有理数加法练习(第2课时)
1.4.2 第2课时 有理数的加减混合运算

位置记为( B )
A.-6 cm
B.+6 cm
C.+4 cm
D.-4 cm
课件目录
首页
末页
第2课时 有理数的加减混合运算
4.计算: (1)(-49)-(+91)-(-5)+(-9); (2)-7.2-0.9-5.6+1.7; (3)-25+-56-(-4.9)-0.6. 解:(1)原式=-49-91+5-9=-144. (2)原式=-8.1-5.6+1.7=-13.7+1.7=-12. (3)原式=-25-56+4.9-0.6=-3370+4190-35=4165.
课件目录
首页
末页
第2课时 有理数的加减混合运算
6.下列说法正确的是( B ) A.根据加法交换律有 3-6-1=-6+1+3 B.1-2 可以看成是 1 加负 2 C.(+8)-(-2)+(-3)=8-2-3 D.根据加法结合律有 18-7-9=18-(7-9)
课件目录
首页
末页
第2课时 有理数的加减混合运算
A.3
B.6
C.7
D.9
【解析】 原式=-3+2.5-0.5+4+3=-3+3+2+4=6.故选 B.
课件目录
首页
末页
第2课时 有理数的加减混合运算
3.[2018 秋·富阳区期中]在一个峡谷中,测得 A 地的海拔为-11 m,B 地比 A
人教版初中七年级上册数学第一章《有理数的加减法》课时2精品课件

课堂导入
为了防止水土流失,保护环境,某县从 2013 年起开始实施植树 造林,其中 2013 年完成 786 亩,2014 年完成 957 亩,2015 年 完成 1 214 亩,2016 年完成 1 543 亩.该县从 2013 年到 2016 年 一共完成植树造林多少亩?看谁算得又对又快!
新知探究 知识点1 填一填:(1) 3+(-5)= -2 ; (-5)+3= -2 . (2) 13+(-9)= 4 ; (-9)+13= 4 . (1)比较以上各组两个算式的结果,每组两个算式有什么特征? (2)小学学的加法交换律在有理数的加法中还适用吗?
=29-49
=6-9
=-20.
=-3.
随堂练习 2
计算:25.3+(-7.3)+(-13.7)+7.7. 解: 25.3+(-7.3)+(-13.7)+7.7 =(25.3+7.7)+[(-7.3)+(-13.7)] =33+(-21) =12.
凑整法 多个有理数相加时,如果既有分数,也有小数,一般将存在数 量少的形式转化成数量多的形式,把能凑成整数的数结合在一 起,可以使计算简便,这种方法简称“凑整法".
拓展提升 1
计算:(-3)+4+(+2)+(-6)+7+(-5). 解: (-3)+4+(+2)+(-6)+7+(-5)
= (-3)+(-6)+(-5)+4+(+2)+7 = [(-3)+(-6)+(-5)]+[4+(+2)+7] = (-14)+13 = -1.
吕梁市第七中学七年级数学上册 第一章 有理数 1.3 有理数的加减法 1.3.1 第2课时 有理数的

第2课时有理数的加法运算律知能演练提升能力提升1.下列哪组数的和加上-111大于0()A.101,10B.0,|-106|C.-99,10D.-88,2002.下列使用加法的运算律最为合理的是()A.(-8)+(-5)+8=[(-8)+(-5)]+8B.C.(-2.6)+(+3.4)+(+1.7)+(-2.5)=[(-2.6)+(-2.5)]+[(+3.4)+(+1.7)]D.9+(-2)+(-4)+1+(-1)=[9+(-2)+(-4)+(-1)]+13.计算:(1)0.815+6.25+5.185=;(2)(-3.125)+(-4.5)+(-6.875)=.4.绝对值小于2 019的整数有个,它们的和是.5.已知数学成绩85分以上为优秀,以85分为基准作简记,例如:89分记为+4,83分记为-2.张老师将七年级6名同学的成绩简记为+7,-5,0,+15,+6,-5,则这6名同学的数学平均成绩为分.★6.计算:(-1)+(+2)+(-3)+(+4)+…+(-99)+(+100)+…+(+2 014)+(-2 015)+(+2 016)+(-2017)=.7.计算:(1)(+5)+(-13)+9;(2)(-2.8)++(-1.2)+(-0.4);(3)0.85+(+2.75)++(-1.85)+(-5);(4).8.在抗洪抢险中,人民解放军驾驶冲锋舟沿东西方向的河流抢救灾民,早晨从A地出发,晚上到达B地.规定向东为正,当天航行记录如下(单位:km):16,-8,13,-9,12,-6,10.(1)B地在A地的哪侧?相距多远?(2)若冲锋舟每千米耗油0.45 L,则这一天共消耗了多少升油?9.用简便方法计算:某产粮专业户出售余粮10袋,每袋的质量如下(单位:kg):199,201,197,203,200,195,197,199,202,196.(1)如果每袋余粮以200 kg为标准,求这10袋余粮总计超过多少千克或者不足多少千克.(2)这10袋余粮一共有多少千克?创新应用★10.已知钟面上有1~12共12个数字,试在某些数字的前面添上负号,使钟面上的所有数字之和等于零.(只要写出其中的一种方法即可)11.某市食品药品监督管理局对标准容量为每瓶500 mL(误差允许范围±1.5 mL)的某品牌的冰红茶进行了一次抽检,抽取10瓶样品,编号1~10后进行检测,结果如图(单位:mL):(1)这10瓶冰红茶的总容量是多少?请尝试用简便方法解决.(2)单独从容量的角度分析,你对该批产品有何评价?参考答案知能演练·提升能力提升1.D-88+200+(-111)=1>0.2.C选项A应先把互为相反数的两个数相加;选项B应先把同分母的分数相加;选项D应先把相加得整数的两个数相加.3.(1)12.25(2)-14.5(1)原式=0.815+5.185+6.25=6+6.25=12.25;(2)原式=-(3.125+6.875+4.5)=-(10+4.5)=-14.5.4.4 0370绝对值小于2 019的整数为±2 018,±2 017,±2 016,…,±2,±1,0,共有2 018×2+1=4 037(个),除零外,其余整数两两互为相反数,故它们的和为0.5.88=88(分).6.-1 009原式=[(-1)+(+2)]+[(-3)+(+4)]+…+[(-99)+(+100)]+…+[(-2 013)+(+2 014)]+[(-2 015)+(+2 016)]+(-2 017)=-1 009.7.解(1)原式=[(+5)+9]+(-13)=14+(-13)=1.(2)原式=[(-2.8)+(-1.2)]+=-4.(3)原式=[0.85+(-1.85)]++(-5)=(-1)+(+2)+(-5)=-4.(4)原式==(-8)+(+4)=-4.8.解(1)16+(-8)+13+(-9)+12+(-6)+10=28(km),B地在A地的东侧,且两地相距28 km.(2)|16|+|-8|+|13|+|-9|+|12|+|-6|+|10|=74(km),74×0.45=33.3(L),故这一天共消耗油33.3 L.9.解(1)以200 kg为基准,超过200 kg的数记作正数,不足200 kg的数记作负数,则这10袋余粮的质量对应的数分别为-1,+1,-3,+3,0,-5,-3,-1,+2,-4.所以(-1)+(+1)+(-3)+(+3)+0+(-5)+(-3)+(-1)+(+2)+(-4)=-11(kg).答:这10袋余粮总计不足11 kg.(2)200×10+(-11)=2 000-11=1 989(kg).答:这10袋余粮一共有1 989 kg.创新应用10.分析由于1+2+…+12=(1+12)×12÷2=78,因此只需将和分为+39与-39两部分即可.解答案不唯一,如1+2+3+4+5+(-6)+7+8+9+(-10)+(-11)+(-12)=(1+2+3+4+5+7+8+9)+[(-6)+(-10)+(-11)+(-12)]=39+(-39)=0.11.解(1)用正、负数表示每瓶容量偏离标准容量的数值分别为-1.1,-0.5,+0.5,+1.1,+0.2,-0.4,-0.2,+0.8,+1.5,+0.9.这10瓶冰红茶容量分别与标准容量的偏差值的总和是(-1.1)+(-0.5)+0.5+1.1+0.2+(-0.4)+(-0.2)+0.8+1.5+0.9=[(-1.1)+1.1]+[(-0.5)+0.5]+[(-0.2)+0.2]+(-0.4)+0.8+1.5+0.9=2.8(mL).这10瓶冰红茶的总容量为500×10+2.8=5 002.8(mL).(2)单独从容量的角度分析,该品牌的冰红茶单瓶容量都在国家误差允许范围内,并且大部分都超过标准容量,质量有保证,值得信赖.二元一次方程组的应用(第1课时)(30分钟50分)一、选择题(每小题4分,共12分)1.小颖家离学校1200米3千米/时,下坡路的平均速度是5千米/时.若设小颖上坡用了x分钟,下坡用了y 分钟,根据题意可列方程组为( ) A. B.C. D.2.(2013·潍坊中考)为了研究吸烟是否对肺癌有影响,某肿瘤研究所随机地调查了10000人,并进行统计分析.结果显示:在吸烟者中患肺癌的比例是2.5%,在不吸烟者中患肺癌的比例是0.5%,吸烟者患肺癌的人数比不吸烟者患肺癌的人数多22人.如果设这10000人中,吸烟者患肺癌的人数为x,不吸烟者患肺癌的人数为y,根据题意,下面列出的方程组正确的是( )A.B.C.D.3.已知甲、乙两种商品的进价和为100元,为促销而打折销售,若甲商品打8折,乙商品打6折,则可赚50元;若甲商品打6折,乙商品打8折,则可赚30元,则甲、乙两种商品的定价分别是( )A.50元,150元B.150元,50元C.100元,50元D.50元,100元二、填空题(每小题4分,共12分)4.甲种电影票每张20元,乙种电影票每张15元.若购买甲,乙两种电影票共40张,恰好用去700元,则甲种电影票买了张.5.学校组织一次有关历史知识的竞赛,共有20道题,每一题答对得5分,答错或不答都倒扣1分,小明最终得了76分,那么他答对道题.6.一个长方形的长减少5cm,宽增加2cm,就变成了一个正方形,并且这两个图形的面积相等,则原长方形的面积为cm2.三、解答题(共26分)7.(8分)(2013·8.(8分)(2013·宜宾中考)2013年4月20日,四川省芦山县发生7.0级强烈地震,造成大量的房屋损毁,急需大量帐篷.某企业接到任务,须在规定时间内生产一批帐篷.如果按原来的生产速度,每天生产120顶帐篷,那么在规定时间内只能完成任务的90%.为按时完成任务,该企业所有人员都支援到生产第一线,这样,每天能生产160顶帐篷,刚好提前一天完成任务.问规定时间是多少天?生产任务是多少顶帐篷?【拓展延伸】9.(10分)一辆汽车从A地驶往B地,前路段为普通公路,其余路段为高速公路.已知汽车在普通公路上行驶的速度为60km/h,在高速公路上行驶的速度为100km/h“路程”或“时间”,提出一个用二元一次方程组解决的问题,并写出解题过程.答案解析1.【解析】选 B.第一个等量关系式为:x+y=1.2,第二个等量关系式为:x+y=16,构成方程组2.【解析】选B.根据“吸烟者患肺癌的人数比不吸烟者患肺癌的人数多22人”所得的方程是x-y=22;调查的吸烟的人数是,不吸烟的人数是,根据共调查了10000人,列方程得+=10000,所以可列方程组3.【解析】选B.设甲的定价为x元,乙的定价为y元.则解得:4.【解析】设购买甲种电影票x张,乙种电影票y张,由题意得解得即甲种电影票买了20张.答案:20【归纳整合】二元一次方程组的优点当我们遇到两个量之间出现两种等量关系时,可以考虑列二元一次方程组解题.虽然本题也可列一元一次方程,但相比较而言,列二元一次方程组比列一元一次方程更好.5.【解析】设他答对x道题,答错或不答y道题.根据题意,得解得答案:166.【解析】设长方形的长为xcm,宽为ycm,则根据题意得解这个方程组得所以长方形的面积xy=.答案:7.【解析】设大宿舍有x间,小宿舍有y间,根据题意得解得答:大宿舍有30间,小宿舍有20间.8.【解析】设规定时间为x天,生产任务是y顶帐篷,由题意得,解得答:规定时间是6天,生产任务是800顶帐篷.9.【解析】本题答案不唯一,方法一:问题:普通公路段和高速公路段各长多少千米?设普通公路段长为xkm,高速公路段长为ykm.由题意可得:解得答:普通公路段长为60km,高速公路段长为120km.方法二:问题:汽车在普通公路段和高速公路段上各行驶了多少小时?设汽车在普通公路段上行驶了xh,在高速公路段上行驶了yh.由题意可得:解得:答:汽车在普通公路段上行驶了1h,在高速公路段上行驶了1.2h.8.3 实际问题与二元一次方程组第3课时实际问题与二元一次方程组(3)——探究3一、导学1.导入课题:在上两节课的基础上,这节课我们继续来学习用列表分析的方式设未知数,列方程组来解应用题.2.学习目标:(1)巩固列方程组解应用题的一般步骤.(2)学会用列表的方式分析问题中蕴含的数量关系,并列二元一次方程组.3.学习重点、难点:借助列表分析问题中蕴含的数量关系,并列二元一次方程组.4.自学指导:(1)自学内容:课本P100~P101探究3.(2)自学时间:10分钟.(3)自学要求:认真阅读课文,注意探究3中的一些条件是用示意图给出的,能从图中正确获取信息,并会列表整理这些信息.(4)探究提纲:①要求的问题是:销售款-(原料费+运输费).其中运输费包括公路运费和铁路运费,它们分别为15000元和97200元.因此,需要求出销售额和原料费,又销售款=产品销售单价×产品数量,原料费=原料购进单价×原料数量,结合已知条件分析,需先求出产品数量和原料数量.②设制成xt产品,购买yt原料,根据题中数量关系填写下表:产品xt(从工厂到B地)原料yt(从A地到工厂)合计由上表,列方程组1.5201015000 1.211012097200.x yx y+=⎧⎨+=⎩()()③解②中方程组,得300400 xy=⎧⎨=⎩.因此,销售款为2400000元,原料费为400000元,销售款比原料费与运输费的和多1887800元.二、自学同学们结合探究提纲相互交流研讨学习.三、助学1.师助生:(1)明了学情:教师深入课堂,了解学生的自学进度和存在的问题.①是否弄清解题思路.②能否理顺题中数量关系.(2)差异指导:对少数学有困难的学生进行引导.2.生助生:小组内学生之间相互交流研讨,互帮互学.四、强化1.从图表获取信息的要点.设每餐甲、乙两种原料各x克,y克恰好满足病人的需要.(1)填表:(2)列方程组为0.50.7350.440;x yx y+=⎧⎨+=⎩(3)解方程组得2830 xy=⎧⎨=⎩;(4)答:每餐甲、乙两种原料各28克,30克恰好满足病人的需要.五、评价1.学生学习的自我评价:各小组长汇报本组的学习收获和不足.2.教师对学生的评价:(1)表现性评价:对学生的学习态度、方法和收效进行点评.(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思):本节课的重点是让学生抓住实际问题的等量关系建立方程组模型,以此解决行程问题、图文信息问题和方案设计问题等.教学中采取让学生独立思考、合作交流等方式,帮助学生形成严谨的思维方式,养成良好的学习习惯.(时间:12分钟满分:100分)一、基础巩固(60分)·km ),铁路运费为1元/(t ·km ),飞腾公司共支付公路运费750元,铁路运费4000元.根据以上信息计算:购进原料多少吨?加工后销往B 地的产品为多少吨?设购进原料xt ,加工后销往B 地的产品为yt.(1) 填表:(2) 根据上表中反映的信息列方程组为30157501501004000x y x y +=⎧⎨+=⎩; (3)解方程组得2010x y =⎧⎨=⎩; (4)答:购进原料20t.加工后销往B 地的产品为10t.2.(30分)A 地至B 地的航线长9750km ,一架飞机从A 地顺风飞往B 地需12.5h ,它逆风飞行同样的航线需13h ,求飞机的平均速度与风速.解:设飞机的平均速度为xkm/h ,风速为ykm/h.由题意,得()12.59750139750.x y x y +⨯=⎧⎪⎨-⨯=⎪⎩(), 化简,得780750.x y x y +=-=⎧⎨⎩,①②①+②,得2x=1530.解得x=765.把x=765代入①,得y=15.∴这个方程组的解为76515.x y =⎧⎨=⎩, 答:飞机的平均速度为765km/h ,风速为15km/h.二、综合运用(20分)3.从甲地到乙地有一段上坡与一段平路,如果保持上坡每小时走3km ,平路每小时走4km ,下坡每小时走5km ,那么从甲地到乙地需54min ,从乙地到甲地需42min.甲地到乙地全程是多少?解:设从甲地到乙地的上坡路为xkm,平路为ykm.由题意,得54346042.5460x yx y⎧+=⎪⎪⎨⎪+=⎪⎩,①②解得1.53.1.1.6xx yy=⎧∴+=⎨=⎩,,答:甲地到乙地全程是3.1km.三、拓展延伸(20分)4.打折前,买60件A商品和30件B商品用了1080元,买50件A商品和10件B商品用了840元.打折后,买500件A商品和500件B商品用了9600元,比不打折少花多少钱?解:设打折前A商品每件x元,B商品每件y元.由题意,得60301080 5010840.x yx y+=⎧⎨+=⎩,解得164.xy=⎧⎨=⎩,500x+500y=500×16+500×4=10000. 10000-9600=400(元).答:比不打折少花400元.。
《1.3.1 第2课时 有理数加法的运算律及运用》教案、同步练习和导学案

1.3.1 有理数的加法《第2课时有理数加法的运算律及运用》教案【教学目标】1.理解有理数加法的运算律,并能熟练的运用运算律简化运算;(重点) 2.经历探索有理数加法的运算律的过程,体验探索归纳的数学方法.【教学过程】一、情境导入宋国有个非常喜欢猴子的老人.他养了一群猴子,整天与猴子在一起,因此能够懂得猴子们的心意.因为粮食缺乏,老人想限制口粮.那天,他故意先对猴子们说:“以后给你们吃桃子,早晨三颗晚上四颗,好不好?”众猴子听了都很愤怒.老人马上改口说:“那就早上四颗晚上三颗吧,够了吗?”众猴子非常高兴,大蹦大跳起来.大家听完故事,请说说你的看法.二、合作探究探究点一:加法运算律计算:(1)31+(-28)+28+69;(2)16+(-25)+24+(-35);(3)(+635)+(-523)+(425)+(1+123).解析:(1)把互为相反数的两数相加;(2)可把符号相同的数相加;(3)可把相加得到整数的数相加.解:(1)31+(-28)+28+69=31+[(-28)+28]+69=31+0+69=100;(2)16+(-25)+24+(-35)=16+24+(-25)+(-35)=(16+24)+[(-25)+(-35)]=40+(-60)=-20;(3)(+635)+(-523)+(425)+(1+123)=(635+425)+(-523)+(223)=11+(-3)=8.方法总结:合理地运用有理数的加法运算律可使计算简化.在进行多个有理数相加时,在下列情况下一般可以用加法交换律和加法结合律简化运算:①有些加数相加后可以得到整数时,可以先行相加;②有互为相反数的两数可以互相消去,和为0,可以先行相加;③有许多正数和负数相加时,可以先把符号相同的数相加,即正数和正数相加,负数和负数相加,再把一个正数和一个负数相加.探究点二:有理数加法运算律的应用某公路养护小组乘车沿南北方向巡视维修,某天早晨他们从A 地出发,晚上最后到达B 地,约定向北为正方向,当天的行驶记录如下.(单位:km)+18,-9,+7,-14,+13,-6,-8.(1)B 地在A 地何方,相距多少千米?(2)若汽车行驶1km 耗油a L ,求该天耗油多少L?解析:(1)首先把题目的已知数据相加,然后根据结果的正负即可确定B 地在A 何方,相距多少千米;(2)首先把所给的数据的绝对值相加,然后乘以a 即可求解.解:(1)(+18)+(-9)+(+7)+(-14)+(+13)+(-6)+(-8)=[(+18)+(+7)+(+13)]+[(-9)+(-14)+(-6)+(-8)]=38+(-37)=1(km)故B 地在A 地正北,相距1千米;(2)该天共耗油:(18+9+7+14+13+6+8)a =75a (L).答:该天耗油75a L.方法总结:解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示,其次是要正确理解题目意图,选择正确的方式解答.三、板书设计有理数加法运算律⎩⎨⎧交换律:a +b =b +a 结合律:(a +b )+c =a +(b +c )【教学反思】本节课教学以故事引入,在学生已有的知识经验上建构新知,主动探索有理数加法交换律和结合律,从而激发他们学习的兴趣,使他们由被动地接受学习变成一种主动探索获取知识.课堂中学生通过自主互助交流,不断地总结规律、方法和解题技巧.1.3有理数的加减法《1.3.1 有理数的加法》同步练习能力提升1.如果两个有理数的和是负数,那么这两个数()A.一定都是负数B.一定是0与一个负数C.一定是一个正数与一个负数D.可能是一个正数与一个负数,可能都是负数,也可能是0和一个负数2.有理数a,b在数轴上的位置如图,则a+b的值()A.大于0B.小于0C.小于aD.大于b3.若a与1互为相反数,则|a+1|等于()A.2B.-2C.0D.-14.若三个有理数a+b+c=0,则()A.三个数一定同号B.三个数一定都是0C.一定有两个数互为相反数D.一定有一个数等于其余两个数的和的相反数5.若x的相反数是-2,|y|=4,则x+y的值为.6.绝对值小于2 016的整数有个,它们的和是.7.计算:(-1)+(+2)+(-3)+(+4)+…+(-99)+(+100)+…+(+2 014)+(-2 015)+(+2 016)+(-2 017)= .8.计算:(1)(-5)+(-4);(2)|(-7)+(-2)|+(-3);(3)(-0.6)+0.2+(-11.4)+0.8;(4).9.在抗洪抢险中,人民解放军驾驶冲锋舟沿东西方向的河流抢救灾民,早晨从A地出发,晚上到达B地,规定向东为正,当天航行记录如下(单位:km):16,-8,13,-9,12,-6,10.(1)B地在A地的哪侧?相距多远?(2)若冲锋舟每千米耗油0.45 L,则这一天共消耗了多少升油?★10.阅读(1)小题中的方法,计算第(2)小题.(1)-5+17.解:原式==[(-5)+(-9)+(-3)+17]+=0+=-.(2)上述这种方法叫做拆项法,依照上述方法计算:+4 034+.创新应用★11.用[x]表示不超过x的整数中最大的整数,如[2.23]=2,[-3.24]=-4.请计算:(1)[3.5]+[-3];(2)[-7.25]+.★12.在如图所示的圆圈内填上不同的整数,使得每条线上的3个数之和为0,写出三种不同的答案.参考答案能力提升1.D2.A从数轴上可知:-1<a<0,b>1,即a,b异号,且|b|>|a|,故a+b>0.3.C4.D5.-2或6因为|4|=4,|-4|=4,所以y=±4.又因为x的相反数为-2,所以x=2.再将x,y的值代入x+y求值.6.4 03107.-1 009原式=[(-1)+(+2)]+[(-3)+(+4)]+…+[(-99)+(+100)]+…+[(-2013)+(+2014)]+[(-2015)+(+2016)]+(-2017)=-1009.8.解:(1)(-5)+(-4)=-(5+4)=-9.(2)|(-7)+(-2)|+(-3)=|-9|+(-3)=9+(-3)=6.(3)(-0.6)+0.2+(-11.4)+0.8=(0.2+0.8)+[(-0.6)+(-11.4)]=1+(-12)=-11.(4)=(-8)+ (+4)=-4.9.解:(1)16+(-8)+13+(-9)+12+(-6)+10=28(km),B地在A地的东侧,且两地相距28km.(2)|16|+|-8|+|13|+|-9|+|12|+|-6|+|10|=74(km),74×0.45=33.3(L),这一天共消耗油33.3L.10.解:(2)原式=+4034+=[(-2017)+(-2016)+(-1)+4034]+=0+=-2.创新应用11.解:(1)原式=3+(-3)=0.(2)原式=-8+(-1)=-9.12.解:本题答案不唯一,如:1.3.1 有理数的加法《第2课时有理数加法的运算律及运用》导学案【学习目标】:1.能概括出有理数的加法交换律和结合律.2.灵活熟练地运用加法交换律、结合律简化运算.【重点】:掌握有理数的加法交换律和结合律.【难点】:运用加法交换律、结合律简化运算.【自主学习】一、知识链接1.填空:3+2=2+3 这里运用了加法的( )25+39+75=(____ +_____ )+____ =___ +(_____+_____)这里运用了加法的()2.有理数的加法法则:⑴同号两数相加,___________________________________;⑵异号两数相加,绝对值相等时,___________;绝对值不相等时,____________________________________________.⑶一个数同0相加,_________________ .3.计算(1)(-15)+(-3)(2)6+(-2.3)(3)(-0.75)+0二、新知预习1.试一试:(1)任意选择两个有理数(至少有一个是负数),分别填入下列□和○内,并比较两个运算的结果:□+○和○+□(2)任意选择三个有理数(至少有一个是负数),分别填入下列□、○和◇内,并比较两个运算的结果:(□+○)+◇和□+(○+◇)2.你能发现什么?请说说自己的猜想.3.概括:通过实例说明加法的交换律和结合律对于有理数同样适用.加法的交换律:文字概括:字母表示:加法的结合律:文字概括:字母表示:三、自学自测计算:(1)16 +(-25)+ 24 +(-35);(2)(—2.48)+(+4.3)+(—7.52)+(—4.3)四、我的疑惑_________________________________________________________________ ____________________________________________________________【课堂探究】一、要点探究探究点1:加法运算律问题1:观察下面的算式,你们能再举一些数字也符合这样的结论吗?试试看!(1)3+(-5)=-2,-5+3=-2;(2)[3+(-5)]+(-7)=-9,3+[(-5)+(-7)]=-9.问题2:通过上面的计算和对比你能发现什么?你能用字母表示出这个规律吗?要点归纳:加法的交换律:a+b=b+a加法的结合律:(a+b)+c=a+(b+c)例1:计算:16+(-25)+24+(-35)思考:怎样使计算简化的?这样做的根据是什么?要点归纳:把正数与负数分别相加,从而计算简化,这样做既运用加法交换律又运用加法的结合律.例2 计算(1)(-2.48)+4.33+(-7.52)+(-4.33)(2)65+(-76)+(-61)思考:回顾以上例题的解答,将怎样的加数结合在一起,可使运算简便?要点归纳:(1)互为相反数的两个数可先相加;(2)几个数相加得整数时,可先相加;(3)同分母的分数可以先相加;(4)符号相同的数可以先相加.探究点2:有理数加法运算律的应用例3 每袋小麦的标准重量为90千克,10袋小麦称重记录如图所示,与标准重量比较,10袋小麦总计超过多少千克或不足多少千克?10袋小麦的总重量是多少?例4 某一出租车一天下午以文化中心为出发地在东西方向营运,向东走为正,向西走为负,行车里程(单位:km)依先后次序记录如下:+9,-3,-5,+4,-8,+6,-3,-6,-4,+10.(1)将最后一名乘客送到目的地时出租车离出发地多远?在出发地的什么方向上?(2)若每千米的价格为2.4元,司机一个下午的营业额是多少?某日小明在一条南北方向的公路上跑步,他从A地出发,每隔10分钟记录下自己的跑步情况(向南为正方向,单位:米):-1008,1100,-976,1010,-827,9461小时后他停下来休息,此时他在A地的什么方向?距A地多远?小明共跑了多少米?【当堂检测】1.计算:(1)23+(-17)+6+(-22);(2)(-2)+3+1+(-3)+2+(-4).2.计算:3.上周五股民新民买进某公司股票1 000股,每股35元,下表为本周内每日股票的涨跌情况(单位:元):则在星期五收盘时,每股的价格是多少?4.10筐苹果,以每筐30千克为基准,超过的千克数记作正数,不足的千克数记作负数,记录如下:2, -4, 2.5, 3, -0.5, 1.5, 3, -1, 0, -2.5.问这10筐苹果总共重多少千克?。
《有理数的加法》有理数及其运算PPT课件(第2课时)教学课件

第2课时 有理数加法的运算律
知识要点基础练
综合能力提升练
拓展探究突破练
-6-
7.下列算式中,运用加法交换律和加法结合律正确的是( D )
A.23+(
-1
)+
+
1 3
=
2 3
+
+
1 3
+1
B.14+(
-2
)+
-
3 4
=
1 4
+
3 4
+(
-2
)
C.( -6 )+2+9=[( -9 )+2]+6
D.( -5 )+7+( -8 )=[( -5 )+( -8 )]+7
8.计算
1 2
+
1 3
+
2 3
+
1 4
+
3 4
+
1 5
+
4 5
+
1 6
的结果为(
C
)
A.223
B.312
C.323
D.412
第二章
第2课时 有理数加法的运算律
知识要点基础练
综合能力提升练
拓展探究突破练
-7-
9.( 改编 )下列运算中正确的是( C )
A.11+[( -13 )+7]=17
B.( -2.5 )+[5+( -2.5 )]=5
解:解法一:这10箱蜜桔的总质量为 9.98+10.02+10.03+9.99+10.04+10.03+9.99+9.97+10.00+10.05=100.1 kg, 平均每箱蜜桔的质量为100.1÷10=10.01 kg. 解法二:把超过标准质量的千克数用正数表示,不足的用负数表示, 则这10箱蜜桔与标准质量的差值的和为( -0.02 )+0.02+0.03+( -0.01 )+0.04+0.03+( 0.01 )+( -0.03 )+0+0.05=0.1 kg. 这10箱蜜桔的总质量为10×10+0.1=100.1 kg. 所以这10箱蜜桔的平均质量为10.01 kg.
第2课时 有理数的加减混合运算

例 6 计算 14–25 + 12 - 17. 解: 14–25 + 12 - 17 = 14 + 12–25 - 17 = 26 - 42 = - 16.
及时巩固
把(+9)-(+10)+(-2)-(-8)+(+3)先改写成省略
括号和加号的形式,再计算. 解:(+9)-(+10)+(-2)-(-8)+(+3) = 9+(-10)+(-2)+(+8)+ 3 = 9 - 10-2 + 8 + 3 = 9 + 8 + 3 - 10 - 2 =8
3 7 ( 1) ( 2) 1 42 6 3 37 1 21 4263 13
4
2. 将下列式子先改写成省略括号和加号的形式,再计算:
(1)(-52)-(+37)+(-19)-(-24);
(2)(+2
3 4
)
(
1 ) (3 3) (+5 1 )
2
4
2
.
(1)原式 = -52-37-19+24 = -108 +24 = -84;
你还有其他的方法吗?
例 5 计算 (-20)+(+3)-(-5)-(+7).
分析:这个算式中既有加法,也有减法,可以先根 据有理数减法法则,把减法转化为加法. 这个算式可以改写为
(-20)+(+3)+(+5)+(-7) 然后再进行有理数的加法运算.
例 5 计算 (-20)+(+3)-(-5)-(+7).
六年级数学上册 2.4 有理数的加法(第2课时)
2.4有理数的加法【学习目标】1.有理数加法的两种运算律:①互换律②结合律2.能运用加法的互换律和结合律进行简便计算【学习重点】把握有理数加法的互换律和结合律,并能运用加法运算律简化运算【学习难点】灵活运用运算律使运算简便【利用方式说明】把握学习目标,了解学习重难点,参照讲义,把握本节知识点,然后完成导学案。
一、课前预习导学1. 加法的互换律:两个数相加,互换的位置, 和不变. 用式子表示:a+b= .2. 加法的结合律:三个数相加, 先把相加, 或先把相加, 和不变.用式子表示:(a+b)+c= .二、学习研讨有理数加法的运算律3.计算:(1)(-8)+(-9)= ; (-9)+(-8)=(2)4+(-8)= ; (-8)+4=依照计算结果你可发觉:(-8)+(-9)(-9)+(-8)4+(-8) (-8)+4(填“>”、“<”或“=”)由此可得在有理数运算中a+b =____ _____,这种运算律称为加法________律.4.计算:(1)[2+(-3)]+(-8)=______+______=______;2+[(-3)+(-8)]= _ __+____=_____(2) [10+(-10)]+(-5)= _____+_____=_____;10+[(-10)+(-5)]= _____+_____=_____由此可得:(a+b )+c =____ _,这种运算律称为加法__ __律.【总结】在有理数运算中,加法的互换律、结合律仍然成立。
加法的互换律:两个数相加,互换加数的位置,它们的和不变。
即 .加法的结合律:三个数相加,先把前两个数相加,或先把后两个数相加,它们的和不变。
即 .5.师生探讨例1 31+(-28)+28+69【解】31+(-28)+28+69=31+69+[(-28)+28]=100+0=100仿照例题,独立完成(1)13+(-56)+47+(-34) (2)(-301)+125+301+(-75)(3))()(52275.453225.5-++-+ (4)(-3)+40+(-32)+(-8) 【简便方式】 由(1)得:__ ____ ____ ____ ____ ____ ____ __; 由(2)得:__ ____ ____ ____ ____ ____ ____ __;由(3)得:①__ ____ ____ ____ ____ ____ ____ ;②__ ____ ____ ____ ____ ____ ____ 。
七年级数学上册第一章有理数1-3有理数的加减法1-3-1第2课时有理数的加法运算律复习练习新版新人教版(1)
1.计算-23++(-1.234)++(+23)的结果是()
A.0B.-12.34
C.-1.234D.1.234
2.运用加法的运算律计算+(-18)++(-6.8)+18+(-3.2),最适当的是()
6.计算:
(1)(-0.8)+(+1.2)+(-0.6)+(-2.4);
(2)(-0.5)+++(+9.75);
(3)+(-2.16)+8+3+(-3.84)+(-0.25)+.
7.用简便方法计算:
(1)-4+17+(-36)+73;
(2)-+++.
8.[2017·××区校级月考]有一架直升飞机从海拔1 000米的高原上起飞,第一次上升了1 500米,第二次上升了-1 200米,第三次上升了2 100米,第四次上升了-1 700米,求此时这架飞机离海平面多少米?
9.阅读下面的解题方法.
计算:-5++17+.
解:原式=+++
=[(-5)+(-9)+17+(-3)]+
+
=0+
=-.
上述解题方法叫做拆项法,按此方法计算:
++4 036+1.
参考答案
第2课时 有理数的加法运算律
【分层作业】
1.C2.D3.7+2+
2+04.-25.06.(1)-2.6(2)2(3)27.(1)50(2)8.1 700米9.-
A.+[(-18)+(-6.8)+(-3.2)]
B.+[(-18)+18+(-3.2)]
[(-6.8)+(-3.2)]
3.根据加法运算律填空:7++2+=+
=2+ =.
4.计算:(-20.75)+3+(-4.25)+19=.
2.5 第2课时 有理数加法运算律
第2课时 有理数加法运算律知识点 1 有理数的加法交换律与加法结合律1.运算过程5+(-3)+7+(-9)+12=(5+7+12)+[(-3)+(-9)]应用了( ) A .加法交换律 B .加法结合律C .分配律D .加法的交换律与结合律 2.计算314+⎝⎛⎭⎫-235+534+⎝⎛⎭⎫-725时,运算律用得恰当的是( ) A.⎣⎡⎦⎤314+⎝⎛⎭⎫-235+⎣⎡⎦⎤ 534+⎝⎛⎭⎫-725 B .(314+534)+⎣⎡⎦⎤⎝⎛⎭⎫-235+⎝⎛⎭⎫-725 C.⎣⎡⎦⎤314+⎝⎛⎭⎫-725+⎣⎡⎦⎤⎝⎛⎭⎫-235+534D.⎣⎡⎦⎤⎝⎛⎭⎫-235+534+⎣⎡⎦⎤314+⎝⎛⎭⎫-725 3.使用运算律计算⎝⎛⎭⎫-14+45+⎝⎛⎭⎫-34的结果是( ) A.95 B .-95 C.15 D .-15 4.-7,-12,2三个数和的绝对值是( )A .3B .7C .17D .21 5.在括号内填上每一步运算的依据: 22+(-6)+(-22)=(-6)+22+(-22) ( ) =(-6)+[22+(-22)] ( )=(-6)+0()=-6. ()6.计算:-200.95+28+0.95+(-8)=________.7.绝对值小于5的所有整数的和是__________.8.计算:(1)18+(-29)+52;(2)(-301)+125+301+(-75);(3)2018·省泰中附中月考(-26.54)+(-6.4)+18.54+6.4;(4)2018·黄桥月考-3.2+(-5.2)+(-2.8)+15.2;(5)2018·滨海县月考 (-0.125)+12+(-713)+218+623;(6)(+1317)+(-3.5)+(-6)+(+2.5)+(+6)+(+417).知识点 2 有理数加法运算律的应用9.某商店去年四个季度盈亏情况如下(盈余为正):+128.5万元,-140万元,-95.5万元,+280万元,这个商店的总盈亏情况是( ) A .盈余644万元 B .亏本173万元 C .盈余173万元 D .亏本644万元10.2018·宜兴月考某人用400元钱购买了8套儿童服装,准备以一定的价格出售,如果以每套55元的价格为标准,超出的记为正数,不足的记为负数,记录如下(单位:元):+2,-3,+2,-1,-2,+1,-2,0.(1)他卖完这8套服装后的总收入是多少?(2)盈利(或亏损)了多少元?11.若三个有理数的和为0,则下列结论正确的是()A.这三个数都是0B.最少有两个数是负数C.最多有两个数是正数D.这三个数互为相反数12.2018·楚水月考小红在写作业时,不慎将一滴墨水滴在数轴上,根据图2-5-3中的数据,请确定墨迹遮盖住的整数的和为________.图2-5-313.计算:(-1)+2+(-3)+4+(-5)+6+…+(-2017)+2018+(-2019)+2020.14.有一批水果,标准质量为每筐25千克,现抽取8筐样品进行检测,称重结果如下(单位:千克):27,24,23,28,21,26,22,27,为求得8筐样品的总质量,我们可以选取一个恰当的基准数进行简化运算.(1)你认为选取的一个恰当的基准数为________;(2)根据你选取的基准数,用正、负数填写上表(超出基准数记为正,不足基准数记为负);(3)这8筐水果的总质量是多少?15.2017·江阴校级月考 阅读材料:对于(-556)+(-923)+1734+(-312)可以如下计算:原式=[(-5)+(-56)]+[(-9)+(-23)]+(17+34)+[(-3)+(-12)]=[(-5)+(-9)+17+(-3)]+[(-56)+(-23)+34+(-12)]=0+(-114)=-114.上面这种方法叫拆数法,你看懂了吗?仿照上面的方法,请你计算:(-201956)+(-201823)+403834+(-112).教师详解详析1.D [解析] 本题运用了加法的交换律、加法的结合律进行运算.故选D. 2.B3.D [解析] 原式=⎝⎛⎭⎫-14+⎝⎛⎭⎫-34+45=-1+45=-15.故选D. 4.C [解析] (-7)+(-12)+2=(-7)+(-10)=-17,-17的绝对值是17.故选C. 5.加法交换律 加法结合律 互为相反数的两个数相加得0 一个数与0相加,仍得这个数6.-1807.0 [解析] 根据绝对值的意义,结合数轴,得绝对值小于5的所有整数为0,±1,±2,±3,±4,所以它们的和为0.8.解:(1)原式=18+52+(-29)=41. (2)原式=(-301)+301+125+(-75)=50. (3)原式=[(-26.54)+18.54]+[(-6.4)+6.4]=-8. (4)原式=[-3.2+(-2.8)]+[(-5.2)+15.2]=-6+10=4.(5)原式=⎣⎡⎦⎤(-0.125)+218+12+⎣⎡⎦⎤(-713)+623=2+12+(-23)=1313. (6)原式=⎣⎡⎦⎤(+1317)+(+417)+[(-3.5)+(+2.5)]+[(-6)+(+6)]=1+(-1)+0=0. 9.C [解析] 先将这些数相加,若和为正,则表示盈余;若和为负,则表示亏本.(+128.5)+(-140)+(-95.5)+280=(128.5+280)+[(-140)+(-95.5)]=408.5+(-235.5)=173.故选C.10.解:(1)+2+(-3)+2+(-1)+(-2)+1+(-2)+0=-3(元),8×55+(-3)=437(元). 答:他卖完这8套服装后的总收入是437元.(2)437-400=37(元).答:盈利37元.11.C[解析] A项,不能确定,例如:-2+2+0=0.B项,不能确定,例如:-2+2+0=0.C项,正确.D项,错误,因为三个数不能称作互为相反数.故选C.12.-5[解析] 被墨迹遮盖住的整数为-3,-2,-1,0,1,它们的和为(-3)+(-2)+(-1)+0+1=-5.13.[解析] 本题加数比较多,若一个一个地加,显然比较麻烦,而且容易算错,但注意到相邻两个加数相加得1或-1,所以可以简化计算.解:(-1)+2+(-3)+4+(-5)+6+…+(-2017)+2018+(-2019)+2020=[(-1)+2]+[(-3)+4]+[(-5)+6]+…+[(-2017)+2018]+[(-2019)+2020]=1+1+1+…+1+1,\s\do4(1010个))=1010.14.解:(1)(2)问答案不唯一,(1)25(2)+2-1-2+3-4+1-3+2(3)25×8+[(+2)+(-1)+(-2)+(+3)+(-4)+(+1)+(-3)+(+2)]=200+(-2)=198(千克).答:这8筐水果的总质量是198千克.[点评] 在求多个数值的和的时候,注意运算的技巧(如本题取25为基准数,结合正负数表示相反意义的量的知识),再应用有理数加法的法则,可使问题的解决过程显得简捷.15.解:原式=[(-2019)+(-56)]+[(-2018)+(-23)]+(4038+34)+[(-1)+(-12)]=[(-2019)+(-2018)+4038+(-1)]+[(-56)+(-23)+34+(-12)]=0+(-114)=-114.。
《1.5.1 第2课时 有理数的混合运算》教案、同步练习(附导学案)
1.5.1 乘方《第2课时有理数的混合运算》教案【教学目标】:1.了解有理数混合运算的意义,掌握有理数的混合运算法则及运算顺序.2.能够熟练地进行有理数的加、减、乘、除、乘方的运算,并在运算过程中合理使用运算律.【教学重点】:根据有理数的混合运算顺序,正确地进行有理数的混合运算.【教学难点】:有理数的混合运算.【教学过程】:一、有理数的混合运算顺序:1.先乘方,再乘除,最后加减.2.同级运算,从左到右进行.3.如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行.【例1】计算:(1)(-2)3+(-3)×[(-4)2+2]-(-3)2÷(-2);(2)1-×[3×(-)2-(-1)4]+÷(-)3.强调:按有理数混合运算的顺序进行运算,在每一步运算中,仍然是要先确定结果的符号,再确定结果的绝对值.【例2】观察下面三行数:-2,4,-8,16,-32,64,…;①0,6,-6,18,-30,66,…;②-1,2,-4,8,-16,32,….③(1)第①行数按什么规律排列?(2)第②③行数与第①行数分别有什么关系?(3)取每行数的第10个数,计算这三个数的和.【例3】已知a=-,b=4,求()2--(ab)3+a3b的值.二、课堂练习 1.计算:(1)|-|2+(-1)101-×(0.5-)÷; (2)1÷(1)×(-)÷(-12); (3)(-2)3+3×(-1)2-(-1)4; (4)[2-(-)3]-(-)+(-)×(-1)2; (5)5÷[-(2-2)]×6. 2.若|x+2|+(y-3)2=0,求的值.3.已知A=a+a 2+a 3+…+a 2004,若a=1,则A 等于多少?若a=-1,则A 等于多少? 三、课时小结1.注意有理数的混合运算顺序,要熟练进行有理数混合运算.2.在运算中要注意像-72与(-7)2等这类式子的区别.1.5.1 乘方《第2课时 有理数的混合运算》同步练习1.填空题(1)求几个相同因数的积的运算,叫做_______,即n n a a a a •⋅⋅⋅•=个=a n 在a n 中,a 叫做_______,n 叫做______,a n 叫做_______;(2)正数的任何次幂都是______;负数的奇次幂是_______,负数的偶次幂是________;(3)乘方(-2)5的意义是____________________,结果为________; (4)-25的意义是____________________,结果为________;(5)在(-2)4中,-2是______,4是______,(-2)4读作_______或读作_______.思路解析:按照乘方定义及幂的结构解题. 答案:(1)乘方 底数 指数 幂(2)正数负数正数(3)5个-2的积 -32(4)5个2的积的相反数 -32(5)底数指数负二的四次幂负二的四次方2.把下列各式写成幂的形式,并指出底数是什么?指数是什么?(1)(-113)(-113)(-113)(-113);(2)(-0.1)×(-0.1)×(-0.1). 思路解析:根据幂的意义写出.答案:(1)(-113)4,底数是-113,指数是4;(2)(-0.1)3,底数是-0.1,指数是3.1.把下列各式写成幂的形式,并指出底数、指数各是什么?(1)(-1.2)×(-1.2)×(-1.2)×(-1.2)×(-1.2);(2)12×12×12×12×12×12;(3)2nb b b b ••⋅⋅⋅个.思路解析:底数是负数或分数时,要用括号将底数括起来,在括号外边写上指数,如(-1.2)5不能写成-1.25,(12)6不能写成612.答案: (1) (-1.2)5,其中底数是-1.2,指数是5;(2) (12)6,其中底数是12,指数是6;(3)222nn nb b b b b b••⋅⋅⋅==个,底数是b,指数是2n.2.判断题:(1)-52中底数是-5,指数是2;()(2)一个有理数的平方总是大于0;()(3)(-1)2 001+(-1)2 002=0;()(4)2×(-3)2=(-6)2=36; ()(5)223=49. ()思路解析:区别底的符号与幂结果的符号,注意底数是负数和分数时要把该底数用小括号括起来.答案:(1)×(2)×(3)×(4)×(5)×3.计算:(1)(-6)4;(2)-64;(3)(-23)4;(4)-423.思路解析:本题中(-6)4表示4个-6相乘,-64表示64的相反数,切不可看成同样的,且结果互为相反数.(-23)4表示4个-23相乘,而-423表24除以3的商的相反数.要注意区别.答案:(1)1 296; (2)-1 296; (3)1681; (4)-163.4.计算:(1)(-1)100;(2)(-1)101;(3)(-0.2)3;(4)(+25)3;(5)(-12)4;(6)(+0.02)2.思路解析:根据乘方的定义进行计算.答案:(1)1; (2)-1; (3)-0.008; (4)8125; (5)116; (6)0.000 4.5.计算下列各题:(1)(-3)2-(-2)3÷(-23)3;(2)(-1)·(-1)2·(-1)3……(-1)99·(-1)100.思路解析:由乘方的符号法则,易知对于一个有理数a,有(-a)2n=a2n,(-a)2n+1=-a2n+1(n为整数).本例应依此先确定幂的符号,再进行乘方运算.答案:(1)-18; (2)-1.(巩固类训练)1.6a2-2ab-2(3a2+12ab)的结果是()A.-3abB.-abC.3a2D.9a2答案:A2.填空:(1)若x<0且x2=49,则x=_______;(2)若|x+2|+(y+1)2=0,则x=______,y=______,x3y2 002=_______;(3)平方小于10的整数有_______个,其和为_______,积为________. 答案:(1)-7 (2)-2 -1 -8 (3)7 0 03.计算:(1)(-5)4; (2)-54; (3)-(-27)3;(4)[-(-27)]3; (5)-245; (6)(-45)2.思路解析:本题意在考查对(-a)n与-a n的意义的理解,要注意二者的区别与联系.解:(1)原式=(-5)×(-5)×(-5)×(-5)=625;(2)原式=-5×5×5×5=-625;(3)原式=-(-27)(-27)(-27)=8343;(4)原式=(27)3=27×27×27=8343;(5)原式=-445=-165;(6)原式=(-45)(-45)=1625.4.计算:(1)-(14)2×(-4)2÷(-18)2;(2)(-33)×(-1527)÷(-42)×(-1)25.思路解析:本题是乘、除、乘方混合运算运算时一要注意运算顺序:先乘方、后乘除,二要注意每一步运算中符号的确定.解:(1)原式=-116×16÷164=-64;(2)原式=(-27)×(-3227)÷(-16)×(-1)=27×3227×116=2.5.已知a、b为有理数,且(a+12)2+(2b-4)2=0,求-a2+b2的值.解:因为任意有理数的平方非负,可得:(a+12)2≥0,(2b -4)2≥0.又因为(a+12)2+(2b -4)2=0,得a+12=0,a=-12,2b -4=0,b=2,把a=-12, b=2代入a 2+b 2,得334.6.若n 为自然数,求(-1)2n -(-1)2n+1+(-2)3的值.思路解析:因为n 为自然数,所以2n 为偶数,2n+1为奇数.由负数的奇次幂是负数,负数的偶次幂是正数可知: (-1)2n =1,(-1)2n+1=-1.答案:-6.7.x 2=64,x 是几?x 3=64,x 是几?思路解析:由于任何数的偶次幂都是正数或0,平方也是偶次幂,所以平方是64的数有可能是正数,也有可能是负数,这两个数互为相反数.先求出正数,再求出其相反数.立方是正数(64)的数只能是正数,因为负数的奇次幂为负数,所以立方是64的数只能有一个.解:x=±8时,x 2=64;x=4时,x 3=64. 8.求(1-212)×(1-213)×(1-214)…(1-219)×(1-2110)的值. 思路解析:由于每一项都可以改写成两项积的形式,因此可利用分解相约的方法.答案:1120. 9.1米长的小棒,第1次截去一半,第2次截去剩下的一半,如此截下去,第7次后剩下的小棒有多长?思路解析:此题的关键是找出每次截完后,剩下的小棒占整根棒的比例与所截次数之间的关系.现将它们的关系列表如下:答案:128米.1.5.1 乘方《第2课时 有理数的混合运算》导学案【学习目标】:1、熟练进行有理数的混合运算2、及时纠正运算中的错误,进一步培养学生正确迅速的运算能力,培养学生严谨的学习态度【重难点】:有理数的四则混合运算 【学习过程】 一、自主学习: (一)复习回顾:1、有理数的加、减、乘、除及乘方的运算法则2、加入乘方后,有理数的混合运算的顺序如何? (二)导学:有理数的混合运算顺序:(1)先 ,再 ,最后 ;(2)同级运算,从左到右进行;(3)如有括号,先做 的运算,按小括号、中括号、大括号依次进行。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
有理数的加法练习题
姓名
1.计算
(1)、(-12)+(+8) (2)(-3.4)+(-5.6)
(3)15+318 (4)212315
(5)( -5) +( -7) + ( +21)+ ( -6) +(+19)
(6).1411)713()411(713
(7)218312417211321 (8).76124157134153132
2.嘉陵摩托厂上周每天生产的摩托车数量分别为:405辆,393辆,397辆,410
辆,391辆,385辆,405辆。利用有理数的意义及有理数的加法运算求出上周
该厂的生产总量。
3.已知311,4yx
(1)求x+y的值 ; (2)若x