高考导航数学理一轮总复习课件2.11导数与函数的单调性、极值

合集下载

高考数学一轮总复习 2.12.1导数与函数的单调性课件

高考数学一轮总复习 2.12.1导数与函数的单调性课件

精选ppt
6
知识点二 函数的导数与极值的关系
(1)函数的极值
已知函数y=f(x),设x0是定义域(a,b)内任一点,如果对x0附 近所有点x,都有 f(x)<f(x0) ,那么称函数f(x)在x0处取极大值, 记作 y极大值=f(x0),并把x0称为函数f(x)的一个 极大值点 ;如果 在x0附近都有 f(x)>f(x0) ,那么称函数f(x)在点x0处取极小值, 记作 y极小值=f(x,0)并把x0称为函数f(x)的一个 极小值点 .
所以当x=6π时,函数取最大值,为π6+ 3.
答案 π6+ 3
精选ppt
20
6.设函数f(x)=x3-x22-2x+5,若对任意的x∈[-1,2],都有 f(x)>a,则实数a的取值范围是________.
精选ppt
21
解析 f′(x)=3x2-x-2,令f′(x)=0,得3x2-x-2=0. 解得x=1或x=-23. 又f(1)=72,f-23=12577,f(-1)=121,f(2)=7,故f(x)min=72, ∴a<72.
精选ppt
8
知识点三 函数的导数与最值的关系
(1)在闭区间[a,b]上连续的函数f(x)在[a,b]上必有最大值与 最小值.
(2)若函数f(x)在[a,b]上单调递增,则 f(a) 为函数的最小 值, f(b) 为函数的最大值;若函数f(x)在[a,b]上单调递减,则
f(a) 为函数的最大值, f(b) 为函数的最小值.
精选ppt
11
精选ppt
12
对点自测
知识点一 函数的导数与单调性的关系
1.判一判
(1)f′(x)>0是f(x)为增函数的充要条件.( )

2024高考数学课件 导数与函数的单调性、极值和最值讲解册

2024高考数学课件 导数与函数的单调性、极值和最值讲解册

例1
设函数f(x)=aln
x+x
x
1 1
,其中a为常数.讨论函数f(x)的单调性.
解析
函数f(x)的定义域为(0,+∞),
f
'(x)=
a x
+
(
x
2 1)2
=
ax2
(2a 2)x x(x 1)2
a
,
当a≥0时, f '(x)>0,函数f(x)在(0,+∞)上单调递增,
当a<0时,令g(x)=ax2+(2a+2)x+a,
3
3
3
, 1
1 3
3a

1
1 3a ,+∞
3
时, f '(x)>0,当x∈
1 1 3a, 1 1 3a 时, f '(x)<0,所
3
3
以f(x)在 ,1
1 3
3a

1
1 3
3a
,
上单调递增,在
1
1 3a 1
3,
1 3a 3
上单调
递减.
(2)设过原点的切线与曲线y=f(x)相切于点P(x0,y0),则切线的斜率为f '(x0)=3x02-2x0+a,故
a
a
即练即清
1.(2024届湖南长沙一中基础测试,8)若函数g(x)=ln x+ 1 x2-(b-1)x存在单调递减区间,则
2
实数b的取值范围是 ( B ) A.[3,+∞) B.(3,+∞) C.(-∞,3) D.(-∞,3]
题型2 利用导数研究函数的极(最)值 1.解决函数极值问题的一般思路

优化方案2021数学一轮课件:导数与函数的单调性、极值

优化方案2021数学一轮课件:导数与函数的单调性、极值

【规律小结】 求可导函数f(x)极值的步骤: (1)确定函数的定义域; (2)求导数f′(x); (3)求方程f′(x)=0的根; (4)检验f′(x)在方程f′(x)=0的根的左、右两侧的符号, 如果在根的左侧附近f′(x)>0,右侧附近f′(x)<0,那 么函数y=f(x)在这个根处取得极大值;如果在根的左侧 附近f′(x)<0,右侧附近f′(x)>0,那么函数y=f(x)在 这个根处取得极小值.
思考探究 2.若f′(x0)=0,则x0一定是f(x)的极值点吗? 提示:不一定.可导函数在一点的导数值为0是函数在这点取 得极值的必要条件,而不是充分条件.如函数f(x)=x3,在x= 0时,有f′(x)=0,但x=0不是函数f(x)=x3的极值点.
课前热身
答案:B
2.函数f(x)=x3+ax2+3x-9,已知f(x)在x=-3时取得极
函数y=f(x)在点x=a的函数值f(a)比它在点x=a附近其他点的 函数值都小,f′(a)=0;而且在点x=a附近的左侧_f_′_(x_)_<__0_, 右侧_f_′(_x_)>__0_,则点a叫作函数y=f(x)的_极__小__值__点___,f(a)叫函 数y=f(x)的_极__小__值___.
规范解答

名师讲坛精彩呈现
导数法求函数的单调区间
1 2
3
1 2 3
【方法提炼】 利用导数法求函数的单调区间,应按照求 单调区间的一般步骤,注意函数单调性是函数在其定义域 上的局部性质,函数的单调区间是函数的定义域的子区间, 求函数单调区间时千万不要忽视函数的定义域.
知能演练轻松闯关
考点探究讲练互动
考点突破
例1
【规律小结】 利用导数求函数f(x)的单调区间的一般 步骤为: (1)确定函数f(x)的定义域; (2)求导数f′(x); (3)在函数f(x)的定义域内解不等式f′(x)>0和f′(x)<0; (4)根据(3)的结果确定函数f(x)的单调区间.

最新-2021届高三数学理一轮复习课件:32导数与函数的单调性、极值、最值 精品

最新-2021届高三数学理一轮复习课件:32导数与函数的单调性、极值、最值 精品

关闭
∴Δ=4a2-36≤0,解得-3≤a≤3.
[-3,3]
解析
答案
-10知识梳理
双基自测
1
2
3
4
5
5.(教材习题改编P32T4)如图是f(x)的导函数f'(x)的图象,则f(x)的极
小值点的个数为
.
关闭
由题意知,只在x=-1处f'(-1)=0,且其左右两侧导数符号为左负右正.
关闭
1
解析
答案
考点1
令g(x)=1-x+ex-1,则g'(x)=-1+ex-1.
所以,当x∈(-∞,1)时,g'(x)<0,g(x)在区间(-∞,1)上单调递减;
当x∈(1,+∞)时,g'(x)>0,g(x)在区间(1,+∞)上单调递增.
故g(1)=1是g(x)在区间(-∞,+∞)上的最小值,
从而g(x)>0,x∈(-∞,+∞).综上可知,f'(x)>0,x∈(-∞,+∞).
考点2
考点3
1
-ln-

解 (1)由题意知 f'(x)=
1
-ln-1

(2)由(1)知,f'(x)=
1
h(x)= -ln

e
e
1-
=0,故
e
,可得 f'(1)=
k=1.
.
1
h'(x)=- 2

1
− <0,


x-1(x>0),则
即 h(x)在(0,+∞)内是减函数.
由 h(1)=0 知,当 0<x<1 时,h(x)>0,从而 f'(x)>0;

高考数学复习考点知识专题讲解课件16---导数与函数的单调性

高考数学复习考点知识专题讲解课件16---导数与函数的单调性
综上所述,当 a=0 时,f(x)在(-∞,+∞)上单调递增; 当 a>0 时,f(x)在(-∞,lna)上单调递减,在(lna,+∞)上单调递增; 当 a<0 时,f(x)在-∞,ln-a2上单调递减,在ln-a2,+∞上单调递增.
返回导航
新高考 大一轮复习 · 数学 题型三 函数单调性的应用 命题点 1 比较大小或解不等式 例 2 (1)已知定义在 R 上的函数 f(x),g(x)满足:对任意 x∈R,都有 f(x)>0,g(x) >0,且 f′(x)g(x)-f(x)g′(x)<0.若 a,b∈R+且 a≠b,则有( ) A.fa+2 bga+2 b>f( ab)g( ab) B.fa+2 bga+2 b<f( ab)g( ab)
返回导航
新高考 大一轮复习 · 数学
②当 a>2 时,令 f′(x)=0,
得 x=a-
2a2-4或 x=a+
a2-4 2.
当 x∈0,a- 2a2-4∪a+ 2a2-4,+∞时,f′(x)<0;
当 x∈a-
2a2-4,a+
2a2-4时,f′(x)>0.
返回导航
新高考 大一轮复习 · 数学
所以
f(x)
返回导航
新高考 大一轮复习 · 数学 2.函数的极值与导数
返回导航
新高考 大一轮复习 · 数学
3.函数的最值 (1)在闭区间[a,b]上连续的函数 f(x)在[a,b]上必有最大值与最小值. (2)若函数 f(x)在[a,b]上单调递增,则 f(a) 为函数的最小值, f(b)为函数的最大值; 若函数 f(x)在[a,b]上单调递减,则 f(a)为函数的最大值,f(b) 为函数的最小值.
返回导航
新高考 大一轮复习 · 数学

导数与函数的单调性-2021届高三数学一轮高考总复习课件

导数与函数的单调性-2021届高三数学一轮高考总复习课件

2.函数的极值 (1)判断f(x0)是极值的方法: 一般地,当函数f(x)在点x0处连续时, ①如果在x0附近的左侧f′(x)>0,右侧f′(x)<0,那么f(x0) 是极大值; ②如果在x0附近的左侧___f_′__(x_)_<__0__,右侧__f_′__(_x_)>__0__, 那么f(x0)是极小值.
(2)求可导函数极值的步骤: ①求 f′(x); ②求方程 f′(x)=0 的根; ③检查 f′(x)在方程 f′(x)=0 的根的左、右值的符号.如果 左正右负,那么 f(x)在这个根处取得极大值;如果左负右正,那 么 f(x)在这个根处取得__极__小__值____;如果左右两侧符号一样,那 么这个根不是极值点.
图 2-16-2
A
B
C
D
解析:原函数先减再增,再减再增,且由增变减时,极值 点的横坐标大于 0.故选 D.
答案:D
(2)函数f(x)=(3-x2)ex的单调递增区间是( ) A.(-∞,0) B.(0,+∞) C.(-∞,3)和(1,+∞) D.(-3,1) 解析:f′(x)=-2xex+(3-x2)ex=(3-2x-x2)ex,∴f′(x)>0, 即x2+2x-3<0.解得-3<x<1.∴f(x)的单调递增区间为(-3,1).故 选 D. 答案:D
小值的可能值为端点值,故只需保证gg- 1=113=+13- a≥a≥ 0,0,

得-13≤a≤13.故选 C.
答案:C
思想与方法 ⊙运用分类讨论思想讨论函数的单调性 例题:(2016 年新课标Ⅰ)已知函数f(x)=(x-2)ex+a(x-1)2. (1)讨论 f(x)的单调性; (2)若 f(x)有两个零点,求实数 a 的取值范围. 解:(1) f′(x)=(x-1)ex+2a(x-1)=(x-1)(ex+2a). ①设a≥0,则当x∈(-∞,1)时,f′(x)<0; 当 x∈(1,+∞)时,f′(x)>0. ∴f(x)在(-∞,1)上单调递减,在(1,+∞)上单调递增.

高考数学一轮复习导数在函数中的应用-教学课件


聚焦中考——语文 第五讲
表达方式与记叙的顺序
• (2013·荆门)阅读下文,完成习题。 • ①那天下午6点多,该上公交车的人早已上了车,唯独有个小女孩,在车
门边来回徘徊。眼看着司机就要开车了,我在想,这小女孩肯定是没钱 上车。 ②“小姑娘,上车吧,我帮你交车票钱。”当看到我为她刷完卡后,她 随即上了车,说了声“谢谢阿姨”,一时脸蛋儿全红了。近距离一看, 才发现,小女孩左侧脸上有颗小痣。几天前的一幕不由浮现眼前—— ③送走远方的朋友,我从火车站迎着风雨赶到就近的公交车站台,已是 下午5点多。这时正是下班高峰期,来了几辆公交车,我总也挤不上去。 雨还在急速地下着,人还在不断地涌来。当又一辆10路公交驶来后,我 和许多人一起先往前门挤,但挤不上去。等司机发话后,才从后门好不 容易挤上车。车内人头攒动,人满为患。这人贴人的,身体若要移动一 下都难。正感叹着,我突然感觉好像有一件事还没做。是什么事呢?哦, 对了,没买车票。本想挤到前面去交车钱,可大伙儿都好像没事人一样 在原地一动不动,根本挤不过去。见此情形,司机也没说什么,这样, 我也就心安理得地和大家一样坐了一次免费的公交车。
本题在当年的高考中,出错最多的就是将第(1)题 的 a=4 用到第(2)题中,从而避免讨论,当然这是错误的.
【互动探究】 1.(2011 届广东台州中学联考)设 f′(x)是函数 f(x)的导函数,
将 y=f(x)和 y=f′(x)的图象画在同一直角坐标系中,不可能正确 的是( D )
考点2 导数与函数的极值和最大(小)值
高考数学一轮复习导数在函数中的应用-教学课件
第2讲 导数在函数中的应用
考纲要求
考纲研读
1.了解函数单调性和导数的关系;能利用 1.用导数可求函数的单 导数研究函数的单调性,会求函数的单调 调区间或以单调区间为 区间(对多项式函数一般不超过三次). 载体求参数的范围.

2020年高考人教A版理科数学一轮复习(全册PPT课件 1520张)

人教A版数学(理科)一轮
2020版高考 全册精品 PPT课件
第1章 集合与常用逻辑用语 第一节 集 合 第二节 命题及其关系、充分条件与必要条件 第三节 简单的逻辑联结词、全称量词与存在量词
第2章 函数、导数及其应用 第一节 函数及其表示 第二节 函数的单调性与最值 第三节 函数的奇偶性与周期性 第四节 二次函数与幂函数 第五节 指数与指数函数 第六节 对数与对数函数 第七节 函数的图象
[答案] (1)× (2)× (3)× (4)×
23 答案
2 . ( 教 材 改 编 ) 若 集 合 A = D [由题意知 A={0,1,2},由 a= {x∈N|x≤2 2},a= 2,则下列结 2,知 a∉A.] 论正确的是( ) A.{a}⊆A B.a⊆A C.{a}∈A D.a∉A
解2析4 答案
22
[基础自测] 1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打 “×”) (1)任何一个集合都至少有两个子集.( ) (2){x|y=x2}={y|y=x2}={(x,y)|y=x2}.( ) (3)若{x2,1}={0,1},则 x=0,1.( ) (4)直线 y=x+3 与 y=-2x+6 的交点组成的集合是{1,4}.( )
第8章 平面解析几何 第一节 直线的倾斜角与斜率、直线的方程 第二节 两条直线的位置关系 第三节 圆的方程 第四节 直线与圆、圆与圆的位置关系 第五节 椭 圆
第1课时 椭圆的定义、标准方程及其性质 第2课时 直线与椭圆的位置关系
第六节 双曲线 第七节 抛物线 第八节 曲线与方程 第九节 圆锥曲线中的定点、定值、范围、最值问题 高考大题增分课(五) 平面解析几何中的高考热点问题
第9章 算法初步、统计与统计案例 第一节 算法与程序框图 第二节 随机抽样 第三节 用样本估计总体 第四节 变量间的相关关系与统计案例

第2部分专题6第3讲 导数与函数的单调性、极值、最值课件


3
2ln 10
2
,解得P0=18,则P(t)=18·2
-3t0
,当
该放射性同位素含量为4.5贝克时,即P(t)=4.5,所以18·2 -3t0 =4.5,
即2-3t0=14,所以-3t0=-2,解得t=60.故选D.]
3.[公切线问题]若直线y=kx+b是曲线y=ln x+2的切线,也是 曲线y=ex的切线,则b=________.
1,∴x1+x2=0,x1<0,x2>0,
∴||ABMN||=
1+1+e2xe12·x2-·x2x1=
1+e-2x2 1+e2x2
=e1x2∈(0,1),故||ABMN||的取值范围是(0,1).]
命题规律:以基本初等函数为载体,考查曲线切线方程的求 法,多以选择题、填空题形式考查,注意方程思想的应用.
通性通法:导数的几何意义 (1)函数在某点的导数即曲线在该点处的切线的斜率. (2)曲线“在”某点的切线与曲线“过”某点的切线不同. (3)切点既在切线上,又在曲线上.
1.[以新定义为载体]若函数y=f(x)的图象上存在两点,使得函
数的图象在这两点处的切线互相垂直,则称y=f(x)具有T性质.下列
2ln 10
2 ,则该
放射性同位素含量为4.5贝克时衰变所需时间为( )
A.20天
B.30天
C.45天
D.60天
D [由P(t)=P02-3t0得P′(t)=-310·P0·2-3t0ln 2,
因为t=15时,该放射性同位素的瞬时变化率为-
3
2ln 2 10
,即
P′ (15) =-
2ln 60
2
P0=-
②当0<a<12时,令f ′(x)=0⇒x1=0,x2=ln 2a<0, 且当x<ln 2a时,f ′(x)>0,f(x)递增,当ln 2a<x<0时,f ′(x)< 0,f(x)递减; 当x>0时,f ′(x)>0,f(x)递增;

2021版新高考地区高考数学(人教版)大一轮复习第2讲 导数与函数的单调性

第2讲 导数与函数的单调性一、知识梳理函数的单调性与导数的关系条件结论函数y =f (x )在区间(a ,b )上可导f ′(x )>0 f (x )在(a ,b )内单调递增 f ′(x )<0 f (x )在(a ,b )内单调递减 f ′(x )=0f (x )在(a ,b )内是常数函数理清三组关系(1)“在某区间内f ′(x )>0(f ′(x )<0)”是“函数f (x )在此区间上为增(减)函数”的充分不必要条件.(2)可导函数f (x )在(a ,b )上是增(减)函数的充要条件是对∀x ∈(a ,b ),都有f ′(x )≥0(f ′(x )≤0)且f ′(x )在(a ,b )任意子区间内都不恒为零.(3)对于可导函数f (x ),“f ′(x 0)=0”是“函数f (x )在x =x 0处有极值”的必要不充分条件. 二、教材衍化1.如图是函数y =f (x )的导函数y =f ′(x )的图象,则下面判断正确的是( )A .在区间(-2,1)上f (x )是增函数B .在区间(1,3)上f (x )是减函数C .在区间(4,5)上f (x )是增函数D .当x =2时,f (x )取到极小值解析:选C .在(4,5)上f ′(x )>0恒成立, 所以f (x )是增函数.2.函数y =4x 2+1x 的单调增区间为( )A .(0,+∞)B .(12,+∞)C .(-∞,-1)D .⎝⎛⎭⎫-∞,-12解析:选B .由y =4x 2+1x ,得y ′=8x -1x 2,令y ′>0,即8x -1x 2>0,解得x >12,所以函数y =4x 2+1x 的单调增区间为⎝⎛⎭⎫12,+∞. 故选B .3.已知定义在区间(-π,π)上的函数f (x )=x sin x +cos x ,则f (x )的单调递增区间是________.解析:f ′(x )=sin x +x cos x -sin x =x cos x ,令f ′(x )=x cos x >0,则其在区间(-π,π)上的解集为⎝⎛⎭⎫-π,-π2和⎝⎛⎭⎫0,π2,即f (x )的单调递增区间为⎝⎛⎭⎫-π,-π2和⎝⎛⎭⎫0,π2. 答案:⎝⎛⎭⎫-π,-π2和⎝⎛⎭⎫0,π2一、思考辨析判断正误(正确的打“√”,错误的打“×”)(1)若函数f (x )在(a ,b )内单调递增,那么一定有f ′(x )>0.( )(2)如果函数f (x )在某个区间内恒有f ′(x )=0,则f (x )在此区间内没有单调性.( ) 答案:(1)× (2)√ 二、易错纠偏常见误区| (1)判断导数值的正负时忽视函数值域这一隐含条件; (2)讨论函数单调性时,分类标准有误.1.函数f (x )=cos x -x 在(0,π)上的单调性是( ) A .先增后减 B .先减后增 C .增函数 D .减函数解析:选D .因为f ′(x )=-sin x -1<0. 所以f (x )在(0,π)上是减函数,故选D .2.已知函数f (x )=ln x +a (1-x ),讨论f (x )的单调性. 解:函数f (x )的定义域为(0,+∞),f ′(x )=1x -a .若a ≤0,则f ′(x )>0恒成立, 所以f (x )在(0,+∞)上单调递增.若a >0,则当x ∈⎝⎛⎭⎫0,1a 时,f ′(x )>0;x ∈⎝⎛⎭⎫1a ,+∞时, f ′(x )<0,所以f (x )在⎝⎛⎭⎫0,1a 上单调递增,在⎝⎛⎭⎫1a ,+∞上单调递减.考点一 判断(证明)函数的单调性(基础型)复习指导| 借助图象探索并了解函数的单调性与导数的关系;能利用导数研究函数的单调性.核心素养:数学抽象、逻辑推理(1)已知函数f (x )=x ln x ,则f (x )( ) A .在(0,+∞)上单调递增 B .在(0,+∞)上单调递减 C .在⎝⎛⎭⎫0,1e 上单调递增 D .在⎝⎛⎭⎫0,1e 上单调递减 (2)(2019·高考全国卷Ⅲ节选)已知函数f (x )=2x 3-ax 2+2.讨论f (x )的单调性.【解】 (1)选D .因为函数f (x )=x ln x ,定义域为(0,+∞),所以f ′(x )=ln x +1(x >0), 当f ′(x )>0时,解得x >1e,即函数f (x )的单调递增区间为⎝⎛⎭⎫1e ,+∞; 当f ′(x )<0时, 解得0<x <1e,即函数f (x )的单调递减区间为⎝⎛⎭⎫0,1e ,故选D . (2)f ′(x )=6x 2-2ax =2x (3x -a ). 令f ′(x )=0,得x =0或x =a3.若a >0,则当x ∈(-∞,0)∪⎝⎛⎭⎫a 3,+∞时,f ′(x )>0;当x ∈⎝⎛⎭⎫0,a3时,f ′(x )<0.故f (x )在(-∞,0),⎝⎛⎭⎫a3,+∞ 单调递增,在⎝⎛⎭⎫0,a3单调递减. 若a =0,则f (x )在(-∞,+∞)单调递增.若a <0,则当x ∈⎝⎛⎭⎫-∞,a 3∪(0,+∞)时,f ′(x )>0;当x ∈⎝⎛⎭⎫a3,0时,f ′(x )<0.故f (x )在⎝⎛⎭⎫-∞,a 3,(0,+∞)单调递增,在⎝⎛⎭⎫a3,0单调递减.导数法证明函数f (x )在(a ,b )内的单调性的步骤(1)求f ′(x ).(2)确认f ′(x )在(a ,b )内的符号.(3)作出结论:f ′(x )>0时为增函数;f ′(x )<0时为减函数.[提醒] 研究含参数函数的单调性时,需注意依据参数取值对不等式解集的影响进行分类讨论.已知函数f (x )=a2(x -1)2-x +ln x (a >0),讨论f (x )的单调性.解:函数f (x )的定义域为(0,+∞),f ′(x )=a (x -1)-1+1x =(x -1)(ax -1)x ,令f ′(x )=0,则x 1=1,x 2=1a,①若a =1,则f ′(x )≥0恒成立,所以f (x )在(0,+∞)上是增函数; ②若0<a <1,则1a>1,当x ∈(0,1)时,f ′(x )>0,f (x )是增函数, 当x ∈⎝⎛⎭⎫1,1a 时,f ′(x )<0,f (x )是减函数, 当x ∈⎝⎛⎭⎫1a ,+∞时,f ′(x )>0,f (x )是增函数; ③若a >1,则0<1a<1,当x ∈⎝⎛⎭⎫0,1a 时,f ′(x )>0,f (x )是增函数,当x ∈⎝⎛⎭⎫1a ,1时,f ′(x )<0,f (x )是减函数, 当x ∈(1,+∞)时,f ′(x )>0,f (x )是增函数. 综上所述,当a =1时,f (x )在(0,+∞)上是增函数;当0<a <1时,f (x )在(0,1)上是增函数,在⎝⎛⎭⎫1,1a 上是减函数,在⎝⎛⎭⎫1a ,+∞上是增函数; 当a >1时,f (x )在⎝⎛⎭⎫0,1a 上是增函数,在⎝⎛⎭⎫1a ,1上是减函数,在(1,+∞)上是增函数. 考点二 求函数的单调区间(基础型)复习指导| 会利用导数求不超过三次的多项式函数的单调区间. 核心素养:数学运算已知函数f (x )=a ln x -x -a +1x(a ∈R ).求函数f (x )的单调区间.【解】 f (x )的定义域为(0,+∞),f ′(x )=ax -1+1+a x 2=-x 2+ax +1+a x 2=-(x +1)[x -(1+a )]x 2,①当a +1>0,即a >-1时,在(0,1+a )上f ′(x )>0,在(1+a ,+∞)上,f ′(x )<0, 所以f (x )的单调递增区间是(0,1+a ),单调递减区间是(1+a ,+∞); ②当1+a ≤0,即a ≤-1时,在(0,+∞)上,f ′(x )<0, 所以,函数f (x )的单调递减区间是(0,+∞),无单调递增区间.利用导数求函数单调区间的方法(1)当导函数不等式可解时,解不等式f ′(x )>0或f ′(x )<0求出单调区间.(2)当方程f ′(x )=0可解时,解出方程的实根,按实根把函数的定义域划分区间,确定各区间内f ′(x )的符号,从而确定单调区间.(3)当导函数的方程、不等式都不可解时,根据f ′(x )的结构特征,利用图象与性质确定f ′(x )的符号,从而确定单调区间.[提醒] 所求函数的单调区间不止一个时,这些区间之间不能用“∪”及“或”连接,只能用“,”及“和”隔开.1.当x >0时,f (x )=x +4x 的单调递减区间是( )A .(2,+∞)B .(0,2)C .(2,+∞)D .(0,2)解析:选B .令f ′(x )=1-4x 2=(x -2)(x +2)x 2<0,则-2<x <2,且x ≠0.因为x >0,所以x ∈(0,2),故选B .2.已知函数f (x )=x 4+54x -ln x -32,求函数f (x )的单调区间.解:f (x )=x 4+54x -ln x -32,x ∈(0,+∞),则f ′(x )=x 2-4x -54x 2.令f ′(x )=0,解得x =-1或x =5.因为x =-1不在f (x )的定义域(0,+∞)内,故舍去. 当x ∈(0,5)时,f ′(x )<0,故f (x )在(0,5)内为减函数; 当x ∈(5,+∞)时,f ′(x )>0,故f (x )在(5,+∞)内为增函数. 故函数f (x )的单调递增区间为(5,+∞),单调递减区间为(0,5). 考点三 函数单调性的应用(综合型)复习指导| 利用导数与函数的单调性可以比较大小、求参数的范围等,其关键是明确函数的单调性.角度一 比较大小或解不等式已知函数f ′(x )是函数f (x )的导函数,f (1)=1e,对任意实数都有f (x )-f ′(x )>0,设F (x )=f (x )e x ,则不等式F (x )<1e2的解集为( )A .(-∞,1)B .(1,+∞)C .(1,e)D .(e ,+∞)【解析】 F ′(x )=f ′(x )e x -e x f (x )(e x )2=f ′(x )-f (x )e x ,又f (x )-f ′(x )>0,知F ′(x )<0, 所以F (x )在R 上单调递减. 由F (x )<1e2=F (1),得x >1,所以不等式F (x )<1e 2的解集为(1,+∞).【答案】 B利用导数比较大小或解不等式的常用技巧利用题目条件,构造辅助函数,把比较大小或求解不等式的问题转化为先利用导数研究函数的单调性问题,再由单调性比较大小或解不等式.角度二 已知函数单调性求参数的取值范围已知函数f (x )=ln x ,g (x )=12ax 2+2x (a ≠0).(1)若函数h (x )=f (x )-g (x )存在单调递减区间,求a 的取值范围; (2)若函数h (x )=f (x )-g (x )在[1,4]上单调递减,求a 的取值范围. 【解】 (1)h (x )=ln x -12ax 2-2x ,x ∈(0,+∞),所以h ′(x )=1x -ax -2,由于h (x )在(0,+∞)上存在单调递减区间,所以当x ∈(0,+∞)时,1x -ax -2<0有解.即a >1x 2-2x 有解,设G (x )=1x 2-2x,所以只要a >G (x )min 即可.而G (x )=⎝⎛⎭⎫1x -12-1,所以G (x )min =-1. 所以a >-1,即a 的取值范围是(-1,+∞). (2)由h (x )在[1,4]上单调递减得,当x ∈[1,4]时,h ′(x )=1x -ax -2≤0恒成立,即a ≥1x 2-2x恒成立.所以a ≥G (x )max ,而G (x )=⎝⎛⎭⎫1x -12-1, 因为x ∈[1,4],所以1x ∈⎣⎡⎦⎤14,1, 所以G (x )max =-716(此时x =4), 所以a ≥-716,即a 的取值范围是⎣⎡⎭⎫-716,+∞. 【迁移探究1】 (变条件)本例条件变为:若函数h (x )=f (x )-g (x )在[1,4]上单调递增,求a 的取值范围.解:由h (x )在[1,4]上单调递增得,当x ∈[1,4]时,h ′(x )≥0恒成立, 所以当x ∈[1,4]时,a ≤1x 2-2x 恒成立,又当x ∈[1,4]时,⎝⎛⎭⎫1x 2-2x min=-1(此时x =1),所以a ≤-1,即a 的取值范围是(-∞,-1].【迁移探究2】 (变问法)若函数h (x )=f (x )-g (x )在[1,4]上存在单调递减区间,求a 的取值范围.解:h (x )在[1,4]上存在单调递减区间, 则h ′(x )<0在[1,4]上有解, 所以当x ∈[1,4]时,a >1x 2-2x 有解,又当x ∈[1,4]时,⎝⎛⎭⎫1x 2-2x min=-1,所以a >-1,即a 的取值范围是(-1,+∞).(1)已知函数在某区间上的单调性求参数的取值范围的两种思路 ①转化为不等式恒成立问题若函数在某区间上单调递增⇒f ′(x )≥0在该区间上恒成立;若函数在某区间上单调递减⇒f ′(x )≤0在该区间上恒成立.[注意] 一般地,f (x )在区间(a ,b )上是增函数的充要条件是f ′(x )≥0在(a ,b )上恒成立,且在(a ,b )的任意子区间内f ′(x )不恒为0.其中不等式中等号不能省略,否则可能漏解!②利用区间之间的包含关系若已知y =f (x )在区间(a ,b )上单调,则区间(a ,b )应该是相应单调区间的子区间. (2)已知函数的单调区间求参数的值时,首先利用导数,求出函数的单调区间(含参),然后令该单调区间与已知区间相等,列方程求解.(3)已知函数在某区间内不单调求参数的取值范围时,通常利用极值点在该区间内,列不等式求解.1.已知函数f (x )=x sin x ,x ∈R ,则f ⎝⎛⎭⎫π5,f (1),f ⎝⎛⎭⎫-π3的大小关系为( ) A .f ⎝⎛⎭⎫-π3>f (1)>f ⎝⎛⎭⎫π5 B .f (1)>f ⎝⎛⎭⎫-π3>f ⎝⎛⎭⎫π5 C .f ⎝⎛⎭⎫π5>f (1)>f ⎝⎛⎭⎫-π3 D .f ⎝⎛⎭⎫-π3>f ⎝⎛⎭⎫π5>f (1) 解析:选A .因为f (x )=x sin x , 所以f (-x )=(-x )sin(-x )=x sin x =f (x ). 所以函数f (x )是偶函数,所以f ⎝⎛⎭⎫-π3=f ⎝⎛⎭⎫π3. 又x ∈⎝⎛⎭⎫0,π2时,得f ′(x )=sin x +x cos x >0, 所以f (x )在⎝⎛⎭⎫0,π2上是增函数. 所以f ⎝⎛⎭⎫π5<f (1)<f ⎝⎛⎭⎫π3. 所以f ⎝⎛⎭⎫-π3>f (1)>f ⎝⎛⎭⎫π5,故选A . 2.已知函数f (x )=x 3-ax -1.(1)若f (x )在R 上为增函数,求实数a 的取值范围;(2)若函数f (x )在(-1,1)上为单调减函数,求实数a 的取值范围; (3)若函数f (x )的单调递减区间为(-1,1),求实数a 的值; (4)若函数f (x )在区间(-1,1)上不单调,求实数a 的取值范围. 解:(1)因为f (x )在(-∞,+∞)上是增函数,所以f ′(x )=3x 2-a ≥0在(-∞,+∞)上恒成立, 即a ≤3x 2对x ∈R 恒成立. 因为3x 2≥0, 所以只需a ≤0.又因为a =0时,f ′(x )=3x 2≥0,f (x )=x 3-1在R 上是增函数,所以a ≤0,即实数a 的取值范围为(-∞,0]. (2)由题意知f ′(x )=3x 2-a ≤0在(-1,1)上恒成立, 所以a ≥3x 2在(-1,1)上恒成立,因为当-1<x <1时,3x 2<3,所以a ≥3,所以a 的取值范围为[3,+∞). (3)由题意知f ′(x )=3x 2-a ,则f (x )的单调递减区间为⎝⎛⎭⎫-3a 3,3a 3, 又f (x )的单调递减区间为(-1,1), 所以3a3=1,解得a =3. (4)由题意知:f ′(x )=3x 2-a ,当a ≤0时,f ′(x )≥0,此时f (x )在(-∞,+∞)上为增函数,不合题意,故a >0.令f ′(x )=0,解得x =±3a 3. 因为f (x )在区间(-1,1)上不单调,所以f ′(x )=0在(-1,1)上有解,需0<3a3<1,得0<a <3, 所以实数a 的取值范围为(0,3).[基础题组练]1.函数f (x )=e x -e x ,x ∈R 的单调递增区间是( ) A .(0,+∞) B .(-∞,0) C .(-∞,1)D .(1,+∞)解析:选D .由题意知,f ′(x )=e x -e ,令f ′(x )>0,解得x >1,故选D .2.已知定义在R 上的函数f (x ),其导函数f ′(x )的大致图象如图所示,则下列叙述正确的是( )A .f (b )>f (c )>f (d )B .f (b )>f (a )>f (e )C .f (c )>f (b )>f (a )D .f (c )>f (e )>f (d )解析:选C .由题意得,当x ∈(-∞,c )时,f ′(x )>0,所以函数f (x )在(-∞,c )上是增函数,因为a <b <c ,所以f (c )>f (b )>f (a ),故选C . 3.函数f (x )=e xx的图象大致为( )解析:选B .函数f (x )=e xx 的定义域为{x |x ≠0,x ∈R },当x >0时,函数f ′(x )=x e x -e x x 2,可得函数的极值点为:x =1,当x ∈(0,1)时,函数是减函数,x >1时,函数是增函数,并且f (x )>0,选项B 、D 满足题意.当x <0时,函数f (x )=e xx <0,选项D 不正确,选项B 正确.4.已知f (x )=ln xx ,则( )A .f (2)>f (e)>f (3)B .f (3)>f (e)>f (2)C .f (3)>f (2)>f (e)D .f (e)>f (3)>f (2)解析:选D .f (x )的定义域是(0,+∞), f ′(x )=1-ln xx 2,令f ′(x )=0,得x =e.所以当x ∈(0,e)时,f ′(x )>0,f (x )单调递增,当x ∈(e ,+∞)时,f ′(x )<0,f (x )单调递减,故当x =e 时,f (x )max =f (e)=1e ,而f (2)=ln 22=ln 86,f (3)=ln 33=ln 96,所以f (e)>f (3)>f (2),故选D .5.若函数f (x )=2x 3-3mx 2+6x 在区间(1,+∞)上为增函数,则实数m 的取值范围是( )A .(-∞,1]B .(-∞,1)C .(-∞,2]D .(-∞,2) 解析:选C .因为f ′(x )=6(x 2-mx +1),且函数f (x )在区间(1,+∞)上是增函数,所以f ′(x )=6(x 2-mx +1)≥0在(1,+∞)上恒成立,即x 2-mx +1≥0在(1,+∞)上恒成立,所以m ≤x 2+1x =x +1x 在(1,+∞)上恒成立,即m ≤⎝⎛⎭⎫x +1x min (x ∈(1,+∞)),因为当x ∈(1,+∞)时,x +1x>2,所以m ≤2.故选C . 6.函数f (x )=x 4+54x-ln x 的单调递减区间是________. 解析:因为f (x )=x 4+54x-ln x , 所以函数的定义域为(0,+∞),且f ′(x )=14-54x 2-1x =x 2-4x -54x 2, 令f ′(x )<0,解得0<x <5,所以函数f (x )的单调递减区间为(0,5).答案:(0,5) 7.已知函数f (x )=ln x +2x ,若f (x 2+2)<f (3x ),则实数x 的取值范围是________.解析:由题可得函数f (x )的定义域为(0,+∞),f ′(x )=1x+2x ln 2,所以在定义域内f ′(x )>0,函数单调递增,所以由f (x 2+2)<f (3x )得x 2+2<3x ,所以1<x <2.答案:(1,2)8.已知函数y =f (x )(x ∈R )的图象如图所示,则不等式xf ′(x )≥0的解集为________.解析:由f (x )图象特征可得,f ′(x )在⎝⎛⎦⎤-∞,12和[2,+∞)上大于0,在⎝⎛⎭⎫12,2上小于0, 所以xf ′(x )≥0⇔⎩⎪⎨⎪⎧x ≥0,f ′(x )≥0或⎩⎪⎨⎪⎧x ≤0,f ′(x )≤0⇔0≤x ≤12或x ≥2, 所以xf ′(x )≥0的解集为⎣⎡⎦⎤0,12∪[2,+∞). 答案:⎣⎡⎦⎤0,12∪[2,+∞) 9.已知函数f (x )=x 3+ax 2-x +c ,且a =f ′⎝⎛⎭⎫23.(1)求a 的值;(2)求函数f (x )的单调区间.解:(1)由f (x )=x 3+ax 2-x +c ,得f ′(x )=3x 2+2ax -1.当x =23时,得a =f ′⎝⎛⎭⎫23=3×⎝⎛⎭⎫232+2a ×23-1,解得a =-1.(2)由(1)可知f (x )=x 3-x 2-x +c ,则f ′(x )=3x 2-2x -1=3⎝⎛⎭⎫x +13(x -1), 令f ′(x )>0,解得x >1或x <-13; 令f ′(x )<0,解得-13<x <1. 所以f (x )的单调递增区间是⎝⎛⎭⎫-∞,-13和(1,+∞); f (x )的单调递减区间是⎝⎛⎭⎫-13,1. 10.已知函数f (x )=b e x -1(b ∈R ,e 为自然对数的底数)在点(0,f (0))处的切线经过点(2,-2).讨论函数F (x )=f (x )+ax (a ∈R )的单调性.解:因为f (0)=b -1,所以过点(0,b -1),(2,-2)的直线的斜率为k =b -1-(-2)0-2=-b +12, 而f ′(x )=-b e x ,由导数的几何意义可知, f ′(0)=-b =-b +12, 所以b =1,所以f (x )=1e x -1. 则F (x )=ax +1e x -1,F ′(x )=a -1e x , 当a ≤0时,F ′(x )<0恒成立;当a >0时,由F ′(x )<0,得x <-ln a ,由F ′(x )>0,得x >-ln a .故当a ≤0时,函数F (x )在R 上单调递减;当a >0时,函数F (x )在(-∞,-ln a )上单调递减,在(-ln a ,+∞)上单调递增.[综合题组练]1.(综合型)设f (x ),g (x )是定义在R 上的恒大于0的可导函数,且f ′(x )g (x )-f (x )g ′(x )<0,则当a <x <b 时,有( )A .f (x )g (x )>f (b )g (b )B .f (x )g (a )>f (a )g (x )C .f (x )g (b )>f (b )g (x )D .f (x )g (x )>f (a )g (a )解析:选C .令F (x )=f (x )g (x ),则F ′(x )=f ′(x )g (x )-f (x )g ′(x )[g (x )]2<0,所以F (x )在R 上单调递减.又a <x <b ,所以f (a )g (a )>f (x )g (x )>f (b )g (b ).又f (x )>0,g (x )>0,所以f (x )g (b )>f (b )g (x ). 2.函数f (x )的定义域为R .f (-1)=2,对任意x ∈R ,f ′(x )>2,则f (x )>2x +4的解集为( )A .(-1,1)B .(-1,+∞)C .(-∞,-1)D .(-∞,+∞)解析:选B .由f (x )>2x +4,得f (x )-2x -4>0.设F (x )=f (x )-2x -4,则F ′(x )=f ′(x )-2. 因为f ′(x )>2,所以F ′(x )>0在R 上恒成立,所以F (x )在R 上单调递增,而F (-1)=f (-1)-2×(-1)-4=2+2-4=0,故不等式f (x )-2x -4>0等价于F (x )>F (-1),所以x >-1,选B .3.若函数f (x )=ax 3+3x 2-x 恰好有三个单调区间,则实数a 的取值范围是________. 解析:由题意知f ′(x )=3ax 2+6x -1,由函数f (x )恰好有三个单调区间,得f ′(x )有两个不相等的零点,所以3ax 2+6x -1=0需满足a ≠0,且Δ=36+12a >0,解得a >-3,所以实数a 的取值范围是(-3,0)∪(0,+∞).答案:(-3,0)∪(0,+∞)4.已知函数f (x )=-12x 2+4x -3ln x 在区间[t ,t +1]上不单调,则t 的取值范围是________.解析:由题意知f ′(x )=-x +4-3x=-(x -1)(x -3)x, 由f ′(x )=0,得函数f (x )的两个极值点为1和3,则只要这两个极值点有一个在区间(t ,t +1)内,函数f (x )在区间[t ,t +1]上就不单调,由t <1<t +1或t <3<t +1,得0<t <1或2<t <3.答案:(0,1)∪(2,3)5.设函数f (x )=13x 3-a 2x 2+bx +c ,曲线y =f (x )在点(0,f (0))处的切线方程为y =1. (1)求b ,c 的值;(2)若a >0,求函数f (x )的单调区间;(3)设函数g (x )=f (x )+2x ,且g (x )在区间(-2,-1)内存在单调递减区间,求实数a 的取值范围.解:(1)f ′(x )=x 2-ax +b ,由题意得⎩⎪⎨⎪⎧f (0)=1,f ′(0)=0,即⎩⎪⎨⎪⎧c =1,b =0.故b =0,c =1.(2)由(1)得,f ′(x )=x 2-ax =x (x -a )(a >0),当x ∈(-∞,0)时,f ′(x )>0;当x ∈(0,a )时,f ′(x )<0;当x ∈(a ,+∞)时,f ′(x )>0,所以函数f (x )的单调递增区间为(-∞,0),(a ,+∞),单调递减区间为(0,a ).(3)g ′(x )=x 2-ax +2,依题意,存在x ∈(-2,-1),使不等式g ′(x )=x 2-ax +2<0成立.则存在x ∈(-2,-1)使-a >-x -2x成立, 即-a >⎝⎛⎭⎫-x -2x min. 因为x ∈(-2,-1),所以-x ∈(1,2),则-x -2x ≥2(-x )·⎝⎛⎭⎫-2x =22, 当且仅当-x =-2x,即x =-2时等号成立, 所以-a >22,则a <-2 2.所以实数a 的取值范围为(-∞,-22).6.(2020·成都七中检测)设函数f (x )=ax 2-a -ln x ,g (x )=1x -e ex ,其中a ∈R ,e =2.718…为自然对数的底数.(1)讨论f (x )的单调性;(2)证明:当x >1时,g (x )>0.解:(1)由题意得f ′(x )=2ax -1x =2ax 2-1x(x >0). 当a ≤0时,f ′(x )<0,f (x )在(0,+∞)上单调递减.当a >0时,由f ′(x )=0有x =12a , 当x ∈⎝⎛⎭⎫0,12a 时,f ′(x )<0,f (x )单调递减; 当x ∈⎝⎛⎭⎫12a ,+∞时,f ′(x )>0,f (x )单调递增. (2)证明:令s (x )=e x -1-x ,则s ′(x )=e x -1-1.当x >1时,s ′(x )>0,所以s (x )>s (1),即e x-1>x ,从而g (x )=1x -e e x =e (e x -1-x )x e x>0.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档