基于MATLAB的蚁群算法解决旅行商问题 (附带源程序、仿真)

合集下载

MATLAB中的蚁群算法与粒子群优化联合优化实例分析

MATLAB中的蚁群算法与粒子群优化联合优化实例分析

MATLAB中的蚁群算法与粒子群优化联合优化实例分析引言:在现代科学技术的发展中,优化问题一直是一个关键的挑战。

为了解决这些问题,出现了许多优化算法。

其中,蚁群算法(Ant Colony Optimization,ACO)和粒子群优化算法(Particle Swarm Optimization,PSO)是两种被广泛应用的算法。

本文将通过示例分析,探讨如何将这两种优化算法结合使用以获得更好的优化结果。

1. 蚁群算法概述蚁群算法是一种启发式优化算法,灵感来源于蚂蚁寻找食物的行为。

蚂蚁在搜索食物的过程中,通过释放信息素与其他蚂蚁进行通信,从而引导整个群体向最优解靠近。

这种算法主要适用于组合优化问题,如旅行商问题(Traveling Salesman Problem,TSP)等。

2. 粒子群优化算法概述粒子群优化算法是一种仿生优化算法,灵感来源于鸟群觅食的行为。

在算法中,个体被模拟成鸟群中的粒子,并通过合作和竞争的方式搜索最优解。

粒子的位置代表可能的解,速度代表解的搜索方向和距离。

这种算法通常适用于连续优化问题。

3. 蚁群算法与粒子群优化算法的结合蚁群算法和粒子群优化算法有着不同的特点和适用范围,结合它们的优点可以提高优化结果的质量。

在下面的示例中,我们将探讨一个工程优化问题,通过联合使用这两种算法来获得较好的优化结果。

示例:电力系统优化在电力系统中,优化发电机组的负荷分配可以有效降低能源消耗和运行成本。

我们将使用蚁群算法和粒子群优化算法联合进行负荷分配的优化。

首先,我们需要建立一个能源消耗和运行成本的数学模型。

这个模型将考虑发电机组的负荷分配和相应的能源消耗和运行成本。

假设我们有n个发电机组,每个组的负荷分配为x1,x2,...,xn,则总的能源消耗为:E = f(x1) + f(x2) + ... + f(xn)其中f(x)是关于负荷分配的函数,代表了每个发电机组的能源消耗。

接下来,我们使用蚁群算法对发电机组的负荷分配进行优化。

基于MATLAB的自适应蚁群聚类算法研究与仿真

基于MATLAB的自适应蚁群聚类算法研究与仿真
能得 到较好的聚类结果 , 而说 明该算法是可行 的。 从
关键 词 : 蚁群算法 ; 聚类分析 ; 自适应 ; T A MA L B
中图分类号 :P 8 T 1
文献标 识码 : A
DO : 03 6  ̄i n10 .902 1.7 3 I 1. 9 .s.0 36 7 . 20 . 5 9 s 0 0
Z HOU T n eg
(o t— e t l nv ri f r ain l i , ol eo c m ue i c, h n 3 0 4 C ia S uhC nr i s y o t a ie C l g o p tr c n e Wu a 0 7 , h ) aU e t N o ts e f se 4 n
MATL AB smu a in a d e p r e t l e u t h w h t h s f h l o t m a e etrcu t r g r s l , i h d m o sr t a i lt n x e m n a s l s o t a eu e o e ag r h c n g t t l se n e u t wh c e n t et t o i r s t t i b e i s a h t ea g rt m e sb e h l o h i f a i l. i s
[ ywod ] n oo y loi m; ls r nls ; d pieMA L B Ke r s AБайду номын сангаасt ln g rh Cut ayi A at ; T A c a t ea s v
0 引 言
蚁群 算法 …最早 是由 M. r o V. ni z Doi , Ma l z o等人 首先 g e 提 出来的 , 它是 一种描述 基于蚁 群群体行 为的算法 , 智能群 是 体 算法 的一个分支 。该算法在 旅行商 问题和其 它优化 问题 中 获得 了一 系列理想的实验结果, 充分体现了该 算法 的可行性 。

徐郁蚁群算法求解旅行商问题

徐郁蚁群算法求解旅行商问题

蚁群算法求解旅行商问题1.旅行商问题旅行商问题常被称为旅行推销员问题,是指一名推销员要拜访多个地点时,如何找到在拜访每个地点一次后再回到起点的最短路径。

规则虽然简单,但在地点数目增多后求解却极为复杂。

假设平面上有n个点代表n个城市的位置, 寻找一条最短的闭合路径, 使得可以遍历每一个城市恰好一次。

这就是旅行商问题。

旅行商的路线可以看作是对n个城市所设计的一个环形, 或者是对一列n个城市的排列。

由于对n个城市所有可能的遍历数目可达)!1n个, 因此解决这个问题需要的(计算时间很长。

2.蚁群算法蚁群总是能够发现从蚁巢到食物源的最短路径。

经研究发现,蚂蚁在行走过的路上留下一种挥发性的激素,蚂蚁就是通过这种激素进行信息交流。

蚂蚁趋向于走激素积累较多的路径。

找到最短路径的蚂蚁总是最早返回巢穴,从而在路上留下了较多的激素。

由于最短路径上积累了较多的激素,选择这条路径的蚂蚁就会越来越多,到最后所有的蚂蚁都会趋向于选择这条最短路径。

基于蚂蚁这种行为,人们通过模拟蚂蚁的行为,而提出了一种全局搜索优化的算法,称之为蚁群算法。

3.求解方法假设有n个城市,它们的邻接矩阵为d,其中d代表城市iji到城市j之间的距离。

现也就是找到一个这n个城市的排列,使蚂蚁按这个顺序“旅行”这n个城市,而蚂蚁的行进路程最短。

使用蚁群算法是用一些虚拟的蚂蚁,让它们在这n个城市间“旅行”,如果蚂蚁行进一周后,走的路程较短,则留下较多的信息素,如果蚂蚁走的路程较长,则留下较少的信息素,而蚂蚁更偏向于走信息素多的路径,一段时间后即可找出一条路径。

假设有m只蚂蚁,用η表示边),(j i的能见度,它反映由城ij市i转移到城市j的期望程度,一般取其为d的倒数,即期望ij程度与两城市间的距离成反比;τ表示边),(j i的信息素轨迹强ij度;kτ∆表示蚂蚁k在边),(j i上留下的信息素;k ij p表示处于城ij市i的蚂蚁向城市j的转移概率,其中,城市j是蚂蚁k未访问的城市。

蚁群算法matlab代码讲解

蚁群算法matlab代码讲解

蚁群算法matlab代码讲解蚁群算法(Ant Colony Algorithm)是模拟蚁群觅食行为而提出的一种优化算法。

它以蚁群觅食的方式来解决优化问题,比如旅行商问题、图着色问题等。

该算法模拟了蚂蚁在寻找食物时的行为,通过信息素的正反馈和启发式搜索来实现问题的最优解。

在蚁群算法中,首先需要初始化一组蚂蚁和问题的解空间。

每只蚂蚁沿着路径移动,通过信息素和启发式规则来选择下一步的移动方向。

当蚂蚁到达目标位置后,会根据路径的长度来更新信息素。

下面是一个用MATLAB实现蚁群算法的示例代码:```matlab% 参数设置num_ants = 50; % 蚂蚁数量num_iterations = 100; % 迭代次数alpha = 1; % 信息素重要程度因子beta = 5; % 启发式因子rho = 0.1; % 信息素蒸发率Q = 1; % 信息素增加强度因子pheromone = ones(num_cities, num_cities); % 初始化信息素矩阵% 初始化蚂蚁位置和路径ants = zeros(num_ants, num_cities);for i = 1:num_antsants(i, 1) = randi([1, num_cities]);end% 迭代计算for iter = 1:num_iterations% 更新每只蚂蚁的路径for i = 1:num_antsfor j = 2:num_cities% 根据信息素和启发式规则选择下一步移动方向next_city = choose_next_city(pheromone, ants(i, j-1), beta);ants(i, j) = next_city;endend% 计算每只蚂蚁的路径长度path_lengths = zeros(num_ants, 1);for i = 1:num_antspath_lengths(i) = calculate_path_length(ants(i, :), distances);end% 更新信息素矩阵pheromone = (1 - rho) * pheromone;for i = 1:num_antsfor j = 2:num_citiespheromone(ants(i, j-1), ants(i, j)) = pheromone(ants(i, j-1), ants(i, j)) + Q / path_lengths(i); endendend```上述代码中的参数可以根据具体问题进行调整。

MATLAB多旅行商问题源代码

MATLAB多旅行商问题源代码

MATLAB多旅⾏商问题源代码MATLAB多旅⾏商问题源代码functionvarargout = mtspf_ga(xy,dmat,salesmen,min_tour,pop_size,num_iter,show_prog,show_res) % MTSPF_GA Fixed Multiple Traveling Salesmen Problem (M-TSP) Genetic Algorithm (GA)% Finds a (near) optimal solution to a variation of the M-TSP by setting% up a GA to search for the shortest route (least distance needed for% each salesman to travel from the start location to individual cities% and back to the original starting place)%% Summary:% 1. Each salesman starts at the first point, and ends at the first% point, but travels to a unique set of cities in between% 2. Except for the first, each city is visited by exactly one salesman%% Note: The Fixed Start/End location is taken to be the first XY point%% Input:% XY (float) is an Nx2 matrix of city locations, where N is the number of cities% DMAT (float) is an NxN matrix of city-to-city distances or costs% SALESMEN (scalar integer) is the number of salesmen to visit the cities% MIN_TOUR (scalar integer) is the minimum tour length for any of the% salesmen, NOT including the start/end point% POP_SIZE (scalar integer) is the size of the population (should be divisible by 8)% NUM_ITER (scalar integer) is the number of desired iterations for the algorithm to run% SHOW_PROG (scalar logical) shows the GA progress if true% SHOW_RES (scalar logical) shows the GA results if true%% Output:% OPT_RTE (integer array) is the best route found by the algorithm% OPT_BRK (integer array) is the list of route break points (these specify the indices% into the route used to obtain the individual salesman routes)% MIN_DIST (scalar float) is the total distance traveled by the salesmen%% Route/Breakpoint Details:% If there are 10 cities and 3 salesmen, a possible route/break% combination might be: rte = [5 6 9 4 2 8 10 3 7], brks = [3 7]% Taken together, these represent the solution [1 5 6 9 1][1 4 2 8 1][1 10 3 7 1],% which designates the routes for the 3 salesmen as follows:% . Salesman 1 travels from city 1 to 5 to 6 to 9 and back to 1% . Salesman 2 travels from city 1 to 4 to 2 to 8 and back to 1% . Salesman 3 travels from city 1 to 10 to 3 to 7 and back to 1%% 2D Example:% n = 35;% xy = 10*rand(n,2);% salesmen = 5;% min_tour = 3;% pop_size = 80;% num_iter = 5e3;% a = meshgrid(1:n);% dmat = reshape(sqrt(sum((xy(a,:)-xy(a',:)).^2,2)),n,n);% [opt_rte,opt_brk,min_dist] = mtspf_ga(xy,dmat,salesmen,min_tour, ... % pop_size,num_iter,1,1); %% 3D Example:% n = 35;% xyz = 10*rand(n,3);% salesmen = 5;% min_tour = 3;% pop_size = 80;% num_iter = 5e3;% a = meshgrid(1:n);% dmat = reshape(sqrt(sum((xyz(a,:)-xyz(a',:)).^2,2)),n,n);% [opt_rte,opt_brk,min_dist] = mtspf_ga(xyz,dmat,salesmen,min_tour, ... % pop_size,num_iter,1,1); %% See also: mtsp_ga, mtspo_ga, mtspof_ga, mtspofs_ga, mtspv_ga, distmat%% Author: Joseph Kirk% Email: jdkirk630@/doc/641797704.html% Release: 1.3% Release Date: 6/2/09% Process Inputs and Initialize Defaultsnargs = 8;for k = nargin:nargs-1switch kcase 0xy = 10*rand(40,2);case 1N = size(xy,1);a = meshgrid(1:N);dmat = reshape(sqrt(sum((xy(a,:)-xy(a',:)).^2,2)),N,N);case 2salesmen = 5;case 3min_tour = 2;case 4pop_size = 80;case 5num_iter = 5e3;case 6show_prog = 1;case 7show_res = 1;otherwiseendend% Verify Inputs[N,dims] = size(xy);[nr,nc] = size(dmat);if N ~= nr || N ~= ncerror('Invalid XY or DMAT inputs!')endn = N - 1; % Separate Start/End City% Sanity Checkssalesmen = max(1,min(n,round(real(salesmen(1)))));min_tour = max(1,min(floor(n/salesmen),round(real(min_tour(1))))); pop_size = max(8,8*ceil(pop_size(1)/8));num_iter = max(1,round(real(num_iter(1))));show_prog = logical(show_prog(1));show_res = logical(show_res(1));% Initializations for Route Break Point Selectionnum_brks = salesmen-1;dof = n - min_tour*salesmen; % degrees of freedom addto = ones(1,dof+1);for k = 2:num_brksaddto = cumsum(addto);endcum_prob = cumsum(addto)/sum(addto);% Initialize the Populationspop_rte = zeros(pop_size,n); % population of routespop_brk = zeros(pop_size,num_brks); % population of breaksfor k = 1:pop_sizepop_rte(k,:) = randperm(n)+1;pop_brk(k,:) = randbreaks();end% Select the Colors for the Plotted Routesclr = [1 0 0; 0 0 1; 0.67 0 1; 0 1 0; 1 0.5 0];if salesmen > 5clr = hsv(salesmen);end% Run the GAglobal_min = Inf;total_dist = zeros(1,pop_size);dist_history = zeros(1,num_iter);tmp_pop_rte = zeros(8,n);tmp_pop_brk = zeros(8,num_brks);new_pop_rte = zeros(pop_size,n);new_pop_brk = zeros(pop_size,num_brks);ifshow_progpfig = figure('Name','MTSPF_GA | Current Best Solution','Numbertitle','off'); end foriter = 1:num_iter% Evaluate Members of the Populationfor p = 1:pop_sizep_rte = pop_rte(p,:);p_brk = pop_brk(p,:);rng = [[1 p_brk+1];[p_brk n]]';for s = 1:salesmend = d + dmat(1,p_rte(rng(s,1))); % Add Start Distancefor k = rng(s,1):rng(s,2)-1d = d + dmat(p_rte(k),p_rte(k+1));endd = d + dmat(p_rte(rng(s,2)),1); % Add End Distanceendtotal_dist(p) = d;end% Find the Best Route in the Population[min_dist,index] = min(total_dist);dist_history(iter) = min_dist;ifmin_distglobal_min = min_dist;opt_rte = pop_rte(index,:);opt_brk = pop_brk(index,:);rng = [[1 opt_brk+1];[opt_brk n]]';ifshow_prog% Plot the Best Routefigure(pfig);for s = 1:salesmenrte = [1 opt_rte(rng(s,1):rng(s,2)) 1];if dims == 3, plot3(xy(rte,1),xy(rte,2),xy(rte,3),'.-','Color',clr(s,:)); else plot(xy(rte,1),xy(rte,2),'.-','Color',clr(s,:)); endtitle(sprintf('Total Distance = %1.4f, Iteration = %d',min_dist,iter)); hold onendif dims == 3, plot3(xy(1,1),xy(1,2),xy(1,3),'ko');else plot(xy(1,1),xy(1,2),'ko'); endhold offend% Genetic Algorithm Operatorsrand_grouping = randperm(pop_size);for p = 8:8:pop_sizertes = pop_rte(rand_grouping(p-7:p),:);brks = pop_brk(rand_grouping(p-7:p),:); dists = total_dist(rand_grouping(p-7:p)); [ignore,idx] = min(dists);best_of_8_rte = rtes(idx,:);best_of_8_brk = brks(idx,:);rte_ins_pts = sort(ceil(n*rand(1,2)));I = rte_ins_pts(1);J = rte_ins_pts(2);for k = 1:8 % Generate New Solutionstmp_pop_rte(k,:) = best_of_8_rte;tmp_pop_brk(k,:) = best_of_8_brk;switch kcase 2 % Fliptmp_pop_rte(k,I:J) = fliplr(tmp_pop_rte(k,I:J)); case 3 % Swaptmp_pop_rte(k,[I J]) = tmp_pop_rte(k,[J I]); case 4 % Slidetmp_pop_rte(k,I:J) = tmp_pop_rte(k,[I+1:J I]); case 5 % Modify Breakstmp_pop_brk(k,:) = randbreaks();case 6 % Flip, Modify Breakstmp_pop_rte(k,I:J) = fliplr(tmp_pop_rte(k,I:J)); tmp_pop_brk(k,:) = randbreaks();case 7 % Swap, Modify Breakstmp_pop_rte(k,[I J]) = tmp_pop_rte(k,[J I]); tmp_pop_brk(k,:) = randbreaks();case 8 % Slide, Modify Breakstmp_pop_rte(k,I:J) = tmp_pop_rte(k,[I+1:J I]); tmp_pop_brk(k,:) = randbreaks(); otherwise % Do Nothingendnew_pop_rte(p-7:p,:) = tmp_pop_rte;new_pop_brk(p-7:p,:) = tmp_pop_brk;endpop_rte = new_pop_rte;pop_brk = new_pop_brk;endifshow_res% Plotsfigure('Name','MTSPF_GA | Results','Numbertitle','off'); subplot(2,2,1);if dims == 3, plot3(xy(:,1),xy(:,2),xy(:,3),'k.');else plot(xy(:,1),xy(:,2),'k.'); endtitle('City Locations');subplot(2,2,2);imagesc(dmat([1 opt_rte],[1 opt_rte]));title('Distance Matrix');subplot(2,2,3);rng = [[1 opt_brk+1];[opt_brk n]]';for s = 1:salesmenrte = [1 opt_rte(rng(s,1):rng(s,2)) 1];if dims == 3, plot3(xy(rte,1),xy(rte,2),xy(rte,3),'.-','Color',clr(s,:)); else plot(xy(rte,1),xy(rte,2),'.-','Color',clr(s,:)); endtitle(sprintf('Total Distance = %1.4f',min_dist));hold on;endif dims == 3, plot3(xy(1,1),xy(1,2),xy(1,3),'ko');else plot(xy(1,1),xy(1,2),'ko'); endsubplot(2,2,4);plot(dist_history,'b','LineWidth',2);title('Best Solution History');set(gca,'XLim',[0 num_iter+1],'YLim',[0 1.1*max([1 dist_history])]); end% Return Outputsifnargoutvarargout{1} = opt_rte;varargout{2} = opt_brk;varargout{3} = min_dist;end% Generate Random Set of Break Pointsfunction breaks = randbreaks()ifmin_tour == 1 % No Constraints on Breakstmp_brks = randperm(n-1);breaks = sort(tmp_brks(1:num_brks));else % Force Breaks to be at Least the Minimum Tour Length num_adjust = find(rand < cum_prob,1)-1; spaces = ceil(num_brks*rand(1,num_adjust));adjust = zeros(1,num_brks);forkk = 1:num_brksadjust(kk) = sum(spaces == kk);endbreaks = min_tour*(1:num_brks) + cumsum(adjust);endendend。

基于MATLAB的蚁群算法求解旅行商问题

基于MATLAB的蚁群算法求解旅行商问题

好行程 的选择机会。 这种改进型算法 能够以更快的速度获得更
好 的解 , 是该算法 会较早的收敛于局 部次优 解, 但 导致搜 索的
过 早停 滞 。 针对 A 中暴 露 出 的问题 , a b r e l L M D r g M S G m a d la , o io ”
提 出了蚁群系统 (n oo y s s e ,A S 。 A t c ln y tm C ) 该文作者较早提
w 啦
( 4 )
r =l 其 中, o e {,, n 1_a u 表 示 蚂 蚁 k a lw d =O1…,一 }t b 下一 步允 许 式中的排 序加 权处 理确 定, 其中 =i, ( - m 每 次 选 择 的城 市 , 实 际 蚁 群 不 同 , 工 蚁 群 系 统 具 有 记 忆 功 能 , l n 为 e : 与 人
op mi ati i bui t f s vi t t ti z on s l or ol ng he rav i s e ma p el ng al s n rob e l m bas on ed MAT AB a fi L , nd nal thr gh t y ou he si mul i n at o to bt n he o ai t bes s ut o whi h s he t ol i n c i t be t s on c e urr t y en l .
K wor ey ds: n o o y O t m z t o A t C l n p i i a i n;T a e i g S l s a r b e r v l n a e m n P o l m;M T A ALB
1 意 义和 目标
息素被表 达为一个函数 , 该函数反映了相应 的行程 质量 。 过 通

基于互信息的混合蚁群算法及其在旅行商问题上的应用

基于互信息的混合蚁群算法及其在旅行商问题上的应用

a d is a p ia i n t r v l g s l s a r b e n t p l to o t a ei a e m n p o lm c n
DuZ a w i Y n o gi S nYo g in Z a gC i n‘ hn e a gY nj n a u n xo g hn h u j
l 提出将互信 息用于 图像 配准 后 , a 互信 息在 遥感 和 医学等领域 开始得到广泛 应用. 蚁群 算法最 早 由 C lri oon 等 提 出 , 于解 决 用

大类 复杂 的组 合 优 化 问题 . o ri 由蚂 蚁 在 C ln 等 o
觅食时 的现象受到 启发 , 抽象 出基 于路径概率 性选
p sda o tm ni rv o xe th o t npr r a c dtecp cyo mp got oe l rh c gi a mpo e osmeetn tesl i e o nea a ai fu i u t uo f m n h t j n
o o a ni u . flc lmi m m
引 文 格 式 :杜 占玮 , 永 健 , 永 雄 , . 杨 孙 等 基于 互 信息 的混 合 蚁 群剪 法 及 其 在 旅 行 商 问 题 上 的 应 用 [ ] 东 南 大 学 学 报 : J. 自然 科 学 版 ,0 14 2 1 ,1 ( )4 8— 8 .[ o:0 3 6 /.sn 10 00 .0 10 .0 ] 3 :7 4 1 d i1 .99 ji .0 1— 5 52 1 .30 9 s
配准算 法产 生 . 了使 该 算 法 更 加 适 用 于 T P问 为 S 题 , 据 问题领域 的具 体 环境 , 混 合 算法 中 的算 根 对 式 进行 了一 定 的化 简 , 其在 计 算 上更 加 简 单 、 使 易 操作. 通过使 用标 准测试 集 O ie3 l r0对算 法进行 测 v 试 , 明本 文提 出的算法 在求 解性 能和跳 出局部 最 表 小 解方 面较 原算法 均有 一定 的提高 .

基于蚁群算法的旅行商问题解决方案

基于蚁群算法的旅行商问题解决方案

基于蚁群算法的旅行商问题解决方案描述旅行商问题是一个经典的组合优化问题,也是计算机科学领域中的一个问题。

它是指一个旅行商要在多个城市之间旅行,他需要找到从一个城市出发,经过若干个城市,最终返回原来的城市所需的最短路径。

蚁群算法是一种启发式搜索算法,模拟了蚁群在寻找食物时的行为。

该算法通过模拟蚂蚁在场景中的行动策略,找到最优解。

在蚁群算法中,蚂蚁根据已知的信息和他们自身的记忆快速找到最优路径。

因此,蚁群算法成功地被应用于解决许多优化问题,包括旅行商问题。

蚁群算法中,每个蚂蚁都会向其他蚂蚁释放信息,来传递它所发现的路径的信息。

其他蚂蚁会通过“估算函数”来决定哪一条路径更值得去选择。

通过不断地多轮迭代,我们最终得到一个最优的路径。

解决方案步骤1. 建立距离矩阵在使用蚁群算法解决旅行商问题时,首先需要建立起各个城市之间的距离矩阵。

这里距离的定义可以是距离、时间、成本等。

距离矩阵通常是一个对称矩阵,因为从城市 A 到城市 B 的距离等于从城市 B 到城市 A 的距离。

2. 初始化信息素在蚁群算法中,信息素有很大的作用。

初始化信息素的方式有很多种,最常用的方法是将任意小的值分配给连接任意两个城市的路径上的信息素。

3. 计算蚂蚁的转移概率蚂蚁在寻找食物时也是根据“成本”和“信息素”来选择路径的。

在这里,“成本”可以表示为距离,而“信息素”则用于表示蚂蚁传递信息的强度。

蚂蚁在寻找路径时,会考虑到两个城市之间的距离和路径上的信息素,然后他们会根据之前的经验来找到最短路径。

4. 路径更新在路径更新过程中,蚂蚁会遵循之前所述的方法,计算出路径的长度,并依据此更新路径上的信息素。

蚂蚁所建立的信息素数量为该蚂蚁走过的路径长度的某个变体。

5. 调整信息素残留量在运行过程中,信息素量也需要适当的调整。

在信息素量退火时,需要将所有的信息素小幅更新,并且平衡化当前的信息素与上一轮更新的信息素。

优点相比于其他优化算法如遗传算法和模拟退火算法等,蚁群算法有以下优点:1. 效率高蚁群算法可以在较短的时间内找到较优的解,且需要的计算量不大。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

摘要:旅行商问题的传统求解方法是遗传算法,但此算法收敛速度慢,并不能获得问题的最优化解。

蚁群算法是受自然界中蚁群搜索食物行为启发而提出的一种智能优化算法,通过介绍蚁群觅食过程中基于信息素的最短路径的搜索策略,给出基于MATLAB的蚁群算法在旅行商问题中的应用,对问题求解进行局部优化。

经过计算机仿真结果表明,这种蚁群算法对求解旅行商问题有较好的改进效果。

关键词:蚁群算法;旅行商问题;MATLAB;优化一、意义和目标旅行商问题是物流领域中的典型问题,它的求解具有十分重要的理论和现实意义。

采用一定的物流配送方式,可以大大节省人力物力,完善整个物流系统。

已被广泛采用的遗传算法是旅行商问题的传统求解方法,但遗传算法收敛速度慢,具有一定的缺陷。

本文采用蚁群算法,充分利用蚁群算法的智能性,求解旅行商问题,并进行实例仿真。

进行仿真计算的目标是,该算法能够获得旅行商问题的优化结果,平均距离和最短距离。

二、国内外研究现状仿生学出现于20世纪50年代中期,人们从生物进化机理中受到启发,提出了遗传算法、进化规划、进化策略等许多用以解决复杂优化问题的新方法。

这些以生物特性为基础的演化算法的发展及对生物群落行为的发现引导研究人员进一步开展了对生物社会性的研究,从而出现了基于群智能理论的蚁群算法,并掀起了一股研究的热潮。

20世纪90年代意大利科学家M.Dorigo M最早提出了蚁群优化算法——蚂蚁系统(Ant system, AS),在求解二次分配、图着色问题、车辆调度、集成电路设计以及通信网络负载问题的处理中都取得了较好的结果。

旅行商问题(TSP, Traveling Salesman Problem)被认为是一个基本问题,是在1859年由威廉·汉密尔顿爵士首次提出的。

所谓TSP问题是指:有N个城市,要求旅行商到达每个城市各一次,且仅一次,并回到起点,且要求旅行路线最短。

这是一个典型的优化问题,对一个具有中等顶点规模的图来说,精确求解也是很复杂的,计算量随着城市个数的增加而呈指数级增长,即属于所谓的NP问题。

TSP在工程领域有着广泛的应用,并常作为比较算法性能的标志。

如网络通讯、货物运输、电气布线、管道铺设、加工调度、专家系统、柔性制造系统等方面,都是TSP广泛应用的领域。

求解算法包括贪婪法(GM)、极小代数法(MA)、模拟退火法(SA)和遗传算法(GA)等。

而应用蚁群算法求解旅行商问题是近年来研究的新方向,由于其并行性与分布性,特别适用于大规模启发式搜索,实验结果证明了其可行性和有效性。

三、蚁群系统基本原理在蚂蚁群找到食物时,它们总能找到一条从食物到巢穴之间的最优路径。

这是因为蚂蚁在寻找路径时会在路径上释放出一种特殊的信息素(phero-mone)。

当它们碰到一个还没有走过的路口时,就随机地挑选一条路径前行。

与此同时释放出与路径长度有关的信息素。

路径越长,释放的激素浓度越低。

当后来的蚂蚁再次碰到这个路口的时候,选择激素浓度较高路径概率就会相对较大。

这样形成了一个正反馈。

最优路径上的激素浓度越来越大,而其它的路径上激素浓度却会随着时间的流逝而消减。

最终整个蚁群会找出最优路径。

在整个寻径过程中,虽然单个蚂蚁的选择能力有限,但是通过激素的作用,整个蚁群之间交换着路径信息,最终找出最优路径。

四、基于MATLAB的蚁群算法求解旅行商问题TSP问题描述如下:设有n个城市C=(1,2,...,n),任意两个城市i,j之间的距离为d ij ,求一条经过每个城市的路径π=(π(1),π(2),...,π(n)),使得距离最小。

主要符号说明C n个城市的坐标,n×2的矩阵NC_max最大迭代次数m蚂蚁个数Alpha表征信息素重要程度的参数Beta表征启发式因子重要程度的参数Rho 信息素蒸发系数Q 信息素增加强度系数R_best各代最佳路线L_best各代最佳路线的长度求解TSP问题的蚂蚁算法中,每只蚂蚁是一个独立的用于构造路线的过程,若干蚂蚁过程之间通过自适应的信息素值来交换信息,合作求解,并不断优化。

这里的信息素值分布式存储在图中,与各弧相关联。

蚂蚁算法求解TSP问题的过程如下:(1)首先初始化,设迭代的次数为NC。

初始化NC=0(2)将m个蚂蚁置于n个顶点上(3)m只蚂蚁按概率函数选择下一座城市,完成各自的周游每个蚂蚁按照状态变化规则逐步地构造一个解,即生成一条回路。

蚂蚁的任务是访问所有的城市后返回到起点,生成一条回路。

设蚂蚁k当前所在的顶点为i,那么,蚂蚁k由点i向点j移动要遵循规则而不断迁移,按不同概率来选择下一点。

(4)记录本次迭代最佳路线(5)全局更新信息素值应用全局信息素更新规则来改变信息素值。

当所有m个蚂蚁生成了m个解,其中有一条最短路径是本代最优解,将属于这条路线上的所有弧相关联的信息素值进行更新。

全局信息素更新的目的是在最短路线上注入额外的信息素,即只有属于最短路线的弧上的信息素才能得到加强,这是一个正反馈的过程,也是一个强化学习的过程。

在图中各弧上,伴随着信息素的挥发,全局最短路线上各弧的信息素值得到增加。

(6)终止若终止条件满足,则结束;否则NC=NC+1,转入步骤(2)进行下一代进化。

终止条件可指定进化的代数,也可限定运行时间,或设定最短路长的下限。

(7)输出结果五、数据实验及结果通过计算机仿真,得出旅行商问题优化结果和平均距离和最短距离,如图所示:六、分析与总结本文设计了一种基于MATLAB实现的蚁群算法,用以求解组合优化难题中的典型代表旅行商问题。

对30个城市旅行商问题进行了测试,所得结果能达到优化作用,实现了本文的研究目标。

经过对旅行商问题的深入理解,得到了能解决问题的基本数学模型,然后设计算法的基本思想,技术路线,最后编码。

在多次调试,修改后,本算法成功运行,并实现了最初的设定目标。

另外,MATLAB具有丰富的绘图函数,对于绘图十分方便,这是选择MATLAB解决TSP问题的算法编写、调试的原因。

蚁群算法研究处于初期,还有许多问题值得研究,如算法的参数选择、蚂蚁数的比例等只能通过仿真实验,无法给出理论指导。

附录:蚁群算法解决旅行商问题MATLAB程序function yy=ACATSPx=[41 37 54 25 7 2 68 71 54 83 64 18 22 83 91 25 24 58 71 74 87 18 13 82 62 58 45 41 44 4]';y=[94 84 67 62 64 99 58 44 62 69 60 54 60 46 38 38 42 69 71 78 76 40 40 7 32 35 21 26 35 50]';C=[x y];NC_max=50;m=30;Alpha=1.5;Beta=2;Rho=0.1;Q=10^6;%%-------------------------------------------------------------------------%% 主要符号说明%% C n个城市的坐标,n×2的矩阵%% NC_max 最大迭代次数%% m 蚂蚁个数%% Alpha 表征信息素重要程度的参数%% Beta 表征启发式因子重要程度的参数%% Rho 信息素蒸发系数%% Q 信息素增加强度系数%% R_best 各代最佳路线%% L_best 各代最佳路线的长度%%=============================================================== ==========%%第一步:变量初始化n=size(C,1);%n表示问题的规模(城市个数)D=zeros(n,n);%D表示完全图的赋权邻接矩阵for i=1:nfor j=1:nif i~=jD(i,j)=((C(i,1)-C(j,1))^2+(C(i,2)-C(j,2))^2)^0.5;elseD(i,j)=eps; %i=j时不计算,应该为0,但后面的启发因子要取倒数,用eps(浮点相对精度)表示endD(j,i)=D(i,j); %对称矩阵endendEta=1./D; %Eta为启发因子,这里设为距离的倒数Tau=ones(n,n); %Tau为信息素矩阵Tabu=zeros(m,n); %存储并记录路径的生成NC=1; %迭代计数器,记录迭代次数R_best=zeros(NC_max,n); %各代最佳路线L_best=inf.*ones(NC_max,1); %各代最佳路线的长度L_ave=zeros(NC_max,1); %各代路线的平均长度while NC<=NC_max %停止条件之一:达到最大迭代次数,停止%%第二步:将m只蚂蚁放到n个城市上Randpos=[]; %随即存取for i=1:(ceil(m/n))Randpos=[Randpos,randperm(n)];endTabu(:,1)=(Randpos(1,1:m))';%%第三步:m只蚂蚁按概率函数选择下一座城市,完成各自的周游for j=2:n %所在城市不计算for i=1:mvisited=Tabu(i,1:(j-1)); %记录已访问的城市,避免重复访问J=zeros(1,(n-j+1)); %待访问的城市P=J; %待访问城市的选择概率分布Jc=1;for k=1:nif length(find(visited==k))==0 %开始时置0J(Jc)=k;Jc=Jc+1; %访问的城市个数自加1 endend%下面计算待选城市的概率分布for k=1:length(J)P(k)=(Tau(visited(end),J(k))^Alpha)*(Eta(visited(end),J(k))^Beta) ;endP=P/(sum(P));%按概率原则选取下一个城市Pcum=cumsum(P); %cumsum,元素累加即求和Select=find(Pcum>=rand); %若计算的概率大于原来的就选择这条路线 to_visit=J(Select(1));Tabu(i,j)=to_visit;endendif NC>=2Tabu(1,:)=R_best(NC-1,:);end%%第四步:记录本次迭代最佳路线L=zeros(m,1); %开始距离为0,m*1的列向量for i=1:mR=Tabu(i,:);for j=1:(n-1)L(i)=L(i)+D(R(j),R(j+1)); %原距离加上第j个城市到第j+1个城市的距离endL(i)=L(i)+D(R(1),R(n)); %一轮下来后走过的距离endL_best(NC)=min(L); %最佳距离取最小pos=find(L==L_best(NC));R_best(NC,:)=Tabu(pos(1),:); %此轮迭代后的最佳路线L_ave(NC)=mean(L); %此轮迭代后的平均距离NC=NC+1; %迭代继续%%第五步:更新信息素Delta_Tau=zeros(n,n); %开始时信息素为n*n的0矩阵for i=1:mfor j=1:(n-1)Delta_Tau(Tabu(i,j),Tabu(i,j+1))=Delta_Tau(Tabu(i,j),Tabu(i,j+1)) +Q/L(i);%此次循环在路径(i,j)上的信息素增量endDelta_Tau(Tabu(i,n),Tabu(i,1))=Delta_Tau(Tabu(i,n),Tabu(i,1))+Q/L (i);%此次循环在整个路径上的信息素增量endTau=(1-Rho).*Tau+Delta_Tau; %考虑信息素挥发,更新后的信息素%%第六步:禁忌表清零Tabu=zeros(m,n); %%直到最大迭代次数end%%第七步:输出结果Pos=find(L_best==min(L_best)); %找到最佳路径(非0为真)Shortest_Route=R_best(Pos(1),:) %最大迭代次数后最佳路径Shortest_Length=L_best(Pos(1)) %最大迭代次数后最短距离subplot(1,2,1); %绘制第一个子图形DrawRoute(C,Shortest_Route); %画路线图的子函数subplot(1,2,2); %绘制第二个子图形plot(L_best);hold on%保持图形plot(L_ave,'r');title('平均距离和最短距离') %标题function DrawRoute(C,R)%%=============================================================== ==========%% DrawRoute.m%% 画路线图的子函数%%-------------------------------------------------------------------------%% C Coordinate 节点坐标,由一个N×2的矩阵存储%% R Route 路线%%=============================================================== ==========N=length(R);scatter(C(:,1),C(:,2));hold onplot([C(R(1),1),C(R(N),1)],[C(R(1),2),C(R(N),2)],'g');hold onfor ii=2:Nplot([C(R(ii-1),1),C(R(ii),1)],[C(R(ii-1),2),C(R(ii),2)],'g');hold onendtitle('旅行商问题优化结果 ')。

相关文档
最新文档