高考复习文科数学课时试题(47)圆的方程及答案
高考数学复习圆的方程专题练习(附答案)

高考数学复习圆的方程专题练习(附答案)圆的标准方程(x-a)+(y-b)=r中,有三个参数a、b、r,只要求出a、b、r,这时圆的方程就被确定。
以下是圆的方程专题练习,请考生查缺补漏。
一、填空题1.若圆C的半径为1,圆心在第一象限,且与直线4x-3y=0和x轴都相切,则该圆的标准方程是________.[解析] 设圆心C(a,b)(a0,b0),由题意得b=1.又圆心C到直线4x-3y=0的距离d==1,解得a=2或a=-(舍).所以该圆的标准方程为(x-2)2+(y-1)2=1.[答案] (x-2)2+(y-1)2=12.(2019南京质检)已知点P(2,1)在圆C:x2+y2+ax-2y+b=0上,点P关于直线x+y-1=0的对称点也在圆C上,则圆C的圆心坐标为________.[解析] 因为点P关于直线x+y-1=0的对称点也在圆上,该直线过圆心,即圆心满足方程x+y-1=0,因此-+1-1=0,解得a=0,所以圆心坐标为(0,1).[答案] (0,1)3.已知圆心在直线y=-4x上,且圆与直线l:x+y-1=0相切于点P(3,-2),则该圆的方程是________.[解析] 过切点且与x+y-1=0垂直的直线为y+2=x-3,与y=-4x联立可求得圆心为(1,-4).半径r=2,所求圆的方程为(x-1)2+(y+4)2=8.[答案] (x-1)2+(y+4)2=84.(2019江苏常州模拟)已知实数x,y满足x2+y2-4x+6y+12=0,则|2x-y|的最小值为________.[解析] x2+y2-4x+6y+12=0配方得(x-2)2+(y+3)2=1,令x=2+cos ,y=-3+sin ,则|2x-y|=|4+2cos +3-sin |=|7-sin (-7-(tan =2).[答案] 7-5.已知圆x2+y2+4x-8y+1=0关于直线2ax-by+8=0(a0,b0)对称,则+的最小值是________.[解析] 由圆的对称性可得,直线2ax-by+8=0必过圆心(-2,4),所以a+b=2.所以+=+=++52+5=9,由=,则a2=4b2,又由a+b=2,故当且仅当a=,b=时取等号.[答案] 96.(2019南京市、盐城市高三模拟)在平面直角坐标系xOy中,若圆x2+(y-1)2=4上存在A,B两点关于点P(1,2)成中心对称,则直线AB的方程为________.[解析] 由题意得圆心与P点连线垂直于AB,所以kOP==1,kAB=-1,而直线AB过P点,所以直线AB的方程为y-2=-(x-1),即x+y-3=0.[答案] x+y-3=07.(2019泰州质检)若a,且方程x2+y2+ax+2ay+2a2+a-1=0表示圆,则a=________.[解析] 要使方程x2+y2+ax+2ay+2a2+a-1=0表示圆,则a2+(2a)2-4(2a2+a-1)0,解得-20)关于直线x+y+2=0对称.(1)求圆C的方程;(2)设Q为圆C上的一个动点,求的最小值.[解] (1)设圆心C(a,b),由题意得解得则圆C的方程为x2+y2=r2,将点P的坐标代入得r2=2,故圆C的方程为x2+y2=2.(2)设Q(x,y),则x2+y2=2,=(x-1,y-1)(x+2,y+2)=x2+y2+x+y-4=x+y-2.令x=cos ,y=sin ,=x+y-2=(sin +cos )-2=2sin-2,所以的最小值为-4.10.已知圆的圆心为坐标原点,且经过点(-1,).(1)求圆的方程;(2)若直线l1:x-y+b=0与此圆有且只有一个公共点,求b的值;(3)求直线l2:x-y+2=0被此圆截得的弦长.[解] (1)已知圆心为(0,0),半径r==2,所以圆的方程为x2+y2=4.(2)由已知得l1与圆相切,则圆心(0,0)到l1的距离等于半径2,即=2,解得b=4.(3)l2与圆x2+y2=4相交,圆心(0,0)到l2的距离d==,所截弦长l=2=2=2.一般说来,“教师”概念之形成经历了十分漫长的历史。
新疆高考数学一轮复习:47 圆的方程

新疆高考数学一轮复习:47 圆的方程姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分)圆(x-3)2+(y+4)2=1关于直线y=—x+6对称的圆的方程是()A . (x+10)2+(y+3)2=1B . (x-10)2+(y-3)2=1C . (x-3)2+(y+10)2=1D . (x-3)2+(y-10)2=12. (2分)已知圆C过坐标原点,面积为2π,且与直线l:x﹣y+2=0相切,则圆C的方程是()A . (x+1)2+(y+1)2=2B . (x﹣1)2+(y﹣1)2=2或(x+1)2+(y﹣1)2=2C . (x﹣1)2+(y﹣1)2=2或(x+1)2+(y+1)2=2D . (x﹣1)2+(y﹣1)2=23. (2分) (2018高二上·浙江期中) 已知圆:的圆心坐标是,则半径为()A . 2B . 3C . 4D . 54. (2分) (2017高二上·长春期中) 圆(x﹣1)2+y2=4上的点可以表示为()A . (﹣1+cos θ,sin θ )B . (1+sin θ,cos θ )C . (﹣1+2cos θ,2sin θ )D . (1+2cos θ,2sin θ )5. (2分)圆C:x2+y2+2x+4y-3=0上到直线l:x+y+1=0的距离为的点共有()A . 1个B . 2个C . 3个D . 4个6. (2分)表示一个圆,则的取值范围是()A . ≤2B .C .D . ≤7. (2分) (2017高二上·武清期中) 已知圆C1:f(x,y)=0,圆C2:g(x,y)=0,若存在两点A(x1 ,y1),B(x2 , y2)满足f(x1 , y1)<0,f(x2 , y2)>0,g(x1 , y1)<0,g(x2 , y2)<0,则C1与C2的位置关系为()A . 相交B . 相离C . 相交或C1在C2内D . 相交或C2在C1内8. (2分) (2016高二上·镇雄期中) 圆x2+y2﹣4x﹣2y﹣5=0的圆心坐标是()A . (﹣2,﹣1)B . (2,1)C . (2,﹣1)D . (1,﹣2)9. (2分) (2018高二上·哈尔滨月考) 圆的圆心和半径分别为()A . 圆心,半径为2B . 圆心,半径为2C . 圆心,半径为4D . 圆心,半径为410. (2分) (2020高二上·嘉兴期末) 已知点、与圆 : ,则()A . 点与点都在圆外B . 点在圆外,点在圆内C . 点在圆内,点在圆外D . 点与点都在圆内11. (2分)过点A(0,2),B(﹣2,2),且圆心在直线x﹣y﹣2=0上的圆的方程是()A . =26B . =26C . =26D . =2612. (2分) (2017高一下·包头期末) 过三点A(1,3),B(4,2),C(1,-7)的圆交y轴于M,N两点,则|MN|=()A .B . 8C .D . 10二、填空题 (共6题;共6分)13. (1分)已知圆心在x轴上、半径为的圆O位于y轴左侧,且与直线x+y=0相切,则圆O的标准方程是________.14. (1分)(2019·濮阳模拟) 平面内与两定点,连线的斜率之积等于非零常数的点的轨迹,加上、两点所成的曲线可以是圆、椭圆或双曲线.给出以下四个结论:①当时,曲线是一个圆;②当时,曲线的离心率为;③当时,曲线的渐近线方程为;④当时,曲线的焦点坐标分别为和 .其中全部正确结论的序号为________.15. (1分) (2019高二上·辽宁月考) 在平面直角坐标系中,以点为圆心且与直线相切的所有圆中,半径最大的圆的标准方程为________.16. (1分) (2019高三上·浙江月考) 公元前3世纪,古希腊数学家阿波罗尼斯对圆锥曲线有深刻的研究,其主要成果集中于他的代表作《圆锥曲线》一书,其中有如下结果:平面内到两定点距离之比等于常数(该常数大于零且不等于1)的点的轨迹为圆,后世把这种圆称为阿波罗尼斯圆.已知在平面直角坐标系中,,,动点满足,由上面的结果知点P 的轨迹是圆,则该圆的半径是________,的最大值是________.17. (1分) (2016高一下·盐城期中) 在平面直角坐标系xOy中,若圆C的圆心在第一象限,圆C与x轴相交于A(1,0)、B(3,0)两点,且与直线x﹣y+1=0相切,则圆C的标准方程为________.18. (1分)圆心是(-3,4),经过点M(5,1)的圆的一般方程为________ .三、解答题 (共4题;共35分)19. (5分) (2019高一下·宁波期末) 已知点,,曲线C任意一点满足 .(1)求曲线C的方程;(2)设点,问是否存在过定点Q的直线:与曲线C相交于不同两点,无论直线如何运动,x 轴都平分,若存在,求出Q点坐标,若不存在,请说明理由.20. (10分) (2018高一下·葫芦岛期末) 小明准备利用暑假时间去旅游,妈妈为小明提供四个景点,九寨沟、泰山、长白山、武夷山.小明决定用所学的数学知识制定一个方案来决定去哪个景点:(如图)曲线和直线交于点.以为起点,再从曲线上任取两个点分别为终点得到两个向量,记这两个向量的数量积为.若去九寨沟;若去泰山;若去长白山;去武夷山.(1)若从这六个点中任取两个点分别为终点得到两个向量,分别求小明去九寨沟的概率和不去泰山的概率;(2)按上述方案,小明在曲线上取点作为向量的终点,则小明决定去武夷山.点在曲线上运动,若点的坐标为,求的最大值.21. (10分) (2017高一下·上饶期中) 已知圆O的方程为x2+y2=5.(1) P是直线y= x﹣5上的动点,过P作圆O的两条切线PC、PD,切点为C、D,求证:直线CD过定点;(2)若EF、GH为圆O的两条互相垂直的弦,垂足为M(1,1),求四边形EGFH面积的最大值.22. (10分) (2016高二上·自贡期中) 已知方程x2+y2﹣2x﹣4y+m=0.(1)若此方程表示圆,求m的取值范围;(2)若(1)中的圆与直线x+2y﹣4=0相交于M、N两点,且OM⊥ON(O为坐标原点),求m的值.参考答案一、单选题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共6题;共6分)13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共4题;共35分) 19-1、19-2、20-1、20-2、21-1、21-2、22-1、22-2、第11 页共11 页。
高考数学文一轮:一课双测A+B精练四十七圆 的 方 程

高考数学(文)一轮:一课双测A+B 精练(四十七) 圆 的 方 程1.圆(x +2)2+y2=5关于原点P(0,0)对称的圆的方程为( ) A .(x -2)2+y2=5B .x2+(y -2)2=5 C .(x +2)2+(y +2)2=5D .x2+(y +2)2=52.(·辽宁高考)将圆x2+y2-2x -4y +1=0平分的直线是( ) A .x +y -1=0B .x +y +3=0 C .x -y +1=0D .x -y +3=03.(·青岛二中期末)若圆C 的半径为1,圆心在第一象限,且与直线4x -3y =0和x 轴都相切,则该圆的标准方程是( )A .(x -3)2+⎝ ⎛⎭⎪⎫y -732=1B .(x -2)2+(y -1)2=1C .(x -1)2+(y -3)2=1D.⎝ ⎛⎭⎪⎫x -322+(y -1)2=1 4.(·海淀检测)点P(4,-2)与圆x2+y2=4上任一点连线的中点的轨迹方程是( ) A .(x -2)2+(y +1)2=1B .(x -2)2+(y +1)2=4 C .(x +4)2+(y -2)2=4D .(x +2)2+(y -1)2=15.(·杭州模拟)若圆x2+y2-2x +6y +5a =0,关于直线y =x +2b 成轴对称图形,则a -b 的取值范围是( )A .(-∞,4)B .(-∞,0)C .(-4,+∞)D .(4,+∞)6.已知点M 是直线3x +4y -2=0上的动点,点N 为圆(x +1)2+(y +1)2=1上的动点,则|MN|的最小值是( )A.95B .1 C.45D.1357.如果三角形三个顶点分别是O(0,0),A(0,15),B(-8,0),则它的内切圆方程为________________.8.(·河南三市调研)已知圆C 的圆心与抛物线y2=4x 的焦点关于直线y =x 对称,直线4x -3y -2=0与圆C 相交于A ,B 两点,且|AB|=6,则圆C 的方程为__________.9.(·南京模拟)已知x ,y 满足x2+y2=1,则y -2x -1的最小值为________.10.过点C(3,4)且与x 轴,y 轴都相切的两个圆的半径分别为r1,r2,求r1r2.11.已知以点P 为圆心的圆经过点A(-1,0)和B(3,4),线段AB 的垂直平分线交圆P 于点C 和D ,且|CD|=410.(1)求直线CD 的方程; (2)求圆P 的方程.12.(·吉林摸底)已知关于x ,y 的方程C :x2+y2-2x -4y +m =0. (1)当m 为何值时,方程C 表示圆;(2)在(1)的条件下,若圆C 与直线l :x +2y -4=0相交于M 、N 两点,且|MN|=455,求m 的值.1.(·常州模拟)以双曲线x26-y23=1的右焦点为圆心且与双曲线的渐近线相切的圆的方程是( )A .(x -3)2+y2=1B .(x -3)2+y2=3C .(x -3)2+y2=3D .(x -3)2+y2=92.由直线y =x +2上的点P 向圆C :(x -4)2+(y +2)2=1引切线PT(T 为切点),当|PT|最小时,点P 的坐标是( )A .(-1,1)B .(0,2)C .(-2,0)D .(1,3)3.已知圆M 过两点C(1,-1),D(-1,1),且圆心M 在x +y -2=0上. (1)求圆M 的方程;(2)设P 是直线3x +4y +8=0上的动点,PA 、PB 是圆M 的两条切线,A ,B 为切点,求四边形PAMB 面积的最小值.[答 题 栏]A 级1._________2._________3._________4._________5._________6._________B 级1.______2.______7.__________8.__________9.__________ 答 案高考数学(文)一轮:一课双测A+B 精练(四十七)A 级1.A2.C3.B4.A5.选A 将圆的方程变形为(x -1)2+(y +3)2=10-5a ,可知,圆心为(1,-3),且10-5a >0,即a <2.∵圆关于直线y =x +2b 对称,∴圆心在直线y =x +2b 上,即-3=1+2b ,解得b =-2,∴a -b <4.6.选C 圆心(-1,-1)到点M 的距离的最小值为点(-1,-1)到直线的距离d =|-3-4-2|5=95,故点N 到点M 的距离的最小值为d -1=45. 7.解析:因为△AOB 是直角三角形,所以内切圆半径为r =|OA|+|OB|-|AB|2=15+8-172=3,圆心坐标为(-3,3),故内切圆方程为(x +3)2+(y -3)2=9. 答案:(x +3)2+(y -3)2=98.解析:设所求圆的半径是R ,依题意得,抛物线y2=4x 的焦点坐标是(1,0),则圆C 的圆心坐标是(0,1),圆心到直线4x -3y -2=0的距离d =|4×0-3×1-2|42+-32=1, 则R2=d2+⎝ ⎛⎭⎪⎫|AB|22=10,因此圆C 的方程是x2+(y -1)2=10. 答案:x2+(y -1)2=109.解析:y -2x -1表示圆上的点P(x ,y)与点Q(1,2)连线的斜率,所以y -2x -1的最小值是直线PQ 与圆相切时的斜率.设直线PQ 的方程为y -2=k(x -1)即kx -y +2-k =0.由|2-k|k2+1=1得k =34,结合图形可知,y -2x -1≥34,故最小值为34.答案:3410.解:由题意知,这两个圆的圆心都在第一象限, 且在直线y =x 上,故可设两圆方程为(x -a)2+(y -a)2=a2,(x -b)2+(y -b)2=b2, 且r1=a ,r2=b.由于两圆都过点C ,则(3-a)2+(4-a)2=a2,(3-b)2+(4-b)2=b2 即a2-14a +25=0,b2-14b +25=0. 则a 、b 是方程x2-14x +25=0的两个根. 故r1r2=ab =25.11.解:(1)直线AB 的斜率k =1,AB 的中点坐标为(1,2). 则直线CD 的方程为y -2=-(x -1),即x +y -3=0.(2)设圆心P(a ,b),则由P 在CD 上得a +b -3=0.① 又∵直径|CD|=410,∴|PA|=210, ∴(a +1)2+b2=40.②由①②解得⎩⎪⎨⎪⎧a =-3,b =6或⎩⎪⎨⎪⎧a =5,b =-2.∴圆心P(-3,6)或P(5,-2). ∴圆P 的方程为(x +3)2+(y -6)2=40 或(x -5)2+(y +2)2=40.12.解:(1)方程C 可化为(x -1)2+(y -2)2=5-m ,显然只要5-m >0,即m <5时方程C 表示圆.(2)因为圆C 的方程为(x -1)2+(y -2)2=5-m ,其中m <5,所以圆心C(1,2), 半径r =5-m ,则圆心C(1,2)到直线l :x +2y -4=0的距离为d =|1+2×2-4|12+22=15,因为|MN|=455,所以12|MN|=255,所以5-m =⎝ ⎛⎭⎪⎫152+⎝ ⎛⎭⎪⎫2552, 解得m =4.B 级1.选B 双曲线的渐近线方程为x ±2y =0,其右焦点为(3,0),所求圆半径r =|3|12+±22=3,所求圆方程为(x -3)2+y2=3. 2.选B 根据切线长、圆的半径和圆心到点P 的距离的关系,可知|PT|=|PC|2-1,故|PT|最小时,即|PC|最小,此时PC 垂直于直线y =x +2,则直线PC 的方程为y +2=-(x-4),即y =-x +2,联立方程⎩⎪⎨⎪⎧y =x +2,y =-x +2,解得点P 的坐标为(0,2).3.解:(1)设圆M 的方程为(x -a)2+(y -b)2=r2(r >0). 根据题意,得⎩⎪⎨⎪⎧1-a 2+-1-b 2=r2,-1-a 2+1-b2=r2,a +b -2=0.解得a =b =1,r =2,故所求圆M 的方程为(x -1)2+(y -1)2=4.(2)因为四边形PAMB 的面积 S =S △PAM +S △PBM=12|AM|·|PA|+12|BM|·|P B|, 又|AM|=|BM|=2,|PA|=|PB|, 所以S =2|PA|, 而|PA|=|PM|2-|AM|2 =|PM|2-4, 即S =2|PM|2-4.因此要求S 的最小值,只需求|PM|的最小值即可, 即在直线3x +4y +8=0上找一点P , 使得|PM|的值最小,所以|PM|min =|3×1+4×1+8|32+42=3,所以四边形PAMB 面积的最小值为S =2|PM|2-4=232-4=2 5.高考数学(文)一轮:一课双测A+B精练(四十八) 直线与圆、圆与圆的位置关系1.(·人大附中月考)设m>0,则直线2(x+y)+1+m=0与圆x2+y2=m的位置关系为( )A.相切B.相交C.相切或相离D.相交或相切2.(·福建高考)直线x+3y-2=0与圆x2+y2=4相交于A,B两点,则弦AB的长度等于( )A.25B.23C.3D.13.(·安徽高考)若直线x-y+1=0与圆(x-a)2+y2=2有公共点,则实数a的取值范围是( )A.[-3,-1]B.[-1,3]C.[-3,1]D.(-∞,-3]∪[1,+∞)4.过圆x2+y2=1上一点作圆的切线与x轴,y轴的正半轴交于A,B两点,则|AB|的最小值为( )A.2B.3C.2D.35.(·兰州模拟)若圆x2+y2=r2(r>0)上仅有4个点到直线x-y-2=0的距离为1,则实数r的取值范围为( )A.(2+1,+∞) B.(2-1, 2+1)C.(0, 2-1) D.(0, 2+1)6.(·临沂模拟)已知点P(x,y)是直线kx+y+4=0(k>0)上一动点,PA,PB是圆C:x2+y2-2y=0的两条切线,A,B是切点,若四边形PACB的最小面积是2,则k的值为( )A.2B.21 2C.22D.27.(·朝阳高三期末)设直线x-my-1=0与圆(x-1)2+(y-2)2=4相交于A、B两点,且弦AB的长为23,则实数m的值是________.8.(·东北三校联考)若a,b,c是直角三角形ABC三边的长(c为斜边),则圆C:x2+y2=4被直线l:ax+by+c=0所截得的弦长为________.9.(·江西高考)过直线x +y -22=0上点P 作圆x2+y2=1的两条切线,若两条切线的夹角是60°,则点P 的坐标是________.10.(·福州调研)已知⊙M :x2+(y -2)2=1,Q 是x 轴上的动点,QA ,QB 分别切⊙M 于A ,B 两点.(1)若|AB|=423,求|MQ|及直线MQ 的方程;(2)求证:直线AB 恒过定点.11.已知以点C ⎝ ⎛⎭⎪⎫t ,2t (t ∈R ,t ≠0)为圆心的圆与x 轴交于点O 、A ,与y 轴交于点O 、B ,其中O 为原点.(1)求证:△AOB 的面积为定值;(2)设直线2x +y -4=0与圆C 交于点M 、N ,若|OM|=|ON|,求圆C 的方程. 12.在平面直角坐标系xOy 中,已知圆x2+y2-12x +32=0的圆心为Q ,过点P(0,2),且斜率为k 的直线与圆Q 相交于不同的两点A 、B.(1)求k 的取值范围;(2)是否存在常数k ,使得向量OA +OB 与PQ ―→共线?如果存在,求k 值;如果不存在,请说明理由.1.已知两圆x2+y2-10x -10y =0,x2+y2+6x -2y -40=0,则它们的公共弦所在直线的方程为________________;公共弦长为________.2.(·上海模拟)已知圆的方程为x2+y2-6x -8y =0,a1,a2,…,a11是该圆过点(3,5)的11条弦的长,若数列a1,a2,…,a11成等差数列,则该等差数列公差的最大值是________.3.(·江西六校联考)已知抛物线C :y2=2px(p >0)的准线为l ,焦点为F ,圆M 的圆心在x 轴的正半轴上,圆M 与y 轴相切,过原点O 作倾斜角为π3的直线n ,交直线l 于点A ,交圆M 于不同的两点O 、B ,且|AO|=|BO|=2.(1)求圆M 和抛物线C 的方程;(2)若P 为抛物线C 上的动点,求PM ―→,·PF ―→,的最小值;(3)过直线l 上的动点Q 向圆M 作切线,切点分别为S 、T ,求证:直线ST 恒过一个定点,并求该定点的坐标.[答 题 栏] A 级1._________2._________3._________4._________5B 级1.______2.______.__________6._________7.__________8.__________9.__________答 案高考数学(文)一轮:一课双测A+B 精练(四十八)A 级1.C2.B3.C4.C5.选A 计算得圆心到直线l 的距离为22= 2>1,如图.直线l :x -y -2=0与圆相交,l1,l2与l 平行,且与直线l 的距离为1,故可以看出,圆的半径应该大于圆心到直线l2的距离2+1.6.选D 圆心C(0,1)到l 的距离 d =5k2+1,所以四边形面积的最小值为2×⎝ ⎛⎭⎪⎫12×1×d2-1=2, 解得k2=4,即k =±2. 又k >0,即k =2.7.解析:由题意得,圆心(1,2)到直线x -my -1=0的距离d =4-3=1, 即|1-2m -1|1+m2=1,解得m =±33.答案:±338.解析:由题意可知圆C :x2+y2=4被直线l :ax +by +c =0所截得的弦长为24-⎝⎛⎭⎪⎫c a2+b22,由于a2+b2=c2,所以所求弦长为2 3.答案:239.解析:∵点P 在直线x +y -22=0上,∴可设点P(x0,-x0+22),且其中一个切点为M.∵两条切线的夹角为60°, ∴∠OPM =30°.故在Rt △OPM 中,有OP =2OM =2.由两点间的距离公式得OP =x20+-x0+222=2,解得x0= 2.故点P 的坐标是( 2,2).答案:( 2, 2)10.解:(1)设直线MQ 交AB 于点P ,则|AP|=223,又|AM|=1,AP ⊥MQ ,AM ⊥AQ ,得|MP|=12-89=13,又∵|MQ|=|MA|2|MP|,∴|MQ|=3.设Q(x,0),而点M(0,2),由x2+22=3,得x =±5, 则Q 点的坐标为(5,0)或(-5,0).从而直线MQ 的方程为2x +5y -25=0或2x -5y +25=0.(2)证明:设点Q(q,0),由几何性质,可知A ,B 两点在以Q M 为直径的圆上,此圆的方程为x(x -q)+y(y -2)=0,而线段AB 是此圆与已知圆的公共弦,相减可得AB 的方程为qx -2y +3=0,所以直线AB 恒过定点⎝ ⎛⎭⎪⎫0,32. 11.解:(1)证明:由题设知,圆C 的方程为 (x -t)2+⎝ ⎛⎭⎪⎫y -2t 2=t2+4t2, 化简得x2-2tx +y2-4t y =0,当y =0时,x =0或2t ,则A(2t,0); 当x =0时,y =0或4t ,则B ⎝ ⎛⎭⎪⎫0,4t , 所以S △AOB =12|OA|·|OB|=12|2t|·⎪⎪⎪⎪⎪⎪4t =4为定值.(2)∵|OM|=|ON|,则原点O 在MN 的中垂线上,设MN 的中点为H ,则CH ⊥MN , ∴C 、H 、O 三点共线,则直线OC 的斜率 k =2t t =2t2=12,∴t =2或t =-2. ∴圆心为C(2,1)或C(-2,-1),∴圆C 的方程为(x -2)2+(y -1)2=5或(x +2)2+(y +1)2=5,由于当圆方程为(x +2)2+(y +1)2=5时,直线2x +y -4=0到圆心的距离d >r ,此时不满足直线与圆相交,故舍去,∴圆C 的方程为(x -2)2+(y -1)2=5.12.解:(1)圆的方程可写成(x -6)2+y2=4,所以圆心为Q(6,0).过P(0,2)且斜率为k 的直线方程为y =kx +2,代入圆的方程得x2+(kx +2)2-12x +32=0,整理得(1+k2)x2+4(k -3)x +36=0.①直线与圆交于两个不同的点A 、B 等价于Δ=[4(k -3)]2-4×36(1+k2)=42(-8k2-6k)>0,解得-34<k<0,即k 的取值范围为⎝ ⎛⎭⎪⎫-34,0. (2)设A(x1,y1)、B(x2,y2) 则OA +OB =(x1+x2,y1+y2), 由方程①得x1+x2=-4k -31+k2.②又y1+y2=k(x1+x2)+4.③因P(0,2)、Q(6,0),PQ =(6,-2),所以OA +OB 与PQ 共线等价于-2(x1+x2)=6(y1+y2),将②③代入上式, 解得k =-34.而由(1)知k ∈⎝ ⎛⎭⎪⎫-34,0,故没有符合题意的常数k. B 级1.解析:由两圆的方程x2+y2-10x -10y =0,x2+y2+6x -2y -40=0,相减并整理得公共弦所在直线的方程为2x +y -5=0.圆心(5,5)到直线2x +y -5=0的距离为105=25,弦长的一半为50-20=30,得公共弦长为230.答案:2x +y -5=02302.解析:容易判断,点(3,5)在圆内部,过圆内一点最长的弦是直径,过该点与直径垂直的弦最短,因此,过(3,5)的弦中,最长为10,最短为46,故公差最大为10-4610=5-265. 答案:5-2653.解:(1)易得B(1,3),A(-1,-3),设圆M 的方程为(x -a)2+y2=a2(a >0),将点B(1,3)代入圆M 的方程得a =2,所以圆M 的方程为(x -2)2+y2=4,因为点A(-1,-3)在准线l 上,所以p2=1,p =2,所以抛物线C 的方程为y2=4x.(2)由(1)得,M(2,0),F(1,0),设点P(x ,y),则PM ,=(2-x ,-y),PF ,=(1-x ,-y),又点P 在抛物线y2=4x 上,所以PM ,·PF ,=(2-x)(1-x)+y2=x2-3x +2+4x =x2+x +2,因为x ≥0,所以PM ,·PF ,≥2,即PM ,·PF ,的最小值为2.(3)证明:设点Q(-1,m),则|QS|=|QT|=m2+5,以Q 为圆心,m2+5为半径的圆的方程为(x +1)2+(y -m)2=m2+5,即x2+y2+2x -2my -4=0,①又圆M 的方程为(x -2)2+y2=4,即x2+y2-4x =0,② 由①②两式相减即得直线ST 的方程3x -my -2=0,显然直线ST 恒过定点⎝ ⎛⎭⎪⎫23,0.高考数学(文)一轮:一课双测A+B精练(四十)空间几何体的结构特征及三视图和直观图1.(·青岛摸底)如图,在下列四个几何体中,其三视图(正视图、侧视图、俯视图)中有且仅有两个相同的是( )A.②③④B.①②③C.①③④D.①②④2.有下列四个命题:①底面是矩形的平行六面体是长方体;②棱长相等的直四棱柱是正方体;③有两条侧棱都垂直于底面一边的平行六面体是直平行六面体;④对角线相等的平行六面体是直平行六面体.其中真命题的个数是( )A.1B.2C.3D.43.一个锥体的正视图和侧视图如图所示,下面选项中,不可能是该锥体的俯视图的是( )4.如图是一几何体的直观图、正视图和俯视图.在正视图右侧,按照画三视图的要求画出的该几何体的侧视图是( )5.如图△A′B′C′是△ABC的直观图,那么△ABC是( )A.等腰三角形B.直角三角形C.等腰直角三角形D.钝角三角形6.(·东北三校一模)一个几何体的三视图如图所示,则侧视图的面积为( )A.2+3B.1+3C.2+23D.4+37.(·昆明一中二模)一个几何体的正视图和侧视图都是边长为1的正方形,且体积为1,则这个几何体的俯视图可能是下列图形中的________.(填入所有可能的图形前的编号) 2①锐角三角形;②直角三角形;③四边形;④扇形;⑤圆8.(·安徽名校模拟)一个几何体的三视图如图所示,则该几何体的体积为________.9.正四棱锥的底面边长为2,侧棱长均为3,其正视图(主视图)和侧视图(左视图)是全等的等腰三角形,则正视图的周长为________.10.已知:图1是截去一个角的长方体,试按图示的方向画出其三视图;图2是某几何体的三视图,试说明该几何体的构成.11.(·银川调研)正四棱锥的高为3,侧棱长为7,求侧面上斜高(棱锥侧面三角形的高)为多少?12.(·四平模拟)已知正三棱锥V-ABC的正视图、侧视图和俯视图如图所示.(1)画出该三棱锥的直观图;(2)求出侧视图的面积.1.(·江西八所重点高中模拟)底面水平放置的正三棱柱的所有棱长均为2,当其正视图有最大面积时,其侧视图的面积为( )A.23B.3C.3D.42.(·深圳模拟)如图所示的几何体中,四边形ABCD是矩形,平面ABCD⊥平面ABE,已知AB=2,AE=BE=3,且当规定正视方向垂直平面ABCD时,该几何体的侧视图的面积为22.若M,N分别是线段DE,CE上的动点,则AM+MN+NB的最小值为________.3.一个多面体的直观图、正视图、侧视图如图1和2所示,其中正视图、侧视图均为边长为a的正方形.(1)请在图2指定的框内画出多面体的俯视图;(2)若多面体底面对角线AC,BD交于点O,E为线段AA1的中点,求证:OE∥平面A1C1C;(3)求该多面体的表面积.[答题栏]A级1._________2._________3._________4._________5._________6._________B级 1.______2.______ 7.__________8.__________9.__________答案高考数学(文)一轮:一课双测A+B精练(四十)A级1.A2.A3.C4.B5.选B由斜二测画法知B正确.6.选D依题意得,该几何体的侧视图的面积等于22+12×2×3=4+ 3.7.解析:如图1所示,直三棱柱ABE-A1B1E1符合题设要求,此时俯视图△A BE是锐角三角形;如图2所示,直三棱柱ABC-A1B1C1符合题设要求,此时俯视图△ABC是直角三角形;如图3所示,当直四棱柱的八个顶点分别是正方体上、下各边的中点时,所得直四棱柱ABCD-A1B1C1D1符合题设要求,此时俯视图(四边形ABCD)是正方形;若俯视图是扇形或圆,体积中会含有π,故排除④⑤.答案:①②③8.解析:结合三视图可知,该几何体为底面边长为2、高为2的正三棱柱除去上面的一个高为1的三棱锥后剩下的部分,其直观图如图所示,故该几何体的体积为12×2×2sin60°×2-13×12×2×2sin60°×1=533.答案:5339.解析:由题意知,正视图就是如图所示的截面PEF ,其中E 、F 分别是AD 、BC 的中点,连接AO ,易得AO =2,而PA =3,于是解得PO =1,所以PE =2,故其正视图的周长为2+2 2.答案:2+2210.解:图1几何体的三视图为:图2所示的几何体是上面为正六棱柱,下面为倒立的正六棱锥的组合体. 11.解:如图所示,正四棱锥S -ABCD 中, 高OS =3,侧棱SA =SB =SC =SD =7, 在Rt △SOA 中,OA =SA2-OS2=2,∴AC =4. ∴AB =BC =CD =DA =2 2. 作OE ⊥AB 于E ,则E 为AB 中点. 连接SE ,则SE 即为斜高, 在Rt △SOE 中,∵OE =12BC =2,SO =3,∴SE =5,即侧面上的斜高为 5.12.解:(1)三棱锥的直观图如图所示. (2)根据三视图间的关系可得BC =23, ∴侧视图中VA =42-⎝ ⎛⎭⎪⎫23×32×232=12=23,∴S △VBC =12×23×23=6.B 级1.选A 当正视图的面积达最大时可知其为正三棱柱某个侧面的面积,可以按如图所示位置放置,此时侧视图的面积为2 3.2.解析:依题意得,点E 到直线AB 的距离等于32-⎝ ⎛⎭⎪⎫222=2,因为该几何体的左(侧)视图的面积为12·BC ×2=22,所以BC =1,DE =EC =DC =2.所以△DEC 是正三角形,∠DEC =60°,tan ∠DEA =AD AE =33,∠DEA =∠CEB =30°.把△DAE ,△DEC 与△CEB 展在同一平面上,此时连接AB ,AE =BE =3,∠AEB =∠DEA +∠DEC +∠CEB =120°,AB2=AE2+BE2-2AE ·BEcos120°=9,即AB =3,即AM +MN +NB 的最小值为3.答案:33.解:(1)根据多面体的直观图、正视图、侧视图,得到俯视图如下:(2)证明:如图,连接AC ,BD ,交于O 点,连接OE. ∵E 为AA1的中点,O 为AC 的中点, ∴在△AA1C 中,OE 为△AA1C 的中位线. ∴OE ∥A1C.∵OE ⊄平面A1C1C ,A1C ⊂平面A1C1C , ∴OE ∥平面A1C1C.(3)多面体表面共包括10个面,SABCD =a2, SA1B1C1D1=a22,S △ABA1=S △B1BC =S △C 1DC =S △ADD1=a22,S △AA1D1=S △B1A1B =S △C1B1C =S △DC1D1 =12×2a 2×32a 4=3a28, ∴该多面体的表面积S =a2+a22+4×a22+4×3a28=5a2.。
高考数学圆的方程练习题附答案

高考数学圆的方程练习题附答案1.若圆c的半径为1,圆心在第一象限,且与直线4x-3y=0和x轴都相切,则该圆的标准方程是________.[分析]将圆心设为Ca,Ba>0,b>0,从问题的意义中得出b=1又圆心c到直线4x-3y=0的距离d==1,解决方案是a=2或a=-四舍五入所以该圆的标准方程为x-22+y-12=1.[答:]x-22+Y-12=12.2021·南京质检已知点p2,1在圆c:x2+y2+ax-2y+b=0上,点p关于直线x+y-1=0的对称点也在圆c上,则圆c的圆心坐标为________.【分析】因为点P相对于直线x+Y-1=0的对称点也在圆上,该直线过圆心,即圆心满足方程x+y-1=0,因此-+1-1=0,解为a=0,所以中心坐标为0,1[答案] 0,13.如果已知圆的中心位于直线y=-4x上,且圆在点P3,-2处与直线L:x+y-1=0相切,则圆的方程式为:___[解析] 过切点且与x+y-1=0垂直的直线为y+2=x-3,与y=-4x联立可求得圆心为1,-4.半径r=2,圆的方程式为X-12+y+42=8[答案] x-12+y+42=84.2022·江苏常州模拟知道实数x,y满足x2+y2-4x+6y+12=0,那么| 2x-y |的最小值为___[解析] x2+y2-4x+6y+12=0配方得x-22+y+32=1,令x=2+cosα,y=-3+sinα,然后| 2x-y |=|4+2cosα+3-sinα|=|7-sinα-φ|≥7-tanφ=2.[答:]7-5.已知圆x2+y2+4x-8y+1=0关于直线2ax-by+8=0a>0,b>0对称,则+的最小值是________.【分析】从圆的对称性来看,直线2aX by+8=0必须穿过圆的中心-2,4,因此a+B=2,+=+=++5≥ 2+5=9,from=,然后A2=4B2,再从a+B=2,所以当且仅当a=,B时取等号=[答案] 96.2022. 南京市和盐城市的第三次模拟考试是在平面直角坐标系xoy中进行的。
【跳出题海】高考数学总复习 高分攻略第47讲 圆的方程

(2014跳出题海)高考数学总复习高分攻略 [第47讲 圆的方程]
(时间:35分钟 分值:80分)
基础热身 1.[2013·四川卷] 圆x2+y2-4x+6y=0的圆心坐标是( ) A.(2,3) B.(-2,3) C.(-2,-3) D.(2,-3) 2.[2013·济宁模拟] 若直线3x-y+a=0过圆x2+y2+2x-4y=0的圆心,则a的值为( ) A.-1 B.1 C.3 D.5 3.已知方程x2+y2+2kx+4y+3k+8=0表示一个圆,则实数k的取值范围是( ) A.-1C.k<-4或k>1 D.k<-1或k>4 4.[2013·青岛模拟] 已知圆x2+y2-2x+my-4=0上两点M,N关于直线2x+y=0对称,则圆的半径为( ) A.9 B.3 C.23 D.2
能力提升 5.△ABC三个顶点的坐标分别是A(1,0),B(3,0),C(3,4),则该三角形的外接圆方程是( ) A.(x-2)2+(y-2)2=20 B.(x-2)2+(y-2)2=10 C.(x-2)2+(y-2)2=5 D.(x-2)2+(y-2)2=5 6.以线段AB:x+y-2=0(0≤x≤2)为直径的圆的方程为( ) A.(x+1)2+(y+1)2=2 B.(x-1)2+(y-1)2=2 C.(x+1)2+(y+1)2=8 D.(x-1)2+(y-1)2=8 7.设P(x,y)是圆(x-2)2+y2=1上任意点,则(x-5)2+(y+4)2的最大值为( ) A.6 B.25 C.26 D.36
8.[2013·泉州联考] 圆心在曲线y=3x(x>0)上,且与直线3x+4y+3=0相切的面积最小的圆的方程为( )
A.(x-2)2+y-322=9
B.(x-3)2+(y-1)2=1652 C.(x-1)2+(y-3)2=1852 D.(x-3)2+(y-3)2=9 9.过两点A(0,4),B(4,6),且圆心在直线x-2y-2=0上的圆的标准方程是________.
圆的方程习题附答案

1.方程y =1-x 2表示的曲线是( ) A .上半圆 B.下半圆 C .圆D .抛物线解析:选A .由方程可得x 2+y 2=1(y ≥0),即此曲线为圆x 2+y 2=1的上半圆. 2.以M (1,0)为圆心,且与直线x -y +3=0相切的圆的方程是( ) A .(x -1)2+y 2=8 B.(x +1)2+y 2=8 C .(x -1)2+y 2=16D .(x +1)2+y 2=16解析:选A .因为所求圆与直线x -y +3=0相切,所以圆心M (1,0)到直线x -y +3=0的距离即为该圆的半径r ,即r =|1-0+3|2=22.所以所求圆的方程为:(x -1)2+y 2=8.故选A .3.已知圆C 1:(x +1)2+(y -1)2=1,圆C 2与圆C 1关于直线x -y -1=0对称,则圆C 2的方程为( )A .(x +2)2+(y -2)2=1 B.(x -2)2+(y +2)2=1 C .(x +2)2+(y +2)2=1D .(x -2)2+(y -2)2=1解析:选B .圆C 1的圆心坐标为(-1,1),半径为1,设圆C 2的圆心坐标为(a ,b ),由题意得⎩⎪⎨⎪⎧a -12-b +12-1=0,b -1a +1=-1,解得⎩⎪⎨⎪⎧a =2,b =-2,所以圆C 2的圆心坐标为(2,-2),又两圆的半径相等,故圆C 2的方程为(x -2)2+(y +2)2=1.4.已知圆C 与直线y =x 及x -y -4=0都相切,圆心在直线y =-x 上,则圆C 的方程为( )A .(x +1)2+(y -1)2=2 B.(x +1)2+(y +1)2=2 C .(x -1)2+(y -1)2=2D .(x -1)2+(y +1)2=2解析:选D .由题意知x -y =0和x -y -4=0之间的距离为|4|2=22,所以r =2. 又因为x +y =0与x -y =0,x -y -4=0均垂直,所以由y =-x 和x -y =0联立得交点坐标为(0,0),由x +y =0和x -y -4=0联立得交点坐标为(2,-2),所以圆心坐标为(1,-1),圆C 的标准方程为(x -1)2+(y +1)2=2.5.在平面直角坐标系xOy 中,已知A (-1,0),B (0,1),则满足|P A |2-|PB |2=4且在圆x 2+y 2=4上的点P 的个数为( )A .0 B.1 C .2D .3解析:选C .设P (x ,y ),则由|P A |2-|PB |2=4,得(x +1)2+y 2-x 2-(y -1)2=4,所以x +y -2=0.求满足条件的点P 的个数即为求直线与圆的交点个数,圆心到直线的距离为|0+0-2|2=2<2=r ,所以直线与圆相交,交点个数为2.故满足条件的点P 有2个,选C . 6.已知动点M (x ,y )到点O (0,0)与点A (6,0)的距离之比为2,则动点M 的轨迹所围成的区域的面积是________.解析:依题意可知|MO ||MA |=2,即x 2+y 2(x -6)2+y 2=2,化简整理得(x -8)2+y 2=16,即动点M 的轨迹是以(8,0)为圆心,半径为4的圆. 所以其面积为S =πR 2=16π. 答案:16π7.当方程x 2+y 2+kx +2y +k 2=0所表示的圆的面积取最大值时,直线y =(k -1)x +2的倾斜角α=________.解析:由题意知,圆的半径r =12k 2+4-4k 2=124-3k 2≤1,当半径r 取最大值时,圆的面积最大,此时k =0,r =1,所以直线方程为y =-x +2,则有tan α=-1,又α∈[0,π),故α=3π4.答案:3π48.已知平面区域⎩⎪⎨⎪⎧x ≥0,y ≥0,x +2y -4≤0恰好被面积最小的圆C :(x -a )2+(y -b )2=r 2及其内部所覆盖,则圆C 的方程为________.解析:由题意知,此平面区域表示的是以O (0,0),P (4,0),Q (0,2)所构成的三角形及其内部,所以覆盖它的且面积最小的圆是其外接圆.因为△OPQ 为直角三角形,所以圆心为斜边PQ 的中点(2,1), 半径r =|PQ |2=5,因此圆C 的方程为(x -2)2+(y -1)2=5. 答案:(x -2)2+(y -1)2=59.已知以点P 为圆心的圆经过A (-1,0)和B (3,4),线段AB 的垂直平分线交圆P 于点C 和D ,且|CD |=410.(1)求直线CD 的方程; (2)求圆P 的方程.解:(1)由题意知,直线AB 的斜率k =1,中点坐标为(1,2).则直线CD 的方程为y -2=-(x -1),即x +y -3=0.(2)设圆心P (a ,b ),则由点P 在CD 上得a +b -3=0.① 又因为直径|CD |=410,所以|P A |=210, 所以(a +1)2+b 2=40.②由①②解得⎩⎪⎨⎪⎧a =-3,b =6或⎩⎪⎨⎪⎧a =5,b =-2.所以圆心P (-3,6)或P (5,-2).所以圆P 的方程为(x +3)2+(y -6)2=40或(x -5)2+(y +2)2=40. 10.已知M (m ,n )为圆C :x 2+y 2-4x -14y +45=0上任意一点. (1)求m +2n 的最大值; (2)求n -3m +2的最大值和最小值. 解:将圆C 化为标准方程可得(x -2)2+(y -7)2=8, 所以圆心C (2,7),半径r =22.(1)设m +2n =b ,则b 可看作是直线n =-12m +b2在y 轴上截距的2倍,故当直线m +2n=b 与圆C 相切时,b 有最大或最小值.所以|2+2×7-b |12+22=22,所以b =16+210(b =16-210舍去),所以m +2n 的最大值为16+210. (2)设n -3m +2=k ,则k 可看作点(m ,n )与点(-2,3)所在直线的斜率, 所以当直线n -3=k (m +2)与圆C 相切时,k 有最大、最小值,所以|2k -7+2k +3|1+k 2=22,解得k =2+3或k =2-3.所以n -3m +2的最大值为2+3,最小值为2-3.1.直线l :ax +by =0和圆C :x 2+y 2+ax +by =0在同一坐标系的图形只能是( )解析:选D .圆C 的圆心坐标为⎝⎛⎭⎫-a 2,-b2,半径为a 2+b 22,圆心到直线的距离为d =⎪⎪⎪⎪a 22+b 22a 2+b2=a 2+b 22, 所以直线与圆相切,故选D .2.已知P (x ,y )是圆x 2+(y -3)2=a 2(a >0)上的动点,定点A (2,0),B (-2,0),△P AB 的面积的最大值为8,则a 的值为( )A .1 B.2 C .3D .4解析:选A .要使△P AB 的面积最大,只要点P 到直线AB 的距离最大.由于AB 的方程为y =0,圆心(0,3)到直线AB 的距离为d =3, 故P 到直线AB 的距离的最大值为3+a .再根据AB =4,可得△P AB 面积的最大值为12·AB ·(3+a )=2(3+a )=8,所以a =1,故选A .3.设曲线x =2y -y 2上的点到直线x -y -2=0的距离的最大值为a ,最小值为b ,则a -b 的值为( )A .22 B. 2 C .22+1 D .2解析:选C .由x =2y -y 2得y 2-2y +x 2=0(x ≥0),即x 2+(y -1)2=1(x ≥0),表示以(0,1)为圆心,1为半径的右半圆,如图.圆心(0,1)到直线x -y -2=0的距离为32=322.结合图形可知曲线x =2y -y 2上的点到直线x -y -2=0的距离的最小值为322-1,最大值为点P (0,2)到直线x -y -2=0的距离42=22,因此a =22,b =322-1.因此a -b =22+1.故选C .4.设命题p :⎩⎪⎨⎪⎧4x +3y -12≥0,k -x ≥0,x +3y ≤12(x ,y ,k ∈R 且k >0);命题q :(x -3)2+y 2≤25(x ,y ∈R ). 若p 是q 的充分不必要条件,则k 的取值范围是________.解析:如图所示:命题p 表示的范围是图中△ABC 的内部(含边界),命题q 表示的范围是以点(3,0)为圆心,5为半径的圆及圆内部分,p 是q 的充分不必要条件.实际上只需A ,B ,C 三点都在圆内(或圆上)即可.由题知B ⎝⎛⎭⎫k ,4-43k ,则⎩⎪⎨⎪⎧k >0,(k -3)2+169(3-k )2≤25, 解得0<k ≤6. 答案:(0,6]5.在平面直角坐标系xOy 中,曲线y =x 2-6x +1与坐标轴的交点都在圆C 上,求圆C 的方程.解:法一:(代数法)曲线y =x 2-6x +1与y 轴的交点为(0,1),与x 轴的交点为(3+22,0),(3-22,0),设圆的方程是x 2+y 2+Dx +Ey +F =0(D 2+E 2-4F >0),则有⎩⎪⎨⎪⎧1+E +F =0,(3+22)2+D (3+22)+F =0,(3-22)2+D (3-22)+F =0,解得⎩⎪⎨⎪⎧D =-6,E =-2,F =1,故圆的方程是x 2+y 2-6x -2y +1=0.法二:(几何法)曲线y =x 2-6x +1与y 轴的交点为(0,1),与x 轴的交点为(3+22,0),(3-22,0).故可设C 的圆心为(3,t ),则有32+(t -1)2=(22)2+t 2,解得t =1.则圆C 的半径为32+(t -1)2=3,所以圆C 的方程为(x -3)2+(y -1)2=9. 6.已知方程x 2+y 2-2x -4y +m =0. (1)若此方程表示圆,求实数m 的取值范围;(2)若(1)中的圆与直线x +2y -4=0相交于M ,N 两点,且OM ⊥ON (O 为坐标原点),求m 的值;(3)在(2)的条件下,求以MN 为直径的圆的方程.解:(1)由D 2+E 2-4F >0得(-2)2+(-4)2-4m >0,解得m <5.(2)设M (x 1,y 1),N (x 2,y 2),由x +2y -4=0得x =4-2y ;将x =4-2y 代入x 2+y 2-2x -4y +m =0得5y 2-16y +8+m =0,所以y 1+y 2=165,y 1y 2=8+m 5.因为OM ⊥ON ,所以y 1x 1·y 2x 2=-1,即x 1x 2+y 1y 2=0.因为x 1x 2=(4-2y 1)(4-2y 2)=16-8(y 1+y 2)+4y 1y 2,所以x 1x 2+y 1y 2=16-8(y 1+y 2)+5y 1y 2=0,即(8+m )-8×165+16=0,解得m =85.(3)设圆心C 的坐标为(a ,b ),则a =12(x 1+x 2)=45,b =12(y 1+y 2)=85,半径r =|OC |=455,所以所求圆的方程为⎝⎛⎭⎫x -452+⎝⎛⎭⎫y -852=165.。
高三复习数学72_圆的方程(有答案)
7.2 圆的方程一、解答题。
1. 圆的定义在平面内,到________的距离等于________的点的________叫圆.2. 确定一个圆最基本的要素是________和________.3. 圆的标准方程(x−a)2+(y−b)2=r2(r>0),其中________为圆心,________为半径.4. 圆的一般方程x2+y2+Dx+Ey+F=0表示圆的充要条件是________,其中圆心为(−D2,−E2),半径r=√D2+E2−4F2.5. 点与圆的位置关系点和圆的位置关系有三种.圆的标准方程(x−a)2+(y−b)2=r2,点M(x0,y0)(1)点M在圆上:________;(2)点M在圆外:________;(3)点M在圆内:________.6. 根据下列条件,求圆的方程经过坐标原点O和P(1,1),并且圆心在直线2x+3y+1=0上;已知一圆过P(4,−2),Q(−1,3)两点,且在y轴上截得的线段长为4√3.7. 已知圆C:(x−1)2+(y−2)2=25,直线l:(2m+1)x+(m+1)y−7m−4= 0,(m∈R).证明:不论m取什么实数,直线与圆恒交于两点;求直线l被圆C截得的弦的最小值,并求此时直线l的方程.8. 已知两圆x2+y2−2x−6y−1=0和x2+y2−10x−12y+m=0,m<61.m取何值时,两圆外切;m 取何值时,两圆内切;求m =45时,两圆的公共弦所在直线的方程和公共弦长.9. 由直线l:y =x +1上的一点向圆(x −3)2+y 2=1引切线,则切线长的最小值为( ) A.1 B.2√2 C.√7 D.310. 已知圆C:x 2+y 2−2x +4y −11=0,在区间[−4,6]上任取实数m ,则直线l:x +y +m =0与圆C 相交所得△ABC 为钝角三角形(其中A ,B 为交点,C 为圆心)的概率为( ) A.25B.45C.811D.91111. 直线x +y +t =0与圆x 2+y 2=2相交于M ,N 两点,已知O 是坐标原点,若|OM →+ON →|≤|MN →|,则实数t 的取值范围是( ) A.(−∞,−√2)∪[√2,+∞) B.[√2,2]C.[−2,−√2]∪[√2,2]D.[−√2,√2]12. (理)如图,圆C 与x 轴相切于点T (1,0),与y 轴正半轴交于两点A ,B (B 在A 的上方),且|AB|=2.圆C 的标⋅准⋅方程为___________________________________;过点A 任作一条直线与圆O:x 2+y 2=1相交于M ,N 两点.求证:y 轴平分∠MBN .13. 如图,在平面直角坐标系xOy 中,已知以M 为圆心的圆M:x 2+y 2−12x −14y +60=0及其上一点A(2,4).设圆N 与x 轴相切,与圆M 外切,且圆心N 在直线x =6上,求圆N 的标准方程;设平行于OA 的直线l 与圆M 相交于B 、C 两点,且BC =OA ,求直线l 的方程;设点T (t,0)满足:存在圆M 上的两点P 和Q ,使得TA →+TP →=TQ →,求实数t 的取值范围.14. 小结与反思______________________________________________________________________________________________________________________________________________________________________________________________________________________15. 与圆x 2+(y −2)2=1相切,且在两坐标轴上截距相等的直线共有( ) A.2条 B.3条 C.4条 D.6条16. 若圆(x −3)2+(y +5)2=r 2上有且只有两个点到直线4x −3y −2=0的距离等于1,则半径r 的取值范围是( ) A.(4,6) B.[4,6) C.(4,6] D.[4,6]17. 已知圆C:(x −4)2+(y −3)2=1和点A(−1,0),B(0,1),点P 在圆上,则△PAB 面积的最大值和最小值分别为( ) A.√2+1,√2−1 B.4,2 C.3,1 D.2+√22,2−√2218. 一条光线从点(−2,−3)射出,经y 轴反射后与圆(x +3)2+(y −2)2=1相切,则反射光线所在直线的斜率为( ) A.−53或−35 B.−32或−23C.−54或−45D.−43或−3419. 在圆x 2+y 2−2x −6y =0内,过点E (0,1)的最长弦和最短弦分别是AC 和BD ,则四边形ABCD 的面积为( ) A.5√2 B.10√2 C.15√2 D.20√220. Rt △ABC 中,斜边BC =6,以BC 的中点O 为圆心,作半径为2的圆,分别交BC 于P ,Q 两点,令t =|AP|2+|AQ|2+|PQ|2,那么( ) A.t =21 B.t =32C.t =42D.t 的值与点A 的位置有关21. 若直线y =x +b 与曲线x =√1−y 2恰有一个公共点,则b 的取值范围是________.22. 如果圆C:x 2+y 2−2ax −2ay +2a 2−4=0与圆O:x 2+y 2=4总相交,那么实数a 的取值范围是________.23. 已知圆x 2+y 2=4,过点P (0,1)的直线l 交该圆于A ,B 两点,O 为坐标原点,则△OAB 面积的最大值是________.24. 求和圆x 2+y 2=4相外切于点P(−1,√3),且半径为4的圆M 的方程.25. 已知实数x 、y 满足方程x 2+y 2−4x +1=0. 求yx 的最大值和最小值;求y −x 的最大值和最小值.26. 已知圆C 经过点A (−2,0),B (0,2),且圆心C 在直线y =x 上,又直线l:y =kx +1与圆C 相交于P 、Q 两点. 求圆C 的方程;若OP →⋅OQ →=−2,求实数k 的值;过点(0,1)作直线l 1与l 垂直,且直线l 1与圆C 交于M 、N 两点,求四边形PMQN 面积的最大值.参考答案与试题解析7.2 圆的方程一、解答题。
高三关于圆的试题及答案
高三关于圆的试题及答案试题:1. 已知圆的方程为 \((x-2)^2 + (y-3)^2 = 9\),求圆心坐标和半径。
2. 圆 \(x^2 + y^2 - 4x - 6y + 9 = 0\) 与直线 \(y = 2x + 3\)相交,求交点坐标。
3. 已知圆 \(x^2 + y^2 = 25\) 和圆 \(x^2 + y^2 - 8x - 6y + 24= 0\),求两圆的公共弦所在的直线方程。
4. 已知圆 \(x^2 + y^2 = 25\) 上一点 \(P(3,4)\),求过点 \(P\)且与圆相切的切线方程。
5. 已知圆 \(x^2 + y^2 = 4\),求圆内接矩形的最大面积。
答案:1. 圆心坐标为 \((2,3)\),半径为 \(3\)。
2. 将直线 \(y = 2x + 3\) 代入圆的方程 \(x^2 + y^2 - 4x - 6y + 9 = 0\) 得到 \(x^2 + (2x + 3)^2 - 4x - 6(2x + 3) + 9 = 0\),化简后解得交点坐标。
3. 两圆方程相减得到公共弦所在的直线方程 \(8x + 6y - 24 = 0\)。
4. 切线斜率为 \(-\frac{1}{k_{OP}}\),其中 \(k_{OP} = \frac{4-0}{3-0} = \frac{4}{3}\),所以切线斜率为 \(-\frac{3}{4}\),切线方程为 \(y - 4 = -\frac{3}{4}(x - 3)\)。
5. 圆内接矩形的对角线即为圆的直径,所以最大面积为\(\frac{1}{2} \times 2 \times 2 \times \sin(90^\circ) = 2\)。
2021年高考数学一轮复习《圆的方程》精选练习(含答案)
2021年高考数学一轮复习《圆的方程》精选练习一、选择题1.若圆x 2+y 2-2x-4y=0的圆心到直线x-y +a=0的距离为22,则a 的值为( ) A.-2或2 B.0.5或1.5 C.2或0 D.-2或0 2.圆x 2+y 2=1上的点到点M(3,4)的距离的最小值是( )A.1B.4C.5D.63.当a 为任意实数时,直线(a-1)x-y+a+1=0恒过定点C ,则以C 为圆心,5为半径的圆的方程为( )A.(x-1)2+(y+2)2=5 B.(x+1)2+(y+2)2=5 C.(x+1)2+(y-2)2=5 D.(x-1)2+(y-2)2=5 4.圆x 2+y 2-2x-8y+13=0的圆心到直线ax+y-1=0的距离为1,则a=( )A.B.C. D.25.如果直线l 将圆22240x y x y +--=平分,且不通过第四象限, 那么l 的斜率的取值范围是( )A 、[0,2]B 、[0,1]C 、1[0]2,D 、1[0]3, 6.圆x 2+y 2+4x+2=0与直线l 相切于点(-3,-1),则直线l 的方程为( )A.x-y+4=0B.x+y+4=0C.x-y+2=0D.x+y+2=0 7.若直线x-y=2被圆(x-a)2+y 2=4所截得的弦长为22,则实数a 的值为( )A.-1或 3B.1或3C.-2或6D.0或4 8.直线3x +4y=b 与圆x 2+y 2-2x-2y +1=0相切,则b 的值是( )A.-2或12B.2或-12C.-2或-12D.2或129.圆x 2+y 2-4x +6y-12=0过点(-1,0)的最大弦长为m ,最小弦长为n ,则m-n=( )A.10-27B.5-7C.10-33D.5-223 10.若PQ 是圆x 2+y 2=9的弦,PQ 的中点是A(1,2),则直线PQ 的方程是( )A.x +2y-3=0B.x +2y-5=0C.2x-y +4=0D.2x-y=0 11.圆x 2+y 2=16上的点到直线x-y=3的距离的最大值为( )A 、223B 、4-223C 、4+223 D 、012.若圆x 2+y 2-4x +2y +m=0与y 轴交于A 、B 两点,且∠ACB=90°(其中C 为已知圆的圆心),则实数m 等于( )A.1B.-3C.0D.213.已知两点A(-1,0),B(0,2),点P 是圆(x-1)2+y 2=1上任意一点,则△PAB 面积的最大值与最小值分别是( ) A.2,)54(21- B.)54(21+,)54(21- C.5,4-5 D.)25(21+,)25(21-) 14.点P(4,-2)与圆x 2+y 2=4上任一点连线的中点的轨迹方程是( )A.(x-2)2+(y+1)2=1B.(x-2)2+(y+1)2=4C.(x+4)2+(y-2)2=4D.(x+2)2+(y-1)2=1 15.已知M(2,1),P 为圆C:x 2+y 2+2y-3=0上的动点,则|PM|的取值范围为( )A.[1,3]B.[22-2,22+2]C.[22-1,22+1]D.[2,4]16.圆x 2+y 2+2x -6y +1=0关于直线ax -by +3=0(a >0,b >0)对称,则1a +3b最小值是( )A.2 3B.203C.4D.163二、填空题17.圆(x-1)2+(y-1)2=1上的点到直线x-y=2的距离的最大值是________.18.当动点P 在圆x 2+y 2=2上运动时,它与定点A(3,1)连线中点Q 的轨迹方程为________. 19.已知圆C 的圆心位于直线2x-y-2=0上,且圆C 过两点M(-3,3),N(1,-5),则圆C 的标准方程为 .20.圆x 2+y 2+2x +4y-3=0上到直线x +y +1=0的距离为2的点有________个.21.在满足(x-3)2+(y-3)2=6的所有实数对(x,y)中,xy的最大值是 22.已知圆的方程为x 2+y 2-6x-8y=0,设该圆过点(3,5)的最长弦和最短弦分别为AC 和BD ,则四边形ABCD 的面积为________.23.已知A 是射线x +y=0(x≤0)上的动点,B 是x 轴正半轴的动点,若直线AB 与圆x 2+y 2=1相切,则|AB|的最小值是________.24.过点P(-1,1)作圆C :(x -t)2+(y -t +2)2=1(t∈R)的切线,切点分别为A ,B ,则PA →·PB →的最小值为________. 三、解答题25.在平面直角坐标系中,曲线y=x 2-6x+1与坐标轴的交点都在圆C 上.(1)求圆C 的方程;(2)若圆C 与直线x-y+a=0交于A,B 两点,O 为坐标原点,且OA ⊥OB ,求a 的值.26.已知M 为圆C :x 2+y 2-4x -14y +45=0上任意一点,且点Q(-2,3).(1)求|MQ|的最大值和最小值;(2)若M(m ,n),求n -3m +2的最大值和最小值.27.已知圆C :(x-3)2+(y-4)2=4,直线l 1过定点A(1,0). (1)若l 1与圆相切,求l 1的方程;(2)若l 1与圆相交于P ,Q 两点,线段PQ 的中点为M ,又l 1与l 2:x+2y+2=0的交点为N.求证:AM •AN 为定值.28.已知M为圆C:x2+y2-4x-14y+45=0上任意一点,点Q的坐标为(-2,3).(1)若P(a,a+1)在圆C上,求线段PQ的长及直线PQ的斜率;(2)求|MQ|的最大值和最小值;(3)求M(m,n),求的最大值和最小值.29.如图,在平面直角坐标系内,已知点A(1,0),B(-1,0),圆C的方程为x2+y2-6x-8y+21=0,点P为圆上的动点.(1)求过点A的圆C的切线方程.(2)求∣AP∣2+∣BP∣2的最大值及此时对应的点P的坐标.答案解析30.C ; 31.B ; 32.C ; 33.A 34.A 35.B 36.D ; 37.D ; 38.A ; 39.B ; 40.C ; 41.B ;42.B43.答案为:A ;44.答案为:B ;依题意,设P(x,y),化圆C 的一般方程为标准方程得x 2+(y+1)2=4,圆心为C(0,-1),因为|MC|=22>2,所以点M(2,1)在圆外,所以22-2≤|PM|≤22+2,故|PM|的取值范围为[22-2,22+2].45.答案为:D ;解析:由圆x 2+y 2+2x -6y +1=0知,其标准方程为(x +1)2+(y -3)2=9,∵圆x 2+y 2+2x -6y +1=0关于直线ax -by +3=0(a >0,b >0)对称, ∴该直线经过圆心(-1,3),即-a -3b +3=0,∴a +3b=3(a >0,b >0), ∴1a +3b =13(a +3b)⎝ ⎛⎭⎪⎫1a +3b =13⎝ ⎛⎭⎪⎫1+3a b +3b a +9≥13⎝ ⎛⎭⎪⎫10+2 3a b ·3b a =163,当且仅当3b a =3ab ,即a=b 时取等号,故选D.46.答案为:1+3;47.答案为:(x-1.5)2+(y-0.5)2=0.5.48.答案为:(x-1)2+y 2=25. 49.答案为:3; 50.223+51.答案为:206;解析:点(3,5)在圆内,最长弦|AC|即为该圆直径,∴|AC|=10,最短弦BD ⊥AC ,∴|BD|=46,S 四边形ABCD =0.5AC|·|BD|=206.52.答案为:2+22;解析:设A(-a ,a),B(b ,0)(a ,b >0),则直线AB 的方程是ax +(a +b)y -ab=0.因为直线AB 与圆x 2+y 2=1相切,所以d=ab a 2+(a +b )2=1,化简得2a 2+b 2+2ab=a 2b 2, 利用基本不等式得a 2b 2=2a 2+b 2+2ab≥22ab +2ab ,即ab≥2+22,从而得|AB|=(a +b )2+a 2=ab≥2+22,当b=2a ,即a=2+2,b=4+22时,|AB|的最小值是2+2 2.53.答案为:214;解析:圆C :(x -t)2+(y -t +2)2=1的圆心坐标为(t ,t -2),半径为1,所以PC=(t +1)2+(t -3)2=2(t -1)2+8≥8,PA=PB=PC 2-1,cos ∠APC=AP PC ,所以cos ∠APB=2⎝ ⎛⎭⎪⎫AP PC 2-1=1-2PC 2,所以PA →·PB →=(PC 2-1)⎝ ⎛⎭⎪⎫1-2PC 2=-3+PC 2+2PC 2≥-3+8+14=214,所以PA →·PB →的最小值为214.54.解:55.解:(1)由圆C :x 2+y 2-4x -14y +45=0,可得(x -2)2+(y -7)2=8,所以圆心C 的坐标为(2,7),半径r=2 2.又|QC|=2+22+7-32=42>2 2. 所以点Q 在圆C 外,所以|MQ|max =42+22=62, |MQ|min =42-22=2 2.(2)可知n -3m +2表示直线MQ 的斜率,设n -3m +2=k ,则直线MQ 的方程为y -3=k(x +2),即kx -y +2k +3=0, 因为直线MQ 与圆C 有交点,所以|2k -7+2k +3|1+k 2≤22,可得2-3≤k ≤2+3, 所以n -3m +2的最大值为2+3,最小值为2- 3.56.解:57.解:58.解:。
云南省高考数学一轮复习:47 圆的方程
云南省高考数学一轮复习:47 圆的方程姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分) (2018高二上·哈尔滨月考) 圆的圆心和半径分别为()A . 圆心,半径为2B . 圆心,半径为2C . 圆心,半径为4D . 圆心,半径为42. (2分)在圆x2+y2﹣2x﹣6y=0内,过点E(0,1)的最长弦和最短弦分别为AC和BD,则四边形ABCD的面积为()A . 5B . 10C . 15D . 203. (2分)以抛物线的焦点为圆心,且过坐标原点的圆的方程为()A .B .C .D .4. (2分) (2019高二上·葫芦岛月考) 圆的半径为()B .C . 11D .5. (2分) (2016高二下·金堂开学考) 已知圆C:(x﹣2)2+(y+1)2=4,则圆C的圆心和半径分别为()A . (2,1),4B . (2,﹣1),2C . (﹣2,1),2D . (﹣2,﹣1),26. (2分)若方程表示圆,则k的取值范围是()A .B .C .D .7. (2分)点M(x0 , y0)在圆x2+y2=R2外,则直线与圆的位置关系是()A . 相切B . 相交C . 相离D . 不确定8. (2分)若直线过圆的圆心,则的值为()A .D .9. (2分) (2019高一下·哈尔滨月考) 在平面直角坐标系xOy中,半径为2且过原点的圆的方程可以是()A .B .C .D .10. (2分) (2018高一下·淮南期末) 已知直线:,圆:,圆:,则()A . 必与圆相切,不可能与圆相交B . 必与圆相交,不可能与圆相离C . 必与圆相切,不可能与圆相切D . 必与圆相交,不可能与圆相切11. (2分)圆(x-3)2+(y+4)2=1关于直线y=—x+6对称的圆的方程是()A . (x+10)2+(y+3)2=1B . (x-10)2+(y-3)2=1C . (x-3)2+(y+10)2=1D . (x-3)2+(y-10)2=112. (2分) (2019高二上·双流期中) 已知实数x , y满足方程x2+y2-8x+15=0.则x2+y2最大值为()A . 3D . 25二、填空题 (共6题;共6分)13. (1分) (2016高二下·浦东期末) 已知点A(﹣4,﹣5),B(6,﹣1),则以线段AB为直径的圆的方程为________.14. (1分)若方程x2+y2﹣2ax﹣4y+5a=0表示圆,则a的取值范围是________15. (1分) (2020高二上·杭州期末) 在平面直角坐标系中,经过三点的圆的标准方程为________,其半径为________16. (1分)圆O的方程为(x-3)2+(y-4)2=25,点(2,3)到圆上一点的最大距离为________.17. (1分)以点(2,﹣1)为圆心且与直线3x﹣4y+5=0相切的圆的方程为________.18. (1分) (2017高二上·长春期中) 经过原点,圆心在x轴的负半轴上,半径等于2的圆的方程是________.三、解答题 (共4题;共35分)19. (5分) (2017高二上·黑龙江月考) 已知圆过两点,,且圆心在直线上.(1)求圆的标准方程;(2)直线过点且与圆有两个不同的交点,若直线的斜率大于0,求的取值范围.20. (10分) (2016高一下·邯郸期中) 已知一圆经过点A(2,﹣3)和B(﹣2,﹣5),且圆心C在直线l:x﹣2y﹣3=0上,求此圆的方程.21. (10分) (2019高三上·上海月考) 已知椭圆的方程为,圆与轴相切于点,与轴正半轴相交于、两点,且,如图1.(1)求圆的方程;(2)如图1,过点的直线与椭圆相交于、两点,求证:射线平分;(3)如图2所示,点、是椭圆的两个顶点,且第三象限的动点在椭圆上,若直线与轴交于点,直线与轴交于点,试问:四边形的面积是否为定值?若是,请求出这个定值,若不是,请说明理由.22. (10分)已知方程x2+y2﹣2x﹣4y+m=0.(1)若此方程表示圆,求m的取值范围;(2)若(1)中的圆与直线x+2y﹣4=0相交于M、N两点,且OM⊥ON(O为坐标原点),求m;(3)在(2)的条件下,求以MN为直径的圆的方程.参考答案一、单选题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共6题;共6分)13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共4题;共35分) 19-1、19-2、20-1、21-1、21-2、21-3、22-1、第11 页共11 页。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【若缺失公式、图片现象属于系统读取不成功,文档内容齐全完整,请放心下载。
】
课时作业(四十七) [第47讲 圆的方程]
[时间:45分钟 分值:100分]
基础热身
1.圆心在(2,-1)且经过点(-1,3)的圆的标准方程是( ) A .(x -2)2+(y +1)2=25 B .(x +2)2+(y -1)2=25 C .(x -2)2+(y +1)2=5 D .(x +2)2+(y -1)2=5
2.直线y =x +b 平分圆x 2+y 2-8x +2y +8=0的周长,则b =( ) A .3 B .5 C .-3 D .-5
3.若PQ 是圆x 2+y 2=9的弦,PQ 的中点是(1,2),则直线PQ 的方程是( ) A .x +2y -3=0 B .x +2y -5=0 C .2x -y +4=0 D .2x -y =0 4. 已知抛物线y 2=4x 的焦点与圆x 2+y 2+mx -4=0的圆心重合,则m 的值是________. 能力提升
5. 若直线3x +y +a =0过圆x 2+y 2+2x -4y =0的圆心,则a 的值为( ) A .-1 B .1 C .3 D .-3
6.一条线段AB 长为2,两端点A 和B 分别在x 轴和y 轴上滑动,则线段AB 的中点的轨迹是( )
A .双曲线
B .双曲线的一支
C .圆
D .半圆
7.一条光线从点A (-1,1)出发,经x 轴反射到⊙C :(x -2)2+(y -3)2=1上,则光走过的最短路程为( )
A .1
B .2
C .3
D .4
8.实数x 、y 满足x 2+(y +4)2=4,则(x -1)2+(y -1)2的最大值为( ) A .30+226 B .30+426 C .30+213 D .30+413
9.已知两点A (-1,0),B (0,2),点P 是圆(x -1)2+y 2=1上任意一点,则△P AB 面积的最大值与最小值分别是( )
A .2,1
2(4-5)
B.12(4+5),1
2(4-5) C.5,4- 5 D.12(5+2),1
2
(5-2) 10.圆C :x 2+y 2-4x +43y =0的圆心到直线x +3y =0的距离是________.
11. 经过圆(x -1)2+(y +1)2=2的圆心,且与直线2x +y =0垂直的直线方程是________.
12.在平面区域⎩
⎪⎨⎪⎧
2≤x ≤4,
0≤y ≤2内有一个最大的圆,则这个最大圆的一般方程是
________________________________________________________________________.
13. 点P (x ,y )是圆x 2+(y -1)2=1上任意一点,若点P 的坐标满足不等式x +y +m ≥0,则实数m 的取值范围是________.
14.(10分)在直角坐标系xOy 中,以O 为圆心的圆与直线x -3y =4相切. (1)求圆O 的方程;
(2)圆O 与x 轴相交于A 、B 两点,圆内的动点P 使|P A |、|PO |、|PB |成等比数列,求P A →·PB →
的取值范围.
15.(13分)点A (2,0)是圆x 2+y 2=4上的定点,点B (1,1)是圆内一点,P 、Q 为圆上的动点.
(1)求线段AP 的中点的轨迹方程; (2)若∠PBQ =90°,求线段PQ 的中点的轨迹方程.
难点突破
16.(12分) 已知点A (-3,0),B (3,0),动点P 满足|P A |=2|PB |. (1)若点P 的轨迹为曲线C ,求此曲线的方程;
(2)若点Q 在直线l 1:x +y +3=0上,直线l 2经过点Q 且与曲线C 只有一个公共点M ,求|QM |的最小值.
课时作业(四十七)
【基础热身】
1.A [解析] 因为圆的圆心为(2,-1),半径为r =(2+1)2+(-1-3)2=5,所以圆的标准方程为(x -2)2+(y +1)2=25.故选A.
2.D [解析] 圆心为(4,-1),由已知易知直线y =x +b 过圆心,所以-1=4+b ,所以b =-5.故选D.
3.B [解析] 由圆的几何性质知,弦PQ 的中点与圆心的连线垂直于弦PQ ,所以直线
PQ 的斜率为-12,所以方程为y -2=-1
2
(x -1),即x +2y -5=0,故选B.
4.-2 [解析] 抛物线y 2=4x 的焦点为(1,0),所以-m
2
=1,得m =-2.
【能力提升】
5.B [解析] 圆的方程可化为(x +1)2+(y -2)2=5,因为直线经过圆的圆心(-1,2),所以3×(-1)+2+a =0,得a =1.
6.C [解析] 由直角三角形斜边上的中线等于斜边的一半,得AB 的中点到原点的距离总等于1,所以AB 的中点轨迹是圆,故选C.
7.D [解析] A (-1,1)关于x 轴的对称点B (-1,-1),圆心C (2,3),所以光走过的最短路程为|BC |-1=4.
8.B [解析] (x -1)2+(y -1)2表示圆x 2+(y +4)2=4上动点(x ,y )到点(1,1)距离d 的平方,因为26-2≤d ≤26+2,所以最大值为(26+2)2=30+426,故选B.
9.B [解析] 如图,圆心(1,0)到直线AB :2x -y +2=0的距离为d =4
5
,故圆上的点
P 到直线AB 的距离的最大值是45+1,最小值是4
5
-1.又|AB |=5,故△P AB 面积的最大
值和最小值分别是2+52,2-5
2
.故选B.
10.2 [解析] 圆C 的圆心是C (2,-23),由点到直线的距离公式得|2-23×3|
1+3=
2.
11.x -2y -3=0 [解析] 圆心为(1,-1),所求直线的斜率为1
2,所以直线方程为y +1
=1
2
(x -1),即x -2y -3=0. 12.x 2+y 2-6x -2y +9=0 [解析] 作图知,区域为正方形,最大圆即正方形的内切圆,圆心是(3,1),半径为1,得圆的方程为(x -3)2+(y -1)2=1,即x 2+y 2-6x -2y +9=0.
13.[2-1,+∞) [解析] 令x =cos θ,y =1+sin θ,则m ≥-x -y =-1-(sin θ+cos θ)
=-1-2sin ⎝⎛⎭
⎫θ+π
4对任意θ∈R 恒成立,所以m ≥2-1. 14.[解答] (1)依题设,圆O 的半径r 等于原点O 到直线x -3y =4的距离,即r =
|-4|
1+3
=2,
所以圆O 的方程为x 2+y 2=4. (2)由(1)知A (-2,0),B (2,0).
设P (x ,y ),由|P A |、|PO |、|PB |成等比数列得,
(x +2)2+y 2·(x -2)2+y 2=x 2+y 2, 即x 2-y 2=2. P A →·PB →=(-2-x ,-y )·(2-x ,-y )=x 2-4+y 2=2(y 2-1),
由于点P 在圆O 内,故⎩
⎪⎨⎪⎧
x 2+y 2<4,
x 2-y 2=2,
由此得y 2<1,
所以P A →·PB →的取值范围为[-2,0).
15.[解答] (1)设线段AP 的中点为M (x ,y ), 由中点公式得点P 坐标为P (2x -2,2y ).
∵点P 在圆x 2+y 2=4上,∴(2x -2)2+(2y )2=4, 故线段AP 的中点的轨迹方程为(x -1)2+y 2=1. (2)设线段PQ 的中点为N (x ,y ), 在Rt △PBQ 中,|PN |=|BN |.
设O 为坐标原点,连接ON ,则ON ⊥PQ , ∴|OP |2=|ON |2+|PN |2=|ON |2+|BN |2, ∴x 2+y 2+(x -1)2+(y -1)2=4,
故线段PQ 的中点的轨迹方程为x 2+y 2-x -y -1=0. 【难点突破】
16.[解答] (1)设点P 的坐标为(x ,y ), 则(x +3)2+y 2=2(x -3)2+y 2, 化简得(x -5)2+y 2=16,即为所求.
(2)由(1)知曲线C 是以点(5,0)为圆心,4为半径的圆,如图. 设直线l 2是此圆的切线,
连接CQ ,则|QM |=|CQ |2-|CM |2 =|CQ |2-16,
当CQ ⊥l 1时,|CQ |取最小值,
|CQ |=|5+3|2
=42,
此时|QM |的最小值为32-16。