第五章矩阵的对角化
可以对角化的矩阵的充要条件

可以对角化的矩阵的充要条件一、引言矩阵是线性代数中重要的概念之一,而对角化则是矩阵理论中的一个重要问题。
对角化是将一个矩阵通过相似变换变为对角矩阵的过程。
对角矩阵具有简单的形式,便于研究和计算。
因此,研究一个矩阵是否可以对角化,以及在什么条件下可以对角化,对于解决线性代数中的实际问题具有重要意义。
二、矩阵的对角化定义一个n阶方阵A可以对角化,即存在一个可逆矩阵P,使得P-1AP=D,其中D是一个对角矩阵。
对角化的过程可以通过相似变换实现,即P-1AP=D,其中P是可逆矩阵。
三、可对角化矩阵的充要条件一个矩阵是否可以对角化有如下的充要条件:1. 矩阵A有n个线性无关的特征向量矩阵A的特征向量是指满足方程Av=λv的非零向量v,其中λ是特征值。
如果矩阵A有n个线性无关的特征向量,那么可以构成一个可逆矩阵P,P的每一列是一个特征向量,使得P-1AP=D,其中D 是一个对角矩阵,对角线上的元素是矩阵A的特征值。
2. 矩阵A的特征向量的重数等于其特征值的代数重数特征值的代数重数是指特征多项式的根的重数。
如果矩阵A的特征向量的重数等于其特征值的代数重数,那么可以构成一个可逆矩阵P,使得P-1AP=D,其中D是一个对角矩阵,对角线上的元素是矩阵A的特征值。
3. 矩阵A的特征向量构成的向量组的维数等于矩阵A的秩矩阵A的秩是指矩阵A的列向量组的最大线性无关组的向量个数。
如果矩阵A的特征向量构成的向量组的维数等于矩阵A的秩,那么可以构成一个可逆矩阵P,使得P-1AP=D,其中D是一个对角矩阵,对角线上的元素是矩阵A的特征值。
四、例子考虑一个2阶矩阵A=[2 10 3],我们来判断它是否可以对角化。
首先求解A的特征值,解方程|A-λI|=0,得到特征值λ=2,3。
然后求解特征值对应的特征向量。
对于特征值λ=2,解方程(A-2I)v=0,得到特征向量v1=[1,0]。
对于特征值λ=3,解方程(A-3I)v=0,得到特征向量v2=[1,1]。
矩阵的对角化及其在高等数学中的应用

矩阵的对角化及其在高等数学中的应用矩阵是高等数学中的基础概念之一,它在解决线性方程组和矩阵变换问题中具有重要作用。
在实际问题中,矩阵常常需要进行对角化处理,以便更方便地求解问题。
本文将介绍矩阵的对角化及其在高等数学中的应用。
一、什么是矩阵的对角化对角化是指将一个矩阵变换为对角形式的过程,使得矩阵的主对角线上为非零元素,而其余元素均为零。
举个例子,一个2×2的矩阵A可以进行对角化,其对角化后的形式可以写成:> P^-1 * A * P = D其中P是一个可逆矩阵,D为对角矩阵。
对角矩阵只有主对角线上有非零元素,其他位置都为零。
通过对角化,矩阵变得更加简单,容易处理。
二、如何进行矩阵的对角化对于一个n×n的矩阵A,要进行对角化处理,需要满足以下条件:1.矩阵A必须有n个线性无关的特征向量,这些特征向量组成的矩阵可以写成P=[v1,v2,···,vn]。
2.对于对角矩阵D,其主对角线上的元素必须是矩阵A的n个特征值。
基于这些条件,可以得到矩阵A的对角化公式:> P^-1 * A * P = D其中P=[v1,v2,···,vn],D=[λ1,λ2,···,λn]为对角矩阵。
λ1、λ2···λn为A的特征值,v1、v2···vn为对应的特征向量。
三、高等数学中的应用在高等数学中,矩阵的对角化在求解一些实际问题中具有重要作用。
1. 矩阵的对角化在求解差分方程中的应用线性差分方程是数学中的一种经典问题。
对于一个n阶线性差分方程,其解法是先对其进行离散化处理,变成一个线性方程组。
接着,对该线性方程组进行矩阵形式的表示,就可以得到一个n×n矩阵。
通过矩阵的对角化,可以将线性方程组解放到主对角线上,从而得到差分方程的通解。
2. 矩阵的对角化在离散傅里叶变换中的应用离散傅里叶变换是一种将时域上信号变换为频域上信号的重要算法。
矩阵的相似对角化

a c a1 ,
b c
d b2 c1 ,
,
d d2 .
由于P可逆,c、d不能同时为0,不妨
设c≠0,则有λ1=1,再由第一式有c=0,这 导致矛盾.此矛盾说明不可能存在可逆阵P
使P-1AP成对角形.即A在数域P上不能对角
化。
那么,什么样的矩阵是可以对角化
的呢? 如果A可相似对角化,则存在可逆阵
由于P可逆,α1,…,αn是线性无关 的. 此式说明,要使A可对角化,A必须有n 个线性无关的特征向量,而与A相似的对
角形矩阵中的λi(i=1, …,n)则是A的特征值.
以上分析说明,矩阵A是否可对角化, 与A的特征值、特征向量的状况有密切关系.
定理5.2.3 n阶矩阵A可相似对角化 的充分必要条件是A有n个线性无关的特征
故得
Ak
1 1
21
1 0
k1 11
11 2
1 1
21
1 0
k1
2 1
11
1 1
2kk1 12
11
k 1 k
kk1
相似矩阵还有下列重要性质.
定理5.2.1 设A∽B,则有 (1) R(A)= R(B),此处R(A),R(B)分
别是A、B的秩;
(2) A B ; (3) A可逆时B也可逆,反之亦然.当A 可逆时还有A-1∽B-1. 证 (1)和(2)是显然的,只证(3).
,
B 10 11
E A E B 12 ,但A与B不是相似
的,因为A是单位阵,对任意可逆阵P,
P-1AP= P-1P=E=A,从而与单位阵相似的
矩阵只能是其本身.
由定理5.2.2可知,相似的矩阵有相同
特征值.如果能找到与A相似的较简单的矩 阵,则可简化许多问题的处理.在n阶矩阵
矩阵对角化

引言在高等代数中,我们为了方便线性方程组的运算引入了矩阵的概念. 在线性方程组的讨论中我们看到,线性方程组的系数矩阵和增广矩阵反应出线性方程组的一些重要性质,并且解方程组的过程也表现为变换这些矩阵的过程.除线性方程组之外,在二次型中我们用矩阵研究二次型的性质,引入了矩阵合同、正定、负定、半正定、半负定等概念及其判别方法.在线性空间中用矩阵研究线性变换的性质,引入矩阵相似的概念,这是一种等价关系,利用它我们把矩阵分类,其中与对角矩阵相似的矩阵引起的我们的注意,由此我们对线性变换归类,利用简单的矩阵研究复杂的,方便我们看待问题,进而又引入对角型矩阵、λ矩阵及若尔当标准型.基本概念定义定义1 常以n m P ⨯表示数域P 上n m ⨯矩阵的全体,用E 表示单位矩阵.定义2 n 阶方阵A 与B 是相似的,如果我们可以找到一个n 阶非奇异的方阵矩阵T n n P ⨯∈,使得AT T B 1−=或者BT T A 1−=.根据定义我们容易知道相似为矩阵间的一个等价关系:①反身性:AE E A 1−=; ②对称性:若A 相似于B ,则B 相似于A ; ③传递性:如果A 相似于B ,B 相似于C ,那么A 相似于C . 定义3 n 阶方阵A 与B 是合同的,如果我们可以找到一个n 阶非奇异方阵T n n P ⨯∈,使得B =T T AT 或者BT T A T =.根据定义我们容易知道合同也为矩阵间的一个等价联系:①反身性:A =AE E T ;②对称性:由AT T B T =即有11)(−−=BT T A T ;③传递性:由111AT T A T=和2122T A T A T =有)()(21212T T A T T A T =.定义4 式为⎪⎪⎪⎪⎪⎭⎫⎝⎛⋯⋯⋯m b b b 000000021的m 阶方阵叫对角矩阵,这里i b 是数(),2,1m i ⋯⋯=. 定义5 方阵A n n P ⨯∈,若BT T A 1−=,T 非奇异,B 是对角阵,则称A 可相似对角化. 定义6 方阵A n n P ⨯∈,若BT T A T =,T 非奇异,B 是对角阵,则称A 可合同对角化.定义7 矩阵的初等变换:⑴互换矩阵的第i 行(列)于j 行(列); ⑵用非零数c P ∈乘以矩阵第i 行(列);⑶把矩阵第j 行的t 倍加到第i 行.定义 8 由单位矩阵经过一次初等行(列)变换所得的矩阵称为初等矩阵. 共有三种初等矩阵:①单位矩阵经过初等变换⑴得),(j i P 且),(),(1j i P j i P =−;②单位矩阵经过初等变换⑵得))((t i P 且)/1(())((1t i P t i P =−;③单位矩阵经过初等变换⑶得))(,(t j i P 且))(,())(,(1t j i P t j i P −=− 定义9 设方阵n n P B ⨯∈,若E B =2,就称B 为对合矩阵。
线性代数5.4 对称矩阵的对角化

i1
i1
故 0 即 这就说明是实数.
首页
上页
返回
下页
结束
铃
❖定理1
对称阵的特征值为实数.
显然 当特征值i为实数时 齐次线性方程组 (AiE)x0
是实系数方程组 由|AiE|0知必有实的基础解系 所以对应
的特征向量可以取实向量.
首页
上页
返回
下页
p2
1 (1, 2
1,
0)T p3
1 (1, 6
1,
2)T .
于是P(p1 p2 p3)为正交阵 并且P1APdiag(2 1 1).
首页
上页
返回
下页
结束
铃
例2 设 A21 21 求An. 解 因为|AE|(1)(3) 所以A的特征值为11 23. 对应11 解方程(AE)x0 得p1(1 1)T. 对应13 解方程(A3E)x0 得p2(1 1)T. 于是有可逆矩阵P(p1 p2) 及diag(1 3) 使
P1AP 或APP1
从而
AnPnP1
提示
因为A对称 故A可对角化 即有可逆向量P及对角阵
使P1AP. 于是APP1 从而AnPnP1.
首页
上页
返回
下页
结束
铃
例2 设 A21 21 求An. 解 因为|AE|(1)(3) 所以A的特征值为11 23. 对应11 解方程(AE)x0 得p1(1 1)T. 对应13 解方程(A3E)x0 得p2(1 1)T. 于是有可逆矩阵P(p1 p2) 及diag(1 3) 使
(3)把这n个两两正交的单位特征向量构成正交阵P 便有
P1APPTAP. 注意中对角元的排列次序应与P中列向量的
矩阵对角化问题总结

矩阵对角化问题总结矩阵对角化是线性代数中的一个重要概念,它在很多数学和工程领域中都有广泛应用。
对角化可以把一个矩阵转化为对角矩阵的形式,简化了计算和分析的过程。
本文将对矩阵对角化的定义、条件以及计算方法进行总结。
首先,矩阵对角化的定义如下:对于一个n × n的矩阵A,如果存在一个可逆矩阵P,使得我们可以得到对角矩阵D,则称矩阵A是可对角化的。
其中,对角矩阵D的非零元素是A的特征值,且按照相应的特征值的重数排列。
为了判断一个矩阵是否可对角化,我们需要满足以下条件:1. 矩阵A必须是一个方阵(即行数等于列数)。
2. 矩阵A必须具有n个线性无关的特征向量,对应于n个不同的特征值。
当满足上述条件时,我们可以通过以下步骤进行矩阵对角化:1. 求出矩阵A的特征值,即解A的特征方程det(A-λI) = 0,其中I是单位矩阵。
2. 对每个特征值λ,解方程组(A-λI)X = 0,求得对应的特征向量X。
3. 将特征向量按列组成矩阵P。
4. 求出特征值构成的对角矩阵D。
需要注意的是,在实际求解矩阵对角化问题时,可能会遇到以下情况:1. 矩阵A的特征值重数大于1。
在这种情况下,我们需要确保对应于相同特征值的特征向量线性无关。
2. 矩阵A不可对角化。
这意味着矩阵A无法被相似变换为对角矩阵。
这可能发生在矩阵A的特征向量不足以构成一组基的情况下。
矩阵对角化在很多应用中具有重要意义,它简化了矩阵的计算和分析过程。
对角矩阵具有很好的性质,例如幂运算和指数函数的计算变得更加简单。
此外,在线性系统的稳定性和动态响应的分析中,矩阵对角化也起到了关键的作用。
总之,矩阵对角化是一个重要而又广泛应用的概念。
本文对矩阵对角化的定义、条件以及计算方法进行了总结,并提到了在实际问题中可能会遇到的情况。
了解矩阵对角化的概念和方法,对于深入理解和应用线性代数具有重要意义。
2020-2021学年线性代数之矩阵的相似对角化例题
4
-
1 2
1 6
(2) 取 Q 1, 2, 3
1 2
0
1 6
-2 6
1 3
1 , 使 Q1AQ .
3 1 3
(3)
Ak
Pk P1
1 P
1
P
1
4k
或 Ak QkQ1 QkQT
▲ 结论:设 是 n 阶方阵 A 的特征值 . 则:
(1)
f
()
amm
a m1 m1
a1
a0 是
f ( A) am Am am1Am1 a1A a0E
的特征值,特征向量 与 A 相同 .
(2)
( )
amm
a m1 m1
a1
a0
a
是
( A) am Am am1Am1 a1A a0E aA1
§2. 相似矩阵
例1:设
A
3 1
31
(1) A 是否能相似对角化? 若能, 求出相似变换矩阵P. (2) 求 A10.
解: (1) A 的特征值为 1 2, 2 4 A 可以相似对角化
1 2 时, 对应特征向量为x1 11; 2 4 时, 对应特征向量为x2 11
则取 P (x1, x2 ) 11
则 A* 3A 2E (A) 9
例5:设 A 是 n 阶矩阵,证明: (1) 若 A2 A ,则 A 的特征值是 1 或 0; (2) 若 A2 E ,则 A 的特征值是 1 或 -1; (3) 若 A 是正交矩阵,则 A 的特征值是 1 或 -1。
证明: 设 是 A 的特征值,则
(1) 2 1或 0 . (2) 2 1 1 . (3) A-1 AT 1 1.
(2)
矩阵的相似与对角化
矩阵的相似与对角化矩阵是线性代数中的重要概念,它在各个领域都有广泛的应用。
对于一个给定的矩阵,我们可以通过相似变换来得到一种新的矩阵,其具有相似的特性。
相似变换可以理解为在某种意义上对矩阵进行了重新标定、旋转或扩张。
而对角化是一种特殊的相似变换,能够将一个矩阵变为对角矩阵,使得矩阵的运算更加简便。
首先,让我们来了解一下相似变换的概念。
对于两个矩阵A和B,如果存在一个可逆矩阵P,使得B = P^(-1) * A * P,那么我们称A和B是相似的,P为相似变换矩阵。
相似矩阵具有许多相似的性质,包括特征值和特征向量等。
具体来说,如果v是矩阵A的特征向量,那么Pv就是矩阵B的特征向量,特征值也有相应的关系。
这种相似变换在许多问题中都发挥着重要作用,例如线性变换和空间旋转等。
接下来,我们来介绍一下对角化的概念。
对角化是一种特殊的相似变换,将一个n阶矩阵A变为对角矩阵D。
换句话说,D是一个n阶对角矩阵,且存在一个可逆矩阵P,使得D = P^(-1) * A * P。
对角化的好处在于对角矩阵的运算更加简单。
由于对角矩阵只有对角线上有非零元素,其他位置都是零,所以矩阵乘法和求幂等运算都可以简化为对角元素的运算。
这种简化过程对于一些数值计算问题非常有用,例如求矩阵的幂和指数函数等。
那么对角化的条件是什么呢?首先,一个矩阵A能够被对角化,必须要有n个线性无关的特征向量。
这意味着A的特征向量都是不同的,并且它们可以组成一个完整的基。
其次,对应于不同特征值的特征向量也应该是线性无关的。
当满足了这些条件后,我们就可以通过特征向量构建一个可逆矩阵P,从而对矩阵A进行对角化。
在实际操作中,对角化的步骤如下。
首先,我们需要求出矩阵A的特征值和特征向量。
特征值可以通过解矩阵特征方程来得到,而特征向量则可以通过将特征值带入到(A - λI)x = 0中求解。
接下来,将求得的特征向量组成一个矩阵P,然后计算出其逆矩阵P^(-1)。
最后,我们可以得到对角矩阵D = P^(-1) * A * P。
《线性代数》教学课件—矩阵的相似、对角化
若A PB P 1 , 则
k
1
A PB P 1 PB P
PB P 1 PB P 1 P B k P 1 .
A的多项式
( A) a0 An a1 An1 an1 A an E
a 0 P B n P 1 a 1 P B n 1 P 1
判断下列实矩阵能否对角化?
1 2 2
(1) A 2 2 4
2
4
2
解
2 1 2
( 2) A 5 3 3
1 0 2
1
(1)由 E A
2
2
2
2
2 4
4
2
2 7
为对角阵,称矩阵A可对角化或相似于对角阵。
定理(重要结论)n阶方阵A与对角阵相似(即A能对角化)
的充要条件是A 有n个线性无关的特征向量。
1
假设存在可逆阵
P
,
使
P
AP 为对角阵,
定理证明:
把 P 用其列向量表示为 P p1 , p2 ,, pn .
由 P 1 AP , 得AP P ,
1
2
即 A p1 , p2 ,, pn p1 , p2 ,, pn
1 p1 , 2 p2 ,, n pn .
n
A p1 , p2 ,, pn Ap1 , Ap2 ,, Apn 1 p1 , 2 p2 ,
2
矩阵的对角化
摘要矩阵的对角化指的是矩阵与对角矩阵相似,而形式最简单的对角矩阵在矩阵理论中占有重要地位,因此研究矩阵的对角化问题是很有实用价值的.矩阵是否可以对角化,是矩阵的一条很重要的性质。
对相似可对角化的充分必要条件的理解,一直是线性代数学习中的一个困难问题。
目前对于矩阵可对角化的条件,矩阵对角化的方法和矩阵对角化的运用都有了较为全面和深入的研究。
在归纳总结前人的基础之上,先给出了与对角化相关的概念,其次讨论了矩阵对角化的几个等价条件,最后总结了一些有关矩阵对角化的应用。
关键词:方阵;特征值;特征向量;对角化AbstractMatrix diagonalization refers similarity matrix and a diagonal matrix, The simplest form of a diagonal matrix plays an important role in matrix theory, Therefore Matrix diagonalization problem is very practical value.Whether matrix diagonalization matrix is a very important property. To be similar to the necessary and sufficient condition for understanding keratosis, has been one of linear algebra learning difficulties. At present more comprehensive and in-depth study of the matrix can be diagonalized conditions, matrix methods and the use of matrix diagonalization diagonalization of everything. In summarizing the basis of their predecessors, with the first given diagonalization related concepts, followed by discussion of the matrix diagonalization of several equivalent conditions and, finally, the application of some of the matrix diagonalization.Keywords: square; characteristic value; eigenvectors; diagonalization目录引言 (1)一矩阵可对角化的概念 (2)1.1 特征值、特征向量的概念 (2)1.2 矩阵可对角化的概念 (2)二矩阵可对角化的几个等价条件 (4)2.1 矩阵可对角化的充分必要条件及其证明 (4)2.2 可对角化矩阵的相似对角阵的求法及步骤 (8)三矩阵可对角化的应用 (9)3.1具体矩阵对角化的求解过程 (9)3.2矩阵对角化的应用 (13)3.2.1在反求矩阵方面的应用. (13)3.2.2 求方阵的高次幂 (14)3.2.3 求行列式的值 (15)3.2.4求一些具有线性递推关系组的数列的通项和极限 (16)3.2.5 在二次曲面上的一些应用 (17)结论 (19)致谢............................................... 错误!未定义书签。