现代控制理论的MATLAB实现

现代控制理论的MATLAB实现
现代控制理论的MATLAB实现

现代控制理论在电机中的应用

现代控制理论与电机控制 刘北 070301071 电气工程及其自动化0703班 现代控制理论在电机控制中的具体应用: 自70年代异步电动机矢量变换控制方法提出,至今已获得了迅猛的发展。这种理论的主要思想是将异步电动机模拟成直流机,通过坐标变换的方法,分别控制励磁电流分量与转矩电流分量,从而获得与直流电动机一样良好的动态调速特性。这种控制方法现已较成熟,已经产品化,且产品质量较稳定。因为这种方法采用了坐标变换,所以对控制器的运算速度、处理能力等性能要求较高。近年来,围绕着矢量变换控制的缺陷,如系统结构复杂、非线性和电机参数变化影响系统性能等等问题,国内、外学者进行了大量的研究。伴随着推进矢量控制、直接转矩控制和无传感器控制技术进一步向前发展的是人工智能控制,这是电机现代控制技术的前沿性课题,已取得阶段性的研究成果,并正在逐步实用化。 矢量控制和直接转矩控制技术的一个新的发展方向是直接驱动技术,这种零方式消除了传统机械传动链带来的一系列不良影响,极大地提高了系统的快速响应能力和运动精度。但是,这种机械上的简化,导致了电机控制上的难度。为此,需要电机控制技术的进一步提高和创新。这正是电机现代控制技术有待深入研究和具有广阔开发前景的新领域。 电机的现代控制技术与先进制造装备息息相关,已在为先进制造技术的重要研究领域之一,国内很多学者和科技人员正在从事这方面的研究和开发。 一、三相感应电动机的矢量控制 1、 定、转子磁动势矢量 三相感应电动机是机电能量转换装置,这种的物理基础是电磁间的相互作用或者磁场能量的变化。因此,磁场是机电能量转换的媒介,是非常重要的物理量。为此,对各种电动机都要了解磁场在电动机空间内的分布情况。感应电动机内磁场是由定、转子三相绕组的磁动势产生的,首先要确定电动机内磁动势的分布情况。对定子三相绕组而言,当通以三相电流A i 、B i 、C i 时,分别产生沿着各自绕组轴线脉动的空间磁动势波,取其基波并记为A f 、B f 、C f ,显然它们都是空间矢量。对于分布和短矩绕组,定义正向电流产生的空间磁动势波基波的轴线为该相绕组的轴线,亦即A f 、B f 、C f 是以ABC 为轴线沿圆周正弦分布的空间矢量,各自的幅值是变化的,取决于相电流的瞬时值,即有

现代控制理论实验指导书

实验1 用MATLAB 分析状态空间模型 1、实验设备 PC 计算机1台,MATLAB 软件1套。 2、实验目的 ① 学习系统状态空间表达式的建立方法、了解系统状态空间表达式与传递函数相互转换的方法; ② 通过编程、上机调试,掌握系统状态空间表达式与传递函数相互转换方法。 3、实验原理说明 参考教材P56~59“2.7 用MA TLAB 分析状态空间模型” 4、实验步骤 ① 根据所给系统的传递函数或A 、B 、C 矩阵,依据系统的传递函数阵和状态空间表达式之间的关系式,采用MATLAB 编程。 ② 在MA TLAB 界面下调试程序,并检查是否运行正确。 题1.1 已知SISO 系统的传递函数为 243258()2639 s s g s s s s s ++=++++ (1)将其输入到MATLAB 工作空间; (2)获得系统的状态空间模型。 题1.2 已知SISO 系统的状态空间表达式为 112233010100134326x x x x u x x ????????????????=+????????????????----????????,[]123100x y x x ????=?????? (1)将其输入到MATLAB 工作空间; (2)求系统的传递函数。 实验2 利用MATLAB 求解系统的状态方程 1、实验设备 PC 计算机1台,MATLAB 软件1套。 2、实验目的 ① 学习系统齐次、非齐次状态方程求解的方法,计算矩阵指数,求状态响应; ② 通过编程、上机调试,掌握求解系统状态方程的方法,学会绘制状态响应曲线; ③ 掌握利用MATLAB 导出连续状态空间模型的离散化模型的方法。 3、实验原理说明 参考教材P99~101“3.8 利用MATLAB 求解系统的状态方程” 4、实验步骤 (1)根据所给系统的状态方程,依据系统状态方程的解的表达式,采用MA TLAB 编程。 (2)在MATLAB 界面下调试程序,并检查是否运行正确。 题2.1 已知SISO 系统的状态方程为

计算方法_全主元消去法_matlab程序

%求四阶线性方程组的MA TLAB程序 clear Ab=[0.001 2 1 5 1; 3 - 4 0.1 -2 2; 2 -1 2 0.01 3; 1.1 6 2.3 9 4];%增广矩阵 num=[1 2 3 4];%未知量x的对应序号 for i=1:3 A=abs(Ab(i:4,i:4));%系数矩阵取绝对值 [r,c]=find(A==max(A(:))); r=r+i-1;%最大值对应行号 c=c+i-1;%最大值对应列号 q=Ab(r,:),Ab(r,:)=Ab(i,:),Ab(i,:)=q;%行变换 w=Ab(:,c),Ab(:,c)=Ab(:,i),Ab(:,i)=w;%列变换 n=num(i),num(i)=num(c),num(c)=n;%列变换引起未知量x次序变化for j=i:3 Ab(j+1,:)=-Ab(j+1,i)*Ab(i,:)/Ab(i,i)+Ab(j+1,:);%消去过程 end end %最后得到系数矩阵为上三角矩阵 %回代算法求解上三角形方程组 x(4)=Ab(4,5)/Ab(4,4); x(3)=(Ab(3,5)-Ab(3,4)*x(4))/Ab(3,3); x(2)=(Ab(2,5)-Ab(2,3)*x(3)-Ab(2,4)*x(4))/Ab(2,2); x(1)=(Ab(1,5)-Ab(1,2)*x(2)-Ab(1,3)*x(3)-Ab(1,4)*x(4))/Ab(1,1); for s=1:4 fprintf('未知量x%g =%g\n',num(s),x(s)) end %验证如下 %A=[0.001 2 1 5 1; 3 -4 0.1 -2 2;2 -1 2 0.01 3; 1.1 6 2.3 9 4]; %b=[1 2 3 4]'; %x=A\b; %x1= 1.0308 %x2= 0.3144 %x3= 0.6267 %x4= -0.0513

现代控制理论概述及实际应用意义

13/2012 59 现代控制理论概述及实际应用意义 王 凡 王思文 郑卫刚 武汉理工大学能源与动力工程学院 【摘 要】控制理论作为一门科学技术,已经广泛地运用于我们社会生活的方方面面。本文介绍了现代控制理论的产生、发展、内容、研究 方法和应用以及经典控制理论与现代控制理论的差异,并介绍现代控制理论的应用。提出了学习现代控制理论的重要意义。【关键词】现代控制理论;差异;应用;意义 1.引言 控制理论作为一门科学技术,已经广泛地运用于我们社会生活的方方面面。例如,我们的教学也使用了控制理论的方法。老师在课堂上讲课,大家在课堂上听,本身可看作一个开环函数;而同学们课下做作业,再通过老师的批改,进而改进和提高老师的授课内容和方法,这就形成了一个闭环控制。像这样的例子很多,都是控制理论在生活中的应用。现代控制理论如此广泛,因此学好现代控制理论至关重要。 2.现代控制理论的产生与发展现代控制理论的产生和发展经过了很长的时期。从现代控制理论的发展历程可以看出,它的发展过程反映了人类由机械化时代进入电气化时代,并走向自动化、信息化、智能化时代。其产生和发展要分为以下几个阶段的发展。 2.1 现代控制理论的产生在二十世纪五十年代末开始,随着计算机的飞速发展,推动了核能技术、空间技术的发展,从而对出现的多输入多输出系统、非线性系统和时变系统的分析与设计问题的解决。 科学技术的发展不仅需要迅速 地发展控制理论,而且也给现代控制理论的发展准备了两个重要的条件—现代数学和数字计算机。现代数学,例如泛函分析、现代代数等,为现代控制理论提供了多种多样的分析工具;而数字计算机为现代控制理论发展提供了应用的平台。 2.2 现代控制理论的发展五十年代后期,贝尔曼(Bellman)等人提出了状态分析法;在1957年提出了动态规则;1959年卡尔曼(Kalman)和布西创建了卡尔曼滤波理论;1960年在控制系统的研究中成功地应用了状态空间法,并提出了可控性和可观测性的新概念;1961年庞特里亚金(俄国人)提出了极小(大)值原理;罗森布洛克(H.H.Rosenbrock)、麦克法轮(G.J.MacFarlane)和欧文斯(D.H.Owens)研究了使用于计算机辅助控制系统设计的现代频域法理论,将经典控制理论传递函数的概念推广到多变量系统,并探讨了传递函数矩阵与状态方程之间的等价转换关系,为进一步建立统一的线性系统理论奠定了基础。 20世纪70年代奥斯特隆姆(瑞典)和朗道(法国,https://www.360docs.net/doc/b64605185.html,ndau)在自适应控制理论和应用方面作出了贡献。 与此同时,关于系统辨识、最优控制、离散时间系统和自适应控制的发展大大丰富了现代控制理论的内容。 3.现代控制理论的内容及研究方法 现代控制理论的内容主要有为系统辨识;最优控制问题;自适应控制问题;线性系统基本理论;最佳滤波或称最佳估计。 (1)系统辨识 系统辨识是建立系统动态模型的方法。根据系统的输入输出的试验数据,从一类给定的模型中确定一个被研究系统本质特征等价的模型,并确定其模型的结构和参数。 (2)最优控制问题 在给定约束条件和性能指标下,寻找使系统性能指标最佳的控制规律。主要方法有变分法、极大值原理、动态规划等极大值原理。现代控制理论的核心即:使系统的性能指标达到最优(最小或最大)某一性能指标最优:如时间最短或燃料消耗最小等。 (3)自适应控制问题 在控制系统中,控制器能自动适应内外部参数、外部环境变化,自动调整控制作用,使系统达到一定意义下的最优。模型参考自适应控制

现代控制理论1-8三习题库

信息工程学院现代控制理论课程习题清单

正确理解线性系统的数学描述,状态空间的基本概念,熟练掌握状态空间的表达式,线性变换,线性定常系统状态方程的求解方法。 重点容:状态空间表达式的建立,状态转移矩阵和状态方程的求解,线性变换的基本性质,传递函数矩阵的定义。要求熟练掌握通过传递函数、微分方程和结构图建立电路、机电系统的状态空间表达式,并画出状态变量图,以及能控、能观、对角和约当标准型。难点:状态变量选取的非唯一性,多输入多输出状态空间表达式的建立。 预习题 1.现代控制理论中的状态空间模型与经典控制理论中的传递函数有何区别? 2.状态、状态空间的概念? 3.状态方程规形式有何特点? 4.状态变量和状态矢量的定义? 5.怎样建立状态空间模型? 6.怎样从状态空间表达式求传递函数? 复习题 1.怎样写出SISO系统状态空间表达式对应的传递函数阵表达式 2.若已知系统的模拟结构图,如何建立其状态空间表达式? 3.求下列矩阵的特征矢量 ? ? ? ? ? ? ? ? ? ? - - = 2 5 10 2 2 1- 1 A 4.(判断)状态变量的选取具有非惟一性。 5.(判断)系统状态变量的个数不是惟一的,可任意选取。 6.(判断)通过适当选择状态变量,可将线性定常微分方程描述其输入输 出关系的系统,表达为状态空间描述。 7.(判断)传递函数仅适用于线性定常系统;而状态空间表达式可以在定 常系统中应用,也可以在时变系统中应用. 8.如果矩阵A 有重特征值,并且独立特征向量的个数小于n ,则只能化为 模态阵。 9.动态系统的状态是一个可以确定该系统______(结构,行为)的信息集 合。这些信息对于确定系统______(过去,未来)的行为是充分且必要 的。 10.如果系统状态空间表达式中矩阵A, B, C, D中所有元素均为实常数时, 则称这样的系统为______(线性定常,线性时变)系统。如果这些元素 中有些是时间t 的函数,则称系统为______(线性定常,线性时变)系 统。 11.线性变换不改变系统的______特征值,状态变量)。 12.线性变换不改变系统的______(状态空间,传递函数矩阵)。 13.若矩阵A 的n 个特征值互异,则可通过线性变换将其化为______(对 角阵,雅可比阵)。 14.状态变量是确定系统状态的______(最小,最大)一组变量。 15.以所选择的一组状态变量为坐标轴而构成的正交______(线性,非线性) 空间,称之为______(传递函数,状态空间)。

现代控制理论习题解答(第四章)

1 v(x) a 1x 12 b 1x 22 c 1 x 32 2x 1x 2 4x 3 x 2 2X 1X 3 a 1 x T 1 1 b 1 2 (1) v(x) x 12 4x 22 x 32 2x 1x 2 6x 3x 2 2x 1x 3 (2) v(x) x 12 10x 22 4x 32 6x 1 x 2 2x 3x 2 2 2 2 (3) v(x) 10x 1 4x 2 x 3 2x 1x 2 2x 3x 2 4x 1 x 3 【解】: (1) 二次型函数不定。 ⑵ 二次型函数为负定。 ⑶ 二次型函数正定。 3-4-2 试确定下列二次型为正定时,待定常数的取值范围。 【解】: 3-4-1 第四章 控制系统的稳定性 试确定下列二次型是否正定。 1 1 1 1 1 1 1 1 1 4 3 , 1 0, 3 0, 1 4 3 1 1 1 1 4 1 3 1 1 1 3 1 P 4 10 0, 3 10 0, 10 10 P 1 2 1 , 10 1 1 10 1 2 10 1 39 0 1 4 1 1 4 2 1 1 0, 17

a 1 0 a 1 b 1 1 a 1b 1 c 1 4 b 1 4a 1 c 1 【解】: (1) 设 2 2 v(x) 0.5x 1 0.5X 2 V (X ) X 1X 1 X 2X 2 X 1X 2 X 1X 2 X2 x/ ° " °)为半负定。 0 (x 0) 又因为v(x) 0时,有X 2 0, 则X 2 0,代入状态方程得: X 1 0. 所以系统在X 0时,v(x)不恒为零。 则系统渐近稳定,又因为是线性系统,所以该系统是大范围渐近稳定。 (2) 设 2 2 v(x) 0.5X 1 0.5X 2 v(x) X 1X 1 X 2X 2 X 1 ( X 1 X 2) X 2(2X 1 3X 2) X 12 3X 22 3X 1X 2 T 1 1.5 1 1 1 1.5 X x 1 0, 1.5 3 1 1 1 1.5 3 T … X Px P 负定,系统渐近稳定,又因为是线性系统,所以该系统是大范围渐近稳定。 (3) 0 1 1 1 (1) X X (2) x X ; 1 1 2 3 1 1 1 0 (3) x X (4) x X 1 1 0 1 3-4-3 满足正定的条件为: a i | of 1 1 b i a i 0, 1 1 1 1 b 1 2 0 2 C 1 试用李亚普诺夫第二法判断下列线性系统的稳定性。

现代控制理论Matlab仿真

基于Matlab的GUI仿真设计 开发说明文档 学院:信息科学与工程学院 班级:自动化1001 学号:20100413 姓名: 指导教师:赵明旺 二○一三年五月

一、设计题目 设有一个弹簧-质量-阻尼器系统,安装在一个不计质量的小车上,如题图所示。u 和 y为分别为小车和质量体的位移,k、b 和 m 分别为弹簧弹性系数、阻尼器阻尼系数和质量体质量阻尼器。试建立 u 为输入,y 为输出的状态空间模型。 二、设计目的 通过Matlab的GUI界面设计,达到现代控制理论课程的学习要求,学会建立一个系统的状态空间模型,能对线性系统进行时域分析,理解能控性、能观性及李亚普洛夫稳定性的定义,设计极点配置控制系统等. 三、设计要求 使用Matlab数学工具,运用现代控制理论中的知识对一个实际的弹簧-质量-阻尼器系统进行仿真,制作出一个GUI界面,可以动态的观察质量体变化并画出波形。能控性、能观性、李亚普洛夫稳定性的判定,并配置极点构成一个闭环系统。 四、设计内容 1、菜单栏: 开始仿真(动态波形 + 动态系统) 复位(所有参数和图形全部初始化) 退出(退出GUI界面) 2、任务栏:

建模: 状态空间模型建立;传递函数模型建立 系统分析: 系统状态和输出响应计算及输出;能控性判定; 能观性判定;李雅普洛夫稳定性判定 系统综合: 极点配置控制系统设计;状态观测器设计(选作);带状态观测器的极点配置控制系统(选作) 3、系统模型参数: k:弹簧弹性系数 b: 阻尼器阻尼系数 m: 质量体质量 4、系统输出参数: 输出变量: 质量体位移y + 状态变量(x1 & x2) 输出形式: 图形 + 数据 输出数据包括: 状态空间模型\传递函数模型\系统分析结论\状态反馈律\状态观测器\闭环系统模型等 5、仿真参数: 仿真时间:设置仿真时间 仿真步长:设置仿真步长 图形输出刷新时间速率: 设置图形输出刷新时间步长(如0.3秒) 6、系统输入参数: 输入信号:零输入响应 + 阶跃响应+ 任意输入信号(即任意输入表达式来表示输入任意信号,变量为t) 初始状态:系统初始状态 系统期望极点:一般配置在虚轴左边,此时闭环系统稳定 五、仿真系统介绍(含界面解图)

自动控制现代控制与智能控制的关系

自动控制、现代控制与智能控制的关系 一、基本区别 控制理论发展至今已有100多年的历史,经历了“经典控制理论”和“现代控制理论”的发展阶段,已进入“大系统理论”和“智能控制理论”阶段。智能控制理论的研究和应用是现代控制理论在深度和广度上的拓展。20世纪80年代以来,信息技术、计算技术的快速发展及其他相关学科的发展和相互渗透,也推动了控制科学与工程研究的不断深入,控制系统向智能控制系统的发展已成为一种趋势。 自动控制理论中建立在频率响应法和根轨迹法基础上的一个分支。经典控制理论的研究对象是单输入、单输出的自动控制系统,特别是线性定常系统。经典控制理论的特点是以输入输出特性(主要是传递函数)为系统数学模型,采用频率响应法和根轨迹法这些图解分析方法,分析系统性能和设计控制装置。经典控制理论的数学基础是拉普拉斯变换,占主导地位的分析和综合方法是频率域方法。建立在状态空间法基础上的一种控制理论,是自动控制理论的一个主要组成部分。 在现代控制理论中,对控制系统的分析和设计主要是通过对系统的状态变量的描述来进行的,基本的方法是时间域方法。现代控制理论比经典控制理论所能处理的控制问题要广泛得多,包括线性系统和非线性系统,定常系统和时变系统,单变量系统和多变量系统。它所采用的方法和算法也更适合于在数字计算机上进行。现代控制理论还为设计和构造具有指定的性能指标的最优控制系统提供了可能性。 智能控制(intelligent controls)在无人干预的情况下能自主地驱动智能机器实现控制目标的自动控制技术。 二、华山论剑:自动控制的机遇与挑战 传统控制理论在应用中面临的难题包括:(1)传统控制系统的设计与分析是建立在已知系统精确数学模型的基础上,而实际系统由于存在复杂性、非线性、时变性、不确定性和不完全性等,一般无法获得精确的数学模型;(2)研究这类系统时,必须提出并遵循一些比较苛刻的假设,而这些假设在应用中往往与实际不相吻合;(3)对于某些复杂的和包含不确定性的对象,根本无法用传统数学模型来表示,即无法解决建模问题;(4)为了提高性能,传统控制系统可能变得很复杂,从而增加了设备的初始投资和维修费用,降低了系统的可靠性。 为了讨论和研究自动控制面临的挑战,早在1986年9月,美国国家科学基金会(NSF)及电气与电子工程师学会(1EEE)的控制系统学会在加利福尼亚州桑克拉拉大学(University of Santa Clare)联合组织了一次名为“对控制的挑战”的专题报告会。有50多位知名的自动控制专家出席了这一会议。他们讨论和确认了每个挑战。根据与会自动控制专家的集体意见,他们发表了《对控制的挑战——集体的观点》,洋洋数万言,简直成为这一挑战的宣言书。 到底为什么自动控制会面临这一挑战,还面临哪些挑战,以及在哪些研究领域存在挑战呢? 在自动控制发展的现阶段,存在一些至关重要的挑战是基于下列原因的:(1)科学技术

现代控制理论第4章教学要求(第四章)

现代控制理论第4章教学要求 按章节,打*号的部分为本科不要求的内容,另外在一些未打*的部分有些内容也不要求,请按下面要求的内容组织本科教学。 第4 章动态系统的结构分析 4.1 引言 4.1.1 能控性与能观性物理现象——从例子谈起 从物理角度理解能控性与能观性的重要性。 4.1.2 能控性与能观性的数学描述 从数学角度理解能控性与能观性的状态方程特点。 4.2 连续线性系统能控性与能观性定义 4.2.1 能控性定义 理解能控性的定义包含的丰富内涵。 能利用定义解决与系统能控性相关的问题。 4.2.2 能观性定义 理解能观性的定义包含的丰富内涵。 能利用定义解决与系统能观性相关的问题。 4.3 连续线性系统能控性与能观性判据 4.3.1 定常系统的能控性判据与能控性指数 掌握定常系统的Gram矩阵能控性判据。 掌握Jordan标准型的能控性判据,并能依此进行相应计算。 掌握能控性矩阵秩判据,并能依此进行相应计算。 了解能控性PBH判据,包括PBH秩判据和PBH特征向量判据。 了解定常系统的能控性指数,并基此减小能控性矩阵的规模。 4.3.2 定常系统的能观性判据与能观性指数 掌握定常系统的Gram矩阵能观性判据。 掌握Jordan标准型的能观性判据,并能依此进行相应计算。。 掌握能观性矩阵秩判据,并能依此进行相应计算。 了解能观性PBH判据,包括PBH秩判据和PBH特征向量判据。。 了解定常系统的能观性指数,并基此减小能观性矩阵的规模。 4.3.3 时变系统的能控性判据 了解时变系统的 Gram矩阵能控性判据。 了解时变系统的能控性秩判据。 4.3.4 时变系统的能观性判据 了解时变系统的 Gram矩阵能观性判据。 了解时变系统的能观性秩判据。 4.3.5 时变系统的能控、能观性判据与其定常情况的关系 理解时变系统的能控、能观性判据与其定常情况的关系。 4.4 连续线性系统输出能控性和输出函数能控性及判据 4.4.1 输出能控性定义及其判定* 本科不要求此节内容。 4.4.2 输出函数能控性定义及其判定* 本科不要求此节内容。 4.5 连续线性系统的对偶关系 4.5.1 定常情况下的对偶关系 理解定常情况下的对偶关系,燕能利用对偶关系解决相关问题。 4.5.2 时变情况下的对偶关系 了解定常情况下的对偶关系,燕能利用对偶关系解决相关问题。 4.6 定常连续线性系统的能控型与能观型 4.6.1 SISO 系统的能控标准型与能观标准型 掌握SISO系统的能控标准型与能观标型以及变换方法,能计算标准型。 4.6.2 MIMO 类SISO 的能控标准型与能观标准型 了解MIMO 类SISO 的能控标准型与能观标准型。 4.6.3 MIMO 系统的Wonham 规范型与Luenberger 规范型* 本科不要求此节内容。 4.7 连续线性系统的结构分解

现代控制理论课程设计(大作业)

现代控制理论课 程设计报告 题目打印机皮带驱动系统能控能观和稳定性分析 项目成员史旭东童振梁沈晓楠 专业班级自动化112 指导教师何小其 分院信息分院 完成日期 2014-5-28

目录 1. 课程设计目的 (3) 2.课程设计题目描述和要求 (3) 3.课程设计报告内容 (4) 3.1 原理图 (4) 3.2 系统参数取值情况 (4) 3.3 打印机皮带驱动系统的状态空间方程 (5) 4. 系统分析 (7) 4.1 能控性分析 (7) 4.2 能观性分析 (8) 4.3 稳定性分析 (8) 5. 总结 (10)

项目组成员具体分工 打印机皮带驱动系统能控能观和稳定性 分析 课程设计的内容如下: 1.课程设计目的 综合运用自控现代理论分析皮带驱动系统的能控性、能观性以及稳定性,融会贯通并扩展有关方面的知识。加强大家对专业理论知识的理解和实际运用。培养学生熟练运用有关的仿真软件及分析,解决实际问题的能力,学会使用标准、手册、查阅有关技术资料。加强了大家的自学能力,为大家以后做毕业设计做很好的铺垫。 2.课程设计题目描述和要求 (1)环节项目名称:能控能观判据及稳定性判据 (2)环节目的: ①利用MATLAB分析线性定常系统的可控性和客观性。 ②利用MATLAB进行线性定常系统的李雅普诺夫稳定性判据。 (3)环节形式:课后上机仿真 (4)环节考核方式: 根据提交的仿真结果及分析报告确定成绩。 (5)环节内容、方法: ①给定系统状态空间方程,对系统进行可控性、可观性分析。 ②已知系统状态空间方程,判断其稳定性,并绘制出时间响应曲线验

证上述判断。 3.课程设计报告内容 3.1 原理图 在计算机外围设备中,常用的低价位喷墨式或针式打印机都配有皮带驱动器。它用于驱动打印头沿打印页面横向移动。图1给出了一个装有直流电机的皮带驱动式打印机的例子。其光传感器用来测定打印头的位置,皮带张力的变化用于调节皮带的实际弹性状态。 图1 打印机皮带驱动系统 3.2 系统参数取值情况 表1打印装置的参数

现代控制理论及应用

现代控制理论及应用李嗣福教授、博士生导师 中国科学技术大学自动化系

一、现代控制理论及应用发展简介 1. 控制理论及应用发展概况 2. 自动控制系统和自动控制理论 以单容水槽水位控制和电加热器温度控制为例说明什么是自动控制、控制律(或控制策略)、自动控制系统以及自动控制系统组成结构和自动控制理论所研究的内容。 2.1自动控制:利用自动化仪表实现人的预期控制目标。 2.2自动控制系统及其组成结构 自动控制系统:指为实现自动控制目标由自动化仪表与被控对象所联接成闭环系统。 自动控制系统组成结构:是由被控对象、测量代表、控制器或调节器和执行器构成反馈闭环结构,其形式有单回路形式和串级双回路形式。 控制系统性能指标:定性的有稳(定性)、准(确性)、快(速性)。 控制律(或控制策略、控制算法):控制系统中控制器或调节器所采用的控制策略,即用系统偏差量如何确定控制量的数学表示式。 2.3自动控制系统类型主要有:按系统参数输入信号形式分:定值控制系统或调节系统和随动系统。 按系统结构形式分:前馈控制系统(即开环系统)和反馈控制系统以及复合控制系统; 按系统中被控对象的控制输入量数目和被控输出量数目分:单变量控制系统和多变量控制系统; 按被控对象特性分:线性控制系统和非线性控制系统; 按系统中的信号形式分:模拟(或时间连续)控制系统、数字(或时间离散)控制系统以及混合控制系统。 2.4自动控制理论:研究自动控制系统分析与综合设计的理论和方法。 3. 古典(传统)控制理论: 采用数学变换方法(即拉普拉斯变换和富里叶变换)按照系统输出量

与输入量之间的数学关系(即系统外部特性)研究控制系统分析和综合设计问题。具体方法有:根轨迹法;频率响应法。 主要特点:理论方法的物理概念清晰,易于理解;设计出控制律一般较简单,易于仪表实现 主要缺点: ① 设计需要凭经验试凑,设计结果与设计经验关系很大; ② 系统分析和设计只着眼于系统外部特性; ③一般只能处理单变量系统分析和设计问题,而不能处理复杂的多变量系统分析和设计。 4. 现代控制理论及其主要内容 现代控制理论:狭义的是指60年代发展起来的采用状态空间方法研究实现最优控制目标的控制系统综合设计理论。广义的是指60年代以来发展起来的所有新的控制理论与方法。 控制系统状态空间设计理论: (1) 用一阶微方程组表征系统动态特性,一般形式(连续系统)为 )()()(t BU t AX t X +=——状态方程(连续的一阶微分方程组) )()(t CX t Y =——输出方程 离散系统: )()()1(t BU t AX k X +=+——状态方程(离散的一阶差分方程组) )()(k CX k Y = k ——为大于等于零整数,表示离散时间序号; ?????? ??? ???=)() ()()(21k x k x k x k X n ——状态向量,其中)(k x i ,()n i ,,1 =为状态变量; ????? ???? ???=)() ()()(21k u k u k u k U m ——输入向量,其中)(k u i , ()m i ,,1 =为各路输入;

现代控制理论MATLAB编程

现代控制理论实验报告 姓名: 班级: 学号:

目录一.实验设备 二.实验目的 三.实验步骤

一、实验设备 PC计算机1台,MATLAB软件1套。 二、实验目的 1.学习系统状态空间表达式的建立方法、了解系统状态空间表达式与传递函数相互转换的方法; 2.通过编程、上机调试、掌握系统状态空间表达式与传递函数相互转换方法; 3.学习MATLAB的使用方法。 三、实验步骤 1、根据所给系统的结构图写出死循环系统的传递函数,若K=10,T=0.1时阶跃输出下的系统输出响应,并采用MATLAB编程。 2、在MATLAB接口下调试程序,并检查是否运行正确。 3、给出定二阶系统结构图: 图为二阶系统结构图 (1)求二阶系统的闭环循环传递函数

?(s )=)(1)(s G s G +=K S TS K ++2 (2)若K=10,T=0.1,仿真给出阶跃下的系统输出响应 把K T 代入方程得Φ(S )= = 1)MATLAB 命令得出的系统响应曲线在MATLAB 上输入下列指 令:>> num=[100];>> den=[1,10,100];>> step(num,den)程序运行后显示的时域动态响应曲线(如图2) 图为 时域动态响应曲线 2)、用进行Simulink 进行仿真

启动Simulink并打开一个空白的模块编辑窗口,画出所需模块,并给出正确参数,将画出的所有模块链接起来(如图1),构成一个原系统的框图描述(如图3)。选择仿真控制参数,启动仿真过程。仿真结果示波器显示如图4。 图3二阶系统的Simulink(仿真)

现代控制理论在航空航天中应用

现代控制理论在航空航天中应用 01111201 贺辉1120120003 现代控制理论研究对象为多输入、多输出系统,线性、定常或时变、离散系统。解决方法主要是状态空间法(时域方法)。航空航天技术的迅速发展离不开现代控制理论的不断完善。 比如在实现惯性导航系统的过程中,控制技术起到了至关重要的作用。平台系统依靠陀螺仪、稳定回路使台体稳定在惯性空间,而捷联系统中惯性仪表采用力反馈回路来实现角速度或加速度等信息的敏感。在平台系统的初始对准中,通过调平回路和方位对准回路分别实现水平对准和方位对准。上述过程的实现,都需要通过设计满足各种性能指标的控制器来实现。目前,随着控制技术的发展,科技工作者对一些新型的控制理论和方法在惯性导航系统中的应用进行了探索,目的是提高惯性导航系统的精度、鲁棒稳定性、可靠性、环境适应性以及满足小型化的需求。 另外,现代控制理论在飞行器轨道优化方面有着重要作用。飞行器的轨道优化与制导规律研究对飞行器设计至关重要。随着燃料的大量消耗,空间飞行器的质心、转动惯量都随之发生变化。飞行器弹道会受到极大的影响,这种情况下用经典理论精确控制几乎是不能满足设计要求的,因此要求控制系统的控制在控制手段上采用现代控制理论及控制技术。防空导弹的弹道优化与制导规律研究的目的是提高导弹的飞行性能,达到精确、有效地拦截目标。轨道优化与制导规律研究是根据给定的技术指标,建立飞行器的运动方程, 并选择主要设计参数, 构造传递函数, 运用现代控制理论及数学原理求解最优参数, 形成制导规律与相应的飞行器飞行轨道。飞行器按照优化的轨道飞行, 可以减轻其飞行质量, 提高飞行速度和可用过载, 缩短飞行时间等。在设计飞行器的初步方案论证阶段, 为了实现规定的技术指标, 需要预估飞行器的几何尺寸、质量、推力大小和气动外形, 然后进行轨道优化与制导规律设计。通过轨道优化与制导规律设计不断调整和确定上述各参数, 直到综合确定出合适的方案为止。因此, 飞行器的轨道优化与制导规律问题将关系到飞行器设计性能的好坏, 关系到能否完成用户所需的技术性能指标要求的问题。轨道优化与制导规律研究内容很广泛, 它与任务要求有关, 随着不同的要求, 给定不同的性能指标, 其结果和形式就不同。 轨道优化与制导规律研究这两方面的内容是紧密联系在一起的, 特别是防空导弹更是如此。防空导弹弹道优化涉及制导规律问题, 设计出良好的制导规律势必达到弹道优化设计的目的。防空导弹的飞行弹道优化问题, 一般可以对一组给定的初始条件和终端条件进行弹道优化, 可以用改变一组参变量求解目标函数, 形成满足预定的边界条件, 并命中目标的最优弹道;可以用改变自变量, 在受附加约束的条件下, 如导弹的质量、推力、气动外形等已确定, 可用过载受限制的条件下, 用改变飞行弹道角的制导规律, 寻求导弹飞行的最大射程,最大平均速度, 最大末速度, 最小燃料消耗量, 最短飞行时间;可以用产生开环控制函数或间断地改变控制参数来优化弹道等各式各样的弹道优化模式防空导弹的制导规律是描述导弹在向目标接近的整个过程中所应遵循的运动规律, 它与目标及导弹的运动参数有关, 它决定导弹的弹道特性及其相应的弹道参数。导弹按不同的制导规律制导, 飞行的弹道特性和运动参数是不同的。 导弹的制导规律有多种多样, 有的建立在早期经典理论和概念上, 有的建立在现代控制理论和对策理论的基础上。建立在早期经典理论的概念基础上的制导规律通常称为经典制导规律。经典制导规律包括三点法, 前置点或半前置点法, 预测命中点法, 速度追踪法, 姿态追踪法, 平行接近法, 比例导引法及其诸多的改进形式的制导规律。建立在现代控制理论和微

现代控制理论第2章l

第2章 线性系统理论 线性系统是实际系统的一类理想化模型,通常用线性的微分方程或差分方程描述。其基本特征是满足叠加原理,可分为线性定常系统和线性时变系统。 现代控制理论中,采用状态变量法描述系统,它既能反映系统内部变化情况,又能考虑初始条件,也为多变量系统的分析、综合提供了强有力的工具。 2.1 基本概念 输入:外部施加到系统上的全部激励。 输出:能从外部测量到的来自系统的信息。 状态变量:确定动力学系统状态的最小的一组变量。 状态向量:若n 个状态变量)(1t x ,)(2t x ,…,)(t x n 是向量)(t x 的各个分量,即 )(t x 为状态向量。 状态空间:以各状态变量作为基底组成的n 维向量空间。在特定的时间,状态向量)(t x 在状态空间中只是一个点。 状态轨迹:状态向量)(t x 在状态空间中随时间t 变化的轨迹。 连续时间系统:)(t x 的定义域为某时间域],[f 0t t 内一切实数。 离散时间系统:)(t x 的自变量时间t 只能取到某实数域内的离散值。 状态方程:描述系统状态变量与输入变量之间动态关系的一阶微分方程

组或一阶差分方程组。一般形式为 或 式中 u ——输入向量; k ——采样时刻。 状态方程表征了系统由输入引起的内部状态的变化。 输出方程:描述输出变量与系统输入变量和状态变量间函数关系的代数方程,具有形式 它是一个代数变换过程。 状态空间表达式:状态方程与输出方程联立,构成对动态系统的完整描述,总称为系统的状态空间表达式,又称动态方程。 线性系统的状态空间表达式具有下列一般形式: 1)连续时间系统 ? ??+=+=)()()()()()()()()()(t t t t t t t t t t u D x C y u B x A x & (2–1) 式中 A (t )——系统矩阵或状态矩阵,n ?n 矩阵; B (t )——控制矩阵或输入矩阵,n ?p 矩阵; C (t )——观测矩阵或输出矩阵,q ?n 矩阵; D (t )——输入输出矩阵,q ?p 矩阵; x ——状态向量,n 维; u ——控制作用,p 维; y ——系统输出,q 维。 2)离散时间系统

(整理)matlab16常用计算方法.

常用计算方法 1.超越方程的求解 一超越方程为 x (2ln x – 3) -100 = 0 求超越方程的解。 [算法]方法一:用迭代算法。将方程改为 01002ln()3 x x =- 其中x 0是一个初始值,由此计算终值x 。取最大误差为e = 10-4,当| x - x 0| > e 时,就用x 的值换成x 0的值,重新进行计算;否则| x - x 0| < e 为止。 [程序]P1_1abs.m 如下。 %超越方程的迭代算法 clear %清除变量 x0=30; %初始值 xx=[]; %空向量 while 1 %无限循环 x=100/(2*log(x0)-3); %迭代运算 xx=[xx,x]; %连接结果 if length(xx)>1000,break ,end %如果项数太多则退出循环(暗示发散) if abs(x0-x)<1e-4,break ,end %当精度足够高时退出循环 x0=x; %替换初值 end %结束循环 figure %创建图形窗口 plot(xx,'.-','LineWidth',2,'MarkerSize',12)%画迭代线'.-'表示每个点用.来表示,再用线连接 grid on %加网格 fs=16; %字体大小 title('超越方程的迭代折线','fontsize',fs)%标题 xlabel('\itn','fontsize',fs) %x 标签 ylabel('\itx','fontsize',fs) %y 标签 text(length(xx),xx(end),num2str(xx(end)),'fontsize',fs)%显示结果 [图示]用下标作为自变量画迭代的折线。如P0_20_1图所示,当最大误差为10-4时,需要迭代19次才能达到精度,超越方程的解为27.539。 [算法]方法二:用求零函数和求解函数。将方程改为函数 100()2ln()3f x x x =-- MATLAB 求零函数为fzero ,fzero 函数的格式之一是 x = fzero(f,x0) 其中,f 表示求解的函数文件,x0是估计值。fzero 函数的格式之二是 x = fzero(f,[x1,x2])

现代控制理论的产生、发展、内容、研究方法和应用经典控制理论与现代控制理论的差异

现代控制理论的产生、发展、内容、研究方法和应用经典控制理论与现代控制理论的差异 建立在状态空间法基础上的一种控制理论,是自动控制理论的一个主要组成部分。在现代控制理论中,对控制系统的分析和设计主要是通过对系统的状态变量的描述来进行的,基本的方法是时间域方法。现代控制理论比经典控制理论所能处理的控制问题要广泛得多,包括线性系统和非线性系统,定常系统和时变系统,单变量系统和多变量系统。它所采用的方法和算法也更适合于在数字计算机上进行。现代控制理论还为设计和构造具有指定的性能指标的最优控制系统提供了可能性。现代控制理论的名称是在1960年以后开始出现的,用以区别当时已经相当成熟并在后来被称为经典控制理论的那些方法。现代控制理论已在航空航天技术、军事技术、通信系统、生产过程等方面得到广泛的应用。现代控制理论的某些概念和方法,还被应用于人口控制、交通管理、生态系统、经济系统等的研究中。 现代控制理论是在20世纪50年代中期迅速兴起的空间技术的推动下发展起来的。空间技术的发展迫切要求建立新的控制原理,以解决诸如把宇宙火箭和人造卫星用最少燃料或最短时间准确地发射到预定轨道一类的控制问题。这类控制问题十分复杂,采用经典控制理论难以解决。1958年,苏联科学家Л.С.庞特里亚金提出了名为极大值原理的综合控制系统的新方法。在这之前,美国学者R.贝尔曼于1954年创立了动态规划,并在1956年应用于控制过程。他们的研究成果解决了空间技术中出现的复杂控制问题,并开拓了控制理论中最优控制理论这一新的领域。1960~1961年,美国学者R.E.卡尔曼和R.S.布什建立了卡尔曼-布什滤波理论,因而有可能有效地考虑控制问题中所存在的随机噪声的影响,把控制理论的研究范围扩大,包括了更为复杂的控制问题。几乎在同一时期内,贝尔曼、卡尔曼等人把状态空间法系统地引入控制理论中。状态空间法对揭示和认识控制系统的许多重要特性具有关键的作用。其中能控性和能观测性尤为重要,成为控制理论两个最基本的概念。到60年代初,一套以状态空间法、极大值原理、动态规划、卡尔曼-布什滤波为基础的分析和设计控制系统的新的原理和方法已经确立,这标志着现代控制理论的形成。 现代控制理论所包含的学科内容十分广泛,主要的方面有:线性系统理论、非线性系统理论、最优控制理论、随机控制理论和适应控制理论。 线性系统理论它是现代控制理论中最为基本和比较成熟的一个分支,着重于研究线性系统中状态的控制和观测问题,其基本的分析和综合方法是状态空间法。按所采用的数学工具,线性系统理论通常分成为三个学派:基于几何概念和方法的几何理论,代表人物是W.M.旺纳姆;基于抽象代数方法的代数理论,代表人物是R.E.卡尔曼;基于复变量方法的频域理论,代表人物是H.H.罗森布罗克。 非线性系统理论非线性系统的分析和综合理论尚不完善。研究领域主要还限于系统的运动稳定性、双线性系统的控制和观测问题、非线性反馈问题等。更一般的非线性系统理论还有待建立。从70年代中期以来,由微分几何理论得出的某些方法对分析某些类型的非线性系统提供了有力的理论工具。 最优控制理论最优控制理论是设计最优控制系统的理论基础,主要研究受控系统在指定性能指标实现最优时的控制规律及其综合方法。在最优控制理论中,用于综合最优控制系统的主要

(完整word版)现代控制理论习题解答(第二章)

第二章 状态空间表达式的解 3-2-1 试求下列矩阵A 对应的状态转移矩阵φ(t )。 (1) ???? ??-=2010A (2) ?? ? ???-=0410A (3) ??????--=2110 A (4) ???? ??????-=452100010A (5)?? ??????? ???=000010000100 0010A (6)? ???? ? ??? ???=λλλλ000100010000A 【解】: (1) ???? ? ? ????? ?++=?? ????+-=-=Φ-----)2(10)2(11}201{])[()(11 111s s s s L s s L A sI L t ??? ? ????-=????? ? ??????++-=---t t e e s s s s L 22105.05.01)2(10)2(5.05.01 (2) ?? ? ???-=???? ? ? ??????+++- +=?? ????-=-=Φ-----t t t t s s s s s s L s s L A sI L t 2cos 2sin 22sin 5.02cos 44 441 4}41{])[()(222211 111 (3) ??? ? ? ?????? ?++-+++=?? ????+-=-=Φ-----222211 111)1()1(1)1(1 )1(2 }211{])[()(s s s s s s L s s L A sI L t ??? ? ????--+=Φ------t t t t t t te e te te e te t )( (4) 特征值为:2,1321===λλλ。 由习题3-1-7(3)得将A 阵化成约当标准型的变换阵P 为

相关文档
最新文档