2.6应用一元二次方程(一)

合集下载

2.6 第2课时 利用一元二次方程解决营销问题及平均变化率问题1

2.6 第2课时  利用一元二次方程解决营销问题及平均变化率问题1

第2课时利用一元二次方程解决营销问题及平均变化率问题1.某农户的粮食产量,平均每年的增长率为x,第一年的产量为6万kg,•第二年的产量为_______kg,第三年的产量为_______,三年总产量为_______.2.某糖厂2002年食糖产量为at,如果在以后两年平均增长的百分率为x,•那么预计2004年的产量将是________.3.•我国政府为了解决老百姓看病难的问题,•决定下调药品价格,•某种药品在1999年涨价30%•后,•2001•年降价70%•至a•元,•则这种药品在1999•年涨价前价格是__________.4.某商店从厂家以每件21元的价格购进一批商品,若每件商品售价为x元,则每天可卖出(350-10x)件,但物价局限定每件商品加价不能超过进价的20%,商店要想每天赚400元,需要卖出多少件商品,每件商品的售价是多少元?5.随着人们经济收入的不断提高及汽车产业的快速发展,汽车已越来越多地进入普通家庭,成为居民消费新的增长点。

据某市交通部门统计,2011年底全市汽车拥有量为150万辆,而截至到2013年底,全市汽车拥有量已达216万辆。

(1)求2011年底至2013年底该市汽车拥有量的年平均增长率;(2)为了保护城市环境,缓解汽车拥堵状况,该市交通部门拟控制汽车总量,要求到2015年底全市汽车拥有量不超过231.96万辆;另据估计,从2014年初起,该市此后每年报废的汽车数量是上年底汽车拥有量的10%。

假定每年新增汽车数量相同,请你计算出该市每年新增汽车数量最多不能超过多少万辆。

6.某乡产粮大户,2007年粮食产量为50吨,由于加强了经营和科学种田,2009年粮食产量上升到60.5吨.求平均每年粮食增长的百分率.7.某种手表,原来每只售价96元,经过连续2次降价后,售价54元,平均每次降价的百分率是多少?8.邳州市某工厂2008年捐款1万元给希望工程,以后每年都捐款,计划到2010年共捐款4.75万元,问该厂捐款的年平均增长率是多少?9.某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元。

2021-2022学年北师大版九年级数学上册《2-6应用一元二次方程》期末复习自主提升训练(附答案)

2021-2022学年北师大版九年级数学上册《2-6应用一元二次方程》期末复习自主提升训练(附答案)

2021-2022学年北师大版九年级数学上册《2.6应用一元二次方程》期末复习自主提升训练(附答案)1.某商品连续两次降价,每件零售价由原来的56元降到了31.5元,若设平均每次降价的百分率为x,则可列方程为()A.56(1﹣x)2=31.5B.56(1+x)2=31.5C.(1﹣x)2=31.5D.31.5(1+x)2=562.现要在一个长为40m,宽为26m的矩形花园中修建等宽的小道,剩余的地方种植花草.如图所示,要使种植花草的面积为864m2,那么小道的宽度应是()A.1B.2C.2.5D.33.据美国约翰斯•霍普金斯大学发布的全球新冠肺炎数据统计系统,截至美国东部时间3月28日晚6时,全美共报告新冠肺炎确诊人数超过3025万,死亡超过54.9万,已知有一人患了新冠肺炎,经过两轮传染后,共有144人患了新冠肺炎,每轮传染中平均每人传染了人.4.某驻村工作队,为带动群众增收致富,巩固脱贫攻坚成效,决定在该村山脚下,围一块面积为600m2的矩形试验茶园,便于成功后大面积推广.如图所示,茶园一面靠墙,墙长32m,另外三面用68m长的篱笆围成,其中一边开有一扇2m宽的门(不包括篱笆).求这个茶园的长和宽.5.某工艺厂设计了一款成本为10元/件的工艺品投放市场进行试销.经过调查,每天销售量(y件)与销售单价x(元/件)满足一次函数关系,其部分对应数据如表.销售单价x(元/件)…203040…每天销售量(y件)…500400300…(1)把表中x、y的各组对应值作为点的坐标,求出函数关系式;(2)相关物价部门规定,该工艺品销售单价最高不能超过35元/件,当销售单价定为多少时,工艺厂试销该工艺品每天获得的利润为8000元?6.我省某农业合作社以原价为5元每千克对外销售某种苹果.为了减少库存,决定降价销售,经过两次降价后,售价为每千克3.2元.(1)求平均每次降价的百分率;(2)某超市计划从该农业合作社购进一批该种苹果(大于300千克),由于购买量较大,合作社在每千克3.2元的基础上决定再给予两种优惠方案:方案一:不超过300千克的部分不打折,超过300千克的部分打八折;方案二:每千克优惠0.4元.则该超市选择哪种方案更合算,请说明理由(只能选一种).7.为满足市场需求,新生活超市在端午节前夕购进价格为3元/个的粽子,根据市场预测,该品牌粽子每个售价4元时,每天能出售500个,并且售价每上涨0.1元,其销售量将减少10个,为了维护消费者利益,物价部门规定,该品牌粽子的售价不能超过进价的200%.(1)该品牌粽子每个售价为5元,则每天出售多少个?(2)该品牌粽子定价为多少元时,该超市每天的销售利润为800元.(3)该超市每天的销售利润能否达到1000元,若能,请求出该品牌每个粽子的售价,若不能,请说明理由.8.某服装店自2018年以来,销售成衣数量在稳健地上涨,2018年全年售出10000件成衣,2020年全年售出14400件成衣.(1)求该服装店2018年到2020年成衣销售量的年平均增长率;(2)若服装店售出成衣数量还将保持相同的年平均增长率,请你预算2022年该服装店售出成衣将达到多少件?9.已知一本数学书长为26cm,宽为18.5cm,厚为1cm.一张长方形包书纸如图所示,它的面积为1408cm2,虚线表示的是折痕.由长方形相邻两边与折痕围成的四角均为大小相同的正方形,求正方形的边长.10.今年是我国脱贫胜利年,我国在扶贫方面取得了巨大的成就,技术扶贫也使得我省某县的一个电子器件厂脱贫扭亏为盈.该电子器件厂生产一种电脑显卡,2019年该类电脑显卡的出厂价是200元/个,2020年,2021年连续两年在技术扶贫的帮助下改进技术,降低成本,2021年该电脑显卡的出厂价调整为162元/个.(1)这两年此类电脑显卡出厂价下降的百分率相同,求平均每年下降的百分率;(2)2021年某赛格电脑城以出厂价购进若干个此类电脑显卡,以200元/个销售时,平均每天可销售20个.为了减少库存,商场决定降价销售.经调查发现,单价每降低5元,每天可多售出10个,如果每天盈利1150元,单价应降低多少元?11.列方程解应用题:一个容器盛满了酒精溶液10L,此酒精溶液含纯酒精为80%.第一次倒出若干升后,用水加满;充分混合后第二次又倒出同样体积的酒精溶液,这时容器里纯酒精剩下2L.每次倒出的酒精溶液是多少升?12.直播购物逐渐走进了人们的生活.某电商在抖音上对一款成本价为30元的小商品进行直播销售,如果按每件40元销售,每月可卖出600件,通过市场调查发现,每件小商品售价每上涨1元,销售件数减少10件.为了实现平均每月10000元的销售利润,每件商品售价应定为多少元?这时电商每月能售出商品多少件?13.如图,依靠一面长18米的墙,用34米长的篱笆围成一个矩形场地花圃ABCD,AB边上留有2米宽的小门EF(用其他材料做,不用篱笆围).(1)设花圃的一边AD长为x米,请你用含x的代数式表示另一边CD的长为米;(2)当矩形场地面积为160平方米时,求AD的长.14.某商场“五一节”进行促销活动期间,前四天的总营业额为450万元,第五天的营业额是前四天总营业额的12%.(1)求该商场“五一节”这五天的总营业额;(2)该商场2月份的营业额为350万元,3、4月份营业额的月增长率相同,“五一节”这五天的总营业额与4月份的营业额相等.求该商场3、4月份营业额的月增长率.15.某超市销售一种国产品牌台灯,平均每天可售出100盏,每盏台灯的利润为12元.为了扩大销售,增加利润,超市准备适当降价,据调查,每盏台灯每降价1元,平均每天会多售出20盏.若要实现每天销售获利1400元,则每盏台灯降价多少元?16.为响应国家“垃圾分类”的号召,温州市开始实施《城镇垃圾分类标准》,某商场向厂家订购了A,B两款垃圾桶共100个,已知购买A款垃圾桶个数不超过30个时,每个A 款垃圾桶进价为80元,若超过30个时,每增加1个垃圾桶,则该款垃圾桶每个进价减少2元,厂家为保障盈利,每个A款垃圾桶进价不低于50元.每个B款垃圾桶的进价为40元,设所购买A款垃圾桶的个数为x个.(1)根据信息填表:款式数量(个)进价(元/个)A x(不超过30个时)80x(超过30个时)B40(2)若订购的垃圾桶的总进价为4800元,则该商场订购了多少个A款垃圾桶?17.安庆某商场销售一批空气加湿器,平均每天可售出30台,每台可盈利50元,为了扩大销售量,增加盈利,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每台每降价1元,商场平均每天可多售出2台.(1)若该商场某天降价了5元,则当天可售出台,当天共盈利元.(2)在尽快减少库存的前提下,商场每天要盈利2100元,每台空气加湿器应降价多少元?(3)该商场平均每天盈利能达到2500元吗?如果能,求出此时应降价多少;如果不能,请说明理由.18.商场某种商品平均每天可销售40件,每件盈利50元,节日期间,为了尽快减少库存压力,尽可能的让利消费者,商场决定采取适当降价的措施进行促销.经市场调研发现,每件商品每降价1元,商场平均每天可多售出2件.设每件商品降价x元.(1)降价促销后商场每件商品盈利元,平均每天日销售量增加件;(2)在上述条件不变的情况下,商场要实现日盈利额到2400元,则每件商品降价多少元?19.2021年2月25日,中国向世界庄严宣告,中国脱贫攻坚战取得了全面胜利,中国创造了又一个彪炳史册的人间奇迹.在脱贫过程中,某贫困户2018年家庭年人均纯收入3200元,通过政府的产业扶植,大力发展养殖业,到2020年家庭年人均纯收入5000元,顺利实现脱贫.(1)求该户居民2019年和2020年家庭年人均纯收入的年平均增长率;(2)若年平均增长率保持不变,预计2021年底,该户居民的家庭年人均纯收入能否达到6200元.20.在丝绸博览会期间,某公司展销如图所示的长方形工艺品,该工艺品长60cm,宽40cm,中间镶有宽度相同的三条丝绸条带.(1)若丝绸条带的面积为650cm2,求丝绸条带的宽度;(2)已知该工艺品的成本是40元/件,如果以单价为100元/件销售,那么每天可售出200件,另外每天除工艺品的成本外所需支付的各种费用是2000元,根据销售经验,如果将销售单价降低1元,每天可多售出20件,请问该公司每天把销售单价定为多少元时,当日所获利润为22500元.参考答案1.解:设平均每次降价的百分率为x,由题意得,56(1﹣x)2=31.5,故选:A.2.解:设小道的宽度应为xm,则剩余部分可合成长为(40﹣2x)m,宽为(26﹣x)m的矩形,依题意得:(40﹣2x)(26﹣x)=864,整理,得x2﹣46x+88=0.解得,x1=2,x2=44.∵44>40(不合题意,舍去),∴x=2.答:小道进出口的宽度应为2米.故选:B.3.解:设每轮传染中平均每人传染了x人,则第一轮有x人被传染,第二轮有x(x+1)人被传染,依题意得:1+x+x(x+1)=144,整理得:x2+2x﹣143=0,解得:x1=11,x2=﹣13(不合题意,舍去).故答案为:11.4.解:设茶园垂直于墙的一边长为x m,则另一边的长度为(68+2﹣2x)m.根据题意,得:x(68+2﹣2x)=600.整理,得x2﹣35x+300=0,解得x1=15,x2=20.当x=15时,70﹣2x=40>32,不符合题意舍去;当x=20时,70﹣2x=30,符合题意.答:这个茶园的长和宽分别为30m、20m.5.解:(1)可猜想y与x是一次函数关系,设这个一次函数为y=kx+b(k≠0),∵这个一次函数的图象经过(20,500)、(30,400)这两点,∴,解得,∴函数关系式是y=﹣10x+700.(2)设工艺厂试销该工艺品实际售价为x元,依题意得:(x﹣10)(﹣10x+700)=8000,解得,x1=30,x2=50(舍),所以,当售价为30元时,利润为8000元.6.解:(1)设平均每次降价的百分率为x,依题意得:5(1﹣x)2=3.2,解得:x1=0.2=20%,x2=1.8(不合题意,舍去).答:平均每次降价的百分率为20%.(2)设该超市购进m(m>300)千克该种苹果,则选择方案一所需费用为3.2×300+3.2×0.8(m﹣300)=(2.56m+192)(元),选择方案二所需费用为(3.2﹣0.4)m=2.8m(元).当2.56m+192>2.8m时,解得:m<800,又∵m>300,∴300<m<800;当2.56m+192=2.8m时,解得:m=800;当2.56m+192<2.8m时,解得:m>800.答:该超市购进苹果大于300千克且小于800千克时,选择方案二合算;该超市购进苹果等于800千克时,选择两种方案费用相同;该超市购进苹果大于800千克时,选择方案一合算.7.解:(1)500﹣10×10=400(个),答:每天出售400个;(2)设每个粽子的定价为x元时,每天的利润为800元,根据题意得:(x﹣3)(500﹣10×)=800,解得x1=7,x2=5,∵售价不能超过进价的200%,∴x≤3×200%,即x≤6,∴x=5,∴定价为5元时,每天的利润为800元;(3)不能.理由:设每个粽子的定价为m元,则每天的利润为w,则有:w=(m﹣3)(500﹣10×)=(m﹣3)(500﹣100m+400)=﹣100(m﹣3)(m﹣9)=﹣100(m2﹣12m+27)=﹣100[(m﹣6)2﹣9]=﹣100(m﹣6)2+900,∵二次项系数为﹣100<0,m≤6,∴当定价为6元时,每天的利润最大,最大的利润是900元,不能达到1000元.8.解:(1)设该服装店2018年到2020年成衣销售量的年平均增长率为x,依题意得:10000(1+x)2=14400,解得:x1=0.2=20%,x2=﹣2.2(不合题意,舍去).答:该服装店2018年到2020年成衣销售量的年平均增长率为20%.(2)14400×(1+20%)2=20736(件).答:预计2022年该服装店售出成衣将达到20736件.9.解:设正方形的边长为xcm,由题意得(18.5×2+1+2x)(26+2x)=1408,化简得x2+32x﹣105=0,解得x1=3,x2=﹣35(不合题意,舍去).答:正方形的边长为3cm.10.解:(1)设平均下降率为x,依题意得:200(1﹣x)2=162,解得:x1=0.1=10%,x2=1.9(不合题意,舍去).答:平均下降率为10%.(2)设单价应降低m元,则每个的销售利润为(200﹣m﹣162)=(38﹣m)元,每天可售出20+×10=(20+2m)个,依题意得:(38﹣m)(20+2m)=1150,整理得:m2﹣28m+195=0,解得:m1=15,m2=13.∵要减少库存,∴m=15.答:单价应降低15元.11.解:设每次倒出的酒精溶液为xL,依题意得:10×80%﹣80%x﹣=2,整理得:x2+20x﹣75=0,解得:x1=5,x2=15(不合题意,舍去).答:每次倒出的酒精溶液为5L.12.解:设每件商品售价应定为x元,则每件商品的销售利润为(x﹣30)元,每月的销售量为600﹣10(x﹣40)=(1000﹣10x)件,依题意得:(x﹣30)(1000﹣10x)=10000,整理得:x2﹣130x+4000=0,解得:x1=50,x2=80.当x=50时,1000﹣10x=1000﹣10×50=500;当x=80时,1000﹣10x=1000﹣10×80=200.答:当每件商品售价定为50元时,这时电商每月能售出商品500件;当每件商品售价定为80元时,这时电商每月能售出商品200件.13.解:(1)设AD=x米,则BC=AD=x米,∴CD=34+2﹣2AD=34+2﹣2x=(36﹣2x)米.故答案为:(36﹣2x).(2)依题意得:x(36﹣2x)=160,化简得:x2﹣18x+80=0,解得:x1=8,x2=10.当x=8时,36﹣2x=36﹣2×8=20>18,不合题意,舍去;当x=10时,36﹣2x=36﹣2×10=16<18,符合题意.答:AD的长为10米.14.解:(1)450+450×12%=450+54=504(万元).答:该商场“五一节”这五天的总营业额为504万元.(2)设该商场3、4月份营业额的月增长率为x,依题意得:350(1+x)2=504,解得:x1=0.2=20%,x2=﹣2.2(不合题意,舍去).答:该商场3、4月份营业额的月增长率为20%.15.解:设每盏台灯降价x元,则每盏台灯的利润为(12﹣x)元,平均每天可售出(100+20x)盏,依题意得:(12﹣x)(100+20x)=1400,整理得:x2﹣7x+10=0,解得:x1=2,x2=5.答:每盏台灯降价2或5元.16.解:(1)30+(80﹣50)÷2=30+30÷2=30+15=45(个).当30<x≤45时,A款垃圾桶的进价为80﹣2(x﹣30)=(140﹣x)(元/个);当x>45时,A款垃圾桶的进价为50元/个.∵A,B两款垃圾桶共购进100个,A款垃圾桶购进x个,∴B款垃圾桶购进(100﹣x)个.故答案为:;(100﹣x).(2)当x≤30时,80x+40(100﹣x)=4800,解得:x=20;当30<x≤45时,(140﹣2x)x+40(100﹣x)=4800,化简得:x2﹣50x+400=0,解得:x1=40,x2=10(不合题意,舍去);当x>45时,50x+40(100﹣x)=4800,解得:x=80.答:该商场订购了20个或40个或80个A款垃圾桶.17.解:(1)30+2×5=30+10=40(台),(50﹣5)×40=45×40=1800(元).故答案为:40;1800.(2)设每台空气加湿器应降价x元,则每台盈利(50﹣x)元,每天可以售出(30+2x)台,依题意得:(50﹣x)(30+2x)=2100,整理得:x2﹣35x+300=0,解得:x1=15,x2=20.∵尽快减少库存,∴x的值应为20.答:每台空气加湿器应降价20元.(3)不能,理由如下:设每台空气加湿器应降价y元,则每台盈利(50﹣y)元,每天可以售出(30+2y)台,依题意得:(50﹣y)(30+2y)=2500,整理得:y2﹣35y+500=0.∵Δ=(﹣35)2﹣4×1×500=1225﹣2000=﹣775<0,∴该方程无实数根,∴商场平均每天盈利不能达到2500元.18.解:(1)降价促销后商场每件商品盈利:(50﹣x)元,平均每天日销售量增加:2x元;故答案为:(50﹣x),2x;(2)由题意列方程为:(50﹣x)(40+2x)=2400,解得:x1=20,x2=10(不合题意,舍去),答:商场每件商品要降价20元,即让利消费者又能实现2400元的日盈利.19.解:(1)设家庭年人均纯收入的年平均增长率为x,由题意列方程:3200(1+x)2=5000,解得x1==25%,x2=﹣(不合题意,舍去),∴家庭年人均纯收入的年平均增长率为25%;(2)5000(1+25%)=6250>6200,2021年底,该户居民年人均纯收入能达到6200元.20.解:(1)设条带的宽度为xcm,根据题意,得(60﹣2x)(40﹣x)=60×40﹣650.整理,得x2﹣70x+325=0,解得x1=5,x2=65(舍去).答:丝绸条带的宽度为5cm.(2)设每件工艺品降价y元出售,由题意得:(100﹣y﹣40)(200+20y)﹣2000=22500.解得:y1=y2=25.所以售价为100﹣25=75(元).答:当售价定为75元时能达到利润22500元.。

北师大版九年级数学上册利用一元二次方程解决几何问题及数字问题测试题

北师大版九年级数学上册利用一元二次方程解决几何问题及数字问题测试题

北师大版初中数学测试题2.6 应用一元二次方程第1课时利用一元二次方程解决几何问题及数字问题1. 在一幅长为80cm,宽为50cm的矩形风景画的四周镶一条相同宽度的金色纸边,制成一幅矩形挂图,如图所示,如果要使整个挂图的面积是5400cm2,设金色纸边的宽为xcm,那么x 满足的方程是()A.x2+130x-1400=0 B.x2+65x-350=0C.x2-130x-1400=0 D.x2-65x-350=02.一个两位数等于它的个位数的平方,且个位数字比十位数字大3,•则这个两位数为().A.25 B.36 C.25或36 D.-25或-363.从正方形铁片,截去2cm宽的一条长方形,余下的面积是48cm2,则原来的正方形铁片的面积是().A.8cm B.64cm C.8cm2 D.64cm24. 两个正方形面积的和为106,周长的差为16,则其中较大的正方形的边长是.5.如图,是长方形鸡场平面示意图,一边靠墙,另外三面用竹篱笆围成,若竹篱笆总长为35m,所围的面积为150m2,则此长方形鸡场的长、宽分别为_______.6. 要用一个长为10m的梯子斜靠在墙上,梯子的底端距墙角6m.若梯子的顶端下滑1m,如果梯子顶端向下滑动的距离等于底端向外滑动的距离,那么滑动的距离是米.7.有一张长方形的桌子,长6尺,宽3尺,有一块台布的面积是桌面面积的2倍,并且铺在桌面上时,各边垂下的长度相同,求台布的长和宽各是多少?(精确到0.1尺)8.某林场计划修一条长750m,断面为等腰梯形的渠道,断面面积为1.6m2,•上口宽比渠深多2m,渠底比渠深多0.4m.(1)渠道的上口宽与渠底宽各是多少?(2)如果计划每天挖土48m3,需要多少天才能把这条渠道挖完?9、一个两位数等于它的个位数字与十位数字的乘积的3倍,并且十位上的数字比个位数小2,求这个两位数。

10、一个三位数,十位数字比百位数字大3,个位数字等于百位数与十位数的和,已知这个三位数比个位数字平方的5倍大12,求这个三位数。

2,6应用一元二次方程同步练习2021—2022学年北师大版九年级数学上册

2,6应用一元二次方程同步练习2021—2022学年北师大版九年级数学上册

2.6应用一元二次方程同步练习一.选择题(共13小题)1.在育红学校开展的课外阅读活动中,学生人均阅读量从七年级的每年100万字增加到九年级的每年121万字.设该校七至九年级人均阅读量年均增长率为x,根据题意,所列方程正确的是()A.100(1+x)2=121B.100×2(1+x)=121C.100(1+2x)=121D.100(1+x)+100(1+x)2=1212.为执行国家药品降价政策,给人民群众带来实惠,某药品经过两次降价,每瓶零售价由100元降为64元,求平均每次降价的百分率.设平均每次降价的百分率为x,可列方程得()A.100(1﹣x)2=64B.100(1+x)2=64C.100(1﹣2x)=64D.100(1+2x)=643.为执行“均衡教育”政策,某区2018年投入教育经费2500万元,预计到2020年底三年累计投入1.2亿元,若每年投入教育经费的平均增长率为x,则下列方程正确的是()A.2500(1+2x)=12000B.2500+2500(1+x)+2500(1+x)2=12000C.2500+(1+x)2=12000D.2500+2500(1+x)+2500(1+2x)=120004.某公司计划用32m的材料沿墙(可利用)建造一个面积为120m2的仓库,设仓库中和墙平行的一边长为xm,则下列方程中正确的是()A.x(32﹣x)=120B.x(16﹣x)=120C.x(32﹣2x)=120D.x(16﹣x)=1205.如图1,有一张长80cm,宽50cm的长方形硬纸片,裁去角上四个小正方形之后,折成如图2那样的无盖纸盒,若纸盘的底面积是2800cm2,设纸盒的高为x(cm),那么x满足的方程是()A.(80﹣x)(50﹣2x)=2800B.(80﹣x)(50﹣x)=2800C.(80﹣2x)(50﹣x)=2800D.(80﹣2x)(50﹣2x)=28006.为庆祝建党100周年华诞,某校组织摄影比赛.小明上交的作品如下:七寸照片(长7英寸,宽5英寸);将照片贴在一张矩形衬纸的正中央,照片四周外露衬纸的宽度相同;矩形衬纸的面积为照片面积的3倍.设照片四周外露衬纸的宽度为x英寸(如图),下面所列方程正确的是()A.(7+2x)(5+2x)=3×7×5B.3(7+x)(5+x)=7×5C.3(7+2x)(5+2x)=7×5D.(7+x)(5+x)=3×7×57.如图,在长为32米、宽为20米的矩形地面上修筑同样宽的道路(图中阴影部分),余下部分种植草坪,要使草坪的面积为540平方米,设道路的宽x米,则可列方程为()A.32×20﹣32x﹣20x=540B.(32﹣x)(20﹣x)+x2=540C.32x+20x=540D.(32﹣x)(20﹣x)=5408.有1人患了流感,经过两轮传染后共有81人患了流感,设每轮传染中每人传染x人,其中20%的人因自身抵抗力强而未患流感,则根据题意可列方程为()A.0.2(1+x)2=81B.(1+0.2x)2=81C.0.8(1+x)2=81D.(1+0.8x)2=819.疫情期间,有3人确诊新型冠状肺炎,经过两轮传染后共有147人确诊新型冠状肺炎,设每轮传染中平均一个人传染了x人,则()A.3x2=147B.3(1+x)2=147C.3(1+x+x2)=147D.(3+3x)2=14710.2021年新年期间班上数学兴趣小组的同学互发微信祝贺,每两名同学都互相发一次.小明统计全组共互发了72次微信,设数学兴趣小组的人数为x,则可列方程为()A.x(x﹣1)=72B.x(x﹣1)=2×72C.x(x﹣1)=72D.x(x+1)=7211.学校组织一次足球赛,要求每两队之间都要赛一场.若共赛了28场,则有几只球队参赛?设有x只球队参赛,则下列方程中正确的是()A.x(x+1)=28B.x(x﹣1)=28C.x(x+1)=28D.x(x﹣1)=2812.为增强学生体质,丰富学生的课外生活,为同学们搭建一个互相交流的平台,学校要组织一次篮球联赛,赛制为单循环(参赛的每两队间比赛一场),根据场地和时间等条件,学校计划安排15场比赛.设学校应邀请x个队参赛,根据题意列方程为()A.x(x+1)=15B.x(x﹣1)=15C.x(x+1)=15D.x(x﹣1)=1513.在元旦庆祝活动中,参加活动的同学互赠贺卡,共送贺卡42张,设参加活动的同学有x人,根据题意,可列方程()A.x(x﹣1)=42B.x(x+1)=42C.D.二.填空题(共7小题)14.如图所示,在建筑工地上,为了支撑一堵墙,用一根长为5m的木材,顶端撑在墙上,底端撑在地面上,BO=4m,现为了增加支撑效果,底端向前移动1.5m,问:顶端需上移多少米?在这个问题中,设顶端上移x米,则可列方程为.15.某学校生物兴趣小组在该校空地上围了一块面积为200m2的矩形试验田,用来种植蔬菜.如图,试验田一面靠墙,墙长35m,另外三面用49m长的篱围成,其中一边开有一扇1m宽的门(不包括篱笆).设试验田垂直于墙的一边AB的长为xm,则所列方程为.16.某种植物的主干长出若干相同数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是73,求每个支干又长出多少小分支?如果设每个支干又长出x个小分支,那么依题意可得方程为.17.参加一次聚会的每两个人都握了一次手,所有人共握手10次.设有x人参加聚会,则可列方程为.18.如图,△ABC中,∠B=90°,AB=6cm,BC=8cm,点P从A点开始沿AB向B点以1cm/s的速度移动,点Q从B点开始沿BC边向C点以2cm/s的速度移动.如果P、Q分别从A、B同时出发,经过秒钟△PQB的面积等于△ABC面积的.19.ABCD为矩形的四个顶点,AB=16cm,AD=6cm,动点P、Q分别从点A、C同时出发,点P以3cm/s的速度向点B移动,一直到达B为止,点Q以2cm/s的速度向D移动,P、Q两点从出发开始到秒时,点P和点Q的距离是10cm.20.五个完全相同的小长方形拼成如图所示的大长方形,大长方形的面积是135cm2,则以小长方形的宽为边长的正方形面积是cm2.三.解答题(共6小题)21.某超市销售一种国产品牌台灯,平均每天可售出100盏,每盏台灯的利润为12元.为了扩大销售,增加利润,超市准备适当降价,据调查,每盏台灯每降价1元,平均每天会多售出20盏.若要实现每天销售获利1400元,则每盏台灯降价多少元?22.为响应国家“垃圾分类”的号召,温州市开始实施《城镇垃圾分类标准》,某商场向厂家订购了A,B两款垃圾桶共100个,已知购买A款垃圾桶个数不超过30个时,每个A款垃圾桶进价为80元,若超过30个时,每增加1个垃圾桶,则该款垃圾桶每个进价减少2元,厂家为保障盈利,每个A款垃圾桶进价不低于50元.每个B款垃圾桶的进价为40元,设所购买A款垃圾桶的个数为x个.(1)根据信息填表:款式数量(个)进价(元/个)A x(不超过30个时)80x(超过30个时)B40(2)若订购的垃圾桶的总进价为4800元,则该商场订购了多少个A款垃圾桶?23.精准扶贫是我国扶贫开发工作中的重点工作,某村提倡贫困户在家承接手工产品提高经济收入.张大爷一家承接的手工产品成本每件10元,销售单价为20元时,每月销量为300件,销售价每降低1元,每月销量增加10件.政府根据每月销量补贴每件2元扶贫补助金.(1)当销售单价定为15元,那么政府本月补助张大爷一家多少元?(2)产品每月的销售利润加每月政府补助金是张大爷一家的手工产品收入,当某月销售单价为多少元时,张大爷一家能获得3200元的收入?24.如图是一张长12cm,宽10cm的矩形铁皮,将其剪去两个全等的正方形和两个全等的矩形,剩余部分(阴影部分)可制成底面积是24cm2的有盖的长方体铁盒,求剪去的正方形的边长.25.2020年1月底,武汉爆发“新冠”疫情后,口罩成为家庭必需品,某口罩经销商批发了一批口罩,进货单价为每盒50元,若按每盒60元出售,则可销售80盒.现准备提价销售,经市场调研发现:每盒每提价1元,销量就会减少2盒,为保护消费者利益,物价部门规定,销售利润不能超过50%,设该口罩售价为每盒x(x>60)元.(1)用含x的代数式表示提价后平均每天的销售量为盒;(2)现在预算要获得1200元利润,应按每盒多少元销售?26.端午节吃粽子是中国古老的传统习俗,某粽子批发店卖出每个粽子的利润为2元,根据员工情况,每天最多能做1100个,由市场调查得知,若每个粽子的单价降低x元,则粽子每天的销售量y(个)关于x(元)的函数关系式为y=800x+400.(1)若每个粽子降价0.2元,则该店每天的销售量为个,每天的总利润为元.(2)当每个粽子的单价降低多少元时,该店每天的总利润刚好是1200元?2.6应用一元二次方程同步练习参考答案与试题解析一.选择题(共13小题)1.在育红学校开展的课外阅读活动中,学生人均阅读量从七年级的每年100万字增加到九年级的每年121万字.设该校七至九年级人均阅读量年均增长率为x,根据题意,所列方程正确的是()A.100(1+x)2=121B.100×2(1+x)=121C.100(1+2x)=121D.100(1+x)+100(1+x)2=121【解答】解:设该校七至九年级人均阅读量年均增长率为x,根据题意即可列出方程:100(1+x)2=121.故选:A.2.为执行国家药品降价政策,给人民群众带来实惠,某药品经过两次降价,每瓶零售价由100元降为64元,求平均每次降价的百分率.设平均每次降价的百分率为x,可列方程得()A.100(1﹣x)2=64B.100(1+x)2=64C.100(1﹣2x)=64D.100(1+2x)=64【解答】解:根据题意得:100(1﹣x)2=64,故选:A.3.为执行“均衡教育”政策,某区2018年投入教育经费2500万元,预计到2020年底三年累计投入1.2亿元,若每年投入教育经费的平均增长率为x,则下列方程正确的是()A.2500(1+2x)=12000B.2500+2500(1+x)+2500(1+x)2=12000C.2500+(1+x)2=12000D.2500+2500(1+x)+2500(1+2x)=12000【解答】解:设每年投入教育经费的年平均增长百分率为x,由题意得,2500+2500×(1+x)+2500(1+x)2=12000.故选:B.4.某公司计划用32m的材料沿墙(可利用)建造一个面积为120m2的仓库,设仓库中和墙平行的一边长为xm,则下列方程中正确的是()A.x(32﹣x)=120B.x(16﹣x)=120C.x(32﹣2x)=120D.x(16﹣x)=120【解答】解:设仓库中和墙平行的一边长为xm,则垂直于墙的边长为(16﹣x)m,根据题意得:x(16﹣x)=120,故选:B.5.如图1,有一张长80cm,宽50cm的长方形硬纸片,裁去角上四个小正方形之后,折成如图2那样的无盖纸盒,若纸盘的底面积是2800cm2,设纸盒的高为x(cm),那么x满足的方程是()A.(80﹣x)(50﹣2x)=2800B.(80﹣x)(50﹣x)=2800C.(80﹣2x)(50﹣x)=2800D.(80﹣2x)(50﹣2x)=2800【解答】解:设纸盒的高是x,根据题意得:(80﹣2x)(50﹣2x)=2800.故选:D.6.为庆祝建党100周年华诞,某校组织摄影比赛.小明上交的作品如下:七寸照片(长7英寸,宽5英寸);将照片贴在一张矩形衬纸的正中央,照片四周外露衬纸的宽度相同;矩形衬纸的面积为照片面积的3倍.设照片四周外露衬纸的宽度为x英寸(如图),下面所列方程正确的是()A.(7+2x)(5+2x)=3×7×5B.3(7+x)(5+x)=7×5C.3(7+2x)(5+2x)=7×5D.(7+x)(5+x)=3×7×5【解答】解:设照片四周外露衬纸的宽度为x英寸,根据题意得:(7+2x)(5+2x)=3×7×5,故选:A.7.如图,在长为32米、宽为20米的矩形地面上修筑同样宽的道路(图中阴影部分),余下部分种植草坪,要使草坪的面积为540平方米,设道路的宽x米,则可列方程为()A.32×20﹣32x﹣20x=540B.(32﹣x)(20﹣x)+x2=540C.32x+20x=540D.(32﹣x)(20﹣x)=540【解答】解:设道路的宽x米,则余下部分可合成长为(32﹣x)m,宽为(20﹣x)m的矩形,依题意得:(32﹣x)(20﹣x)=540.故选:D.8.有1人患了流感,经过两轮传染后共有81人患了流感,设每轮传染中每人传染x人,其中20%的人因自身抵抗力强而未患流感,则根据题意可列方程为()A.0.2(1+x)2=81B.(1+0.2x)2=81C.0.8(1+x)2=81D.(1+0.8x)2=81【解答】解:依题意得(1+0.8x)2=81,故选:D.9.疫情期间,有3人确诊新型冠状肺炎,经过两轮传染后共有147人确诊新型冠状肺炎,设每轮传染中平均一个人传染了x人,则()A.3x2=147B.3(1+x)2=147C.3(1+x+x2)=147D.(3+3x)2=147【解答】解:设每轮传染中平均一个人传染了x人,依题意,得:3(1+x)2=147,故选:B.10.2021年新年期间班上数学兴趣小组的同学互发微信祝贺,每两名同学都互相发一次.小明统计全组共互发了72次微信,设数学兴趣小组的人数为x,则可列方程为()A.x(x﹣1)=72B.x(x﹣1)=2×72C.x(x﹣1)=72D.x(x+1)=72【解答】解:由题意可得,x(x﹣1)=72,故选:A.11.学校组织一次足球赛,要求每两队之间都要赛一场.若共赛了28场,则有几只球队参赛?设有x只球队参赛,则下列方程中正确的是()A.x(x+1)=28B.x(x﹣1)=28C.x(x+1)=28D.x(x﹣1)=28【解答】解:每支球队都需要与其他球队赛(x﹣1)场,但2队之间只有1场比赛,所以可列方程为:x(x﹣1)=28,故选:D.12.为增强学生体质,丰富学生的课外生活,为同学们搭建一个互相交流的平台,学校要组织一次篮球联赛,赛制为单循环(参赛的每两队间比赛一场),根据场地和时间等条件,学校计划安排15场比赛.设学校应邀请x个队参赛,根据题意列方程为()A.x(x+1)=15B.x(x﹣1)=15C.x(x+1)=15D.x(x﹣1)=15【解答】解:依题意得:x(x﹣1)=15.故选:D.13.在元旦庆祝活动中,参加活动的同学互赠贺卡,共送贺卡42张,设参加活动的同学有x人,根据题意,可列方程()A.x(x﹣1)=42B.x(x+1)=42C.D.【解答】解:设参加活动的同学有x人,则每人送出(x﹣1)张贺卡,依题意得:x(x﹣1)=42,故选:A.二.填空题(共7小题)14.如图所示,在建筑工地上,为了支撑一堵墙,用一根长为5m的木材,顶端撑在墙上,底端撑在地面上,BO=4m,现为了增加支撑效果,底端向前移动1.5m,问:顶端需上移多少米?在这个问题中,设顶端上移x米,则可列方程为(x+3)2+(4﹣1.5)2=52.【解答】解:在△AOB中,∠AOB=90°,BO=4,AB=5,∴AO==3.设顶端上移x米,依题意得:(x+3)2+(4﹣1.5)2=52.故答案为:(x+3)2+(4﹣1.5)2=52.15.某学校生物兴趣小组在该校空地上围了一块面积为200m2的矩形试验田,用来种植蔬菜.如图,试验田一面靠墙,墙长35m,另外三面用49m长的篱围成,其中一边开有一扇1m宽的门(不包括篱笆).设试验田垂直于墙的一边AB的长为xm,则所列方程为x(49+1﹣2x)=200.【解答】解:设当试验田垂直于墙的一边长为xm时,则另一边的长度为(49+1﹣2x)m,依题意得:x(49+1﹣2x)=200,故答案是:x(49+1﹣2x)=200.16.某种植物的主干长出若干相同数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是73,求每个支干又长出多少小分支?如果设每个支干又长出x个小分支,那么依题意可得方程为x2+x+1=73.【解答】解:设每个支干长出的小分支的数目是x个,根据题意列方程得:x2+x+1=73,故答案为:x2+x+1=73.17.参加一次聚会的每两个人都握了一次手,所有人共握手10次.设有x人参加聚会,则可列方程为x(x﹣1)=2×10.【解答】解:设有x人参加聚会,根据题意得:x(x﹣1)=2×10,解得:x1=5,x2=﹣4(舍去).答:则有5人参加聚会.故答案为:x(x﹣1)=2×10.18.如图,△ABC中,∠B=90°,AB=6cm,BC=8cm,点P从A点开始沿AB向B点以1cm/s的速度移动,点Q从B点开始沿BC边向C点以2cm/s的速度移动.如果P、Q分别从A、B同时出发,经过3秒钟△PQB的面积等于△ABC面积的.【解答】解:根据题意,知BP=AB﹣AP=6﹣t,BQ=2t.根据三角形的面积公式,得PB•BQ=××6×8,2t(6﹣t)=18,(t﹣3)2=0,解得t=3.故经过3秒钟△PQB的面积等于△ABC面积的.故答案是:3.19.ABCD为矩形的四个顶点,AB=16cm,AD=6cm,动点P、Q分别从点A、C同时出发,点P以3cm/s的速度向点B移动,一直到达B为止,点Q以2cm/s的速度向D移动,P、Q两点从出发开始到秒时,点P 和点Q的距离是10cm.【解答】解:设P、Q两点运动的时间为t秒,作PH⊥CD于H,则PB=(16﹣3t)cm,QH=|16﹣5t|cm,PH=6cm,由PH2+HQ2=PQ2,得62+(16﹣5t)2=102,解得t=故答案为:20.五个完全相同的小长方形拼成如图所示的大长方形,大长方形的面积是135cm2,则以小长方形的宽为边长的正方形面积是9cm2.【解答】解:设小长方形的长为xcm,宽为xcm,根据题意得:(x+2×x)•x=135,解得:x=9或x=﹣9(舍去),则x=3.所以3×3=9(cm2).故答案为:9.三.解答题(共6小题)21.某超市销售一种国产品牌台灯,平均每天可售出100盏,每盏台灯的利润为12元.为了扩大销售,增加利润,超市准备适当降价,据调查,每盏台灯每降价1元,平均每天会多售出20盏.若要实现每天销售获利1400元,则每盏台灯降价多少元?【解答】解:设每盏台灯降价x元,则每盏台灯的利润为(12﹣x)元,平均每天可售出(100+20x)盏,依题意得:(12﹣x)(100+20x)=1400,整理得:x2﹣7x+10=0,解得:x1=2,x2=5.答:每盏台灯降价2元或5元.22.为响应国家“垃圾分类”的号召,温州市开始实施《城镇垃圾分类标准》,某商场向厂家订购了A,B两款垃圾桶共100个,已知购买A款垃圾桶个数不超过30个时,每个A款垃圾桶进价为80元,若超过30个时,每增加1个垃圾桶,则该款垃圾桶每个进价减少2元,厂家为保障盈利,每个A款垃圾桶进价不低于50元.每个B款垃圾桶的进价为40元,设所购买A款垃圾桶的个数为x个.(1)根据信息填表:款式数量(个)进价(元/个)A x(不超过30个时)80x(超过30个时)B(100﹣x)40(2)若订购的垃圾桶的总进价为4800元,则该商场订购了多少个A款垃圾桶?【解答】解:(1)30+(80﹣50)÷2=30+30÷2=30+15=45(个).当30<x≤45时,A款垃圾桶的进价为80﹣2(x﹣30)=(140﹣x)(元/个);当x>45时,A款垃圾桶的进价为50元/个.∵A,B两款垃圾桶共购进100个,A款垃圾桶购进x个,∴B款垃圾桶购进(100﹣x)个.故答案为:;(100﹣x).(2)当x≤30时,80x+40(100﹣x)=4800,解得:x=20;当30<x≤45时,(140﹣2x)x+40(100﹣x)=4800,化简得:x2﹣50x+400=0,解得:x1=40,x2=10(不合题意,舍去);当x>45时,50x+40(100﹣x)=4800,解得:x=80.答:该商场订购了20个或40个或80个A款垃圾桶.23.精准扶贫是我国扶贫开发工作中的重点工作,某村提倡贫困户在家承接手工产品提高经济收入.张大爷一家承接的手工产品成本每件10元,销售单价为20元时,每月销量为300件,销售价每降低1元,每月销量增加10件.政府根据每月销量补贴每件2元扶贫补助金.(1)当销售单价定为15元,那么政府本月补助张大爷一家多少元?(2)产品每月的销售利润加每月政府补助金是张大爷一家的手工产品收入,当某月销售单价为多少元时,张大爷一家能获得3200元的收入?【解答】解:(1)由题意可得:2×(300+5×10)=700(元),答:政府本月补助张大爷一家700元;(2)设销售单价为x元,由题意可得:(x﹣10+2)[300+10(20﹣x)]=3200,解得:x1=18,x2=40(不合题意舍去),答:当某月销售单价为18元时,张大爷一家能获得3200元的收入.24.如图是一张长12cm,宽10cm的矩形铁皮,将其剪去两个全等的正方形和两个全等的矩形,剩余部分(阴影部分)可制成底面积是24cm2的有盖的长方体铁盒,求剪去的正方形的边长.【解答】解:设正方形的边长为xcm,根据题意得:(10﹣2x)(6﹣x)=24,整理得:x2﹣11x+18=0,解得x=2或x=9(舍去),答:剪去的正方形的边长为2cm.25.2020年1月底,武汉爆发“新冠”疫情后,口罩成为家庭必需品,某口罩经销商批发了一批口罩,进货单价为每盒50元,若按每盒60元出售,则可销售80盒.现准备提价销售,经市场调研发现:每盒每提价1元,销量就会减少2盒,为保护消费者利益,物价部门规定,销售利润不能超过50%,设该口罩售价为每盒x(x>60)元.(1)用含x的代数式表示提价后平均每天的销售量为(200﹣2x)盒;(2)现在预算要获得1200元利润,应按每盒多少元销售?【解答】解:(1)根据题意,提价后平均每天的销售量为:80﹣2(x﹣60)=200﹣2x.故答案是:(200﹣2x);(2)根据题意得:(x﹣50)(200﹣2x)=1200,整理得:x2﹣150x+5600=0.解得:x1=70,x2=80.当x=70时,利润率=,符合题意;当x=80时,利润率=,不合题意,舍去.所以要获得1200元利润,应按70元每盒销售.26.端午节吃粽子是中国古老的传统习俗,某粽子批发店卖出每个粽子的利润为2元,根据员工情况,每天最多能做1100个,由市场调查得知,若每个粽子的单价降低x元,则粽子每天的销售量y(个)关于x(元)的函数关系式为y=800x+400.(1)若每个粽子降价0.2元,则该店每天的销售量为560个,每天的总利润为1008元.(2)当每个粽子的单价降低多少元时,该店每天的总利润刚好是1200元?【解答】解:(1)由题意可得:若每个粽子降价0.2元,则该店每天的销售量为800×0.2+400=560(个),每天的总利润为:560×(2﹣0.2)=1008(元).故答案是:560;1008;(2)由题意,得(2﹣x)(800x+400)=1200,解得:x=0.5或x=1.当x=1时,y=800+400=1200>1100,超过每天可以制作的最大量,故不符合题意.所以,当每个粽子的单价降低0.5元时,该店每天的总利润刚好是1200元。

北师大版九年级数学上册课件 2-6-2 应用一元二次方程求解增长率与市场营销问题

北师大版九年级数学上册课件 2-6-2 应用一元二次方程求解增长率与市场营销问题

想平均每天赢利 180 元,每张贺年卡应降价多少元?
方法指导:找出等量关系式,每张贺年卡赢利的钱×张数=赢
利总钱数.
解:设每张贺年卡应降价x元,则现在的利润是(0.3-x)元,多
售出200x÷0.05=4 000x(张).
根据题意,得(0.3-x)(500+4 000x)=180,
整理,得400x2-70x+3=0.
进价
单个利润
(3)总利润=____________×销量.
典例讲解
例1 某批发市场礼品柜台春节期间购进大量贺年卡,一种贺
年卡平均每天可售出 500 张,每张赢利 0.3 元. 为了尽快减少库
存,摊主决定采取适当的降价措施.调查发现,如果这种贺年卡
的售价每降价 0.05 元,那么平均每天可多售出 200 张. 摊主要
赚8000元利润,售价应定为多少,这时应进货为多少个?
方法指导:设商品单价为(50+x)元,则每个商品的利润为
[(50+x)-40]元,因为每涨价1元,其销售会减少10,则每个
涨价x元,其销售量会减少10x,故销售量为(500-10x)个,
根据每件商品的利润×件数=8000,则(500-10x)·[(50+x)-
出等量关系列出方程,求出x的值,即可得出答案.
解:设这个增长率是x.根据题意,得
2 000×(1+x)2=2 880.
解得x1=0.2=20%,x2=-2.2(不合题意,舍去).
答:这个增长率是20%.
例3 百佳超市将进货单价为40元的商品按50元出售时,能卖
500个,已知该商品每涨价1元,其销售量就要减少10个,为了
20%
率相同,那么这个增长率是______.

2.6 第2课时 营销问题及平均变化率问题与一元二次方程

2.6 第2课时 营销问题及平均变化率问题与一元二次方程
思考:这个问题设什么为x?有几种设法? 如果直接设每盆植x株,怎样表示问题中相关的量? 如果设每盆花苗增加的株数为x株呢?
解:设每盆花苗增加的株数为x株,则每盆花苗有(x+3)株,平均单 株盈利为(3 - 0.5x)元.根据题意,得.
(x + 3)(3 - 0.5x) = 10.
整理,得 x2 - 3x + 2 = 0.
平均变化率问题
a(1-x)2=b,其中a为降低前的 量,x为降低率,2为降低次 数,b为降低后的量.注意1 与x位置不可调换.
解:设这个增长率为x.根据题意,得 200+200(1+x) +200(1+x)2=950 整理方程,得 4x2+12x-7=0,
解这个方程得 x1=-3.5(舍去),x2=0.5.
答:这个增长率为50%. 注意 增长率不可为负,但可以超过1.
练习. 青山村种的水稻前年平均每公顷产7200千克,今 年平均每公顷产8712千克,求水稻每公顷产量的年平均 增长率.
整理,得:x2 - 300x + 22500 = 0. 解方程,得:
x1 = x2 = 150. ∴ 2900 - x = 2900 - 150 = 2750. 答:每台冰箱的定价应为2750元.
例3:某超市将进价为30元的商品按定价40元出售时, 能卖600件。已知该商品每涨价1元,销售量就会减少 10件,为获得10000元的利润,且尽量减少库存,售价 应为多少?
分析:设这个增长率为x,则
二月份营业额为:__2_0_0_(1_+_x_)__________. 三月份营业额为:_2_0_0_(_1_+_x_)2_______. 根据: 一月、二月、三月的营业额共950万元. . 作为等量关系列方程为:

北师版九年级数学上册 第二章 一元二次方程 应用一元二次方程 第1课时 利用一元二次方程解决几何问题


12.如图,已知一艘轮船以 20 海里/时的速度由西向东航行,途中接到台风警 报,台风中心正以 40 海里/时的速度由南向北移动,距台风中心 20 10 海里的 圆形区域(包括边界)都属台风区.当轮船航行到 A 处时,测得台风中心移到位 于点 A 正南方向的 B 处,且 AB=100 海里,若这艘轮船自 A 处按原速度继续 航行,在途中会不会遇到台风?若会,试求经过多长时间轮船最初遇到台风; 若不会,=90°,AB=5 cm,BC=7 cm,点P 从点A开始沿AB边向点B以1 cm/s的速度移动,同时点Q从点B开始沿 BC边向点C以2 cm/s的速度移动,当其中一点到达终点时,另外一点也 随之停止. (1)几秒后,△PBQ的面积等于4 cm2? (2)几秒后,PQ的长度等于5 cm? (3)△PBQ的面积能否等于7 cm2?
4.(2020·西藏)列方程(组)解应用题 某驻村工作队,为带动群众增收致富,巩固脱贫攻坚成效,决定在该村山脚下, 围一块面积为600 m2的矩形试验茶园,便于成功后大面积推广.如图所示,茶 园一面靠墙,墙长35 m,另外三面用69 m长的篱笆围成,其中一边开有一扇1 m宽的门(不包括篱笆).求这个茶园的长和宽.
知识点二:用一元二次方程解决动态几何图形问题 5.如图,AB⊥CB,AB=10 cm,BC=8 cm,一只螳螂从A点出发, 以2 cm/s的速度向B爬行,与此同时,一只蝉从C点出发,以1 cm/s的速 度向B爬行,当螳螂和蝉爬行x s后,它们分别到达了点M,N的位置, 此时,△MNB的面积恰好为24 cm2,根据题意可得方程( D )
A.2x·x=24 B.(10-2x)(8-x)=24 C.(10-x)(8-2x)=24 D.(10-2x)(8-x)=48
6.(教材 P53 习题 2.9T2 变式)如图,在矩形 ABCD 中,AB=6 厘米,BC=12 厘米,点 P 从点 A 开始沿 AB 边向点 B 以 1 厘米/秒的速度移动(到点 B 终止), 点 Q 从点 B 开始沿 BC 边向点 C 以 2 厘米/秒的速度移动(到点 C 终止),若两

2.6 应用一元二次方程 第2课时 百分率及利润问题

2x+2x+b+2x+2b=54, x+(1+12.5xb)x+x+(1+12.5xb)x+4=36,
解得:xb==58,, ∴市政府2015年年初对三项工程的总投资是7x=35亿元
(3)由x=5得,2015年初搬迁安置的投资金额为20亿元, 设从2016年初开始,搬迁安置投资逐年递减的百分数为y,由题意,得: 20(1-y)2=5, 解得:y1=0.5,y2=1.5(舍) 答:搬迁安置投资逐年递减的百分数为50%
13.(南宁中考)为响应国家全民阅读的号召,某社区鼓励居民到社区阅览室 借阅图书,并统计每年的借阅人数和图书借阅总量(单位:本).该阅览室在 2014年图书借阅总量是7500本,2016年图书借阅总量是10800本. (1)求该社区的图书借阅总量从2014年至2016年的年平均增长率; (2)已知2016年该社区居民借阅图书人数有1350人,2017年达到1440人.如 果2016年至2017年图书借阅总量的增长率不低于2014年至2016年的年平均增 长率,那么2017年的人均借阅量比2016年增长a%,求a的值至少是多少?
11.某商店从厂家以每件21元的价格购进一批商品,该商品可以自行定价,
若每件商品售价为a元,则可卖出(350-10a)件,但物价局限定每件商品售
价不能超过进价的25%,商店计划要赚400元,需要卖出______件商品,每 100
件商品的售价为______元. 25
12.商场某种商品平均每天可销售30件,每件盈利50元.为了尽快减少库存, 商场决定采取适当的降价措施.经调查发现,每件商品每降价1元,商场平 均每天可多售出2件.设每2件x 商品降价x元.据此规律5,0-请x回答: (1)商场日销售量增加______件,每件商品盈利___________元.(用含x的代 数式表示) (2)在上述条件不变、销售正常情况下,每件商品降价多少元时,商场日盈 利可达到2100元? 解:由题意得(50-x)(30+2x)=2100,化简得x2-35x+300=0,解得x1=15, x2=20.∵该商场为了尽快减少库存,则x=15不合题意,舍去.∴x=20

北师版九年级初三数学上册《应用一元二次方程》试卷

2.6应用一元二次方程一、单选题(共13题;共26分)1.要组织一次篮球邀请赛,参赛的每个队之间都要比赛一场,计划安排15场比赛,设比赛组织者应邀请x 个队参赛,则x 满足的关系式为( ) A. 12 x (x+1)=15 B. 12 x (x ﹣1)=15 C. x (x+1)=15 D. x (x ﹣1)=152.要组织一次篮球邀请赛,参赛的每两个队之间都要比赛一场,据场地和时间等条件的限制,赛程计划安排7天,每天安排4场比赛,刚好完成所有比赛.设比赛组织者邀请x 个队参赛,则根据题意所列方程正确的是( )A. 12x (x+1)=28B. 12x (x ﹣1)=28C. x (x+1)=28D. x (x ﹣1)=283.(2017•杭州)某景点的参观人数逐年增加,据统计,2014年为10.8万人次,2016年为16.8万人次.设参观人次的平均年增长率为x ,则( )A. 10.8(1+x )=16.8B. 16.8(1﹣x )=10.8C. 10.8(1+x )2=16.8D. 10.8[(1+x )+(1+x )2]=16.84.电脑病毒传播快,如果一台电脑被感染,经过两轮感染后就会有81台电脑被感染,若每轮感染中平均一台电脑会感染x 台电脑,下列方程正确的是( )A. x (x+1)=81B. 1+x+x 2=81C. 1+x+x (x+1)=81D. 1+(x+1)2=815.为执行“均衡教育”政策,某县2014年投入教育经费2500万元,预计到2016年底三年累计投入1.2亿元.若每年投入教育经费的年平均增长百分率为x ,则下列方程正确的是( )A. 2500(1+x )2=1.2B. 2500(1+x )2=12000C. 2500+2500(1+x )+2500(1+x )2=1.2D. 2500+2500(1+x )+2500(1+x )2=120006.某机械厂七月份的营业额为100万元,已知第三季度的总营业额共331万元.如果平均每月增长率为x ,则由题意列方程应为( )A. 100(1+x )2=331B. 100+100×2x=331C. 100+100×3x=331D. 100[1+(1+x )+(1+x )2]=3317.某商品经过两次降价,零售价降为原来的12,已知两次降价的百分率均为x ,则列出方程正确的是( )A. (1+x )2=12B. (x −1)2=12C. (1+x )2=2D. (1﹣x )2=28.在一次酒会上,每两人都只碰一次杯,如果一共碰杯55次,则参加酒会的人数为( )A.9人B.10人C.11人D.12人9.已知矩形ABCD中,AB=1,在BC上取一点E ,沿AE将△ABE向上折叠,使B点落在AD上的F点,若四边形EFDC与矩形ABCD相似,则AD=().A. B. C. D. 210.已知△ABC是等腰三角形,BC=8,AB ,AC的长是关于x的一元二次方程x2-10x+k=0的两根,则()A. k=16B. k=25C. k=-16或k=-25D. k=16或k=2511.某农户种植花生,原来种植的花生亩产量为200千克,出油率为50%(即每100千克花生可加工成花生油50千克).现在种植新品种花生后,每亩收获的花生可加工成花生油132千克,其中花生出油率的增长率是亩产量的增长率的1.则新品种花生亩产量的增长率为()2A. 20%B. 30%C. 50%D. 120%12.如图,某小区计划在一块长为32m,宽为20m的矩形空地上修建三条同样宽的道路,剩余的空地上种植草坪,使草坪的面积为570m2.若设道路的宽为xm,则下面所列方程正确的是()A. (32−x)(20−x)=32×20−570B. 32x+2×20x=32×20−570C. 32x+2×20x−2x2=570D. (32−2x)(20−x)=57013.某产品的成本两年降低了75%,平均每年递降()A. 50%B. 25%C. 37.5%D. 以上答案都不对二、填空题(共8题;共8分)14.菱形ABCD的一条对角线长为6,边AB的长是方程x2−7x+12=0的一个根,则菱形ABCD的周长为________.15.(2017•黑龙江)原价100元的某商品,连续两次降价后售价为81元,若每次降低的百分率相同,则降低的百分率为________.16.(2017•上海)某市前年PM2.5的年均浓度为50微克/立方米,去年比前年下降了10%,如果今年PM2.5的年均浓度比去年也下降10%,那么今年PM2.5的年均浓度将是________微克/立方米.17.在国家政策的宏观调控下,某市的商品房成交均价由去年10月份的7000元/m2下降到12月份的5670元/m2,则11、12两月平均每月降价的百分率是________%。

2-6-1 应用一元二次方程求解几何问题课件22—23学年北师大版数学九年级上册


解:设相遇时用的时间为x,
依题意可列方程为(3x)2=(7x-10)2-102,
整理,得2x2-7x=0.
解这个方程,得 x1=0(不合题意,舍去),
x2=3.5,
∴3x=3×3.5=10.5,7x=7×3.5=24.5.
答:相遇时,甲走了24.5步,乙走了10.5步.
4.用一根长40cm的铁丝围成一个面积为91cm2的矩形,问这个
当BC=15 m时,AB=CD=10 m.
即这个长方形鸡场的长与宽分别为20 m,7.5 m或15 m,10 m;
(2)当墙长为18 m时,显然BC=20 m时,所围成的鸡场会
在靠墙处留下一个缺口,不合题意,应舍去,此时所围
成的长方形鸡场的长与宽只能是15 m,10 m;
A
D
B
C
(3)不能围成面积为160 m2的长方形鸡场.理由如下:
根据问题的实际意义,乙种药品成本的年平均下降率约为22.5%.
随堂练习
1.直角三角形的两条直角边的和为7,面积是6,则斜边
长为 ( B )A.
C. 37
B.5
D.72.从正方形铁皮的一边切去一个2
38
cm宽的长方形,若余下的长方形面积是48 cm2,则原来
正方形铁皮的面积是_________.
64 cm2
在B的正东方向200 n mile处有一重要目标C.小岛D位于AC的中点,岛上有
一补给码头;小岛F位于BC的中点.一艘军舰沿A出发,经B到C匀速巡航,一
艘补给船同时从D出发,沿南偏西方向匀速直线航行,欲将一批物品送达军
舰.
已知军舰的速度是补给船的2倍,军舰在由B到C的
途中与补给船相遇于E处,那么相遇时补给船航行了
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

埇桥区桃园矿学校(中学部)2017-2018学年度第一学期
学科备课
教学课题:2.6应用一元二次方程(一) 动态修改
课后回忆
教学目标:
一、知识与技能
1、经历分析和建模的过程,进一步体会方程是刻画现实世
界中数量关系的一个有效的数学模型;
2、能够利用一元二次方程解决有关实际问题,能根据具体
问题的实际意义检验结果的合理性,进一步培养学生分析问题、
解决问题的意识和能力。
二、过程与方法
通过分析问题中的数量关系,建立方程解决问题,认识方
程模型的重要性,并总结运用方程解决实际问题的一般过程。
三、情感、态度与价值观
在问题解决中,经历一定的合作交流活动,进一步发展学
生合作交流的意识和能力。

教学重点:
1、发展学生的应用意识。
2、用一元二次方程模型刻画现实世界中数量关系。

教学难点:用一元二次方程模型刻画现实世界中数量关系。

教法学法:
讲练相结合。

教学准备:
多媒体课件。

教学设计:
一、回忆巩固,情境导入

活动内容:提出问题:还记得本章开始时梯子下滑的问题吗?
①在这个问题中,梯子顶端下滑1米时,梯子底端滑动的距离大
于1米,那么梯子顶端下滑几米时,梯子底端滑动的距离和它相
等呢? ②如果梯子长度是13米,梯子顶端下滑的距离与梯子底
端滑动的距离可能相等吗?如果相等,那么这个距离是多少?

分组讨论:
①怎么设未知数?在这个问题中存在怎样的等量关系?如
何利用勾股定理来列方程?

②涉及到解的取舍问题,应引导学生根据实际问题进行检
验,决定解到底是多少。
二、 做一做,探索新知
活动内容:见课本P53页例1:
如图:某海军基地位于A处,在其正南方向200海里处有
一重要目标B,在B的正东方向200
海里处有一重要目标C,小岛D位于
AC的中点,岛上有一补给码头。小岛
F位于BC中点。一艘军舰从A出发,
经B到C匀速巡航,一艘补给船同时
从D出发,沿南偏西方向匀速直线航
行,欲将一批物品送达军舰。
已知军舰的速度是补给船的2倍,军舰在由B到C的途中
与补给船相遇,那么相遇时补给船航行了多少海里?(结果精
确到0.1海里)
该部分是学习中的难点,在教学中要给学生充分的时间去
审清题意,分析各量之间的关系,不能粗线条解决。在讲解过
程中可逐步分解难点:①审清题意;②找准各条有关线段的长
度关系;③建立方程模型,之后求解。
解决实际应用问题的关键是审清题意,教学中要给学生充
分的时间去审清题意,让学生自己反复审题,弄清各量之间的
关系,分析题目中的已知条件和要求解的问题,并在这个前提
下抓住图形中各条线段所表示的量,弄清它们之间的关系。
在学生分析题意遇到困难时,教学中可设置问题串分解难
点:
(1)要求DE的长,需要如何设未知数?
(2)怎样建立含DE未知数的等量关系?从已知条件中能找
到吗?
(3)利用勾股定理建立等量关系,如何构造直角三角形?
(4)选定DEFRt后,三条边长都是已知的吗?DE,DF,
EF分别是多少?
学生在问题串的引导下,逐层分析,在分组讨论后找出题目中
的等量关系即:
速度等量:V军舰=2×V
补给船

时间等量:t军舰=t补给船
三边数量关系:222DEFDEF

弄清图形中线段长表示的量:已知AB=BC=200海里,DE表
示补给船的路程,AB+BE表示军舰的路程。
学生在此基础上选准未知数,用未知数表示出线段:DE、
EF的长,根据勾股定理列方程求解,并判断解的合理性。
巩固练习:
1、一个直角三角形的斜边长为
7cm,一条直角边比另一条直角边长
1cm,那么这个直角三角的面积是多
少?
2、如图:在Rt△ACB中,∠
C=90°,点P、Q同时由A、B两点出
发分别沿AC、BC方向向点C匀速移动,
它们的速度都是1m/s,几秒后△PCQ的面积为Rt△ACB面积的
一半?

A
Q
B

8cm

C
6cm

P
3、在宽为20m,长为32m的矩形耕地上,修筑同样宽的三
条道路(两条纵向,一条横向,横向
与纵向互相垂直),把耕地分成大小相
等的六块作试验田,要使试验田面积
为570平方米,问道路应为多宽?

说明:三个题目的设计从简单问题入手,通过勾股定理解决
直角三角形边长问题;第2题构造了一个可变的直角三角形,
解决面积问题;第三题也是面积问题,在这个问题中常设道路
宽为x米,其中两条长为20米,一
条长为32米,但要注意路的交叉部
分。
引导学生通过转变图形进行思
考:若将图中的三条路分别向上和向右平移到如图所示的位置,
应怎样列方程求解?结果一样吗?哪种方法更简单?
三、练一练,巩固新知
活动内容:1、在一块正方形的钢板上裁下宽为20cm的一

个长条,剩下的长方形钢板的面积为4800 cm2。求原正方形钢
板的面积。
2、有这样一道阿拉伯古算题:有两笔钱,一多一少,其和
等于20,积等于96,多的一笔钱被许诺赏给赛义德,那么赛义
德得到多少钱?
3、《九章算术》“勾股”章有一题:“今有二人同所立,甲
行率七,乙行率三,乙东行,甲南行十步而斜东北与乙会,问
甲乙行各几何。”大意是说:已知甲、乙二人同时从同一地点出
发,甲的速度为7,乙的速度为3。乙一直向东走,甲先向南走
了10步,后又斜向北偏东方向走了一段后与乙相遇。那么相遇
时,甲、乙各走了多远?
给学生以时间,以学生为主体,引导学生自主发现、合作
交流,理解了建模的重要性。
四、收获与感悟
活动内容: 问题:
1、列方程解应用题的关键
2、列方程解应用题的步骤
3、列方程应注意的一些问题
让学生在学习小组中进行回顾与反思后,进行组间交流发
言。
五、作业布置
1、甲乙两个小朋友的年龄相差4岁,两个人的年龄相乘积
等于45,你知道这两个小朋友几岁吗?
2、一块长方形草地的长和宽分别为20m和15m,在它四周
外围环绕着宽度相等的小路,已知小路的面积为246㎡,求小
路的宽度。
3、有一个两位数等于其数字之积的3倍,其十位数字比个
位数字小2,求这两位数。
选作题(供学有余力的学生选作):
一艘轮船以20海里/时的速度
由西向东航行,途中接到台风警报,
台风中心正以40海里/时的速度由

南向北移动,距台风中心2010海
里的圆形区域(包括边界)都属台风
区.当轮船到A处时,测得台风中心
移到位于点A正南方向B处,且AB=100海里.若这艘轮船自A
处按原速度继续航行,在途中会不会遇到台风?若会,试求轮船
最初遇到台风的时间;若不会,请说明理由。



B
A
板书设计:
2.6应用一元二次方程(一)
1、列方程解应用题的关键
2、列方程解应用题的步骤
3、列方程应注意的一些问题

教学反思:

相关文档
最新文档