰有两个不同的实根时,实数a 的取值范围是( )(注: e 为自然对数的底数)A. 10,e ⎛⎫ ⎪⎝⎭B. 10,4⎛⎫ ⎪⎝⎭C. 11,4e ⎡⎫⎪⎢⎣⎭D. 1,e 4⎡⎫⎪⎢⎣⎭高中数学常见题型解法归纳及反馈检测第15讲:分段函数中常见题型解法参考答案【反馈检测1答案】(Ⅰ)11t -<<(Ⅱ)()222,011,1122,12m m m m m m m m ϕ⎧-+<≤⎪⎪=<≤+⎨⎪->+⎪⎩方法二:不等式恒成立等价于恒成立 .即等价于对一切恒成立,即恒成立,得恒成立, 当时,,,因此,实数t 的取值范围是11t -<<.【反馈检测2答案】或1【反馈检测2详细解析】当时,,则,即 ;当时,,则,即。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
分段函数最值问题及解题技巧
1. 问题描述
分段函数是由若干个不同部分组成的函数,每个部分在定义域
内具有不同的表达式或函数关系。
分段函数的最值问题是指在给定
定义域上,如何找到分段函数的最大值或最小值。
在解决这类问题时,需要注意以下几个方面:
2. 解题技巧
2.1 分段函数分类
通常,分段函数可以分为线性分段函数和非线性分段函数两类。
- 线性分段函数:线性分段函数:
线性分段函数是由线性函数组成的函数,如:$f(x) = ax + b$。
求线性分段函数的最值可以通过计算斜率来确定。
- 非线性分段函数:非线性分段函数:
非线性分段函数是由非线性函数组成的函数,如:$f(x) =
\begin{cases} g(x), & \text{if } x < a \\ h(x), & \text{if } x \geq a
\end{cases}$。
求非线性分段函数的最值需要分别计算不同区间上的最值,然后比较得出最终结果。
2.2 寻找定义域
在解决分段函数的最值问题时,首先需要明确函数的定义域。
定义域是指函数的自变量的取值范围。
通过分析函数的定义,结合问题的条件,可以确定函数的定义域。
确定了定义域之后,才能在该范围内寻找最值。
2.3 区间的开闭性
在找分段函数的最值时,需要理解区间的开闭性。
开区间不包含端点,闭区间包含端点。
在计算函数在特定区间上的最值时,要注意对区间的开闭情况进行考虑。
比如,对于一个闭区间,需要将区间内所有的极值进行比较,而对于一个开区间,则需要排除区间端点的极值。
2.4 极值点的确定
极值点是指函数在定义域内的局部最值点,即函数的斜率为零
或者不存在。
在求解分段函数的最值问题时,需要找到函数在各个
区间内的极值点。
可以通过计算导数或者利用函数的图像进行分析
来确定极值点。
2.5 特殊情况的处理
在解决分段函数的最值问题时,需要注意处理特殊情况。
比如,在分段函数中存在分段点,即两个部分函数的交点,此时需要特别
处理这些交点,以确定函数的最值。
3. 示例
考虑以下分段函数:
$$
f(x) = \begin{cases}
x+1, & \text{if } x < 0 \\
x^2, & \text{if } x \geq 0
\end{cases}
$$
我们要求解该分段函数在定义域内的最大值和最小值。
首先,我们明确函数的定义域为整个实数集。
然后,我们分别
计算函数在 $x < 0$ 和 $x \geq 0$ 的最值。
对于 $x < 0$ 区间,函数 $f(x) = x+1$ 是线性函数,斜率为 $1$,没有极值点。
因此,在该区间上,最小值为 $f_{\text{min}} =
\lim_{x \to -\infty} f(x) = -\infty$。
对于 $x \geq 0$ 区间,函数 $f(x) = x^2$ 是非线性函数,存在
极值点。
通过计算导数,我们可以确定该函数的极值点为$x = 0$。
计算得到 $f(0) = 0$。
因此,在该区间上,最小值为 $f(0) = 0$。
综上所述,分段函数 $f(x)$ 在定义域内的最小值为
$f_{\text{min}} = -\infty$,最大值为 $f_{\text{max}} = 0$。
4. 总结
在解决分段函数最值问题时,需要明确函数的定义域,理解区间的开闭性,找到极值点,并处理特殊情况。
通过合理的分析和计算,可以求解出分段函数在给定定义域上的最值。
在实际问题中,分段函数最值问题经常出现,掌握解题技巧能够帮助我们更好地理解和解决这类问题。