(试题1)《全等三角形》综合测试
人教版八年级上册数学《全等三角形》单元综合测试题(附答案)

人教版数学八年级上学期《全等三角形》单元测试(满分:100分时间:35分钟)一、单选题(共10小题,每小题4分,共计40分)1.(2018·黑龙江中考真题)如图,∠B=∠C=90°,M是BC的中点,DM平分∠ADC,且∠ADC=110°,则∠MAB=()A.30°B.35°C.45°D.60°2.(2018·贵州中考真题)下列各图中a、b、c为三角形的边长,则甲、乙、丙三个三角形和左侧△ABC全等的是()A.甲和乙B.乙和丙C.甲和丙D.只有丙3.(2018·江阴市暨阳中学初二月考)如图,已知MB=ND,∠MBA=∠NDC,下列哪个条件不能判定ΔABM≌ΔCDN()A.∠M=∠N B.AB=CD C.AM=CN D.AM//CN4.(2018·丹阳市云阳学校初二期末)如图,△ABC的顶点A、B、C都在小正方形的顶点上,在格点F、G、H、I中选出一个点与点D、点E构成的三角形与△ABC全等,则符合条件的点共有()A.1个B.2个C.3个D.4个5.(2018·江苏中考真题)如图,AB⊥CD,且AB=CD.E、F是AD上两点,CE⊥AD,BF⊥AD.若CE=a,BF=b,EF=c,则AD的长为( )A.a+c B.b+c C.a−b+c D.a+b−c6.(2018·陕西高新一中初一期末)如图,大树AB与大数CD相距13m,小华从点B沿BC走向点C,行走一段时间后他到达点E,此时他仰望两棵大树的顶点A和D,两条视线的夹角正好为90°,且EA=ED.已知大树AB的高为5m,小华行走的速度为1m/s,小华行走到点E的时间是( )A.13s B.8s C.6s D.5s7.(2018·北京市第四十四中学初二期中)如图,已知△ABC的六个元素,则下列甲、乙、丙三个三角形中和△ABC全等的图形是( )A.甲B.乙与丙C.丙D.乙8.(2017·上海市廊下中学初二期末)下列条件中不能判定两个直角三角形全等的是( )A.两条直角边分别对应相等B.两个锐角分别对应相等C.一条直角边和斜边分别对应相等D.一个锐角和一条斜边分别对应相等9.(2017·大石桥市水源镇九年一贯制学校初二期中)小明不慎将一块三角形的玻璃碎成如图所示的四块(图中所标1、2、3、4),你认为将其中的哪一块带去,就能配一块与原来大小一样的三角形玻璃?应该带第_____块去,这利用了三角形全等中的_____原理()A.2;SAS B.4;SAS C.2;AAS D.4; ASA10.(2017·丹阳市第三中学初二期中)如图是5×5的正方形网络,以点D,E为两个顶点作位置不同的格点三角形,使所作的格点三角形与△ABC全等,这样的格点三角形最多可以画出()A.8个B.6个C.4个D.2个二、填空题(共5小题,每小题4分,共计20分)11.(2018·富顺县北湖实验学校初二期末)如图,若AB=AC,BD=CD,∠B=20°,∠BDC=120°,则∠A=________.12.(2017·甘肃省武威第五中学初二月考)如图,AD是△ABC中∠BAC的平分线,DE⊥AB于点E,S△ABC=7,DE=2,AB=4,则AC的长是______.13.(2019·哈尔滨市萧红中学初一期末)如图,D是△ABC的边AB上一点,DF交AC于点E,DE=FE,FC∥AB,CF=5,BD=2,点C到直线AB的距离为9,△ABC面积为_________.14.(2017·四川中考真题)△ABC中,AB=5,AC=3,AD是△ABC的中线,设AD长为m,则m的取值范围是____.15.(2019·内蒙古中考真题)下面三个命题:①底边和顶角对应相等的两个等腰三角形全等;②两边及其中一边上的中线对应相等的两个三角形全等;③斜边和斜边上的中线对应相等的两个直角三角形全等,其中正确的命题的序号为_____.三、解答题(共4小题,共计40分)16.(2017·江苏中考真题)如图,已知在四边形ABCD中,点E在AD上,∠BCE=∠ACD=90°,∠BAC=∠D,BC=CE.(1)求证:AC=CD;(2)若AC=AE,求∠DEC的度数.17.(2018·湖北中考真题)如图,点E、F在BC上,BE=CF,AB=DC,∠B=∠C,AF与DE交于点G,求证:GE=GF.18.(2017·山东中考真题)已知:如图,E,F为□ABCD对角线AC上的两点,且AE=CF,连接BE,DF,求证:BE=DF.19.(2018·湖北中考真题)如图正方形ABCD的边长为4,E、F分别为DC、BC中点.(1)求证:△ADE≌△ABF.(2)求△AEF的面积.参考答案一、单选题(共10小题,每小题4分,共计40分)1.(2018·黑龙江中考真题)如图,∠B=∠C=90°,M是BC的中点,DM平分∠ADC,且∠ADC=110°,则∠MAB=()A.30°B.35°C.45°D.60°【答案】B【分析】作MN⊥AD于N,根据平行线的性质求出∠DAB,根据角平分线的判定定理得到∠MAB=1∠DAB,2计算即可.【详解】作MN⊥AD于N,∵∠B=∠C=90°,∴AB∥CD,∴∠DAB=180°﹣∠ADC=70°,∵DM平分∠ADC,MN⊥AD,MC⊥CD,∴MN=MC,∵M是BC的中点,∴MC=MB,∴MN=MB,又MN⊥AD,MB⊥AB,∠DAB=35°,∴∠MAB=12故选B.【点睛】本题考查了平行线的性质,角平分线的性质与判定,熟练掌握相关内容、正确添加辅助线是解题的关键.2.(2018·贵州中考真题)下列各图中a、b、c为三角形的边长,则甲、乙、丙三个三角形和左侧△ABC全等的是()A.甲和乙B.乙和丙C.甲和丙D.只有丙【答案】B【解析】分析:根据三角形全等的判定方法得出乙和丙与△ABC全等,甲与△ABC不全等.详解:乙和△ABC全等;理由如下:在△ABC和图乙的三角形中,满足三角形全等的判定方法:SAS,所以乙和△ABC全等;在△ABC和图丙的三角形中,满足三角形全等的判定方法:AAS,所以丙和△ABC全等;不能判定甲与△ABC全等;故选:B.点睛:本题考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.3.(2018·江阴市暨阳中学初二月考)如图,已知MB=ND,∠MBA=∠NDC,下列哪个条件不能判定ΔABM ≌ΔCDN()A.∠M=∠N B.AB=CD C.AM=CN D.AM//CN【答案】C【解析】试题分析:A.∠M=∠N,符合ASA,能判定△ABM≌△CDN;B.AB=CD,符合SAS,能判定△ABM≌△CDN;C.AM=CN,有SSA,不能判定△ABM≌△CDN;D.AM∥CN,得出∠MAB=∠NCD,符合AAS,能判定△ABM≌△CDN.故选C.考点:全等三角形的判定.4.(2018·丹阳市云阳学校初二期末)如图,△ABC的顶点A、B、C都在小正方形的顶点上,在格点F、G、H、I中选出一个点与点D、点E构成的三角形与△ABC全等,则符合条件的点共有()A.1个B.2个C.3个D.4个【答案】B【解析】分析:根据全等三角形的判定解答即可.详解:由图形可知:AB=√5,AC=3,BC=√2,GD=√5,DE=√2,GE=3,DI=3,EI=√5,所以G,I两点与点D、点E构成的三角形与△ABC全等.故选B.点睛:本题考查了全等三角形的判定,关键是根据SSS证明全等三角形.5.(2018·江苏中考真题)如图,AB⊥CD,且AB=CD.E、F是AD上两点,CE⊥AD,BF⊥AD.若CE=a,BF=b,EF=c,则AD的长为( )A.a+c B.b+c C.a−b+c D.a+b−c【答案】D【解析】分析:详解:如图,∵AB⊥CD,CE⊥AD,∴∠1=∠2,又∵∠3=∠4,∴180°-∠1-∠4=180°-∠2-∠3,即∠A=∠C.∵BF⊥AD,∴∠CED=∠BFD=90°,∵AB=CD,∴△ABF≌△CDE,∴AF=CE=a,ED=BF=b,又∵EF=c,∴AD=a+b-c.故选:D.点睛:本题主要考查全等三角形的判定与性质,证明△ABF≌△CDE是关键.6.(2018·陕西高新一中初一期末)如图,大树AB与大数CD相距13m,小华从点B沿BC走向点C,行走一段时间后他到达点E,此时他仰望两棵大树的顶点A和D,两条视线的夹角正好为90°,且EA=ED.已知大树AB的高为5m,小华行走的速度为1m/s,小华行走到点E的时间是( )A.13s B.8s C.6s D.5s【答案】B【解析】分析: 首先证明∠A=∠DEC,然后可利用AAS判定△ABE≌△ECD,进而可得EC=AB=5m,再求出BE的长,然后利用路程除以速度可得时间详解::∵∠AED=90°,∴∠AEB+∠DEC=90°,∵∠ABE=90°,∴∠A+∠AEB=90°,∴∠A=∠DEC,在△ABE和△DCE中{∠B=∠C∠A=∠DECAE=DE,∴△ABE≌△ECD(AAS),∴EC=AB=5m,∵BC=13m,∴BE=8m,∴小华走的时间是8÷1=8(s),故选:B.点睛: 此题主要考查了全等三角形的应用,关键是正确判定△ABE≌△ECD.7.(2018·北京市第四十四中学初二期中)如图,已知△ABC的六个元素,则下列甲、乙、丙三个三角形中和△ABC全等的图形是( )A.甲B.乙与丙C.丙D.乙【答案】B【解析】乙图中利用角角边可证明全等.丙图中可以用边角边可证明全等.故选B.8.(2017·上海市廊下中学初二期末)下列条件中不能判定两个直角三角形全等的是( )A.两条直角边分别对应相等B.两个锐角分别对应相等C.一条直角边和斜边分别对应相等D.一个锐角和一条斜边分别对应相等【答案】B【解析】解:A.可以利用边角边判定两三角形全等,不符合题意;B.两个锐角对应相等,不能说明两三角形能够完全重合,符合题意;C.可以利用HL判定两三角形全等,不符合题意;D.可以利用角角边判定两三角形全等,不符合题意.故选B.点睛:本题考查了直角三角形全等的判定方法;本题主要利用三角形全等的判定,运用好有一对相等的直角这一隐含条件是解题的关键.9.(2017·大石桥市水源镇九年一贯制学校初二期中)小明不慎将一块三角形的玻璃碎成如图所示的四块(图中所标1、2、3、4),你认为将其中的哪一块带去,就能配一块与原来大小一样的三角形玻璃?应该带第_____块去,这利用了三角形全等中的_____原理()A.2;SAS B.4;SAS C.2;AAS D.4; ASA【答案】D【解析】由图可知,带第4块去,符合“角边角”,可以配一块与原来大小一样的三角形玻璃.故选:D.点睛:本题考查了全等三角形的应用,是基础题,熟记三角形全等的判定方法是解题的关键. 10.(2017·丹阳市第三中学初二期中)如图是5×5的正方形网络,以点D,E为两个顶点作位置不同的格点三角形,使所作的格点三角形与△ABC全等,这样的格点三角形最多可以画出()A.8个B.6个C.4个D.2个【答案】C【解析】解:根据题意,运用SSS可得与△ABC全等的三角形有4个,线段DE的上方有两个点,下方也有两个点.故选C.点睛:本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL,做题时要做到不重不漏.二、填空题(共5小题,每小题4分,共计20分)11.(2018·富顺县北湖实验学校初二期末)如图,若AB=AC,BD=CD,∠B=20°,∠BDC=120°,则∠A=________.【答案】80【解析】试题解析:连接BC.∵∠BDC =120°,BD =CD,∴∠DBC =∠DCB =30∘.∵∠ABD =20°,∴∠ABC =50∘.∵AB =AC,∴∠ABC =∠ACB =50∘.∴∠A =80∘.故答案为:80.12.(2017·甘肃省武威第五中学初二月考)如图,AD 是△ABC 中∠BAC 的平分线,DE ⊥AB 于点E ,S △ABC =7,DE=2,AB=4,则AC 的长是______.【答案】3.【解析】解:如图,过点D 作DF ⊥AC 于F .∵AD 是△ABC 中∠BAC 的角平分线,DE ⊥AB ,∴DE =DF .由图可知,S △ABC =S △ABD +S △ACD ,∴12×4×2+12×AC ×2=7,解得:AC =3.故答案为:3.点睛:本题考查了角平分线上的点到角的两边距离相等的性质,熟记性质是解答本题的关键.13.(2019·哈尔滨市萧红中学初一期末)如图,D 是△ABC 的边AB 上一点, DF 交AC 于点E , DE=FE ,FC ∥AB ,CF=5,BD=2,点C 到直线AB 的距离为9,△ABC 面积为_________.【答案】31.5【解析】根据平行线性质求出∠A=∠FCE ,根据AAS 推出△ADE ≌△CFE,则AD=CF ,AB=CF+BD=7,再代入三角形面积公式S=,即可解答. 【详解】证明:∵FC ∥AB ,∴∠A=∠FCE ,在△ADE 和△CFE 中∴△ADE ≌△CFE .∴AD=CF .点C 到直线AB 的距离为9△ABC 面积=故△ABC 面积为31.5【点睛】本题考查三角形的判定和性质.于证明AD=CF 是解题关键.14.(2017·四川中考真题)△ABC 中,AB =5,AC =3,AD 是△ABC 的中线,设AD 长为m ,则m 的取值范围是____.【答案】1<m <4【解析】试题分析:延长AD 至E ,使AD=DE ,连接CE ,则AE=2m ,∵AD 是△ABC 的中线,∴BD=CD ,在△ADB 和△EDC 中,∵AD=DE ,∠ADB=∠EDC ,BD=CD ,∴△ADB ≌△EDC ,∴EC=AB=5,在△AEC 中,EC ﹣AC <AE <AC+EC ,即5﹣3<2m <5+3,∴1<m <4,故答案为:1<m <4.12ah AED FEC A FCEDE EF =⎧⎪=⎨⎪=⎩∠∠∠∠+527AB CF BD ∴==+=∴792=31.5⨯÷考点:全等三角形的判定与性质;三角形三边关系.15.(2019·内蒙古中考真题)下面三个命题:底边和顶角对应相等的两个等腰三角形全等;两边及其中一边上的中线对应相等的两个三角形全等;斜边和斜边上的中线对应相等的两个直角三角形全等,其中正确的命题的序号为_____.【答案】.【解析】由全等三角形的判定方法得出①②正确,③不正确【详解】解:底边和顶角对应相等的两个等腰三角形全等;正确;两边及其中一边上的中线对应相等的两个三角形全等;正确; 斜边和斜边上的中线对应相等的两个直角三角形全等;不正确;故答案为.【点睛】本题考查了命题与定理、全等三角形的判定方法;熟练掌握全等三角形的判定方法是解题的关键.三、解答题16.(2017·江苏中考真题)如图,已知在四边形ABCD 中,点E 在AD 上,∠BCE =∠ACD =90°,∠BAC =∠D ,BC =CE .(1)求证:AC =CD ;(2)若AC =AE ,求∠DEC 的度数.①②③①②①【答案】(1)证明见解析;(2)112.5°.【解析】 (1)根据同角的余角相等可得到∠2=∠4,结合条件∠BAC =∠D ,再加上BC =CE , 可证得结论;(2)根据∠ACD =90°,AC =CD , 得到∠1=∠D =45°, 根据等腰三角形的性质得到∠3=∠5=67.5°, 由平角的定义得到∠DEC =180°−∠5=112.5°.【详解】(1)证明:∵∠BCE =∠ACD =90°,∴∠2+∠3=∠3+∠4,∴∠2=∠4,在△ABC 和△DEC 中,{∠BAC =∠D∠2=∠4BC =CE,∴△ABC ≌△DEC(AAS ),∴AC =CD;(2)∵∠ACD =90°,AC =CD ,∴∠1=∠D =45°,∵AE =AC ,∴∠3=∠5=67.5°,∴∠DEC =180°-∠5=112.5°.17.(2018·湖北中考真题)如图,点E 、F 在BC 上,BE=CF ,AB=DC ,∠B=∠C ,AF 与DE 交于点G ,求证:GE=GF .【答案】证明见解析.【解析】【分析】求出BF=CE ,根据SAS 推出△ABF ≌△DCE ,得对应角相等,由等腰三角形的判定可得结论.【详解】∵BE=CF,∴BE+EF=CF+EF,∴BF=CE,在△ABF和△DCE中{AB=DC ∠B=∠C BF=CE,∴△ABF≌△DCE(SAS),∴∠GEF=∠GFE,∴EG=FG.【点睛】本题考查了全等三角形的判定与性质,等腰三角形的判定,熟练掌握三角形全等的判定方法是解题的关键.18.(2017·山东中考真题)已知:如图,E,F为□ABCD对角线AC上的两点,且AE=CF,连接BE,DF,求证:BE=DF.【答案】证明见解析.【解析】试题分析:利用SAS证明△AEB≌△CFD,再根据全等三角形的对应边相等即可得.试题解析:∵四边形ABCD是平行四边形,∴AB∥DC,AB=DC,∴∠BAE=∠DCF,在△AEB和△CFD中,{AB=CD∠BAE=∠DCFAE=CF,∴△AEB≌△CFD(SAS),∴BE=DF.【点睛】本题考查了平行四边形的性质以及全等三角形的判定与性质,熟练掌握相关的性质是解题的关键. 19.(2018·湖北中考真题)如图正方形ABCD的边长为4,E、F分别为DC、BC中点.(1)求证:△ADE≌△ABF.(2)求△AEF的面积.【答案】(1)证明见解析;(2)6.【解析】试题分析:(1)由四边形ABCD为正方形,得到AB=AD,∠B=∠D=90°,DC=CB,由E、F分别为DC、BC中点,得出DE=BF,进而证明出两三角形全等;(2)首先求出DE和CE的长度,再根据S△AEF=S正方形ABCD-S△ADE-S△ABF-S△CEF得出结果.试题解析:(1)证明:∵四边形ABCD为正方形,∴AB=AD,∠D=∠B=90°,DC=CB,∵E、F为DC、BC中点,∴DE=DC,,∴DE=BF,在△ADE和△ABF中,,∴△ADE≌△ABF(SAS);(2)解:由题知△ABF、△ADE、△CEF均为直角三角形,且AB=AD=4,DE=BF=×4=2,4=2,∴S△AEF=S正方形ABCD﹣S△ADE﹣S△ABF﹣S△CEF=4×4﹣×4×2﹣×4×2×2×2=6.。
2024年八年级数学上册《全等三角形》及答案解析

第十二章全等三角形(单元重点综合测试)班级_________姓名________学号__________分数__________考试范围:全章的内容;考试时间:120分钟;总分:120分一、选择题(本大题共10小题,每小题3分,共30分)1.下列说法中,正确的有()①形状相同的两个图形是全等形;②面积相等的两个图形是全等形;③全等三角形的周长相等,面积相等;④若△ABC≌△DEF,则∠A=∠D.A.1个B.2个C.3个D.4个2.下列各组图形中,是全等形的是()A. B.C. D.3.如图,点B在线段AD上,△ABC≌△EBD,AB=2cm,BD=5cm,则CE的长度为()A.2cmB.2.5cmC.3cmD.5cm4.小红用如图所示的方法测量小河的宽度.她利用适当的工具,使AB⊥BC,CD⊥BC,BO=OC,点A、O、D在同一直线上,就能保证△ABO≌△DCO,可作为证明△ABO≌△DCO的依据的是()A.SSSB.ASAC.SASD.HL5.如图,在△ABC和△DEF中,点A,E,B,AC∥DF,AC=DF,能判定△ABC≌△DEF的是()A.BC=DEB.AE=DBC.∠A=∠DEFD.∠ABC=∠D6.如图,OP平分∠MON,PE⊥OM于点E,PF⊥ON于点F,OA=OB,则图中全等三角形有()A.1对B.2对C.3对D.4对7.现要在一块三角形形状的草坪上安装一个洒水龙头,要使洒水龙头到草坪三条边的距离相等,洒水龙头的位置应选在( )处A.三角形三边的垂直平分线的交点B.三角形的三条角平分线的交点C.三角形的三条高所在直线的交点D.三角形的三条中线的交点8.如图,在△ABC中,CD平分∠ACB,DE⊥BC于点E,S△ABC=30,DE=4,BC=10,则AC的长是()A.5B.6C.7D.89.如图,AD是△ABC的角平分线,DE⊥AC,垂足为E,BF∥AC交ED的延长线于点F,若BC恰好平分∠ABF,AE=2BF,给出下列五个结论:①DE=DF;②BC=2DB;③AD⊥BC;④AB=3BF;⑤S△ADB=2S△BDF;其中正确的结论共有()A.4个B.3个C.2个D.1个10.新定义:已知三条平行直线,相邻两条平行线间的距离相等,我们把三个顶点分别在这样的三条平行线上的三角形称为“格线三角形”.如图,a∥b∥c,相邻两条平行线间的距离为m,等腰Rt△ABC为“格线三角形”,且∠BAC=90°,则△ABC的面积为()A.5m2 B.2m2 C.5m2 D.4m22二、填空题(本大题共6小题,每小题3分,共18分)11.如图,AD=AB,∠C=∠E,∠CDE=50°,则∠ABE=.12.如图,四边形ABCD≌四边形A B C D .若∠B=90°,∠C=60°,∠D =105°,则∠A的大小为度.13.如图,D,E是边BC上的两点,BD=CE,∠ADB=∠AEC,现要直接用“AAS”定理来证明△ABD≌△ACE,请你再添加一个条件:.14.已知△ABC面积为24,将△ABC沿BC的方向平移到△A B C 的位置,使B 和C重合,连接AC 交A C于D,则△C DC的面积为.15.如图,△ABC中∠A=66°,点M、N是∠ABC与∠ACB三等分线的交点,则∠BMN的度数是.16.如图,CA⊥AB,垂足为点A,射线BM⊥AB,垂足为点B,AB=15cm,AC=6cm.动点E从A点出发以3cm/s的速度沿射线AN运动,动点D在射线BM上,随着E点运动而运动,始终保持ED=CB.若点E的运动时间为t秒t>0,则当t=秒时,△DEB与△BCA全等.三、(本大题共4小题,每小题6分,共24分)17.已知:如图,AB=AE,∠1=∠2,∠C=∠D.求证:BC=ED.18.如图,已知AB∥CD,AB=CD.(1)求证:△ABC≌△CDA;(2)判断BC与AD的位置关系,并说明理由.19.如图,已知AB=CD,AD=BC,O为AC的中点,过O作一条直线分别与AB,CD交于点M,N,点E,F在直线MN上,且OE=OF.(1)图中共有几对全等三角形?请把它们都写出来;(2)求证:∠MAE=∠NCF.20.如图,B、C、E三点在同一条直线上,AC∥DE,AC=CE,∠ACD=∠B(1)求证:△ABC≌△CDE(2)若∠A=55°,求∠BCD的度数.四、(本大题共3小题,每小题8分,共24分)21.如图,△ABC中,点D在边BC延长线上,∠ACB=106°,∠ABC的平分线交AD于点E,过点E作EH⊥BD,垂足为H,且∠CEH=53°.(1)求∠ACE的度数;(2)求证:AE平分∠CAF;(3)若AC+CD=16,AB=10,且S△ACD=24,则△ABE的面积.22.问题提出:如图1,在四边形ABCD中,∠BAD与∠BCD互补,∠B与∠D互补,AB=AD,∠BAD=x°0<x<180,∠ACB=y°,数学兴趣小组在探究y与x的数量关系时,经历了如下过程:实验操作:(1)数学兴趣小组通过电脑软件“几何画板”进行探究,测量出部分结果如下表所示:x⋯304050607080β130y757065α555040θ这里α=,β=,θ=.猜想证明:(2)根据表格,猜想:y与x之间的关系式为;数学兴趣小组发现证明此猜想的一种方法:如图2,延长CB到E,使BE=DC,连接AE,⋯,请你根据其思路将证明过程补充完整,并验证(1)中结论的正确性.应用拓广:(3)如图3,若x+y=135,AC=10,求四边形ABCD的面积.23.(1)【问题解决】如图①,∠AOB=∠DFE=90°,OC平分∠AOB,点F在OC上,∠DFE的两边分别与OA,OB交于点D,E.当FE⊥OB,FD⊥OA时,则FD与FE的数量关系为;(2)【问题探究】如图②,在(1)的条件下,过点F作两条相互垂直的射线FM,FN,分别交OA,OB于点M,N,判断FM与FN的数量关系,说明理由;(3)【迁移应用】某学校有一块四边形的空地ABCD,如图③所示,∠DAB=∠DCB=90°,AC是∠DAB的平分线,AB= 50m,AD=30m,直接写出该空地的面积.五、(本大题共2小题,每小题12分,共24分)24.综合探究:如题图1是一种用刻度尺画角平分线的方法,在OA、OB上分别取点C、E、D、F,使得OC=OD,OE=OF,连接CF、DE,交点为P,则射线OP为∠AOB的角平分线.【验证】(1)试说明OP平分∠AOB,且PE=PF;【应用】(2)如题图2,若C、E、D、F分别为OA、OB上的点,且OC=OD,CF⊥OA,DE⊥OB,试用(1)中的原理说明OP平分∠AOB;【猜想】(3)如题图3,P是∠AOB角平分线上一点,C、D分别为OA、OB上的点,且PC=PD,请补全图形,并直接写出∠PCO与∠PDO的数量关系.25.【模型呈现】(1)如图1,∠BAD=90°,AB=AD,BC⊥CA于点C,DE⊥AE于点E.求证:BC=AE.【模型应用】(2)如图2,EA⊥AB且AE=AB,BC⊥CD且BC=CD,请按照图中所标注的数据,计算图中实线所围成的图形ABCDE的面积.【深入探究】(3)如图3,∠BAD=∠CAE=90°,AB=AD,AC=AE,连接BC、DE,且BC⊥AF于点F,DE与直线AF交于点G.①求证DG=GE;②若BC=21,AF=12,求△ADG的面积.第十二章全等三角形(单元重点综合测试)班级_________姓名________学号__________分数__________考试范围:全章的内容;考试时间:120分钟;总分:120分一、选择题(本大题共10小题,每小题3分,共30分)1.下列说法中,正确的有()①形状相同的两个图形是全等形;②面积相等的两个图形是全等形;③全等三角形的周长相等,面积相等;④若△ABC≌△DEF,则∠A=∠D.A.1个B.2个C.3个D.4个【答案】B【分析】根据全等形的定义,全等三角形的判定与性质,即可判断.【详解】解:能够完全重合的两个图形叫做全等形,即形状和大小相同的两个图形是全等形,故①②说法错误;全等三角形能够完全重合,所以全等三角形的周长相等,面积相等,故③说法正确;若△ABC≌△DEF,∠A的对应角为∠D,所以∠A=∠D,故④说法正确;说法正确的有③④,共2个.故选:B.【点睛】本题考查全等形,理解能够完全重合的两个图形叫做全等形是解题关键.2.下列各组图形中,是全等形的是()A. B.C. D.【答案】B【分析】本题考查全等形,掌握能完全重合的两个图形是全等形是解题的关键.【详解】观察发现:A,C,D选项中两个图形不能完全重合,不是全等形;B选项中两个图形能完全重合,是全等形,故选B.3.如图,点B在线段AD上,△ABC≌△EBD,AB=2cm,BD=5cm,则CE的长度为()A.2cmB.2.5cmC.3cmD.5cm【答案】C【分析】此题考查了全等三角形的性质,解题的关键熟练掌握性质的应用.根据全等三角形的对应边相等,再利用线段和差即可求解.【详解】∵△ABC≌△EBD,∴BE=AB=2cm,BC=BD=5cm,∴CE=BC-BE=3cm,故选:C.4.小红用如图所示的方法测量小河的宽度.她利用适当的工具,使AB⊥BC,CD⊥BC,BO=OC,点A、O、D在同一直线上,就能保证△ABO≌△DCO,可作为证明△ABO≌△DCO的依据的是()A.SSSB.ASAC.SASD.HL【答案】B【分析】本题主要考查了全等三角形的判定,熟练掌握全等三角形的判定方法是解题的关键.直接利用全等三角形的判定方法即可得出答案.【详解】解:∵AB⊥BC,CD⊥BC,∴∠ABO=∠DCO=90°,在△ABO和△DCO中,∠ABO=∠DCOBO=OC=CO∠BOA=∠COD,∴△ABO≌△DCO ASA∴证明△ABO≌△DCO的依据的是ASA,故选:B.5.如图,在△ABC和△DEF中,点A,E,B,AC∥DF,AC=DF,能判定△ABC≌△DEF的是()A.BC=DEB.AE=DBC.∠A=∠DEFD.∠ABC=∠D【答案】B【分析】本题考查三角形全等的判定,先根据平行线的性质得到∠A=∠D,加上AC=DF,则可根据全等三角形的判定方法对各选项进行判断即可,掌握全等三角形的判定方法:SSS、SAS、ASA、AAS,HL是解题的关键.【详解】解:∵AC∥DF,∴∠A=∠D,∵AC=DF,A、添加BC=DE,不能判定△ABC≌△DEF;B、添加AE=DB,能判定△ABC≌△DEF;C、添加∠A=∠DEF,不能判定△ABC≌△DEF;D、添加∠ABC=∠D,不能判定△ABC≌△DEF;故选:B.6.如图,OP平分∠MON,PE⊥OM于点E,PF⊥ON于点F,OA=OB,则图中全等三角形有()A.1对B.2对C.3对D.4对【答案】C【分析】本题主要考查三角形全等的判定定理,角平分线的性质,熟练掌握三角形全等的判定方程是解题的关键.根据全等三角形的判定分别证明△AOP≌△BOP(SAS),Rt△P AE≌Rt△PBF HL,△OEP≌△OFP (AAS),即可得到答案.【详解】解:∵OP平分∠MON,∴∠AOP=∠BOP,∵OA=OB,OP=OP,∴△AOP≌△BOP(SAS);∴AP=BP,∵OP平分∠MON,PE⊥OM,PF⊥ON∴PE=PF,∵PE⊥OM于点E,PF⊥ON于点F,∴Rt△P AE≌Rt△PBF HL;∵OP平分∠MON,∴∠AOP=∠BOP,又∵∠OEP=∠OFP=90°,OP=OP,∴△OEP≌△OFP(AAS).∴图中全等三角形有3对故选C.7.现要在一块三角形形状的草坪上安装一个洒水龙头,要使洒水龙头到草坪三条边的距离相等,洒水龙头的位置应选在( )处A.三角形三边的垂直平分线的交点B.三角形的三条角平分线的交点C.三角形的三条高所在直线的交点D.三角形的三条中线的交点【答案】B【分析】本题考查的是三角形的角平分线的性质,掌握角平分线上的点到角的两边的距离相等是解题的关键.根据角平分线上的点到角的两边的距离相等解答即可.【详解】解:要使洒水龙头到草坪三条边的距离相等,则洒水龙头的位置应选在三角形三条角平分线的交点,故选:B8.如图,在△ABC 中,CD 平分∠ACB ,DE ⊥BC 于点E ,S △ABC =30,DE =4,BC =10,则AC 的长是()A.5B.6C.7D.8【答案】A 【分析】本题主要考查了角平分线的性质定理.过点D 作DF ⊥AC 于点F ,根据角平分线的性质可得DE =DF =4,再由S △ABC =S △DBC +S △DAC ,即可求解.【详解】解:如图,过点D 作DF ⊥AC 于点F ,∵CD 平分∠ACB ,DE ⊥BC ,DF ⊥AC ,DE =4,∴DE =DF =4,∵S △ABC =S △DBC +S △DAC ,S △ABC =30,BC =10,∴30=12DE ×BC +12DF ×AC ,∴30=12×4×10+12×4×AC ,∴AC =5,故选:A .9.如图,AD 是△ABC 的角平分线,DE ⊥AC ,垂足为E ,BF ∥AC 交ED 的延长线于点F ,若BC 恰好平分∠ABF ,AE =2BF ,给出下列五个结论:①DE =DF ;②BC =2DB ;③AD ⊥BC ;④AB =3BF ;⑤S △ADB =2S △BDF ;其中正确的结论共有()A.4个B.3个C.2个D.1个【答案】A 【分析】本题考查了全等三角形判定和性质,角平分线的性质,等腰三角形的判定和性质,由角平分线的性质和平行线的性质可证∠ACB=∠ABC,可得AC=AB,由等腰三角形的性质可得AD⊥BC,CD= BD,由“ASA”可证△CDE≌△BDF,可得S△CDE=S△BDF,CE=BF,DE=DF,即可求解.【详解】解:∵BC恰好平分∠ABF,∴∠ABC=∠CBF,∵BF∥AC,∴∠ACB=∠CBF,∴∠ACB=∠ABC,∴AC=AB,且AD是△ABC的角平分线,∴AD⊥BC,BC=2DB,故②,③正确,符合题意;在△CDE和△BDF中,∠ACB=∠CBF CD=BD∠CDE=∠BDF,∴△CDE≌△BDF ASA,∴S△CDE=S△BDF,CE=BF,DE=DF,故①正确,符合题意;∵AE=2BF,∴AC=3BF=AB,故④正确,符合题意;∵BD=CD,∴S△ADB=S△ACD,∵AE=2BF,∴S△ADB=S△ACD=3S△CDE=3S△BDF,故⑤错误,不符合题意;故选:A.10.新定义:已知三条平行直线,相邻两条平行线间的距离相等,我们把三个顶点分别在这样的三条平行线上的三角形称为“格线三角形”.如图,a∥b∥c,相邻两条平行线间的距离为m,等腰Rt△ABC为“格线三角形”,且∠BAC=90°,则△ABC的面积为()A.52m2 B.2m2 C.5m2 D.4m2【答案】A【分析】本题主要考查平行线间的距离,全等三角形的判定与性质,过点B作BE⊥直线a于点E,延长EB交直线c于点F,过点C作CD⊥直线a于点D,证明△CDA≌△AEB(AAS),得出AE=CD=2m,AD=BE=m,CF=DE=AD+AE=m+2m=3m,再根据=S四边形DEFE-S△ACD×2-S△BCF求解即可【详解】解:过点B作BE⊥直线a于点E,延长EB交直线c于点F,过点C作CD⊥直线a于点D,则∠CDA=∠AEB=90°,如图,∵a∥b∥c,相邻两条平行线间的距离为m,∴BF⊥直线c,CD=2m,BE=BF=m,∵∠CAB=90°,∠CDA=90°∴∠DCA+∠DAC=90°,∴∠DCA=∠EAB,在△CDA和△AEB中,∠DCA=∠EAB∠CDA=∠AEBAC=AB,∴△CDA≌△AEB(AAS),∴AE=CD=2m,AD=BE=m,∴CF=DE=AD+AE=m+2m=3m∴△ABC的面积=S四边形DEFE -S△ACD×2-S△BCF=3m×2m-12×2m×m×2-12×3m×m=52m2故选:A二、填空题(本大题共6小题,每小题3分,共18分)11.如图,AD=AB,∠C=∠E,∠CDE=50°,则∠ABE=.【答案】130°/130度【分析】本题考查了全等三角形的性质与判定,邻补角的定义,掌握全等三角形的性质与判定是解题的关键.证明△ADC≌△ABE AAS得出∠ADC=∠ABE,根据邻补角即可求解.【详解】解:∵在△ADC和△ABE中,∠C=∠E∠A=∠AAD=AB,∴△ADC≌△ABE AAS,∴∠ADC=∠ABE,∵∠CDE=50°,∴∠ADC=180°-50°=130°,∴∠ABE=130°.故答案为:130°.12.如图,四边形ABCD≌四边形A B C D .若∠B=90°,∠C=60°,∠D =105°,则∠A的大小为度.【答案】105【分析】本题考查了全等图形的性质和四边形内角和公式,解题的关键在于熟练掌握全等图形的性质.根据全等的性质求出∠D=∠D ,利用四边形的内角和公式求出∠A的度数即可.【详解】解:∵四边形ABCD≌四边形A B C D .∴∠D=∠D ,∵∠D =105°,∴∠D=105°,∵∠B=90°,∠C=60°,∴∠A=360°-90°-60°-105°=105°,故答案为:105.13.如图,D,E是边BC上的两点,BD=CE,∠ADB=∠AEC,现要直接用“AAS”定理来证明△ABD≌△ACE,请你再添加一个条件:.【答案】∠BAD=∠CAE【分析】在△ABE与△ACD中,已知AE=AD,∠AED=∠ADE,即已知一角及角的一边对应相等,根据“AAS”的判定方法,可以添加已知边的对角对应相等即可.本题考查了全等三角形的判定定理:AAS:两角及其中一个角的对边对应相等的两个三角形全等.判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.根据已知结合图形及判定方法选择条件是正确解答本题的关键.【详解】解:可添加一个条件:∠BAD=∠CAE,使△ABD≌△ACE.理由:在△ABD与△ACE中,∠BAD=∠CAE∠AED=∠ADEBD=CE,∴△ABD≌△ACE(AAS).故答案为∠BAD=∠CAE14.已知△ABC面积为24,将△ABC沿BC的方向平移到△A B C 的位置,使B 和C重合,连接AC 交A C于D,则△C DC的面积为.【答案】12【分析】根据平移的性质可得AC=A C ,BC=B C ,AC∥A C ,证明△ADC≌△C DA ,得到AD=C D,则S△C DC =12S△ACC,再推出S△ABC=S△ACC=24,则S△C DC=12S△ACC=12.【详解】解:由平移的性质可得AC=A C ,BC=B C ,AC∥A C ,∴∠DCA=∠DA C ,∠DAC=∠DC A ,∴△ADC≌△C DA ASA,∴AD=C D,∴S△C DC =12S△ACC,∵BC=CC ,△ABC的面积为24,∴S△ABC=S△ACC=24,∴S△C DC =12S△ACC=12.故答案为:12.【点睛】本题主要考查了平移的基本性质,全等三角形的性质与判定,三角形中线的性质,熟知平移的性质是解题的关键:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.15.如图,△ABC中∠A=66°,点M、N是∠ABC与∠ACB三等分线的交点,则∠BMN的度数是.【答案】52°/52度【分析】本题考查与角平分线有关的三角形的内角和定理.过点N作NG⊥BC于G,NE⊥BM于E,NF⊥CM于F,根据角平分线上的点到角的两边的距离相等可得NE=NG=NF,再根据到角的两边距离相等的点在角的平分线上判断出MN平分∠BMC,然后根据三角形内角和等于180°求出∠ABC+∠ACB,再根据角的三等分求出∠MBC+∠MCB的度数,然后利用三角形内角和定理求出∠BMC的度数,从而得解.【详解】解:如图,过点N作NG⊥BC于G,NE⊥BM于E,NF⊥CM于F,∵点M、N是∠ABC与∠ACB三等分线的交点,∴BN平分∠MBC,CN平分∠MCB,∴NE=NG,NF=NG,∴NE=NF,∴MN平分∠BMC,∴∠BMN=12∠BMC,∵∠A=66°,∴∠ABC+∠ACB=180°-∠A=180°-66°=114°,∴∠MBC+∠MCB=23∠ABC+∠ACB=76°,在△BMC中,∠BMC=180°-∠MBC+∠MCB=180°-76°=104°∴∠BMN=12∠BMC=52°.故答案为:52°.16.如图,CA⊥AB,垂足为点A,射线BM⊥AB,垂足为点B,AB=15cm,AC=6cm.动点E从A点出发以3cm/s的速度沿射线AN运动,动点D在射线BM上,随着E点运动而运动,始终保持ED=CB.若点E的运动时间为t秒t>0,则当t=秒时,△DEB与△BCA全等.【答案】3或7或10【分析】本题考查全等三角形的性质,关键是要分情况讨论.分情况,当E在线段AB上,或当E在线段AB延长线上,由HL即可求解.【详解】解:∵CA⊥AB,BM⊥AB,∠CAB=∠DBE=90°,∵ED=CB,当E在线段AB上时,若BE=AC,∴Rt△DEB≌Rt△BCA(HL),∵AE=3tcm,∴BE=AB-AE=15-3tcm,∴15-3t=6,∴t=3;若BE=AB,∴Rt△DEB≌Rt△CBA(HL),∴AE=0,∴t=0(舍去),当E在线段AB延长线上时,若BE=AC,∴Rt△DEB≌Rt△BCA(HL),∵AE=3t=AB+BE=15+6=21(cm),∴t=7,若BE=AB,∴Rt△DEB≌Rt△CBA(HL),∵AE=3t=AB+BE=15+15=30(cm),∴t=10,∴当t=3或7或10秒时,△DEB与△BCA全等.故答案为:3或7或10.三、(本大题共4小题,每小题6分,共24分)17.已知:如图,AB=AE,∠1=∠2,∠C=∠D.求证:BC=ED.【答案】见解析【分析】本题考查了全等三角形的判定与性质,由∠1=∠2可得∠EAD=∠BAC,再根据条件AB=AE,∠C=∠D,可利用AAS证明△ABC≌△AED AAS,再根据全等三角形对应边相等即可得出结论.【详解】证明:∵∠1=∠2,∴∠1+∠BAD=∠2+∠BAD,即∠EAD=∠BAC,在△EAD和△BAC中,∠C=∠D∠BAC=∠EADAB=AE,∴△ABC≌△AED AAS,∴BC=ED.18.如图,已知AB∥CD,AB=CD.(1)求证:△ABC≌△CDA;(2)判断BC与AD的位置关系,并说明理由.【答案】(1)见解析(2)BC∥AD,理由见解析【分析】本题考查了全等三角形的判定与性质,解决本题的关键是得到△ABC≌△CDA.(1)利用SAS证明△ABC≌△CDA即可;(2)由△ABC≌△CDA,得∠BCA=∠CAD,进而可以判断BC与AD的位置关系.【详解】(1)证明:∵AB∥CD,∴∠BAC=∠ACD,在△ABC与△CDA中,AB=CD∠BAC=∠ACDAC=CA,∴△ABC≌△CDA SAS;(2)解:BC∥AD,理由如下:∵△ABC≌△CDA,∴∠BCA=∠CAD,∴BC∥AD.19.如图,已知AB=CD,AD=BC,O为AC的中点,过O作一条直线分别与AB,CD交于点M,N,点E,F在直线MN上,且OE=OF.(1)图中共有几对全等三角形?请把它们都写出来;(2)求证:∠MAE=∠NCF.【答案】(1)4;△ABC≌△CDA,△AMO≌△CNO,△OAE≌△OCF,△AME≌△CNF(2)证明见解析【分析】本题主要考查了全等三角形的性质与判定,找出判定三角形全等的条件是解题的关键.(1)结合已知条件,再根据全等三角形的四个判定方法,即可找出所有的全等三角形;(2)先证明△AME≌△CNF SSS,即可证明∠MAE=∠NCF.【详解】(1)解:有4对全等三角形,分别为:△ABC≌△CDA,△AMO≌△CNO,△OAE≌△OCF,△AME≌△CNF,理由如下:∵AB=CD,BC=AD=DA,AC=CA,∴△ABC≌△CDA SSS,∴∠BAC=∠DCA,即∠MAO=∠NCO,∵O为AC的中点,∴OA=OC,又∵∠AOM=∠CON,∴△AMO≌△CNO ASA,∴AM=CN,OM=ON,∵OA=OC,∠AOE=∠COF,OE=OF,∴△OAE≌△OCF SAS,∴AE=CF,∵OE=OF,OM=ON,∴OE-OM=OF-ON,即ME=NF,又∵AM=CN,∴△AME≌△CNF SSS;(2)证明:∵AB=CD,BC=AD=DA,AC=CA,∴△ABC≌△CDA SSS,∴∠BAC=∠DCA,即∠MAO=∠NCO,∵O为AC的中点,∴OA=OC,又∵∠AOM=∠CON,∴△AMO≌△CNO ASA,∴AM=CN,OM=ON,∵OA=OC,∠AOE=∠COF,OE=OF,∴△OAE≌△OCF SAS,∴AE=CF,∵OE=OF,OM=ON,∴OE-OM=OF-ON,即ME=NF,又∵AM=CN,∴△AME≌△CNF SSS,∴∠MAE=∠NCF.20.如图,B、C、E三点在同一条直线上,AC∥DE,AC=CE,∠ACD=∠B(1)求证:△ABC≌△CDE(2)若∠A=55°,求∠BCD的度数.【答案】(1)详见解析(2)125°【分析】本题考查了平行线性质和全等三角形的性质和判定的应用,证得△ABC≌△CDE是解题的关键.(1)根据平行线求出∠ACD=∠CDE,∠ACB=∠CED,再说明∠B=∠CDE,最后结合AC=CE运用AAS即可证明结论;(2)根据全等三角形性质得出∠A=∠E=55°,进而根据平角定义即可解答.【详解】(1)证明∶∵AC∥DE,∴∠ACD=∠CDE,∠ACB=∠CED,∵∠ACD=∠B,∴∠B=∠CDE,∵AC=CE,∴△ABC≌△CDE AAS.(2)解:∵∠A=55°,∵△ABC≌△CDE,∴∠A=∠ECD=55°,∴∠BCD=180°-∠ECD=180°-55°=125°.四、(本大题共3小题,每小题8分,共24分)21.如图,△ABC中,点D在边BC延长线上,∠ACB=106°,∠ABC的平分线交AD于点E,过点E作EH⊥BD,垂足为H,且∠CEH=53°.(1)求∠ACE的度数;(2)求证:AE平分∠CAF;(3)若AC+CD=16,AB=10,且S△ACD=24,则△ABE的面积.【答案】(1)∠ACE=37°(2)证明见解析(3)15【分析】本题主要考查了邻补角的性质、角平分线的性质与判定定理、三角形的面积等知识点,灵活运用相关知识点成为解答本题的关键.(1)根据邻补角的定义和垂直的定义可得∠ACD=74°、∠CHE=90°,进而得到∠ECH=37°,然后根据∠ACE=∠ACD-∠ECH即可解答;(2)如图:过E点分别作EM⊥BF于M,EN⊥AC与N,根据角平分线的性质定理以及角平分线的定义可得EM=EH、CE平分∠ACD、EN=EH,最后根据角平分线的判定定理即可解答;(3)根据S△ACD=S△ACE+S△CED结合已知条件可得EM=3,最后运用三角形的面积公式即可解答.【详解】(1)解:∵∠ACB=106°,∴∠ACD=180°-106°=74°,∵EH⊥BD,∴∠CHE=90°,∵∠CEH=53°,∴∠ECH=90°-53°=37°,∴∠ACE=∠ACD-∠ECH=74°-37°=37°.(2)证明:如图:过E点分别作EM⊥BF于M,EN⊥AC与N,∵BE平分∠ABC,∴EM=EH,∵∠ACE =∠ECH =37°,∴CE 平分∠ACD ,∴EN =EH ,∴EM =EN ,∴AE 平分∠CAF .(3)解:∵AC +CD =16,S △ACD =24,EM =EN =EH ,∴S △ACD =S △ACE +S △CED =12AC ⋅EN +12CD ⋅EH =12(AC +CD )⋅EM =24,即12×16⋅EM =24,解得EM =3,∵AB =10,∴S △ABE =12AB ⋅EM =15.22.问题提出:如图1,在四边形ABCD 中,∠BAD 与∠BCD 互补,∠B 与∠D 互补,AB =AD ,∠BAD =x °0<x <180 ,∠ACB =y °,数学兴趣小组在探究y 与x 的数量关系时,经历了如下过程:实验操作:(1)数学兴趣小组通过电脑软件“几何画板”进行探究,测量出部分结果如下表所示:x⋯304050607080β130y 757065α555040θ这里α=,β=,θ=.猜想证明:(2)根据表格,猜想:y 与x 之间的关系式为;数学兴趣小组发现证明此猜想的一种方法:如图2,延长CB 到E ,使BE =DC ,连接AE ,⋯,请你根据其思路将证明过程补充完整,并验证(1)中结论的正确性.应用拓广:(3)如图3,若x +y =135,AC =10,求四边形ABCD 的面积.【答案】(1)60,100,15;(2)y =90-12x ,理由见详解;(3)S 四边形ABCD =50【分析】(1)观察表格发现:x 每增加10,y 减小5,由此即可得出α、β、θ的值.(2)根据表格猜想:y =90-12x .延长CB 到E ,使BE =DC ,连接AE ,则可得△ABE ≌△ADE ,进而可得AE =AC ,∠EAB =∠CAD ,则可得∠EAC =x °.在△AEC 中,根据三角形内角和定理即可得出y 于x 之间的关系式.(3)延长CB 到E ,使BE =DC ,连接AE .由(2)得△ABE ≌△ADE ,则S △ABE =S △ADE ,进而可得S 四边形ABCD =S △AEC .由x +y =135,y =90-12x 可得x =90,y =45.则可得∠EAC =90°,∠AEC =∠ACE =45°,进而可得AE =AC =10,可得S △AEC 的值,即可得S 四边形ABCD 的值.【详解】(1)观察表格发现:x每增加10,y减小5,∴α=65-5=60,β=80+2×10=100,θ=40-3×5=15.故答案为:60,100,15,x.(2)根据表格猜想:y=90-12证明:如图2,延长CB到E,使BE=DC,连接AE,则∠ABC+∠ABE=180°,又∵∠ABC+∠D=180°,∴∠ABE=∠D,又∵AB=AD,∴△ABE≌△ADE(SAS),∴AE=AC,∠EAB=∠CAD,∴∠E=∠ACB=y°,∠EAC=∠EAB+∠BAC=∠CAD+∠BAC=∠BAD=x°.在△AEC中,∠EAC+∠E+∠ACE=180°,∴x°+2y°=180°,y=90-1x.2(3)如图,延长CB到E,使BE=DC,连接AE.由(2)得△ABE≌△ADE,∴S△ABE=S△ADE,=S△ACD+S△ABC=S△ABE+S△ABC=S△AEC,∴S四边形ABCD∵x+y=135,y=90-1x,2x=135,∴x+90-12解得x=90,y=45,∴∠EAC=90°,∠AEC=∠ACE=45°,∴AE=AC=10,×10×10=50,∴S△AEC=12∴S=50.四边形ABCD【点睛】本题考查了数字类探索规律问题,以及全等三角形的判定和性质,三角形内角和定理.熟练掌握以上知识,证明出y与x之间的关系式是解题的关键.23.(1)【问题解决】如图①,∠AOB =∠DFE =90°,OC 平分∠AOB ,点F 在OC 上,∠DFE 的两边分别与OA ,OB 交于点D ,E .当FE ⊥OB ,FD ⊥OA 时,则FD 与FE 的数量关系为;(2)【问题探究】如图②,在(1)的条件下,过点F 作两条相互垂直的射线FM ,FN ,分别交OA ,OB 于点M ,N ,判断FM 与FN 的数量关系,说明理由;(3)【迁移应用】某学校有一块四边形的空地ABCD ,如图③所示,∠DAB =∠DCB =90°,AC 是∠DAB 的平分线,AB =50m ,AD =30m ,直接写出该空地的面积.【答案】(1)FD =FE ;(2)FM =FN ,理由见详解;(3)1600m 2【分析】(1)根据“角平分线上的点到角两边的距离相等”可得FD =FE ;(2)先根据四边形内角和等于360°可得∠DFE =90°,由∠DFE =∠FMN =90°可得∠DFM =∠EFN ,再根据ASA 证明△DFM ≌△EFN ,则可得FM =FN ;(3)过C 点作CE ⊥AB 于E 点,CF ⊥AD 的延长线于F 点.由(2)得△CFD ≌△CEB ,则可得FD =EB ,S △CFD =S △CEB ,进而可得S 四边形ABCD =S 四边形AECF .证明△ACF ≌△ACE (,则可得AF =AE ,由AE =AB -BE 、AF =AD +DF 可求得BE 的长,进而可得AF 、AE 的长,由此可得S 四边形AECF 的值,即可得S 四边形ABCD 的值.【详解】(1)解:∵OC 平分∠AOB ,点F 在OC 上,且FE ⊥OB ,FD ⊥OA ,∴FD =FE .(2)解:FD =FE ,理由如下:∵FD ⊥OA ,FE ⊥OB ,∴∠FDO =∠FEO =∠FEN =90°,∵四边形DOEF 中,∠FDO =∠FEO =∠AOB =90°,∴∠DFE =360°-∠FDO -∠FEO -∠AOB =90°,∴∠DMF +∠MFE =90°,又∵FM ⊥FN ,∴∠FMN =90°,∴∠DFM =∠EFN ,在△DFM 和△EFN 中,∠FDM =∠FENFD =FE ∠DFM =∠EFN,∴△DFM ≌△EFN (ASA ),∴FM =FN .(3)解:如图,过C 点作CE ⊥AB 于E 点,CF ⊥AD 的延长线于F 点,由(2)得△CFD≌△CEB,∴FD=EB,S△CFD=S△CEB,∴S四边形ABCD =S四边形AECF,∵AC是∠DAB的平分线,∴∠DAC=∠CAB,又∵∠CFB=∠CEA=90°,AC=AC,∴△ACF≌△ACE(AAS),∴AF=AE,又∵AE=AB-BE,AF=AD+DF,∴AB-BE=AD+DF,∴50-BE=30+BE,解得BE=10,∴AF=AE=40,∴S四边形AECF=40×40=1600m2,∴S四边形ABCD=1600m2,答:该空地的面积为1600m2.【点睛】本题主要考查了角平分线的性质、全等三角形的判定和性质,熟练掌握以上知识,正确的作出辅助线是解题的关键.五、(本大题共2小题,每小题12分,共24分)24.综合探究:如题图1是一种用刻度尺画角平分线的方法,在OA、OB上分别取点C、E、D、F,使得OC=OD,OE=OF,连接CF、DE,交点为P,则射线OP为∠AOB的角平分线.【验证】(1)试说明OP平分∠AOB,且PE=PF;【应用】(2)如题图2,若C、E、D、F分别为OA、OB上的点,且OC=OD,CF⊥OA,DE⊥OB,试用(1)中的原理说明OP平分∠AOB;【猜想】(3)如题图3,P是∠AOB角平分线上一点,C、D分别为OA、OB上的点,且PC=PD,请补全图形,并直接写出∠PCO与∠PDO的数量关系.【答案】(1)见解析;(2)见解析;(3)补全图形见解析,∠PCO=∠PDO或∠PCO+∠PDO=180°【分析】本题是三角形综合题目,考查了全等三角形的判定与性质、角平分线的性质等知识,本题综合性强,熟练掌握全等三角形的判定与性质是解题的关键,属于中考常考题型.(1)先证明△DOE≌△COF(SAS),得∠PEC=∠PFD,再证△CPE≌△DPF(AAS),得PE=PF,然后证△OPE≌△OPF(SSS),得∠POE=∠POF,即可得出结论;(2)先证明△OCF≌△ODE(ASA),可得OF=OE,由(1)可得OP平分∠AOB;(3)过点P分别作PM⊥OA于M,PN⊥OB于N,分两种情况进行求解即可.【详解】解:(1)∵OC=OD,∠DOE=∠COF,OE=OF,∴CE=DF,△DOE≌△COF(SAS),∴∠PEC=∠PFD,∵∠CPE=∠DPF,CE=DF,∴△CPE≌△DPF(AAS),∴PE=PF,∵OE=OF,PE=PF,OP=OP,∴△OPE≌△OPF(SSS),∴∠POE=∠POF,即∠POA=∠POB,∴射线OP平分∠AOB;(2)∵CF⊥OA,DE⊥OB,∴∠OCF=∠ODE=90°,∴∠COF=∠DOE,OC=OD,∴△OCF≌△ODE(ASA),∴OF=OE,由(1)可得OP平分∠AOB;(3)补全图形如下,过点P分别作PM⊥OA于M,PN⊥OB于N,∵OP是∠AOB的平分线,∴PM=PN,∠PMC=∠PND=90°,当PC=PD1时,在Rt△PMC和Rt△PND1中,PC=PD1,PM=PN∴Rt△PMC≌Rt△PND1(HL),∴∠PCO=∠PD1O;当PC=PD2时,同理得Rt△PMC≌Rt△PND2HL,∴∠PCM=∠PD2N;∵∠PD2N+∠PD2O=180°,∴∠PCO+∠PD2O=180°,综上所述,∠PCO与∠PDO的数量关系为∠PCO=∠PDO或∠PCO+∠PDO=180°;25.【模型呈现】(1)如图1,∠BAD=90°,AB=AD,BC⊥CA于点C,DE⊥AE于点E.求证:BC=AE.【模型应用】(2)如图2,EA⊥AB且AE=AB,BC⊥CD且BC=CD,请按照图中所标注的数据,计算图中实线所围成的图形ABCDE的面积.【深入探究】(3)如图3,∠BAD=∠CAE=90°,AB=AD,AC=AE,连接BC、DE,且BC⊥AF于点F,DE与直线AF交于点G.①求证DG=GE;②若BC=21,AF=12,求△ADG的面积.【答案】(1)见解析;(2)50;(3)①见解析;63【分析】(1)证明△ABC≌△DAE AAS,即可得证;(2)同(1)法得到△AEP≌△BAG,△CBG≌△DCH,分割法求出图形面积即可;(3)①过点D作DP⊥AG于P,过点E作EQ⊥AG交AG的延长线于Q,易证△AFB≌△DP A,△AFC ≌△EQA,得到DP=AF,EQ=AF,再证明△DPG≌△EQG AAS,即可得出结论;②根据全等三角形的性质,求出AG的长,进而利用面积公式进行求解即可.【详解】解:(1)证明:∵∠BAD=90°,∴∠BAC+∠DAE=90°,∵BC⊥CA,DE⊥AE,∴∠ACB=∠DEA=90°,∴∠BAC+∠ABC=90°,∴∠ABC=∠DAE,在△ABC和△DAE中,∠ACB=∠DEA∠ABC=∠DAEBA=AD∴△ABC≌△DAE AAS,∴BC=AE.(2)由模型呈现可知,△AEP≌△BAG,△CBG≌△DCH,∴AP=BG=3,AG=EP=6,CG=DH=4,CH=BG=3,则S实线围成的图形=12×4+6×3+6+4+3-12×3×6-12×3×6-12×3×4-12×3×4=50.(3)①过点D作DP⊥AG于P,过点E作EQ⊥AG交AG的延长线于Q.图3由【模型呈现】可知,△AFB≌△DP A,△AFC≌△EQA,∴DP=AF,EQ=AF∴DP=EQ,∵DP⊥AG,EQ⊥AG∴∠DPG=∠EQG=90°,在△DPG和△EQG中,∠DPG=∠EQG∠DGP=∠EGQDP=EQ∴△DPG≌△EQG AAS,∴DG=GE.②由①可知,BF=AP,FC=AQ,∴BC=BF+FC=AP+AQ,∵BC=21,∴AP+AQ=21,∴AP+AP+PG+GQ=21,由①△DPG≌△EQG得∴PG=GQ,∴AP+AP+PG+PG=21,∴AP+PG=10.5,∴AG=10.5,∴S△ADG=1×10.5×12=63.2。
三角形全等测试题及答案

三角形全等测试题及答案一、选择题1. 两个三角形全等的条件是()A. 有两条边和它们的夹角对应相等B. 三条边对应相等C. 有两条边和其中一条边的对角对应相等D. 有两条边和其中一条边的邻角对应相等答案:B2. 如果两个三角形的对应角相等,那么这两个三角形()A. 一定全等B. 可能相似C. 一定相似D. 无法确定答案:B二、填空题3. 已知三角形ABC与三角形DEF全等,且∠A=∠D,AB=DE,那么AC=______。
答案:EF4. 如果两个三角形的两边和夹角对应相等,那么这两个三角形是______。
答案:全等三、判断题5. 如果两个三角形的对应边成比例,那么这两个三角形一定全等。
()答案:错误6. 如果两个三角形的两边和夹角对应相等,那么这两个三角形一定相似。
()答案:正确四、解答题7. 如图所示,已知三角形ABC与三角形DEF全等,且AB=5cm,BC=7cm,∠A=∠D=90°,求DE的长度。
答案:DE=7cm8. 已知三角形ABC与三角形DEF相似,且AB=3cm,BC=4cm,DE=6cm,求AC的长度。
答案:AC=8cm五、证明题9. 已知三角形ABC与三角形DEF全等,且∠A=∠D,AB=DE,证明:AC=EF。
证明:由于三角形ABC与三角形DEF全等,根据全等三角形的性质,对应边相等,所以AC=EF。
10. 已知∠A=∠D,AB=DE,AC=DF,求证:三角形ABC≌三角形DEF。
证明:根据SAS(边角边)判定方法,已知∠A=∠D,AB=DE,AC=DF,所以三角形ABC≌三角形DEF。
(常考题)人教版初中数学八年级数学上册第二单元《全等三角形》测试题(答案解析)(1)

一、选择题1.如图,在△ABC 中,AB=AC ,AB >BC ,点D 在BC 边上,BD=12DC ,∠BED=∠CFD=∠BAC ,若S △ABC =30,则阴影部分的面积为( )A .5B .10C .15D .202.如图,点O 是△ABC 中∠BCA ,∠ABC 的平分线的交点,已知△ABC 的面积是12,周长是8,则点O 到边BC 的距离是( )A .1B .2C .3D .43.如图,若DEF ABC ≅,点B 、E 、C 、F 在同一条直线上,9BF =,5EC =,则CF 的长为( )A .1B .2C .2.5D .3 4.如图,AP 平分∠BAF ,PD ⊥AB 于点D ,PE ⊥AF 于点E ,则△APD 与△APE 全等的理由是( )A .SSSB .SASC .SSAD .AAS5.如图,AB AC =,AD AE =,55A ︒∠=,35C ︒∠=,则DOE ∠的度数是( )A .105︒B .115︒C .125︒D .130︒6.点Р在AOB ∠的角平分线上,点Р到OA 边的距离等于5,点Q 是OB 边上的任意一点,则下列选项正确的是( )A .5PQ >B .5PO ≥C . 5PQ <D .5PO ≤ 7.如图,在Rt ABC 中,C 90∠=,AD 是BAC ∠的平分线,若AC 3=,BC 4=,则ABD ACD S :S 为( )A .5:4B .5:3C .4:3D .3:48.如图,已知∠A=∠D , AM=DN ,根据下列条件不能够判定△ABN ≅△DCN 的是( )A .BM ∥CNB .∠M=∠NC .BM=CND .AB=CD 9.如图,AD 平分∠BAC ,AB=AC ,连接BD ,CD 并延长,分别交AC ,AB 于点F ,E ,则图中全等三角形共有( ) A .2对B .3对C .4对D .5对 10.如图,AD 是△ABC 中∠BAC 的角平分线,DE ⊥AB 于点E ,S △ABC =7,DE =2,AB =4,则AC 长是( )A .2.5B .3C .3.5D .411.如图,在OAB 和OCD 中,OA OB =,OC OD =,OA OC >,40AOB COD ∠=∠=︒,连接AC 、BD 交于点M ,连接OM ,下列结论:①AC BD =;②40AMB ∠=︒;③OM 平分BOC ∠;④MO 平分BMC ∠,其中正确的为( )A .①②③B .①②④C .②③④D .①②③④ 12.如图,在四边形ABCD 中,//,AB CD AE 是BAC ∠的平分线,且AE CE ⊥.若,AC a BD b ==,则四边形ABDC 的周长为( )A .1.5()a b +B .2a b +C .3a b -D .2+a b二、填空题13.如图,△ABC 中,∠ACB =90°,点D 在边AC 上,DE ⊥AB 于点E ,DC =DE ,∠A =32°,则∠BDC 的度数为________.14.如图,D ,E 分别是AB ,AC 上的点,AD=AE ,请添加一个条件,使得ABE ≌ACD .这个条件可以为_____(只填一个条件即可).15.如图,在△ABC 中,∠C =90°,AD 是∠BAC 的角平分线,若BC =8cm ,BD =5cm ,AB=10cm,则S △ABD =______.16.如图,在△ABC 中,∠ABC 的平分线与外角∠ACE 的平分线交于点D ,若∠D =20°,则∠A =_____.17.如图,在△ABC 中,AD 是∠BAC 的平分线,AB =8 cm ,AC =6 cm ,S △ABD ∶S △ACD =________.18.如图,四边形ABDC 中,对角线AD 平分BAC ∠,136ACD ∠=︒,44BCD ∠=︒,则ADB ∠的度数为_____19.如图,△ACB 和△DCE 中,AC =BC ,∠ACB =∠DCE =90°,∠ADC =∠BEC ,若AB =17,BD =5,则S △BDE =_______.20.如图,ABC 中,90ACB ∠=︒,8cm,6cm AC BC ==,直线l 经过点C 且与边AB 相交,动点P 从点A 出发沿A C B →→路径向终点B 运动,动点Q 从点B 出发沿B C A →→路径向终点A 运动,点P 和点Q 的速度分别为3cm/s 和2cm/s ,两点同时出发并开始计时,当点P 到达终点B 时计时结束.在某时刻分别过点P 和点Q 作PM l ⊥于点M ,QN l ⊥点N ,设运动时间为t 秒,则当t =__________秒时,PMC △与QNC 全等.三、解答题21.如图,AD 是ABC 的角平分线,AB AC >,求证:AB AC BD CD ->-.22.如图,直角梯形ABCD 中,//,,AD BC AB BC E ⊥是AB 上的点,且,DE CE DE CE =⊥,(1)证明:AB AD BC =+.(2)若已知AB a ,求梯形ABCD 的面积.23.已知:如图,BAD CAE ∠=∠,AB AD =,AC AE =.(1)求证:ABC ADE △≌△.(2)若42,86B C ∠=︒∠=︒,求DAE ∠的度数.24.在平面直角坐标系中,点A 坐标(5,0)-,点B 坐标(0,5),点 C 为x 轴正半轴上一动点,过点A 作AD BC ⊥交y 轴于点E .(1)如图①,若点C 的坐标为(3,0),求点E 的坐标;(2)如图②,若点C 在x 轴正半轴上运动,且5OC <,其它条件不变,连接DO ,求证:DO 平分ADC ∠;(3)若点C 在x 轴正半轴上运动,当OC CD AD +=时,则OBC ∠的度数为________. 25.如图,点P 是锐角∠ABC 内一点,BP 平分∠ABC ,点M 在边BA 上,点N 在边BC 上,且PM =PN .求证:∠BMP +∠BNP =180°.26.如图,∠ACB 和∠ADB 都是直角,BC =BD ,E 是AB 上任意一点.(1)求证:△ABC ≌△ABD .(2)求证:CE =DE .【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】根据△ABE≌△CAF得出△ACF与△ABE的面积相等,可得S△ABE+S△CDF=S△ACD,即可得出答案.【详解】∵∠BED=∠CFD=∠BAC,∠BED=∠BAE+∠ABE,∠BAC=∠BAE+∠CAF,∠CFD=∠FCA+∠CAF,∴∠ABE=∠CAF,∠BAE=∠FCA,在△ABE和△CAF中,ABE CAFAB ACBAE FCA ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ABE≌△CAF(ASA),∴S△ABE=S△ACF,∴阴影部分的面积为S△ABE+S△CDF=S△ACD,∵S△ABC=30,BD=12DC,∴S△ACD=20,故选:D.【点睛】本题考查了全等三角形的性质和判定,三角形的面积,三角形的外角性质等知识点,解题的关键是正确寻找全等三角形解决问题.2.C解析:C【分析】过点O作OE⊥AB于E,OF⊥AC于F,连接OA,根据角平分线的性质得:OE=OF=OD然后根据△ABC的面积是12,周长是8,即可得出点O到边BC的距离.【详解】如图,过点O作OE⊥AB于E,OF⊥AC于F,连接OA.∵点O是∠ABC,∠ACB平分线的交点,∴OE=OD,OF=OD,即OE=OF=OD∴S△ABC=S△ABO+S△BCO+S△ACO=12AB·OE+12BC·OD+12AC·OF=12×OD×(AB+BC+AC)=12×OD×8=12故选:C【点睛】此题主要考查了角平分线的性质以及三角形面积求法,角的平分线上的点到角的两边的距离相等,正确表示出三角形面积是解题关键.3.B解析:B【分析】根据全等三角形的对应边相等得到BE=CF ,计算即可.【详解】解:∵△DEF ≌△ABC ,∴BC=EF ,∴BE+EC=CF+EC ,∴BE=CF ,又∵BF=BE+EC+CF=9,EC=5∵CF=12(BF-EC)=12(9-5)=2. 故选:B .【点睛】本题考查了全等三角形的性质,掌握全等三角形的对应边相等、全等三角形的对应角相等是解题的关键.4.D解析:D【分析】求出∠PDA=∠PEA=90°,∠DAP=∠EAP ,根据AAS 推出两三角形全等即可.【详解】解:∵PD ⊥AB ,PE ⊥AF ,∴∠PDA=∠PEA=90°,∵AP 平分∠BAF ,∴∠DAP=∠EAP ,在△APD 和△APE 中DAP EAP PDA PEA AP AP ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△APD ≌△APE (AAS ),故选:D .【点睛】本题考查了全等三角形的判定的应用,注意:全等三角形的判定定理有SAS ,ASA ,AAS ,SSS .解析:C【分析】先判定△ABE ≌△ACD ,再根据全等三角形的性质,得出∠B=∠C=35︒,由三角形外角的性质即可得到答案.【详解】在△ABE 和△ACD 中,AB AC BAE CAD AE AD =⎧⎪∠=∠⎨⎪=⎩,∴△ABE ≌△ACD (SAS ),∴∠B=∠C ,∵∠C=35︒,∴∠B=35︒,∴∠OEC=∠B+∠A=355590︒+︒=︒,∴∠DOE=∠C+∠OEC=3590125︒+︒=︒,故选:C .【点睛】本题考察全等三角形的判定与性质、三角形外角的性质,熟练掌握全等三角形的判定与性质是解题关键.6.B解析:B【分析】根据角平分线上的点到角的两边距离相等可得点P 到OB 的距离为5,再根据垂线段最短解答.【详解】∵点P 在∠AOB 的平分线上,点P 到OA 边的距离等于5,∴点P 到OB 的距离为5,∵点Q 是OB 边上的任意一点,∴PQ≥5.故选:B .【点睛】本题考查了角平分线上的点到角的两边距离相等的性质,垂线段最短的性质,熟记性质是解题的关键.7.B解析:B【分析】过D 作DF AB ⊥于F ,根据角平分线的性质得出DF =DC ,再根据三角形的面积公式求出ABD 和ACD 的面积,最后求出答案即可.【详解】解:过D 点作DF AB ⊥于F ,∵AD 平分CAB ∠,C 90∠=(即AC BC ⊥),∴DF CD =,设DF CD R ==,在Rt ABC 中,C 90∠=,AC 3=,BC 4=, ∴22AB 5AC BC =+=, ∴ABD 115SAB DF 5R R 222=⨯⨯=⨯⨯=,ACD 113S AC CD 3R R 222=⨯⨯=⨯⨯=, ∴ABD ACD 5S :S R 2⎛⎫= ⎪⎝⎭:3R 5:32⎛⎫= ⎪⎝⎭, 故选:B.【点睛】本题考查了角平分线的性质和三角形的面积,能根据角平分线的性质求出DF =CD 是解此题的关键.8.C解析:C【分析】利用全等三角形的判断方法进行求解即可.【详解】A 、因为 BM ∥CN ,所以∠ABM=∠DCN ,又因为∠A=∠D , AM=DN ,所以△ABN ≅△DCN(AAS),故A 选项不符合题意;B 、因为∠M=∠N ,∠A=∠D , AM=DN ,所以△ABN ≅△DCN(ASA),故B 选项不符合题意;C 、BM=CN ,不能判定△ABN ≅△DCN ,故C 选项符合题意;D 、因为AB=CD ,∠A=∠D , AM=DN ,所以△ABN ≅△DCN(SAS),故D 选项不符合题意.故选:C .【点评】本题考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS 、SAS 、ASA 、AAS 、HL .注意:AAA 、SSA 不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.9.C解析:C【分析】认真观察图形,确定已知条件在图形上的位置,结合全等三角形的判定方法,由易到难,仔细寻找.【详解】解:AD 平分BAC ∠,BAD CAD ∴∠=∠, 在ABD ∆与ACD ∆中,AB AC BAD CAD AD AD =⎧⎪∠=∠⎨⎪=⎩,()ABD ACD SAS ∴∆≅∆,BD CD ∴=,B C ∠=∠,ADB ADC ∠=∠,又EDB FDC ∠=∠,ADE ADF ∴∠=∠,AED AFD ,BDE CDF ∆≅∆,∆≅∆ABF ACE .AED AFD ,ABD ACD ∆≅∆,BDE CDF ∆≅∆,∆≅∆ABF ACE ,共4对. 故选:C .【点睛】本题考查三角形全等的判定方法和全等三角形的性质,熟悉相关判定定理是解题的关键. 10.B解析:B【分析】作DH ⊥AC 于H ,如图,利用角平分线的性质得DH=DE=2,根据三角形的面积公式得12×2×AC+12×2×4=7,于是可求出AC 的值. 【详解】解:作DH ⊥AC 于H ,如图,∵AD 是△ABC 中∠BAC 的角平分线,DE ⊥AB ,DH ⊥AC ,∴DH=DE=2,∵S △ABC =S △ADC +S △ABD ,∴12×2×AC+12×2×4=7, ∴AC=3.故选:B .【点睛】本题考查了角平分线的性质:角的平分线上的点到角的两边的距离相等.这里的距离是指点到角的两边垂线段的长.11.B解析:B【分析】由SAS 证明AOC BOD ≅得出OCA ODB ∠=∠,=AC BD ,①正确;由全等三角形的性质得出OAC OBD ∠=∠,由三角形的外角性质得:AMB OAC AOB OBD ∠+∠=∠+∠,得出40AOB COD ∠=∠=︒,②正确;作OG MC ⊥于G ,OH MB ⊥于H ,如图所示:则90OGC OHD ∠=∠=,由AAS 证明OCG ODH ≅(AAS ),得出OG=OH ,由角平分线的判定方法得出MO 平分BOC ∠,④正确;由AOB COD ∠=∠,得出当∠=∠DOM AOM 时,OM 平分BOC ∠,假设∠=∠DOM AOM ,由AOC BOD ≅得出COM BOM ,由MO 平分BMC ∠得出∠=∠CMO BMO ,推出COM BOM ≅,得出OB=OC ,OA=OB ,所以OA=OC ,而OA OC >,故③错误;即可得出结论.【详解】∵40AOB COD ∠=∠=︒,∴AOB AOD COD AOD ∠+∠=∠+∠即AOC BOD ∠=∠在AOC △和BOD 中OA OB AOC BOD OC OD =⎧⎪∠=∠⎨⎪=⎩∴AOC BOD ≅(SAS )∴OCA ODB ∠=∠,=AC BD ,①正确;∴OAC OBD ∠=∠,由三角形的外角性质得:AMB OAC AOB OBD ∠+∠=∠+∠,∴40AOB COD ∠=∠=︒,②正确;作OG MC ⊥于G ,OH MB ⊥于H ,如图所示:则90OGC OHD ∠=∠=,在OCG 和ODH 中OCA ODB OGC OHD OC OD ∠=∠⎧⎪∠=∠⎨⎪=⎩∴OCG ODH ≅(AAS ),∴OG=OH∴MO 平分BOC ∠,④正确;∴AOB COD ∠=∠∴当∠=∠DOM AOM 时,OM 平分BOC ∠,假设∠=∠DOM AOM∵AOC BOD ≅∴COM BOM ,∵MO 平分BMC ∠∴∠=∠CMO BMO ,在COM 和BOM 中 OCM BOM OM OMCMO BMO ∠=∠⎧⎪=⎨⎪∠=∠⎩∴COM BOM ≅(ASA )∴OB=OC ,∵OA=OB ,∴OA=OC ,与OA OC >矛盾,∴③错误;正确的有①②④;故选:B【点睛】 本题考查了全等三角形的判定与性质、三角形的外角性质、角平分线的判定等知识;证明三角形全等是解题的关键.12.B解析:B【分析】在线段AC上作AF=AB,证明△AEF≌△AEB可得∠AFE=∠B,∠AEF=∠AEB,再证明△CEF≌△CED可得CD=CF,即可求得四边形ABDC的周长.【详解】解:在线段AC上作AF=AB,∵AE是BAC∠的平分线,∴∠CAE=∠BAE,又∵AE=AE,∴△AEF≌△AEB(SAS),∴∠AFE=∠B,∠AEF=∠AEB,∵AB∥CD,∴∠D+∠B=180°,∵∠AFE+∠CFE=180°,∴∠D=∠CFE,∵AE CE⊥,∴∠AEF+∠CEF=90°,∠AEB+∠CED=90°,∴∠CEF=∠CED,在△CEF和△CED中∵D CFECEF CEDCE CE∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△CEF≌△CED(AAS)∴CE=CF,∴四边形ABDC的周长=AC+AB+BD+CD=AC+AF+CF+BD=2AC+BD=2a b+,故选:B.【点睛】本题考查全等三角形的性质和判断.能正确作出辅助线构造全等三角形是解题关键.二、填空题13.61°【分析】首先利用直角三角形的性质求得∠ABC的度数然后利用角平分线的判定方法得到BD为∠ABC的平分线再求出∠ABD的度数根据三角形外角的性质进而求得结论【详解】解:∵∠A=32°∠ACB=9解析:61°【分析】首先利用直角三角形的性质求得∠ABC的度数,然后利用角平分线的判定方法得到BD为∠ABC的平分线,再求出∠ABD的度数,根据三角形外角的性质进而求得结论.【详解】解:∵∠A=32°,∠ACB=90°,∴∠CBA=58°,∵DE⊥AB,DC⊥BC,DC=DE,∴BD为∠ABC的平分线,∴∠CBD=∠EBD,∴∠CBD=12∠CBA=12×58°=29°,∴∠BDC=∠A+∠ABD=32°+29°=61°.故答案为:61°.【点睛】本题考查了角平分线的判定与性质,解题的关键是根据已知条件得到BD为∠ABC的平分线,难度不大.14.∠B=∠C(或∠ADC=∠AEB或AB=AC)【分析】根据已知条件知两个三角形已经具有∠A=∠AAD=AE两个条件对应相等故再添加一组对应角相等或是AB=AC即可得到ABE≌ACD【详解】∵∠A=∠解析:∠B=∠C(或∠ADC=∠AEB或AB=AC)【分析】根据已知条件知两个三角形已经具有∠A=∠A,AD=AE两个条件对应相等,故再添加一组对应角相等或是AB=AC即可得到ABE≌ACD.【详解】∵∠A=∠A,AD=AE,∴当∠B=∠C时,可利用AAS证明ABE≌ACD;当∠ADC=∠AEB时,可利用ASA证明ABE≌ACD;当AB=AC时,可利用SAS证明ABE≌ACD;故答案为:∠B=∠C(或∠ADC=∠AEB或AB=AC).【点睛】此题考查添加一个条件证明三角形全等,熟记三角形全等的判定定理是解题的关键.15.15cm2【分析】过点D作DE⊥AB于E根据角平分线的性质可得DE=CD根据三角形的面积公式即可求得△ABD的面积【详解】解:过点D作DE⊥AB于E∵AD是∠BAC的角平分线∠C=90°DE⊥AB∴解析:15cm2【分析】过点D作DE⊥AB于E,根据角平分线的性质可得DE=CD,根据三角形的面积公式即可求得△ABD的面积.【详解】解:过点D作DE⊥AB于E,∵AD是∠BAC的角平分线,∠C=90°,DE⊥AB∴DE=DC,∵BC=8cm,BD=5cm,∴DE=DC=3cm,∴S△ABD=12·AB·DE=12×10×3=15(cm2),故答案为:15cm2.【点睛】本题考查角平分线的性质、三角形的面积公式,熟练掌握角平分线的性质是解答的关键.16.40°【分析】利用角平分线的性质可知∠ABC=2∠DBC∠ACE=2∠DCE再根据三角形外角的性质可得出∠D=∠DCE﹣∠DBE∠A=∠ACE﹣∠ABC即得出∠A =2∠D即得出答案【详解】∵∠ABC解析:40°【分析】利用角平分线的性质可知∠ABC=2∠DBC,∠ACE=2∠DCE.再根据三角形外角的性质可得出∠D=∠DCE﹣∠DBE,∠A=∠ACE﹣∠ABC.即得出∠A=2∠D,即得出答案.【详解】∵∠ABC的平分线交∠ACE的外角平分线∠ACE的平分线于点D,∴∠ABC=2∠DBC,∠ACE=2∠DCE,∵∠DCE是△BCD的外角,∴∠D=∠DCE﹣∠DBE,∵∠ACE是△ABC的外角,∠A=∠ACE﹣∠ABC=2∠DCE﹣2∠DBE=2(∠DCE﹣∠DBE),∴∠A=2∠D=40°.故答案为:40°.【点睛】本题考查角平分线和三角形外角的性质,熟练利用角平分线和三角形外角的性质来判断题中角之间的关系是解答本题的关键.17.4:3【分析】利用角平分线的性质可得出△ABD 的边AB 上的高与△ACD 的边AC 的高相等根据三角形的面积公式即可得出△ABD 与△ACD 的面积之比等于对应边之比;【详解】∵AD 是△ABC 的角平分线∴设△解析:4:3【分析】利用角平分线的性质,可得出△ABD 的边AB 上的高与△ACD 的边AC 的高相等,根据三角形的面积公式,即可得出△ABD 与△ACD 的面积之比等于对应边之比;【详解】∵ AD 是△ABC 的角平分线,∴ 设△ABD 的边AB 上的高与△ACD 的边AC 的高分别为1h ,2h ,∴ 1h =2h ,∴△ABD 与△ACD 的面积之比=AB :AC=8:6=4:3,故答案为:4:3.【点睛】本题考查了角平分线的性质,以及三角形的面积公式,熟练掌握三角形角平分线的性质是解题的关键;18.【分析】先添加辅助线过点作交的延长线于点过点作交的延长线于点过点作于点根据角平分线的判定性质定义以及三角形外角的性质邻补角的定义角的和差等可求得【详解】解:过点作交的延长线于点过点作交的延长线于点过 解析:46︒【分析】先添加辅助线“过点D 作DE AB ⊥交AB 的延长线于点E ,过点D 作DF AC ⊥交AC 的延长线于点F ,过点D 作DG BC ⊥于点G ”,根据角平分线的判定、性质、定义以及三角形外角的性质、邻补角的定义、角的和差等可求得()1462ADB CBE BAC ∠=∠-∠=︒. 【详解】 解:过点D 作DE AB ⊥交AB 的延长线于点E ,过点D 作DF AC ⊥交AC 的延长线于点F ,过点D 作DG BC ⊥于点G ,如图:∵AD 平分BAC ∠,DE AB ⊥,DF AC ⊥ ∴12BAD BAC ∠=∠,DE DF = ∵136ACD ∠=︒ ∴18044DCF ACD ∠=︒-∠=︒∵44BCD ∠=︒,92ACB ACD BCD ∠=∠-∠=︒∴CD 平分BCF ∠∵DF AC ⊥,DG BC ⊥∴DF DG =∴DE DG =∵DE AB ⊥,DG BC ⊥∴BD 平分CBE ∠ ∴12DBE CBE ∠=∠ ∴ADB DBE BAD ∠=∠-∠1122CBE BAC =∠-∠ ()12CBE BAC =∠-∠ 12BCA =∠ 46=︒.故答案是:46︒【点睛】本题考查了角平分线的判定、性质、定义以及三角形外角的性质、邻补角的定义、角的和差等,熟练掌握相关知识点是解题的关键.19.30【分析】根据∠ACB =∠DCE =90°可得∠ACD =∠BCE 利用三角形全等判定可得△ACD ≌△BCE 则BE =AD ∠DAC =∠EBC 再证明∠DBE =90°根据三角形面积计算公式便可求得结果【详解】解析:30【分析】根据∠ACB=∠DCE=90°,可得∠ACD=∠BCE,利用三角形全等判定可得△ACD≌△BCE,则BE=AD,∠DAC=∠EBC,再证明∠DBE=90°,根据三角形面积计算公式便可求得结果.【详解】解:∵∠ACB=∠DCE=90°,∴∠ACB-∠DCB=∠DCE-∠DCB.即∠ACD=∠BCE.∵AC=BC,∠ADC=∠BEC,∴△ACD≌△BCE.∴BE=AD,∠DAC=∠EBC.∵∠DAC+∠ABC=90°,∴∠EBC+∠ABC=90°.∴△BDE为直角三角形.∵AB=17,BD=5,∴AD=AB-BD=12.∴S△BDE=12BD⋅BE=30.故答案为:30.【点睛】本题考查了全等三角形的判定与性质,通过分析题意找出三角形全等的条件并能结合全等性质解决相应的计算问题是解题的关键.20.2或【分析】分点Q在BC上和点Q在AC上根据全等三角形的性质分情况列式计算【详解】由题意得AP=3tBQ=2tAC=8cmBC=6cmCP=8﹣3tCQ=6﹣2t①如图当与全等时PC=QC解得;②如解析:2或145.【分析】分点Q在BC上和点Q在AC上,根据全等三角形的性质分情况列式计算.【详解】由题意得,AP=3t,BQ=2t,AC=8cm,BC=6cm,∴ CP=8﹣3t,CQ=6﹣2t,①如图,当PMC△与QNC全等时,PC=QC,6283t t-=-,解得2t=;②如图,当PMC △与QNC 全等时,点P 已运动至BC 上,且与点Q 相遇, 则PC=QC ,6238t t -=-,解得145t =;故答案为:2或145. 【点睛】 本题考查了全等三角形的性质,掌握全等三角形对应边相等是解决问题的关键.三、解答题21.见解析【分析】在 AB 上取 AE = AC ,然后证明ADC ≌()SAS ADE △,根据全等三角形对应边相等得到DC DE =,再根据三角形的任意两边之差小于第三边证明即可.【详解】证明:如解图,在AB 上截取AE AC =,连接DE ,∵ AD 是ABC 的角平分线,∴ CAD EAD ∠=∠.在ADC 和ADE 中,,,,AC AE CAD EAD AD AD =⎧⎪∠=∠⎨⎪=⎩∴ ADC ≌()SAS ADE △.∴ DC DE =.∵在BDE 中,BE BD ED >-,∵ AB AE BE -=,∴ AB AC BD CD ->-.【点睛】本题主要考查全等三角形的判定和全等三角形对应边相等的性质以及三角形的三边关系,作辅助线构造全等三角形是解题的关键.22.(1)见解析;(2)12a 2 【分析】(1)由DE 垂直于EC ,得到一个角为直角,利用平角的定义得到一对角互余,又三角形BEC 为直角三角形,根据直角三角形的两锐角互余得到一对角互余,利用同角的余角相等得到一对角相等,再由一对直角相等及DE =CE ,利用AAS 可得出三角形AED 与三角形BCE 全等,根据全等三角形的对应边相等得到AD =EB ,AE =BC ,由AB =AE +EB ,等量代换可得证;(2)由第一问的结论AB =AD +BC ,根据AB =a ,得出此直角梯形的上下底之和为a ,高为a ,利用梯形的面积公式即可求出梯形ABCD 的面积.【详解】解:(1)证明:∵DE ⊥EC ,∴∠DEC =90°,∴∠AED +∠BEC =90°,又AB ⊥BC ,∴∠B =90°,∴∠BCE +∠BEC =90°,∴∠AED =∠BCE ,又AD ∥BC ,∴∠A +∠B =180°,∴∠A =∠B =90°,在△AED 和△CBE 中,A B AED BCE ED CE ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△AED ≌△CBE (AAS ),∴AD =EB ,AE =BC ,则AB =AE +EB =BC +AD ;(2)由AB =a ,及(1)得:AB =BC +AD =a ,则S 直角梯形ABCD =12AB •(BC +AD )=12a 2. 【点睛】此题考查了直角梯形,全等三角形的判定与性质,以及梯形的面积公式,利用了转化的思想,灵活运用全等三角形的判定与性质是解本题的关键,本题在做第二问时注意运用第一问的结论.23.(1)详见解析;(2)52︒【分析】(1)先证明∠BAC=∠DAE ,即可根据SAS 证得结论;(2)根据三角形内角和定理求出∠BAC 的度数,再根据全等三角形的性质得到答案.【详解】(1)∵∠BAD=∠CAE ,∴∠BAD+∠DAC=∠CAE+∠DAC .即∠BAC=∠DAE .在△ABC 和△ADE 中 AB AD BAC DAE AC AE =⎧⎪∠=∠⎨⎪=⎩, ∴ABC ADE △≌△;(2)∵42,86B C ∠=︒∠=︒,∴18052BAC B C ∠=︒-∠-∠=︒.∵ABC ADE △≌△,∴52DAE BAC ∠=∠=︒.【点睛】此题考查全等三角形的判定及性质,三角形内角和定理,熟记三角形全等的判定定理是解题的关键.24.(1)(0,3)E ;(2)见解析;(3)30OBC ∠=︒.【分析】(1)先根据AAS 判定△AOE ≌△BOC ,得出OE=OC ,再根据点C 的坐标为(3,0),得到OC=OE=3,进而得到点E 的坐标;(2)先过点O 作OM ⊥AD 于点M ,作ON ⊥BC 于点N ,根据△AOE ≌△BOC ,得到S △AOE =S △BOC ,且AE=BC ,再根据OM ⊥AE ,ON ⊥BC ,得出OM=ON ,进而得到OD 平分∠ADC ;(3)在DA 上截取DP=DC ,连接OP ,根据SAS 判定△OPD ≌△OCD ,再根据三角形外角性质以及三角形内角和定理,求得∠PAO=30°,进而得到∠OBC=30°.【详解】证明:(1)AD BC ⊥,AO BO ⊥,90AOE BDE BOC ∠∠∠∴===︒.又AEO BED ∠=∠,OAE OBC ∴∠=∠.(5,0)A -,(0,5)B , 5OA OB ∴==.在AOE △和BOC 中OAE OBC OA OBAOE BOC ∠=∠⎧⎪=⎨⎪∠=∠⎩, (ASA)AOE BOC ∴≌,OE OC ∴=. C 点坐标(3,0),3OE OC ∴==,(0,3)E ∴.(2)过O 作OM AD ⊥于M ,ON BC ⊥于N ,AOE BOC ≌,AOE BOC S S ∴=,AE BC =,1122AE OM BC ON ∴⨯⨯=⨯⨯, OM ON ∴=,OM AD ⊥,ON BC ⊥,DO ∴平分ADC ∠.(3)如所示,在DA 上截取DP=DC ,连接OP ,∵∠PDO=∠CDO,OD=OD,∴△OPD≌△OCD,∴OC=OP,∠OPD=∠OCD,+=,∴OC=AD-CD∵OC CD AD∴AD-DP=OP,即AP=OP,∴∠PAO=∠POA,∴∠OPD=∠PAO+∠POA=2∠PAO=∠OCB,又∵∠PAO+∠OCD=90°,∴3∠PAO=90°,∴∠PAO=30°,∠=∠∵OAP OBC∴∠OBC=∠PAO =30°.【点睛】本题属于三角形综合题,主要考查了全等三角形的判定与性质,角平分线的判定定理以及等腰直角三角形的性质的综合应用,解决问题的关键是作辅助线构造全等三角形,运用全等三角形的性质进行求解.25.见解析【分析】过点P作PE⊥BA于点E, 作PF⊥BC于点F,根据角平分线性质定理可得PE=PF,再由HL 可证Rt△MEP≌Rt△NFP,进而证得∠PME=∠PNF,从而证得∠BMP+∠BNP=180°.【详解】证明:如图所示,过点P作PE⊥BA于点E, 作PF⊥BC于点F,∴∠MEP=∠NFP=90°.∵BP平分∠ABC,∴PE=PF.在Rt△MEP与Rt△NFP中,PE PF PM PN =⎧⎨=⎩, ∴Rt △MEP ≌Rt △NFP (HL ).∴∠PME =∠PNF .∵∠BMP +∠PME =180°,∴∠BMP +∠BNP =180°.【点睛】本题主要考查了全等三角形的判定与性质,通过证明三角形全等得出对应角相等是解决问题的关键.26.(1)见解析;(2)见解析.【分析】(1)利用“HL ”证明Rt △ACB ≌Rt △ADB 即可;(2)由Rt △ACB ≌Rt △ADB 得到∠CAB =∠DAB ,AC =AD ,然后利用“SAS ”可证明△ACE ≌△ADE ,从而得到CE =DE .【详解】证明:(1)在Rt △ACB 和Rt △ADB 中,AB AB BC BD =⎧⎨=⎩, ∴Rt △ACB ≌Rt △ADB (HL );(2)∵Rt △ACB ≌Rt △ADB ,∴∠CAB =∠DAB ,AC =AD ,在△ACE 和△ADE 中,AC AD CAE DAE AE AE =⎧⎪∠=∠⎨⎪=⎩,∴△ACE ≌△ADE (SAS ),∴CE =DE .【点睛】此题考查全等三角形的判定及性质,根据图形的特点确定对应相等的条件,利用:SSS 、SAS 、ASA 、AAS 或HL 证明两个三角形全等由此解决问题是解题的关键.。
人教版数学八年级上学期《全等三角形》单元综合测试题含答案

人教版八年级上册《全等三角形》单元测试卷时间:90分钟总分: 100一、选择题(每小题3分,总计30分。
请将唯一正确答案的字母填写在表格内)1. 下列说法:①全等三角形的形状相同、大小相等②全等三角形的对应边相等、对应角相等③面积相等的两个三角形全等④全等三角形的周长相等其中正确的说法为()A . ①②③④B . ①②③C . ②③④D . ①②④2.如图所示,△A B C ≌△A EF,A B =A E,∠B =∠E,有以下结论:①A C =A F;②∠FA B =∠EA B ;③EF=BC ;④∠EA B =∠FA C ,其中正确的个数是( )A . 1个B . 2个C . 3个D . 4个3.下列各图中A 、B 、C 为三角形的边长,则甲、乙、丙三个三角形和左侧△A B C 全等的是()A . 甲和乙B . 乙和丙C . 甲和丙D . 只有丙4.如图,如果A D ∥B C ,A D =B C ,A C 与B D 相交于O点,则图中的全等三角形一共有()A . 3对B . 4对C . 5对D . 6对5.下列说法中,正确的是()A . 两边及其中一边的对角分别相等的两个三角形全等B . 两边及其中一边上的高分别相等的两个三角形全等C . 有一直角边和一锐角分别相等的两个直角三角形全等D . 面积相等的两个三角形全等6.在平面直角坐标系中,第一个正方形A B C D 的位置如图所示,点A 的坐标为(2,0),点D 的坐标为(0,4),延长C B 交x轴于点A 1,作第二个正方形A 1B 1C 1C ;延长C 1B 1交x轴于点A 2,作第三个正方形A 2B 2CC 1…按这样的规律进行下去,第2018个正方形的面积为()2A . 20×()2017B . 20×()2018C . 20×()4036D . 20×()40347.如图,大树A B 与大数C D 相距13m,小华从点B 沿B C 走向点C ,行走一段时间后他到达点E,此时他仰望两棵大树的顶点A 和D ,两条视线的夹角正好为90°,且EA =ED .已知大树A B 的高为5m,小华行走的速度为1m/s,小华行走到点E的时间是()A . 13sB . 8sC . 6sD . 5s8.如图,把两根钢条A B ,C D 的中点O连在一起,可以做成一个测量工件内槽宽的工具(卡钳).只要量得A C 之间的距离,就可知工件的内径B D .其数学原理是利用△A OC ≌△B OD ,判断△A OC ≌△B OD 的依据是()A . SA SB . SSSC . A SAD . A A S9.观察图中尺规作图痕迹,下列说法错误的是()A . OE是∠A OB 的平分线 B . OC =ODC . 点C 、D 到OE的距离不相等 D . ∠A OE=∠B OE10.如图,OP平分∠B OA ,PC ⊥OA ,PD ⊥OB ,垂足分别是C 、D ,则下列结论中错误的是()A . PC =PDB . OC =OD C . OC =OP D . ∠C PO=∠D PO二、填空题(每空3分,总计30分)11.如图,在3×3的正方形网格中标出了∠1和∠2,则∠1+∠2=_____.12.如图①,已知△A B C 的六个元素,则图②中甲、乙、丙三个三角形中与图①中△A B C 全等的图形是_____.13.如图是5×5的正方形网格,△A B C 的顶点都在小正方形的顶点上,像△A B C 这样的三角形叫格点三角形.画与△A B C 有一条公共边且全等的格点三角形,这样的格点三角形最多可以画出_____个.14.如图,点D 、E分别在A B 、A C 上,C D 、B E相交于点F,若△A B E≌△A C D ,∠A =50°,∠B =35°,则∠EFC 的度数为_____.15.如图,在△A B C 和△D EF中,点B 、F、C 、E在同一直线上,B F = C E,A C ∥D F,请添加一个条件,使△AB C ≌△D EF,这个添加的条件可以是.(只需写一个,不添加辅助线)16.如图,A B =12m,C A ⊥A B 于A ,D B ⊥A B 于B ,且A C =4m,P点从B 向A 运动,每分钟走1m,Q点从B 向D 运动,每分钟走2m,P、Q两点同时出发,运动________分钟后△C A P与△PQB 全等.17.如图,若A B =A C ,B D =C D ,∠B =20°,∠B D C =120°,则∠A =________.18.小明不慎将一块三角形的玻璃摔碎成如图所示的四块(即图中标有①,②,③,④的四块),你认为将其中的哪一块带去,就能配一块与原来一样大小的三角形?应该带第_____块.19.如图,要测量池塘的宽度A B ,在池塘外选取一点P,连接A P、B P并各自延长,使PC =PA ,PD =PB ,连接C D ,测得C D 长为25m,则池塘宽A B 为________ m,依据是________20.如图,点O在△A B C 内,且到三边的距离相等,若∠A =60°,则∠B OC =_____.三.解答题(共6小题60分)21.如图,A B =A E,∠B =∠A ED ,∠1=∠2.求证:△A B C ≌△A ED .22.阅读并理解下面的证明过程,并在每步后的括号内填写该步推理的依据.已知:如图,A M,B N,C P是△A B C 的三条角平分线.求证:A M、B N、C P交于一点.证明:如图,设A M,B N交于点O,过点O分别作OD ⊥B C ,OF⊥A B ,垂足分别为点D ,E,F.∵O是∠B A C 角平分线A M上的一点(),∴OE=OF().同理,OD =OF.∴OD =OE().∵C P是∠A C B 的平分线(),∴O在C P上().因此,A M,B N,C P交于一点.23.如图,两根旗杆A C 与B D 相距12m,某人从B 点沿A B 走向A ,一定时间后他到达点M,此时他仰望旗杆的顶点C 和D ,两次视线夹角为90°,且C M=D M.已知旗杆A C 的高为3m,该人的运动速度为0、5m/s,求这个人走了多长时间?24.如图,A 、B 两点分别位于一个池塘的两侧,池塘西边有一座假山D ,在D B 的中点C 处有一个雕塑,小川从点A 出发,沿直线A C 一直向前经过点C 走到点E,并使C E=C A ,然后他测量点E到假山D 的距离,则D E的长度就是A 、B 两点之间的距离.(1)你能说明小川这样做的根据吗?(2)如果小川恰好未带测量工具,但是知道A 和假山D 、雕塑C 分别相距200米、120米,你能帮助他确定A B 的长度范围吗?25.如图①, C m,,, C m.点在线段上以1 C m/s的速度由点向点运动,同时,点在线段上由点向点运动.它们运动的时间为s.(1)若点的运动速度与点的运动速度相等,当时,与是否全等,请说明理由,并判断此时线段和线段的位置关系;(2)如图②,将图①中的“,”改为“”,其他条件不变.设点的运动速度为 C m/s,是否存在实数,使得与全等?若存在,求出相应的的值;若不存在,请说明理由.26. 如图,在△A B C 中,A B =A C ,D E是过点A 的直线,B D ⊥D E于D ,C E⊥D E于点E;(1)若B 、C 在D E的同侧(如图所示)且A D =C E.求证:A B ⊥A C ;(2)若B 、C 在D E的两侧(如图所示),其他条件不变,A B 与A C 仍垂直吗?若是请给出证明;若不是,请说明理由.参考答案一、选择题(每小题3分,总计30分。
数学八年级上学期《全等三角形》单元综合检测含答案

[答案]D
[解析]
[分析]
利用全等三角形对应边相等可知要想求得A B的长,只需求得其对应边C D的长,据此可以得到答案.
[详解]∵△C DO≌△B AO,∴A B=C D,要求得A B的长,只需求得线段D C的长,
[详解]∵∠B A D=∠B C D=90°,A B=C B,D B=D B,∴△B A D≌△B C D(HL).
故选A.
[点睛]解答本题需注意:当两个三角形有公共边时,公共边是常用的条件之一.
6.如图,在△A B C中,∠A B C=50°,∠A C B=60°,点E在B C的延长线上,∠A B C的平分线B D与∠A CE的平分线C D相交于点D,连接A D,下列结论中不正确的是( )
16.如图,在平面直角坐标系中,△AOB≌△COD,则点D的坐标是____________.
17.如图,已知A B=A D,∠B AE=∠D A C,要使△A B C≌△A DE,若以”SAS”为依据,补充的条件是.
三、解答题
18.如图,C A=C D,CE=C B,求证:A B=DE.
19.已知,如图,B D是∠A B C的平分线,A B=B C,点P在B D上,PM⊥A D,PN⊥C D,垂足分别是M、N.试说明:PM=PN.
参考答案
一、选择题(每小题只有一个正确答案)
1.小林同学一不小心将厨房里的一块三角形玻璃摔成了如图所示的三部分,他想到玻璃店配一块完全相同的玻璃,那么他应该选择带哪个部分去玻璃店才能最快配得需要的玻璃( )
A. B. C. D.选择哪块都行
[答案]C
[解析]
分析]
本题就是已知三角形破损部分的边角,得到原来三角形的边角,根据三角形全等的判定方法,即可求解.
七年级全等三角形测试题(卷)八套
全等三角形测试题一1.下图中全等的三角形是()A.Ⅰ和ⅡB.Ⅱ和ⅣC.Ⅱ和ⅢD.Ⅰ和Ⅲ2.在△ABC和△A'B'C'中 , 要使△ABC≌△A'B'C' , 需满足条件()A.AB=A'B', AC=A'C', ∠B=∠B'B.AB =A'B', BC=B'C', ∠A=∠A'C.AC=A'C', BC=B'C', ∠C=∠C'D.AC=A'C', BC=B'C', ∠C=∠B'3.如图,AB∥CD,AC∥DB,AD与BC交于0,AE⊥BC.于E,DF⊥BC于F,那么图中全等的三角形有( )对A.5 B.6 C.7 D.84.如图,在△ABC中,AC=BC,∠ACB=90°.AD平分∠BAC,BE⊥AD交AC的延长线于F,E为垂足.则结论:①AD=BF;②CF=CD;③AC+CD=AB;④BE=CF;⑤BF=2BE,其中正确结论的个数是( )A.1 B.2 C.3 D.45.如图,△ABD≌△ACE,则AB的对应边是_________,∠BAD的对应角是______.6.已知:如图,△ABE≌△ACD,∠B=∠C,则∠AEB=_______,AE=__ ______.7.如图,0A=0B,OC=OD,∠O=60°,∠C=25°,则∠BED等于8.在△ABC中,高AD和BE交于H点,且BH=AC,则∠ABC=9.如图,已知AE平分∠BAC,BE上AE于E,ED∥AC,∠BAE=36°,那么∠BED=10.如图,把△ABC绕点C顺时针旋转35度,得到△A′B′C, A′B′交AC乎点D,已知∠A′DC=90°,求∠A的度数11.已知:如图AB=CD,AD=BC 求证:AD∥BC.12.已知:如图 , E, B, F, C四点在同一直线上, ∠A=∠D=90° , BE=FC, AB=DF.求证:∠E=∠C13.如图 , AB BC于B , AD DC于D , 且CB=CD , AC , BD相交于O.求证:∠ABD=∠ADB14.已知:如图 , AE , FC都垂直于BD , 垂足为E、F , AD=BC , BE=DF.求证:OA=OC.15.已知:如图 , AB=CD , D、B到AC的距离DE=BF.求证:AB∥CD.16.已知:如图,∠A=∠D=90°,AC,BD交于O,AC=BD.求证:OB=OC.全等三角形测试题二1.如图,已知AB=AD,要使△ABC≌△ADC,可增加条件,理由是定理。
初二上数学《全等三角形》测试题及答案
初二上数学《全等三角形》测试题及答案一、选择题1.如图1, AD 是ABC △的中线,E ,F 分别是AD 和AD 延长线上的点,且DE DF =,连结BF ,CE .下列说法:①CE =BF ;②△ABD 和△ACD 面积相等;③BF ∥CE ;④△BDF ≌△CDE .其中正确的有( )A .1个B .2个C .3个D .4个2.如图2,AD AE =,= = =100 =70BD CE ADB AEC BAE ︒︒,,∠∠∠,下列结论错误的是( )A .△ABE ≌△ACDB .△ABD ≌△ACEC .∠DAE =40°D .∠C =30°3.已知:如图3,在△ABC 中,AB =AC ,D 是BC 的中点,DE ⊥AB 于E ,DF ⊥AC 于F ,则图中共有全等三角形( )A .5对B .4对C .3对D .2对 4.将一张长方形纸片按如图4所示的方式折叠,BC BD , 为折痕,则CBD ∠的度数为( )A .60°B .75°C .90°D .95° 5.依照下列已知条件,能惟一画出△ABC 的是( )A .AB =3,BC =4,CA =8 B .AB =4,BC =3,∠A =30° C .∠A =60°,∠B =45°,AB =4D .∠C =90°,AB =6 6.下列命题中正确的是( )A .全等三角形的高相等B .全等三角形的中线相等C .全等三角形的角平分线相等D .全等三角形对应角的平分线相等7.如图5,在△ABC 中,∠A :∠B :∠C =3:5:10,又△MNC ≌△ABC ,则∠BCM :∠BCN 等于( ) A .1:2 B .1:3 C .2:3 D .1:48. 如图6,△ABC 的三边AB 、BC 、CA 长分别是20、30、40,其三条角平分线将△ABC 分为三个三角形,则S △ABO ︰S △BCO ︰S △CAO 等于( )A .1︰1︰1 B .1︰2︰3 C .2︰3︰4 D .3︰4︰59.如图7,从下列四个条件:①BC =B ′C , ②AC =A ′C ,③∠A ′CB =∠B ′CB ,④AB =A ′B ′中,任取三个为条件,余下的一个为结论,则最多能够构成正确的结论的个数是( ) A .1个 B .2个C .3个D .4个10.如图8所示,△ABE 和△ADC 是△ABC 分别沿着AB ,AC 边翻折180°形成的,若∠1∶∠2∶∠3=28∶5∶3,则AD CB图1EF A D OC B图2AD ECB图3FGAEC 图4B A ′E ′D∠α的度数为()A.80°B.100°C.60°D.45°.二、填空题11.如图9,AB,CD相交于点O,AD=CB,请你补充一个条件,使得△AOD≌△COB.你补充的条件是______________________________。
八年级全等三角形单元综合测试(Word版 含答案)
八年级全等三角形单元综合测试(Word版含答案)一、八年级数学轴对称三角形填空题(难)1.△ABC与△DEF是两个全等的等腰直角三角形,∠BAC=∠D=90°,AB=AC=6.现将△DEF与△ABC按如图所示的方式叠放在一起,使△ABC保持不动,△DEF运动,且满足点E在边BC上运动(不与B,C重合),边DE始终经过点A,EF与AC交于点M.在△DEF 运动过程中,若△AEM能构成等腰三角形,则BE的长为______.【答案】363【解析】【分析】分若AE=AM 则∠AME=∠AEM=45°;若AE=EM;若MA=ME 则∠MAE=∠AEM=45°三种情况讨论解答即可;【详解】解:①若AE=AM 则∠AME=∠AEM=45°∵∠C=45°∴∠AME=∠C又∵∠AME>∠C∴这种情况不成立;②若AE=EM∵∠B=∠AEM=45°∴∠BAE+∠AEB=135°,∠MEC+∠AEB=135°∴∠BAE=∠MEC在△ABE和△ECM中,BBAE CENAE EIIC∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABE≌△ECM(AAS),∴CE=AB6,∵AC=BC2AB=3∴BE=23﹣6;③若MA=ME 则∠MAE=∠AEM=45°∵∠BAC=90°,∴∠BAE=45°∴AE平分∠BAC∵AB=AC,∴BE=1BC=3.2故答案为23﹣6或3.【点睛】本题考查了等腰三角形的判定,掌握分类讨论的数学思想是解答本题的关键.2.在平面直角坐标系xOy中,已知点A(2,3),在x轴上找一点P,使得△AOP是等腰三角形,则这样的点P共有_____个.【答案】4【解析】【分析】以O为圆心,OA为半径画弧交x轴于点P1、P3,以A为圆心,AO为半径画弧交x轴于点P4,作OA的垂直平分线交x轴于P2.【详解】解:如图,使△AOP是等腰三角形的点P有4个.故答案为4.【点睛】本题考查了在平面直角坐标系中寻找等腰三角形,掌握两圆一线找等腰三角形是解题的关键.3.在ABC ∆中,边AB 、AC 的垂直平分线分别交边BC 于点D 、点E ,20DAE ∠=︒,则BAC ∠=______°.【答案】80或100【解析】【分析】根据题意,点D 和点E 的位置不确定,需分析谁靠近B 点,则有如下图(图见解析)两种情况:(1)图1中,点E 距离点B 近,根据垂直平分线性质可知,,BD AD AE CE ==,从而有1,2B DAE C DAE ∠=∠+∠∠=∠+∠,再根据三角形的内角和定理可得180B C BAC ∠+∠+∠=︒,联立即可求得;(2)图2中,点D 距离点B 近,根据垂直平分线性质可知,,BD AD AE CE ==,从而有3,4B C ∠=∠∠=∠,由三角形的内角和定理得180B C BAC ∠+∠+∠=︒,联立即可求得.【详解】由题意可分如下两种情况:(1)图1中,根据垂直平分线性质可知,,BD AD AE CE ==,1,2B DAE C DAE ∴∠=∠+∠∠=∠+∠(等边对等角),两式相加得12B C DAE DAE ∠+∠=∠+∠+∠+∠,又12DAE BAC ∠+∠+∠=∠20B C BAC DAE BAC ∴∠+∠=∠+∠=∠+︒,由三角形内角和定理得180B C BAC ∠+∠+∠=︒,20180BAC BAC ∴∠+︒+∠=︒,80BAC ∴∠=︒;(2)图2中,根据垂直平分线性质可知,,BD AD AE CE ==,3,4B C ∴∠=∠∠=∠(等边对等角),两式相加得34B C ∠+∠=∠+∠,又34DAE BAC ∠+∠+∠=∠,3420BAC DAE BAC ∴∠+∠=∠-∠=∠-︒,20B C BAC ∴∠+∠=∠-︒由三角形内角和定理得180B C BAC ∠+∠+∠=︒,20180BAC BAC ∴∠-︒+∠=︒,100BAC ∴∠=︒.故答案为80或100.【点睛】本题考查了垂直平分线的性质(垂直平分线上的点到线段两端点的距离相等)、等腰三角形的定义和性质(等边对等角)、以及三角形内角和定理,本题的难点在于容易漏掉第二种情况,出现漏解.4.如图,在01A BA △中,20B ∠=︒,01A B A B =,在1A B 上取点C ,延长01A A 到2A ,使得121A A AC =;在2A C 上取一点D ,延长12A A 到3A ,使得232A A A D =;…,按此做法进行下去,第n 个等腰三角形的底角n A ∠的度数为__________.【答案】11()802n -︒⋅.【解析】【分析】先根据等腰三角形的性质求出∠BA 1 A 0的度数,再根据三角形外角的性质及等腰三角形的性质分别求出∠CA 2A 1,∠DA 3A 2及∠EA 4A 3的度数,找出规律即可得出第n 个等腰三角形的底角∠A n 的度数.【详解】解:∵在△A 0BA 1中,∠B=20°,A 0B=A 1B , ∴∠BA 1 A 0= 1801802022B ︒︒︒-∠-= =80°, ∵A 1A 2=A 1C ,∠BA 1 A 0是△A 1A 2C 的外角,∴∠CA 2A 1= 108022BA A ︒∠= =40°; 同理可得,∠DA 3A 2=20°,∠EA 4A 3=10°,∴第n个等腰三角形的底角∠A n= 11()802n-︒⋅.【点睛】本题考查的是等腰三角形的性质及三角形外角的性质,根据题意得出∠CA2A1,∠DA3A2及∠EA4A3的度数,找出规律是解答此题的关键.5.如图,线段AB,DE的垂直平分线交于点C,且72ABC EDC∠=∠=︒,92AEB∠=︒,则EBD∠的度数为 ________ .【答案】128︒【解析】【分析】连接CE,由线段AB,DE的垂直平分线交于点C,得CA=CB,CE=CD,ACB=∠ECD=36°,进而得∠ACE=∠BCD,易证∆ACE≅∆BCD,设∠AEC=∠BDC=x,得则∠BDE=72°-x,∠CEB=92°-x,BDE中,∠EBD=128°,根据三角形内角和定理,即可得到答案.【详解】连接CE,∵线段AB,DE的垂直平分线交于点C,∴CA=CB,CE=CD,∵72ABC EDC∠=∠=︒=∠DEC,∴∠ACB=∠ECD=36°,∴∠ACE=∠BCD,在∆ACE与∆BCD中,∵CA CBACE BCDCE CD=⎧⎪∠=∠⎨⎪=⎩,∴∆ACE≅∆BCD(SAS),∴∠AEC=∠BDC,设∠AEC=∠BDC=x,则∠BDE=72°-x,∠CEB=92°-x,∴∠BED=∠DEC-∠CEB=72°-(92°-x)=x-20°,∴在∆BDE中,∠EBD=180°-(72°-x)-(x-20°)=128°.故答案是:128︒.【点睛】本题主要考查中垂线的性质,三角形全等的判定和性质定理以及三角形内角和定理,添加辅助线,构造全等三角形,是解题的关键.6.如图,在ABC ∆中,AB AC =,点D 和点A 在直线BC 的同侧,,82,38BD BC BAC DBC =∠=︒∠=︒,连接,AD CD ,则ADB ∠的度数为__________.【答案】30°【解析】【分析】先根据等腰三角形的性质和三角形的内角和定理以及角的和差求出ABD ∠的度数,然后作点D 关于直线AB 的对称点E ,连接BE 、CE 、AE ,如图,则BE=BD ,∠EBA=∠DB ,∠BEA =∠BDA ,进而可得∠EBC=60°,由于BD=BC ,从而可证△EBC 是等边三角形,可得∠BEC =60°,EB=EC ,进一步即可根据SSS 证明△AEB ≌△AEC ,可得∠BEA 的度数,问题即得解决.【详解】解:∵AB AC =,82BAC ∠=︒,∴180492BAC ABC ︒-∠∠==︒, ∵38DBC ∠=︒,∴493811ABD ∠=︒-︒=︒,作点D 关于直线AB 的对称点E ,连接BE 、CE 、AE ,如图,则BE=BD ,∠EBA=∠DBA =11°,∴∠EBC=11°+11°+38°=60°,∵BD=BC,∴BE=BC,∴△EBC是等边三角形,∴∠BEC=60°,EB=EC,又∵AB=AC,EA=EA,∴△AEB≌△AEC(SSS),∴∠BEA=∠CEA=1302BEC∠=︒,∴∠ADB=30°.【点睛】本题考查了等腰三角形的性质、三角形的内角和定理、等边三角形的判定和性质、全等三角形的判定和性质以及轴对称的性质等知识,涉及的知识点多、综合性强,难度较大,作点D关于直线AB的对称点E,构造等边三角形和全等三角形的模型是解题的关键.7.如图,在△ABC中,AB=AC,∠BAC=120°,D为BC上一点,DA⊥AC,AD=24 cm,则BC 的长________cm.【答案】72【解析】【分析】按照等腰三角形的性质、角的和差以及含30°直角三角形的性质进行解答即可.【详解】解:∵AB=AC,∠BAC=120°∴∠B=∠C=30°∵DA⊥AC,AD=24 cm∴DC=2AD=48cm,∵∠BAC=120°,DA⊥AC∴∠BAD=∠BAC-90°=30°∴BD=AD=24cm∴BC=BD+DC=72cm故答案为72.【点睛】本题考查了腰三角形的性质、角的和差以及含30°直角三角形的性质,其中灵活运用含30°直角三角形的性质是解答本题的关键.8.如图,在△ABC中,AB=AC,D、E是△ABC内的两点,AE平分∠BAC,∠D=∠DBC=60°,若BD=5cm,DE=3cm,则BC的长是 ______cm.【答案】8.【解析】【分析】作出辅助线后根据等边三角形的判定得出△BDM为等边三角形,△EFD为等边三角形,从而得出BN的长,进而求出答案.【详解】解:延长DE交BC于M,延长AE交BC于N,作EF∥BC于F,∵AB=AC,AE平分∠BAC,∴AN⊥BC,BN=CN,∵∠DBC=∠D=60°,∴△BDM为等边三角形,∴△EFD为等边三角形,∵BD=5,DE=3,∴EM=2,∵△BDM为等边三角形,∴∠DMB=60°,∵AN⊥BC,∴∠ENM=90°,∴∠NEM=30°,∴NM=1,∴BN=4,∴BC=2BN=8(cm),故答案为8.【点睛】本题考查等边三角形的判定与性质;等腰三角形的性质.9.如图,ABC ∆中,AB AC =,点D 是ABC ∆内部一点,DB DC =,点E 是边AB 上一点,若CD 平分ACE ∠,100AEC =∠,则BDC ∠=______°【答案】80【解析】【分析】根据角平分线得到∠ACE=2∠ACD ,再根据角的和差关系得到∠ECB =∠ACB -2∠ACD ,然后利用外角定理得到∠ABC+∠ECB=100°,代换化简得出∠ACB -∠ACD=50°,即∠DCB=50°,从而求出∠BDC 即可.【详解】∵CD 平分∠ACE ,∴∠ACE=2∠ACD=2∠ECD ,∴∠ECB=∠ACB -∠ACE=∠ACB -2∠ACD ,∵∠AEC=100°,∴∠ABC+∠ECB=100°,∴∠ABC+∠ACB -2∠ACD=100°,∵AB=AC ,∴∠ABC=∠ACB,∴2∠ACB -2∠ACD=100°,∴∠ACB-∠ACD=50°,即∠DCB=50°,∵DB=DC,∴∠DBC=∠DCB,∴∠BDC=180°-2∠DCB=180°-2×50°=80°.【点睛】本题考查了角平分线,三角形内角和,外角定理,及等边对等角的性质等知识,熟练掌握基本知识,找出角与角之间的关系是解题的关键.10.如图,∠BOC=60°,点A是BO延长线上的一点,OA=10cm,动点P从点A出发沿AB 以2cm/s的速度移动,动点Q从点O出发沿OC以1cm/s的速度移动,如果点P、Q同时出发,用t(s)表示移动的时间,当t=_____s时,△POQ是等腰三角形.【答案】103或10【解析】【分析】根据△POQ是等腰三角形,分两种情况进行讨论:点P在AO上,点P在BO上,分别计算,即可得解.【详解】当PO=QO时,△POQ是等腰三角形,如图1所示当点P在AO上时,∵PO=AO-AP=10-2t,OQ=t当PO=QO时,102t t-=解得103 t=当PO=QO时,△POQ是等腰三角形,如图2所示当点P在BO上时∵PO=AP-AO=2t-10,OQ=t当PO=QO时,210t t-=解得10t=故答案为:103或10【点睛】本题考查等腰三角形的性质及动点问题,熟练掌握等腰三角形的性质以及分类讨论思想是解题关键.二、八年级数学轴对称三角形选择题(难)11.如图,平面直角坐标系中存在点A(3,2),点B(1,0),以线段AB为边作等腰三角形ABP,使得点P在坐标轴上.则这样的P点有()A.4个B.5个C.6个D.7个【答案】D【解析】【分析】本题是开放性试题,由题意知A、B是定点,P是动点,所以要分情况讨论:以AP、AB为腰、以AP 、BP 为腰或以BP 、AB 为腰.则满足条件的点P 可求.【详解】由题意可知:以AP 、AB 为腰的三角形有3个;以AP 、BP 为腰的三角形有2个;以BP 、AB 为腰的三角形有2个.所以,这样的点P 共有7个.故选D .【点睛】本题考查了等腰三角形的判定及坐标与图形的性质;分类别寻找是正确解答本题的关键.12.如图,AOB α∠=,点P 是AOB ∠内的一定点,点,M N 分别在OA OB 、上移动,当PMN ∆的周长最小时,MPN ∠的值为( )A .90α+B .1902α+C .180α-D .1802α-【答案】D【解析】【分析】 过P 点作角的两边的对称点,在连接两个对称点,此时线段与角两边的交点,构成的三角形周长最小.再根据角的关系求解.【详解】解:过P 点作OB 的对称点1P ,过P 作OA 的对称点2P ,连接12PP ,交点为M,N ,则此时PMN 的周长最小,且△1P NP 和△2PMP 为等腰三角形.此时∠12P PP =180°-α;设∠NPM=x°,则180°-x°=2(∠12P PP -x°)所以 x°=180°-2α【点睛】求出M,N在什么位子△PMN周长最小是解此题的关键.13.如图,在锐角△ABC中,AC=10,S△ABC=25,∠BAC的平分线交BC于点D,点M,N分别是AD和AB上的动点,则BM+MN的最小值是()A.4 B.245C.5 D.6【答案】C【解析】试题解析:如图,∵AD是∠BAC的平分线,∴点B关于AD的对称点B′在AC上,过点B′作B′N⊥AB于N交AD于M,由轴对称确定最短路线问题,点M即为使BM+MN最小的点,B′N=BM+MN,过点B作BE⊥AC于E,∵AC=10,S△ABC=25,∴12×10•BE=25,解得BE=5,∵AD是∠BAC的平分线,B′与B关于AD对称,∴AB=AB′,∴△ABB′是等腰三角形,∴B′N=BE=5,即BM+MN的最小值是5.故选C.14.如图,点D,E是等边三角形ABC的边BC,AC上的点,且CD=AE,AD交BE于点P,BQ⊥AD于点Q,已知PE=2,PQ=6,则AD等于( )A.10 B.12 C.14 D.16【答案】C【解析】【分析】由题中条件可得△ABE≌△CAD,得出AD=BE,∠ABE=∠CAD,进而得出∠BPD=60°.在Rt△BPQ中,根据30度角所对直角边等于斜边的一半,求出BP的长,进而可得结论.【详解】∵△ABC是等边三角形,∴AB=AC,∠BAC=∠C=60°.又∵AE=CD,∴△ABE≌△CAD(SAS),∴∠ABE=∠CAD,AD=BE,∴∠BPD=∠ABE+∠BAP=∠CAD+∠BAP=∠BAC=60°.∵BQ⊥AD,∴∠PBQ=30°,∴BP=2PQ=2×6=12,∴AD=BE=BP+PE=12+2=14.故选C.【点睛】本题考查了含30度角的直角三角形的性质、等边三角形的性质以及全等三角形的判定和性质,证明∠BPD=60°是解答本题的关键.15.如果一个三角形能被一条线段分割成两个等腰三角形,那么称这个三角形为特异三角形.若△ABC是特异三角形,∠A=30°,∠B为钝角,则符合条件的∠B有()个.A.1 B.2 C.3 D.4【答案】B【解析】【分析】【详解】如下图,当30°角为等腰三角形的底角时有两种情况:∠B=135°或90°,当30°角为等腰三角形的顶角时有一种情况:∠B=112.5°,所以符合条件的∠B有三个.又因为∠B为钝角,则符合答案的有两个,故本题应选B.点睛:因为不确定这个等腰三角形的底边,所以应当以点A为一个确定点进行分类讨论:①当以B为顶点时,即以B为圆心,AB长为半径画弧交AC于点D,构成等腰△BAD;②当以点A为顶点时,即以点A为圆心,AB长为半径画弧,交AC于点D,构成等腰△ABD;或作线段AB的垂直平分线交AC于点D构成等腰△DAB.16.如图,在△ABC中,BI,CI分别平分∠ABC,∠ACB,过I点作DE∥BC,交AB于D,交AC于E,给出下列结论:①△DBI是等腰三角形;②△A CI是等腰三角形;③AI平分∠BAC;④△ADE周长等于AB+AC.其中正确的是( )A.①②③B.②③④C.①③④D.①②④【答案】C【解析】【分析】根据角平分线的性质、平行线的性质、等腰三角形的判定与性质分别对各选项分析判断后利用排除法求解.【详解】①∵IB平分∠ABC,∴∠DBI=∠CBI.∵DE∥BC,∴∠DIB=∠CBI,∴∠DBI=∠DIB,∴BD=DI,∴△DBI是等腰三角形.故本选项正确;②∵∠BAC不一定等于∠ACB,∴∠IAC不一定等于∠ICA,∴△ACI不一定是等腰三角形.故本选项错误;③∵三角形角平分线相交于一点,BI,CI分别是∠ABC和∠ACB的平分线,∴AI平分∠BAC.故本选项正确;④∵BD=DI,同理可得EI=EC,∴△ADE的周长=AD+DI+EI+AE=AD+BD+EC+AE=AB+AC.故本选项正确;其中正确的是①③④.故选C.【点睛】本题考查了等腰三角形的判定与性质,熟记三角形的角平分线相交于一点是解题的关键.17.如图,等腰三角形ABC的底边BC长为4,腰AC的垂直平分线EF分别交AC,AB边于E,F点.若点D为BC边的中点,点M为线段EF上一动点,若△CDM周长的最小值为8,则△ABC的面积为()A.12 B.16 C.24 D.32【答案】A【解析】【分析】连接AD,由于△ABC是等腰三角形,点D是BC边的中点,故AD⊥BC,再根据EF是线段AC的垂直平分线可知,点C关于直线EF的对称点为点A,故AD的长为CM+MD的最小值,再根据三角形的周长求出AD的长,由此即可得出结论.【详解】连接AD,∵△ABC是等腰三角形,点D是BC边的中点,∴AD⊥BC,∵EF是线段AC的垂直平分线,∴点C关于直线EF的对称点为点A,∴AD的长为CM+MD的最小值,∵△CDM周长的最小值为8,∴AD=8-12BC=8-2=6∴S△ABC=12BC•AD=12×4×6=12,【点睛】本题考查的是轴对称-最短路线问题,熟知等腰三角形三线合一的性质是解答此题的关键.18.如图,已知长方形ABCD,AB=1,BC=2,点M为矩形内一点,点E为BC边上任意一点,则MA+MD+ME的最小值为( )A.1 B.1+3C.2+3D.3【答案】B【解析】【分析】将△AMD绕点A逆时针旋转60°得到△AM’D’,MD=M’D’,易得到△ADD’和△AMM’均为等边三角形,推出AM=MM’可得MA+MD+ME=D’M+MM’+ME,共线时最短;由于点E 也为动点,可得当D’E⊥BC时最短,此时易求得D’E=DG+GE的值.【详解】将△AMD绕点A逆时针旋转60°得到△AM’D’,MD=M’D’,易得到△ADD’和△AMM’均为等边三角形,∴AM=MM’,∴MA+MD+ME=D’M+MM’+ME,∴D′M、MM′、ME共线时最短,由于点E也为动点,∴当D’E⊥BC时最短,此时易求得D’E=DG+GE=4+33,∴MA+MD+ME的最小值为4+33.故选B.本题考查轴对称、旋转变换、矩形的性质等知识,解题的关键是学会添加常用辅助线,构造等边三角形解决问题,学会用转化的思想思考问题.19.如图,在平面直角坐标系中,O为坐标原点,四边形OABC是长方形,点A、C的坐标分别为A(10,0 ),C(0,4),点D是OA的中点,点P在BC边上运动,当△ODP是腰长为5的等腰三角形时,点P的坐标为()A.(3,4),(2,4)B.(3,4),(2,4),(8,4)C.(2,4),(8,4)D.(3,4),(2,4),(8,4),(2.5,4)【答案】B【解析】试题解析:有两种情况:①以O为圆心,以5为半径画弧交BC于P点,此时OP=OD=5,在Rt△OPC中,OC=4,OP=5,由勾股定理得PC=3,则P的坐标是(3,4);②以D为圆心,以5为半径画弧交BC于P′和P″点,此时DP′=DP″=OD=5,过P′作P′N⊥OA于N,在Rt△OP′N中,设CP′=x,则DN=5-x,P′N=4,OP=5,由勾股定理得:42+(5-x)2=52,x=2,则P′的坐标是(2,4);过P″作P″M⊥OA于M,设BP″=a,则DM=5-a,P″M=4,DP″=5,在Rt△DP″M中,由勾股定理得:(5-a)2+42=52,解得:a=2,∴BP″=2,CP″=10-2=8,即P ″的坐标是(8,4);假设0P=PD ,则由P 点向0D 边作垂线,交点为Q 则有PQ 2十QD 2=PD 2,∵0P=PD=5=0D ,∴此时的△0PD 为正三角形,于是PQ=4,QD=120D=2.5,PD=5,代入①式,等式不成立.所以排除此种可能.故选B .20.如图,在平面直角坐标系中,A(1,2),B(3,2),连接AB ,点P 是x 轴上的一个动点,连接AP 、BP ,当△ABP 的周长最小时,对应的点P 的坐标和△ABP 的最小周长分别为( )A .(1,0),224+B .(3,0),224+C .(2,0), 25D .(2,0),252+【答案】D【解析】 作A 关于x 轴的对称点N (1,-2),连接BN 与x 轴的交点即为点P 的位置,此时△ABP 的周长最小.设直线BN 的解析式为y kx b =+,∵N (1,-2),B (3,2),∴232k b k b +=-⎧⎨+=⎩, 解得24k b =⎧⎨=-⎩, ∴24y x =-,当0y =时,240x -=,解得,2x=,∴点P的坐标为(2,0);∵A(1,2),B(3,2),∴AB//x轴,∵AN⊥x轴,∴AB⊥x轴,在Rt△ABC中,AB=2,AN=4,由勾股定理得,BN==∵AP=NP,∴△ABP的周长最小值为:AB+BP+AP=AB+BP+PN=AB+BN故选D.点睛:本题考查最短路径问题.利用轴对称作出点P的位置是解题的关键.。
人教版数学八年级上册第12章《全等三角形》复习测试题(配套练习附答案)
同理△DCB≌△C'DB,
∵∠A=∠C',∠AOB=∠C'OD,AB=C'D,
∴△AOB≌△C'OD (AAS) ,
所以共有四对全等三角形.
故答案为4.
【点睛】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、SSA、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.
故选D.
二.填空题(本大题共8小题,共24.0分)
9.如图,在 和 中, ,若利用“HL”证明 ≌ ,则需要加条件______.
【答案】 ,
【解析】
【分析】
添加∠C=∠D=90°,由HL证明△ABC≌△ABD即可.
【详解】添加∠C=∠D=90°,理由如下:
∵∠C=∠D=90°,
∴在Rt△ABC和Rt△ABD中,
A. AE=DFB. ∠A=∠DC. ∠B=∠CD. AB= CD
【答案】D
【解析】
【分析】
根据垂直定义求出∠CFD=∠AEB=90°,由已知 ,再根据全等三角形的判定定理推出即可.
【详解】添加的条件是AB=CD;理由如下:
∵AE⊥BC,DF⊥BC,
∴∠CFD=∠AEB=90°,
在Rt△ABE和Rt△DCF中,
【详解】①∵PR⊥AB,PS⊥AC,PR=PS,
∴点P在∠A的平分线上,∠ARP=∠ASP=90°,
∴∠SAP=∠RAP,
在Rt△ARP和Rt△ASP中,
,
∴Rt△ARP≌Rt△ASP(HL),
∴AR=AS,∴①正确;
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
学数学 用数学专页报 第 1 页 共 4 页 版权所有@少智报·数学专页
第十一章 全等三角形测试题
一、填空题(每小题2分,共24分)
1.如果△ABC和△DEF全等,△DEF和△GHI全等,则△ABC和△GHI______全等, 如
果△ABC和△DEF不全等,△DEF和△GHI全等,则△ABC和△GHI______全等.(填“一
定”或“不一定”或“一定不”)
2. 如图1,△ABC是不等边三角形,DE=BC,以D ,E
为两个顶点作位置不同的三角形,使所作的三角形与
△ABC全等,这样的三角形最多可以画出_____个.
3.如图2,△ABC≌△ADE,∠B=100°,∠BAC=30°,那么∠AED=______.
4.已知△DEF≌△ABC,AB=AC,且△ABC的周长为23cm,BC=4 cm,则△DEF的边中必
有一条边等于______.
5.△ABC中,∠BAC∶∠ACB∶∠ABC=4∶3∶2,且△ABC≌△DEF,则∠DEF=______.
6.如图3,BE,CD是△ABC的高,且BD=EC,判定△BCD≌△CBE的依据是“______”.
7.如图4,AB,CD相交于点O,AD=CB,请你补充一个条件,使得△AOD≌△COB.你
补充的条件是______.
8.如图5,AC,BD相交于点O,AC=BD,AB=CD,写出图中两对相等的角______.
9. 如图6,△ABC中,∠C=90°,AD平分∠BAC,AB=5,CD=2,则△ABD的面积是
______.
10.地基在同一水平面上,高度相同的两幢楼上分别住着甲、乙两位同学,有一天,甲对乙
说:“从我住的这幢楼的底部到你住的那幢楼的顶部的直线距离,等于从你住的那幢楼的
底部到我住的这幢楼的顶部的直线距离.”你认为甲的话正确吗?答:______.
11.在Rt△ABC中,∠C=90°,∠A.∠B的平分线相交于O,则∠AOB=_________.
12.在数学活动课上,小明提出这样一个问题:∠B=∠C=90°,E是BC的中点,DE平分
∠ADC,∠CED=35°,如图7,则∠EAB是多少度?大家一起热烈地讨论交流,小英第
一个得出正确答案,是______.
二、选择题(每小题3分,共24分)
13. 下列命题中正确的是 ( )
A.全等三角形的高相等 B.全等三角形的中线相等
A
D E C B
图2
A
D E
C B
图3
A D O C
B
图4
A
D
O
C
B
图5
A
D
C
B
图6
DC
B
A
E
A
BC
DE
图1
图7
学数学 用数学专页报 第 2 页 共 4 页 版权所有@少智报·数学专页
C.全等三角形的角平分线相等 D.全等三角形对应角的平分线相等
14.下列各条件中,不能作出惟一三角形的是 ( )
A.已知两边和夹角 B.已知两角和夹边
C.已知两边和其中一边的对角 D.已知三边
15.下列各组条件中,能判定△ABC≌△DEF的是 ( )
A.AB=DE,BC=EF,∠A=∠D
B.∠A=∠D,∠C=∠F,AC=EF
C.AB=DE,BC=EF,△ABC的周长= △DEF的周长
D.∠A=∠D,∠B=∠E,∠C=∠F
16.直角三角形斜边上的中线把直角三角形分成的两个三角形的关系是 ( )
A.形状相同 B.周长相等 C.面积相等 D.全等
17.如图8,ADAE,= ==100 =70BDCEADBAECBAE,,∠∠∠,下列结论错误的
是 ( )
A.△ABE≌△ACD B.△ABD≌△ACE C.∠DAE=40° D.∠C=30°
18.已知:如图9,在△ABC中,AB=AC,D是BC的中点,DE⊥AB于E,DF⊥AC于F,
则图中共有全等三角形 ( )
A.5对 B.4对 C.3对 D.2对
19.将一张长方形纸片按如图10所示的方式折叠,BCBD,为折痕,则CBD∠的度数为
A.60° B.75° C.90° D.95°( )
20.如图11所示,△ABE和△ADC是△ABC分别沿着AB,AC边翻折180°形成的,若
∠1∶∠2∶∠3=28∶5∶3,则∠α的度数为 ( )
A.80° B.100° C.60° D.45°.
三、解答题(每小题8分,共24分)
21.请你用三角板、圆规或量角器等工具,画∠POQ=60°,在它的边OP上截取OA=50mm,
OQ上截取OB=70mm,连结AB,画∠AOB的平分线与AB交于点C,并量出AC和OC
的长 .(结果精确到1mm,不要求写画法).
22.已知:如图 , 四边形ABCD中 , AB∥CD , AD∥BC.求证:△ABD≌△CDB.
E
D
A
C
B
图8
A
D
E
C B
图9
F
G
A E
C
图10
B
A′
E′
D
图11
学数学 用数学专页报 第 3 页 共 4 页 版权所有@少智报·数学专页
DACBEMF
23.如图, ∠AOB是一个任意角,在边OA,OB上分别取OM=ON,移动角尺,使角尺两边相同的
刻度分别与M,N重合,过角尺顶点C的射线OC便是∠AOB的平分线,为什么?
四、解答题(每小题9分,共18分)
24. 如图,已知: AD是BC上的中线 ,且DF=DE.求证:BE∥CF.
25.如图,公园有一条“Z”字形道路ABCD,其中AB∥CD,在,,EMF处各有一个小石
凳,且BECF,M为BC的中点,请问三个小石凳是否在一条直线上?说出你推断
的理由.
五、解答题(10分)
26.如图,给出五个等量关系:①ADBC ②ACBD ③CEDE ④DC
⑤DABCBA.请你以其中两个为条件,另三个中的一个为结论,推出一个正确
的结论(只需写出一种情况),并加以证明.
已知:
求证:
A
B
C
E
D
学数学 用数学专页报 第 4 页 共 4 页 版权所有@少智报·数学专页
证明: