公务员考试最小公倍数与最大公约数
最大公约数与最小公倍数的计算

最大公约数与最小公倍数的计算最大公约数和最小公倍数是数学中常见的概念,用于求解数值之间的关系或者进行数值的简化。
在实际应用中,计算最大公约数和最小公倍数是非常常见的操作。
本文将详细介绍如何计算最大公约数和最小公倍数,并给出相关的计算示例。
一、最大公约数的计算方法最大公约数(Greatest Common Divisor,简称GCD),指的是一组数中最大的可以同时整除这组数的正整数。
计算最大公约数的常见方法有欧几里得算法和因式分解法。
1. 欧几里得算法欧几里得算法,也称为辗转相除法,是一种有效地计算最大公约数的方法。
欧几里得算法的基本原理是利用辗转相除,将两个数不断地相除取余,直到余数为零时,最后的除数即为最大公约数。
算法步骤如下:1) 将两个数分别命名为a和b,其中a大于或等于b。
2) 用b去除a,得到商q和余数r。
3) 若r为0,则最大公约数为b;否则,进入下一步。
4) 将b的值赋给a,将r的值赋给b,重复执行第2步。
5) 重复执行第2、3、4步,直到r等于0为止。
以计算110和28的最大公约数为例,具体步骤如下:1) 用110除以28,得到商q=3,余数r=26。
2) 将28的值赋给a,将26的值赋给b。
3) 用28除以26,得到商q=1,余数r=2。
4) 将26的值赋给a,将2的值赋给b。
5) 用26除以2,得到商q=13,余数r=0。
6) 因为余数为0,所以最大公约数为2。
2. 因式分解法因式分解法是一种通过分解数的因式来求解最大公约数的方法。
具体步骤如下:1) 对两个数进行因式分解,将其分解为素数的乘积。
2) 找出两个数中共有的素因子,并将其相乘得到最大公约数。
以计算24和36的最大公约数为例,具体步骤如下:1) 将24分解为2 * 2 * 2 * 3,将36分解为2 * 2 * 3 * 3。
2) 两个数中共有的素因子为2、2和3,将其相乘得到最大公约数24。
二、最小公倍数的计算方法最小公倍数(Least Common Multiple,简称LCM),指的是一组数中最小的能够同时被这组数整除的正整数。
2018国考行测数学运算题小技巧

2018国考行测数学运算题小技巧俗话说:良好的开端是成功的一半。
对于奋斗在公考道路上的各位考生而言,多学习、多借鉴是最高效的备考方法,今天中公教育专家就跟大家分享,供大家参考。
一.概念公倍数(common multiple)是指在两个或两个以上的自然数中,如果它们有相同的倍数,这些倍数就是它们的公倍数。
公倍数中最小的,就称为这些整数的最小公倍数。
二.求解方法质因数分解把几个数先分别分解质因数,再把各数中的全部公有的质因数和独有的质因数提取出来连乘,所得的积就是这几个数的最小公倍数。
例如:求6和15的最小公倍数。
先分解质因数,得6=2×3,15=3×5,6和15的全部公有的质因数是3,6独有质因数是2,15独有的质因数是5,2×3×5=30,30里面包含6的全部质因数2和3,还包含了15的全部质因数3和5,且30是6和15的公倍数中最小的一个,所以[6,15]=30。
短除法求最大公约数,先用这几个数的公约数连续去除,一直除到所有的商两两互质为止,然后把所有的除数和商连乘起来,所得的积就是这几个数的最小公倍数。
短除法的本质就是质因数分解法,只是将质因数分解用短除符号来进行。
短除符号就是除号倒过来。
短除就是在除法中写除数的地方写两个数共有的质因数,然后落下两个数被公有质因数整除的商,之后再除,以此类推,直到结果互质为止(两个数互质)。
三.应用有一些砖,长宽高分别是15cm、12cm、6cm,请问怎样摆,摆成最小正方体边长为多少厘米?解:15、12、6的最小公倍数是60,所以最小的正方体棱长为60例题:求1085和1178的最大公约数。
答案:31。
【解析】1085=5×217=5×7×31,1178=31×38=31×2×19。
所以最大公约数为31例题:桌子上放有三根绳子,长度分别是120厘米、160厘米、240厘米,现在要把它们截成相等的小段,每段都不能有剩余,那么最少可截成多少段?( )A.13B.12C.11D.10答案:A。
最大公约数和最小公倍数的求法

最大公约数和最小公倍数的求法
最大公约数:任意两个数能被同一个最大的数整除称之为最大公约数。
最小公倍数:能被任意两数所除的最小公共数。
计算最大公约数的方法:
1、质因数分解法
质因数分解法:把每个数的质因数分解出来,然后把所求出来的公共质因数连乘就得到最大公约数(质因数:只能被1或其本身整除的数)。
例如:求24和60的最大公约数,先分解质因数,得24=2×2×2×3,60=2×2×3×5,24与60的全部公有的质因数是2、2、3,它们的积是2×2×3=12,所以,(24、60)=12。
把几个数先分别分解质因数,再把各数中的全部公有的质因数和独有的质因数提取出来连乘,所得的积就是这几个数的最小公倍数。
例如:求6和15的最小公倍数。
先分解质因数,得6=2×3,15=3×5,6和15的全部公有的质因数是3,6独有质因数是2,15独有的质因数是5,2×3×5=30,30里面包含6
的全部质因数2和3,还包含了15的全部质因数3和5,且30是6和15的公倍数中最小的一个,所以[6,15]=30。
2、短除法
短除法:任意两个或两个以上的数被他们公共约数整除,整除的公约数公约数相乘即为最大公约数。
最小公倍数就是公共除数相乘再乘的互为质因数的剩余数。
公务员考试行测技巧:工程问题的"最小公倍数"

公务员考试行测技巧:工程问题的"最小公倍数"
简为教育
在历年公务员考试的行测试卷中,工程问题是常考的题型,在解决这一类问题的时候,很多考生发现不是那么容易,原因是他们经常将工作总量设为“1”,这样会导致计算很复杂,表达也不够清晰。
因此,在做这样的题型时,考生可以将工作总量设为工作时间的公倍数(一般是工作时间的最小公倍数)或者工作效率的公倍数。
例题如下:
例1、一项任务甲做需要半个小时,乙做需要45分钟,两人合作需要多少分钟()
A、12
B、15
C、18
D、20
解析:将工作总量设为工作时间的最小公倍数90,则依题意可知:甲的工作效率是3,乙的工作效率是2,则他们的效率之和是5,因此他们两人合作需要的时间为:90/5=18 天,所以答案选C。
例2、一条隧道,甲单独挖要20天完成,乙单独挖要10天完成。
如果甲先挖1天,然后乙接替甲挖1天,再有甲接替乙挖1天……两人如此交替工作,挖完这条隧道共用多少天?()
A、14
B、16
C、15
D、13
解析:设工作总量为工作时间的最小公倍数20,则甲的工作效率是1,乙的工作效率为2。
他们工作的顺序是:甲乙甲乙甲乙甲乙………..,经分析发现每两天就是一个循环,也即一个“甲乙“就是一个循环,一个循环完成的工作量为3,总工作量为20,所以20/3=6……2,即一共有6个循环,每个循环是2天,所以2*6=12天,剩余的2个工作量首先由甲完成1天,剩下的乙0.5天可以完成,所以总共需要的天数为:12+1+0.5=13.5天,所以选择14天(选D)。
数的最大公约数与最小公倍数知识点总结

数的最大公约数与最小公倍数知识点总结数的最大公约数与最小公倍数是数学中的常见概念,涉及到整数的性质和运算规则。
在解决实际问题和数学计算中,了解和掌握这些知识点对于提高计算效率和解题能力非常重要。
下面将对数的最大公约数与最小公倍数进行知识点的总结。
一、最大公约数最大公约数指的是两个或多个数中都能整除的最大的一个数。
最大公约数的计算可以通过以下几种方法进行:1. 列举法:分别列出两个或多个数的所有因数,找出它们的公共因数,并选择其中最大的一个作为最大公约数。
2. 素数分解法:将两个或多个数分别进行素因数分解,然后提取出共有的素因数并相乘,结果即为最大公约数。
3. 辗转相除法(欧几里得算法):假设有两个数a和b,令r为a除以b所得的余数,如果r为0,则b即为最大公约数;如果r不为0,则将b赋值给a,将r赋值给b,然后继续进行除法运算,直到余数为0为止。
最大公约数在实际应用中有很多用途,比如简化分数、求解整数倍问题等。
二、最小公倍数最小公倍数指的是两个或多个数中能够被它们整除的最小的数。
最小公倍数的计算可以通过以下几种方法进行:1. 列举法:列出两个或多个数的所有倍数,找出它们的公共倍数,并选择其中最小的一个作为最小公倍数。
2. 素数分解法:将两个或多个数分别进行素因数分解,然后提取出所有的素因数并相乘,结果即为最小公倍数。
3. 最大公约数法:假设有两个数a和b,它们的最小公倍数可以通过最大公约数来求解,公式为:最小公倍数=两数乘积/最大公约数。
最小公倍数在实际应用中也有很多用途,比如解决同时到达问题、计算工作效率等。
三、最大公约数与最小公倍数的关系最大公约数与最小公倍数之间存在着以下关系:1. 两个数的乘积等于它们的最大公约数与最小公倍数的积,即a*b=最大公约数*最小公倍数。
2. 如果两个数互质(最大公约数为1),那么它们的最小公倍数就等于它们的乘积。
3. 最大公约数与最小公倍数之间并不总是存在倍数关系。
最大公约数和最小公倍数

最大公约数和最小公倍数最大公约数又叫最大公因数,是指两个或多个整数共有约(因)数中最大的一个。
例如:12、16的公约数有1、2、4,其中最大的一个是4,4是12与16的最大公约数,一般记为(12,16)=4。
最小公倍数是指两个或多个整数的公倍数里最小的那一个。
例如:4的倍数有4、8、12、16,……,6的倍数有6、12、18、24,……,4和6的公倍数有12、24,……,其中最小的是12。
最大公约数和最小公倍数区别有:
1、本质不同
最小公约数是几个数公有的最大约数,最大公倍数是几个数公有的最小倍数。
同一组数字中,最小公倍数是最大公约数的倍数。
2、概念不同
能够整除一个整数的整数称为其的约数(如5是10约数);几个自然数公有的约数,为他们的公约数,其中最大一个,为这几个自然数的最大公约数能够被一个整数整除的整数称为其的倍数(如10是5的倍数);两个或多个整数的公倍数里最小的那一个为它们的最小公倍数。
最大公约数和最小公倍数求法
最大公约数求法质因数分解法质因数分解法:把每个数分别分解质因数,再把各数中的全部公有质因数提取出来连乘,所得的积就是这几个数的最大公约数。
例如:求24和60的最大公约数,先分解质因数,得24=2×2×2×3,60=2×2×3×5,24与60的全部公有的质因数是2、2、3,它们的积是2×2×3=12,所以,(24,60)=12。
把几个数先分别分解质因数,再把各数中的全部公有的质因数和独有的质因数提取出来连乘,所得的积就是这几个数的最小公倍数。
例如:求6和15的最小公倍数。
先分解质因数,得6=2×3,15=3×5,6和15的全部公有的质因数是3,6独有质因数是2,15独有的质因数是5,2×3×5=30,30里面包含6的全部质因数2和3,还包含了15的全部质因数3和5,且30是6和15的公倍数中最小的一个,所以[6,15]=30。
短除法短除法:短除法求最大公约数,先用这几个数的公约数连续去除,一直除到所有的商互质为止,然后把所有的除数连乘起来,所得的积就是这几个数的最大公约数。
短除法求最小公倍数,先用这几个数的公约数去除每个数,再用部分数的公约数去除,并把不能整除的数移下来,一直除到所有的商中每两个数都是互质的为止,然后把所有的除数和商连乘起来,所得的积就是这几个数的最小公倍数,例如,求12、15、18的最小公倍数。
短除法的本质就是质因数分解法,只是将质因数分解用短除符号来进行。
短除符号就是除号倒过来。
短除就是在除法中写除数的地方写两个数共有的质因数,然后落下两个数被公有质因数整除的商,之后再除,以此类推,直到结果互质为止(两个数互质)。
而在用短除计算多个数时,对其中任意两个数存在的因数都要算出,其它没有这个因数的数则原样落下。
直到剩下每两个都是互质关系。
求最大公因数便乘一边,求最小公倍数便乘一圈。
最大公约数与最小公倍数的求解
最大公约数与最小公倍数的求解在数学中,最大公约数和最小公倍数是两个常见的概念,用于求解整数之间的关系。
最大公约数是指两个或多个整数中最大的能够同时整除它们的数,最小公倍数则是指能够同时被两个或多个整数整除的最小的数。
求解最大公约数的方法有多种,下面将介绍三种常用的方法:质因数分解法、辗转相除法和欧几里得算法。
一、质因数分解法质因数分解法是一种基于质因数的方法,用于求解最大公约数。
其基本思想是将两个数分别进行质因数分解,然后找出它们的公共质因数,并将这些公共质因数相乘,即可得到最大公约数。
例如,我们需要求解28和42的最大公约数。
首先,分别对28和42进行质因数分解,得到28=2^2*7,42=2*3*7。
接下来,我们找出它们的公共质因数,即2和7,并将它们相乘,得到2*7=14,即28和42的最大公约数为14。
二、辗转相除法辗转相除法,也称为欧几里得算法,用于快速求解两个整数的最大公约数。
其基本思想是通过反复取余数,将原问题转化为一个等价的,但规模更小的问题,直至余数为0。
此时,除数即为原问题的最大公约数。
以求解64和48的最大公约数为例。
首先,我们将64除以48,得到商数1和余数16。
然后,我们将48除以16,得到商数3和余数0。
由于余数为0,所以最大公约数为上一步的除数16。
三、欧几里得算法欧几里得算法是辗转相除法的一种扩展应用,用于求解多个整数的最大公约数。
其基本思想是通过将多个整数的最大公约数转化为两个整数的最大公约数的求解,逐步迭代求解最终的最大公约数。
例如,我们需要求解30、45和75的最大公约数。
首先,我们可以先求解30和45的最大公约数,得到15。
然后,我们将15和75求最大公约数,得到15。
因此,30、45和75的最大公约数为15。
最小公倍数是求解两个或多个数的倍数中最小的数。
求解最小公倍数的方法有两种,分别是公式法和因数分解法。
一、公式法公式法是用于求解两个数的最小公倍数的一种简便方法。
理解最大公约数和最小公倍数的概念
理解最大公约数和最小公倍数的概念最大公约数和最小公倍数是数学中常用的概念,它们在解决整数运算、分数化简、方程求解等问题中起到了重要的作用。
本文将详细介绍最大公约数和最小公倍数的定义、计算方法以及应用。
一、最大公约数的概念与计算方法最大公约数,简称为gcd(greatest common divisor),是指两个或多个整数中能够同时整除的最大的数。
例如,对于整数12和18,它们的最大公约数为6,因为6是12和18的公约数中最大的一个。
计算最大公约数有多种方法,其中一种常用的方法是欧几里得算法。
欧几里得算法的基本思想是通过连续除法的迭代,将两个整数逐渐缩小,直到找到它们的最大公约数。
具体算法步骤如下:1. 将两个整数a和b中较大的数赋值给a,较小的数赋值给b。
2. 计算a除以b的余数,将其赋值给r。
3. 如果r等于0,则b即为最大公约数;如果r不等于0,则将b赋值给a,将r赋值给b,然后返回第二步。
通过不断重复上述步骤,最终能够求得两个整数的最大公约数。
二、最小公倍数的概念与计算方法最小公倍数,简称为lcm(least common multiple),是指能够被两个或多个整数整除的最小的数。
例如,整数4和6的最小公倍数为12,因为12既能被4整除,也能被6整除。
计算最小公倍数有多种方法,其中一种常用的方法是利用最大公约数求解。
根据数学原理可知,两个整数的最小公倍数等于它们的乘积除以最大公约数。
具体计算方法如下:1. 计算两个整数a和b的最大公约数,记为gcd。
2. 将a乘以b,再除以gcd,即可得到最小公倍数。
这种方法能够简洁地计算得到最小公倍数。
三、最大公约数和最小公倍数的应用最大公约数和最小公倍数在实际问题中具有广泛的应用。
以下列举几个常见的应用场景。
1. 整数运算:在整数的加减乘除运算中,有时需要将结果化简为最简形式,这就需要用到最大公约数和最小公倍数。
通过计算两个整数的最大公约数,可以将结果化简为最简整数形式;通过计算两个整数的最小公倍数,可以将结果化简为最简分数形式。
第2讲最大公约数与最小公倍数
第二讲 最大公约数与最小公倍数一 基础知识与典型例题知识点1.约数与倍数:若|b a ,则称b 是a 的约数,a 是b 的倍数.知识点2.最大公约数:设c b a ,,, 是(有限个)不全为零的整数,则同时整除c b a ,,, 的整数叫做它们的公约数,非零整数的约数有有限个,故c b a ,,, 的公约数有有限个,其中必有一个最大的,我们称它为c b a ,,, 的最大公约数.记为()c b a ,,.例1.已知两个自然数的和为165,它们的最大公约数为15,求这两个数.知识点 3.最小公倍数:同时是c b a ,,, 的倍数的整数称为它们的公倍数,最小的正的公倍数叫做最小公倍数,记为[]c b a ,,, .知识点4.素数与合数:一个大于1的整数m ,如果它仅有1和m 这两个约数,则称m 是素数(或质数);如果它除了1和m 之外还有其他的约数,即m 可表示为b a ⋅的形式,则称m 是合数.1既不是素数,也不是合数.知识点5.素数的性质:(1) 大于1的整数必有素因子(2) 素数与合数都有无数个(3) 既为偶数又为素数的正整数只有一个,它就是2.(4) 设p 为素数,n 是任意整数,则或者n p ,或者()1,=n p(5) 若p 是素数,且|p ab ,则|p a 或|p b ;(6) 若p 是素数,且p ab =,则p a =或p b =;例2.求所有这样的素数,它既是两素数之和,同时又是两素数之差.例3.求三个素数,使得它们的积为和的5倍.例4.设p 是素数,整数z y x ,,满足p z y x <<<<0,若333,,z y x 除以p 的余数相等. 证明:222z y x ++可以被z y x ++整除.知识点 6.欧几里得算法:设b a ,为整数,0>b ,按下述方式反复作带余除法,有限步之后必然停止(即余数为零):用b 除a 得:b r r bq a <<+=0000,;用除b 得:011100,r r r q r b <<+=;用1r 除0r 得:1222100,r r r q r r <<+=;…用1-n r 除2-n r 得:1120,---<<+=n n n n n n r r r q r r ;用n r 除1-n r 得:0,1111=+=+++-n n n n n r r q r r ;则()()()()n n n r r r r r r b b a =====+1100,,,, .特殊的:若r bq a +=,则()()r b b a ,,=.即()()bq a b b a -=,,.知识点7.裴蜀等式设b a ,是整数,且()b a d ,,则()d b a =,的充要条件是存在整数v u ,,使得d vb ua =+. 例5.求下面各组数的最大公约数.(1)36,138==b a ;(2)1859,1573a b ==;(3)108,72,48321===a a a ; 例6.设n 是正整数,证明:(1)()1314,421=++n n ;(2)()()11!1,1!=+++n n知识点8.最大公约数和最小公倍数的性质:(1) a 和b 的任一公约数都是它们最大公约数的约数.a 和b 的任一公倍数都是它们最小公倍数的倍数.(2) 若|b a ,则(,)a b b =,[,]a b a =.(3) +∈N m ,则()()b a m bm am ,,=,[][]b a m bm am ,,=.(4) 若n 是b a ,的公约数,则(,)(,)a ba b n n n =,[,][,]a b a b n n n=. (5) 设n a a a ,,,21 是任意n 个正整数.① 如果()()()n n n c a c c a c c a a ===-,,,,,,1332221 ,则()n n c a a a =,,,21 . ② 如果[][][]n n n m a m m a m m a a ===-,,,,,,1332221 ,则[]n n m a a a =,,,21 .(6) 对任意的正整数,a b ,()[]ab b a b a =,,,若()1,=b a ,则[]ab b a =,.(7) 若|a bc ,且(,)1a b =,则|a c . (8) 若|a c ,|b c ,且(,)1a b =,则|ab c .(9) 若()1,=b a ,则()()b c b ac ,,=. (10) 若[,]a b m =,则(,)1m m a b=. (11) 若b a ,均与m 互素,则ab 也与m 互素.一般的,如果n a a a ,,,21 均与m 互素,则n a a a 21也与m 互素.例7.已知()[]144,,6,==b a b a ,求b a ,.例8.数列1001,1004,1009的通项是10002+=n a n ,其中+∈N n ,对每一个n ,用n d 表示n a 与1+n a 的最大公约数,求n d 的最大值,其中n 取一切正整数.例9.正整数a 和b 互素,证明:b a +与22b a +的最大公约数等于1或2.例10.两数之和为667,它们的最小公倍数除以最大公约数所得的商等于120,求这两个数. 例11.若在各项都是正整数的数列{}i a 中,对于任何j i ≠,都有()()j i a a j i ,,=. 证明:对一切N i ∈,都有i a i =.知识点9. 因数分解定理(算术基本定理):每个大于1的正整数均可分解成有限个素数的积,如果不计素因数在乘积中的次序,则其分解方式是唯一的.即k k p p p n ααα 2121=,其中i p 是素数,i α是正整数,k i ≤≤1.知识点10.n 的约数的标准分解:设n 的标准分解为: k k p p p n ααα 2121=,其中i p 是素数,i α是正整数,k i ≤≤1.则正整数d 是n 的约数的充分必要条件是:其标准分解为: k k p p p d βββ 2121=,其中k i i i ≤≤≤≤1,0αβ.知识点11.n 的正约数的个数及正约数的和记:()n r 表示n 的正约数的个数, ()n δ表示n 的正约数的和,且k k p p p n ααα 2121=,则有:()()()()11121+++=k n r ααα ,()111111121211121----⋅--=+++k k p p p p p p n k αααδ 知识点12.n 为完全平方数的充要条件是()n r 为奇数.知识点13.n !的标准分解:设α是n !的标准分解中出现的p 的幂,则∑∞=⎥⎦⎤⎢⎣⎡=α1i i p n由于当m p i >时,0=⎥⎦⎤⎢⎣⎡i p n ,所以上式中的和只有有限多个项不为零. 例12.求自然数N ,使它能被5和49整除,并且包括1和N 在内,它共有10个约数.例13.数20!有多少个正整数的因数?二 巩固练习1.若12+n是质数)1(>n ,则n 是2的方幂.2.求正整数b a ,.使得()[]144,,24,,120===+b a b a b a .3.证明:若n 是正整数,则()1314,421=++n n .4.设c b a ,,是正整数,证明:[]()abc ca bc ab c b a =⋅,,,,.5. 设b a ,是正整数,证明:()[][]b a b a b a b a +⋅=⋅+,,. (,)(,)(,).a b a a b b a b +=+=提示:6.写出51480的标准分解式.7.求!12,!15,!20的标准分解式.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
精典系列 助您成功
最小公倍数与最大公约数
1.关键提示:
最小公倍数与最大公约数的题一般不难,但一定要细致审题,千万不要粗心。另外这类
题往往和日期(星期几)问题联系在一起,考生也要学会求余。
2.核心定义:
(1)最大公约数:如果一个自然数a能被自然数b整除,则称a为b的倍数,b为a
的约数。几个自然数公有的约数,叫做这几个自然数的公约数。公约数中最大的一个公约
数,称为这几个自然数的最大公约数。
(2)最小公倍数:如果一个自然数a能被自然数b整除,则称a为b的倍数,b为a
的约数。几个自然数公有的倍数,叫做这几个自然数的公倍数.公倍数中最小的一个大于零
的公倍数,叫这几个数的最小公倍数。
例题1:甲每5天进城一次,乙每9天进城一次,丙每12天进城一次,某天三人在城里相
遇,那么下次相遇至少要:
A.60天 B.180天 C.540天 D.1620天 (2003年浙江真题)
解析:下次相遇要多少天,也即求5,9,12的最小公倍数,可用代入法,也可直接求。显
然5,9,12的最小公倍数为5×3×3×4=180。
所以,答案为B。
例题2:三位采购员定期去某商店,小王每隔9天去一次,大刘每隔11天去一次,老杨每
隔7天去一次,三人星期二第一次在商店相会,下次相会是星期几?
A.星期一 B.星期二 C.星期三 D.星期四
解析:此题乍看上去是求9,11,7的最小公倍数的问题,但这里有一个关键词,即“每隔”,
“每隔9天”也即“每10天”,所以此题实际上是求10,12,8的最小公倍数。10,12,8
的最小公倍数为5×2×2×3×2=120。120÷7=17余1,
所以,下一次相会则是在星期三,选择C。
例题3:赛马场的跑马道600米长,现有甲、乙、丙三匹马,甲1分钟跑2圈,乙1分钟
跑3圈,丙1分钟跑4圈。如果这三匹马并排在起跑线上,同时往一个方向跑,请问经过
几分钟,这三匹马自出发后第一次并排在起跑线上?( )
A.1/2 B.1 C.6 D.12
解析:此题是一道有迷惑性的题,“1分钟跑2圈”和“2分钟跑1圈”是不同概念,不要
等同于去求最小公倍数的题。显然1分钟之后,无论甲、乙、丙跑几圈都回到了起跑线上。
所以,答案为B。