高中数学一元二次不等式练习题

合集下载

50道一元二次不等式

50道一元二次不等式

50道一元二次不等式一元二次不等式是高中数学中一个重要的主题,它可以帮助学生们深入理解一元二次方程的性质,浅析它的解的性质,以及如何求解一元二次方程。

本文将介绍50道一元二次不等式,来帮助学习者在解决高中数学中一元二次不等式题目中,掌握正确的方法,熟悉数学基本概念,充分理解一元二次方程的概念。

首先,来看一元二次不等式的定义。

一元二次不等式是指用一元二次函数的方程来表示的不等式,即形如ax2+bx+c>0或ax2+bx+c<0的不等式,其中a≠0。

这种不等式虽然和一元二次方程类似,但它们有不同的解法,因此需要学习者根据不等式本身的特点,运用相应的方法来解决问题。

下面就一一给大家介绍50道一元二次不等式。

1. 2x2-3x-4>02. 3x2+4x-5≤03. 4x2-2x+1<04. 5x2-7x-3≥05. 6x2+8x+2>06. 7x2-5x-6≤07. 8x2+9x-1<08. 9x2-4x+3≥09. 10x2-2x+4>010. 11x2+5x-2≤011. 12x2-3x+1<013. 14x2+6x+3>014. 15x2-2x-4≤015. 16x2+4x-2<016. 17x2-3x+3≥017. 18x2+8x-1>018. 19x2+2x-4≤019. 20x2-5x+2<020. 21x2+7x-3≥021. 22x2-9x+4>022. 23x2-4x-1≤023. 24x2+5x+2<024. 25x2-6x-3≥025. 26x2-7x+1>026. 27x2+2x-5≤027. 28x2+3x+2<028. 29x2-8x-3≥029. 30x2+4x-1>030. 31x2-2x+4≤031. 32x2+6x-2<032. 33x2-5x+3≥033. 34x2-4x-4>035. 36x2+8x+2<036. 37x2-3x-3≥037. 38x2+9x+4>038. 39x2-2x-5≤039. 40x2-7x+2<040. 41x2+5x-3≥041. 42x2+4x+1>042. 43x2-8x-4≤043. 44x2-6x+2<044. 45x2+3x-3≥045. 46x2+2x-1>046. 47x2-5x+4≤047. 48x2-9x-2<048. 49x2+7x-3≥049. 50x2+8x+4>050. 51x2-4x-5≤0以上就是50道一元二次不等式,做完这50道题,学习者可以掌握相关技巧,了解一元二次不等式的解法,以及如何带入方程解决问题。

一元二次二元一次基本不等式早练专题练习(三)附答案人教版高中数学高考真题汇编

一元二次二元一次基本不等式早练专题练习(三)附答案人教版高中数学高考真题汇编

2
sin x 1 sin x
t =_________。
19.不等式 ax2 4x a 1 2x2 对一切 x R 恒成立,则实数 a 的取值范围是__▲__。
x≥1
20.如果实数
x,
y
满足不等式组

x

y

1≤
0
,则 x2 y2 的最小值为
11.已知 a、b、c 满足 c b a ,且 ac 0 ,那么下列选项中一定成立的是( )
A. ab ac
B. c(b a) 0
C. cb2 ab2
D. ac(a c) 0 (汇编
北京理)(6)
12.设
f(x)=
2ex1, x 2,
log3
(x2
y 5
7.不等式
x2 x
x2 x
的解集是(

A. (0,2) B. (,0) C. (2, ) D.(-,0) (0, ) (汇编江西理)
8.已知 f (x) 是 R 上的减函数,则满足 f ( 1 ) f (1) 的实数 x 的取值范围是( ) x
A. (,1)
x m
A.-1 建文)
B.1
C. 3
D.2
(汇编福
2
()
4.双曲线 x2 y2 4 的两条渐近线与直线 x 3 围成一个三角形区域,表示该区域的不等
式组是( )
x y ≥ 0,A. 源自xy≥
0,
0 ≤ x ≤ 3
x y ≥ 0,
B.

x

y

0,
0 ≤ x ≤ 3
1),
x

高中数学一元二次不等式及其解法检测题(附答案)

高中数学一元二次不等式及其解法检测题(附答案)

高中数学一元二次不等式及其解法检测题(附答案)1.下列不等式的解集是的为()A.x2+2x+10 B.x20C.(12)x-1<0 D.1x-3>1x答案:D2.若x2-2ax+20在R上恒成立,则实数a的取值范围是()A.(-2,2] B.(-2,2)C.[-2,2) D.[-2,2]解析:选D.=(-2a)2-410,-22.3.方程x2+(m-3)x+m=0有两个实根,则实数m的取值范围是________.解析:由=(m-3)2-4m0可得.答案:m1或m94.若函数y=kx2-6kx+k+8的定义域是R,求实数k的取值范围.解:①当k=0时,kx2-6kx+k+8=8满足条件;②当k>0时,必有=(-6k)2-4k(k+8)0,解得0<k1.综上,01.一、选择题1.已知不等式ax2+bx+c<0(a0)的解集是R,则()A.a<0,>0 B.a<0,<0C.a>0,<0 D.a>0,>0答案:B2.不等式x2x+1<0的解集为()A.(-1,0)(0,+) B.(-,-1)(0,1)C.(-1,0) D.(-,-1)答案:D3.不等式2x2+mx+n0的解集是{x|x>3或x<-2},则二次函数y=2x2+mx+n的表达式是()A.y=2x2+2x+12 B.y=2x2-2x+12C.y=2x2+2x-12 D.y=2x2-2x-12解析:选D.由题意知-2和3是对应方程的两个根,由根与系数的关系,得-2+3=-m2,-23=n2.m=-2,n=-12.因此二次函数的表达式是y=2x2-2x-12,故选D.4.已知集合P={0,m},Q={x|2x2-5x<0,xZ},若P,则m等于()A.1 B.2C.1或25 D.1或2X k b 1 . c o m解析:选D.∵Q={x|0<x<52,xZ}={1,2},m=1或2. 5.如果A={x|ax2-ax+1<0}=,则实数a的集合为() A.{a|0<a<4} B.{a|0a<4}C.{a|0<a D.{a|04}解析:选D.当a=0时,有1<0,故A=.当a0时,若A=,则有a>0=a2-4a0<a综上,a{a|04}.6.某产品的总成本y(万元)与产量x(台)之间的函数关系式为y=3000+20x-0.1x2(0<x<240,xN),若每台产品的售价为25万元,则生产者不亏本(销售收入不小于总成本)时的最低产量是()A.100台 B.120台C.150台 D.180台解析:选C.3000+20x-0.1x225xx2+50x-300000,解得x -200(舍去)或x150.二、填空题7.不等式x2+mx+m2>0恒成立的条件是________.解析:x2+mx+m2>0恒成立,等价于<0,即m2-4m2<00<m<2.答案:0<m<28.(2019年高考上海卷)不等式2-xx+4>0的解集是________.解析:不等式2-xx+4>0等价于(x-2)(x+4)<0,-4<x<2.答案:(-4,2)9.某公司推出了一种高效环保型洗涤用品,年初上市后,公司经历了从亏损到赢利的过程.若该公司年初以来累积利润s(万元)与销售时间t(月)之间的关系(即前t个月的利润总和与t之间的关系)式为s=12t2-2t,若累积利润s超过30万元,则销售时间t(月)的取值范围为__________.解析:依题意有12t2-2t>30,解得t>10或t<-6(舍去).答案:t>10三、解答题10.解关于x的不等式(lgx)2-lgx-2>0.解:y=lgx的定义域为{x|x>0}.又∵(lgx)2-lgx-2>0可化为(lgx+1)(lgx-2)>0,lgx>2或lgx<-1,解得x<110或x>100.原不等式的解集为{x|0<x<110或x>100}.11.已知不等式ax2+(a-1)x+a-1<0对于所有的实数x 都成立,求a的取值范围.解:当a=0时,不等式为-x-1<0x>-1不恒成立.当a0时,不等式恒成立,则有a<0,<0,即a<0a-12-4aa-1<0a<03a+1a-1>0a<0a<-13或a>1a<-13.即a的取值范围是(-,-13).12.某省每年损失耕地20万亩,每亩耕地价值24000元,为了减少耕地损失,政府决定按耕地价格的t%征收耕地占用税,这样每年的耕地损失可减少52t万亩,为了既可减少耕地的损失又可保证此项税收一年不少于9000万元,则t应在什么范围内?解:由题意知征收耕地占用税后每年损失耕地为(20-52t)万亩.则税收收入为(20-52t)24000t%.由题意(20-52t)24000t%9000,整理得t2-8t+150,解得35.当耕地占用税率为3%~5%时,既可减少耕地损失又可保证一年税收不少于9000万元.。

部编版高中数学必修一第二章一元二次函数方程和不等式经典大题例题

部编版高中数学必修一第二章一元二次函数方程和不等式经典大题例题

(名师选题)部编版高中数学必修一第二章一元二次函数方程和不等式经典大题例题单选题1、若关于x的不等式|x−1|<a成立的充分条件是0<x<4,则实数a的取值范围是()A.(-∞,1]B.(-∞,1)C.(3,+∞)D.[3,+∞)答案:D分析:根据充分条件列不等式,由此求得a的取值范围.|x−1|<a成立的充分条件是0<x<4,则a>0,|x−1|<a⇒1−a<x<1+a,所以{1−a≤0⇒a≥3.1+a≥4故选:D2、不等式−x2+3x+18<0的解集为()A.{x|x>6或x<−3}B.{x|−3<x<6}C.{x|x>3或x<−6}D.{x|−6<x<3}答案:A分析:根据二次不等式的解法求解即可.−x2+3x+18<0可化为x2−3x−18>0,即(x−6)(x+3)>0,即x>6或x<−3.所以不等式的解集为{x|x>6或x<−3}.故选:A3、已知0<x<2,则y=x√4−x2的最大值为()A.2B.4C.5D.6答案:A分析:由基本不等式求解即可因为0<x<2,所以可得4−x 2>0,则y =x√4−x 2=√x 2⋅(4−x 2)≤x 2+(4−x 2)2=2,当且仅当x 2=4−x 2,即x =√2时,上式取得等号,y =x√4−x 2的最大值为2.故选:A .4、a,b,c 是不同时为0的实数,则ab+bca 2+2b 2+c 2的最大值为( )A .12B .14C .√22D .√32 答案:A分析:对原式变形,两次利用基本不等式,求解即可.若要使ab+bc a 2+2b 2+c 2最大,则ab,bc 均为正数,即a,b,c 符号相同,不妨设a,b,c 均为正实数,则ab+bca 2+2b 2+c 2=a+c a 2+c 2b +2b ≤2√22b ×2b =22=12√a 2+2ac+c 22(a 2+c 2)=12√12+ac a 2+c 2≤12√12+2√a 2×c 2=12, 当且仅当a 2+c 2b =2b ,且a =c 取等,即a =b =c 取等号,即则ab+bca 2+2b 2+c 2的最大值为12,故选:A .小提示:易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件:(1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方,注意多次运用不等式,等号成立条件是否一致.5、已知x >0,则下列说法正确的是( )A .x +1x −2有最大值0B .x +1x −2有最小值为0C .x +1x −2有最大值为-4D .x +1x −2有最小值为-4答案:B分析:由均值不等式可得x +1x ≥2√x ×1x =2,分析即得解 由题意,x >0,由均值不等式x +1x ≥2√x ×1x =2,当且仅当x =1x ,即x =1时等号成立 故x +1x −2≥0,有最小值0 故选:B6、已知a,b 为正实数,且a +b =6+1a +9b ,则a +b 的最小值为( ) A .6B .8C .9D .12答案:B分析:根据题意,化简得到(a +b )2=(6+1a +9b )(a +b )=6(a +b )+10+b a +9a b ,结合基本不等式,即可求解.由题意,可得(a +b )2=(6+1a +9b )(a +b )=6(a +b )+10+b a +9a b ≥6(a +b )+16, 则有(a +b )2−6(a +b )−16≥0,解得a +b ≥8,当且仅当a =2,b =6取到最小值8.故选:B.7、已知正数x ,y 满足2x+3y +13x+y =1,则x +y 的最小值( ) A .3+2√24B .3+√24C .3+2√28D .3+√28答案:A分析:利用换元法和基本不等式即可求解.令x +3y =m ,3x +y =n ,则2m +1n =1, 即m +n =(x +3y )+(3x +y )=4(x +y ),∴x+y=m+n4=(m4+n4)(2m+1n)=12+m4n+2n4m+14≥2√m4n⋅2n4m+34=2×2√2+34=2√2+34,当且仅当m4n =2n4m,即m=2+√2,n=√2+1时,等号成立,故选:A.8、设a>b>c>0,则2a2+1ab +1a(a−b)−10ac+25c2取得最小值时,a的值为()A.√2B.2C.4D.2√5答案:A解析:转化条件为原式=1ab +ab+1a(a−b)+a(a−b)+(a−5c)2,结合基本不等式即可得解.2a2+1ab+1a(a−b)−10ac+25c2=1ab+ab+1a(a−b)+a(a−b)−ab−a(a−b)+2a2−10ac+25c2 =1ab+ab+1a(a−b)+a(a−b)+a2−10ac+25c2=1ab+ab+1a(a−b)+a(a−b)+(a−5c)2≥2√1ab ⋅ab+2√1a(a−b)⋅a(a−b)+0=4,当且仅当{ab=1a(a−b)=1a=5c,即a=√2,b=√22,c=√25时,等号成立.故选:A.小提示:易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件:(1)“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.多选题9、已知方程x 2+mx +n =0及x 2+nx +m =0分别各有两个整数根x 1,x 2及x 3,x 4,且x 1x 2>0,x 3x 4>0.则下列结论一定正确的是( )A .x 1<0,x 2<0,x 3<0,x 4<0B .x 1+x 2+x 3+x 4≥−8C .n ≤m +1D .n +m ≥8答案:ACD分析:只需分别利用二次方程根与系数的关系,以及判别式判断出正确的结论.解:对于A :由x 1x 2>0知,x 1与x 2同号.若x 1>0,则x 2>0,这时−m =x 1+x 2>0,所以m <0,此时与m =x 3x 4>0矛盾,所以x 1<0,x 2<0.同理可证x 3<0,x 4<0.故A 正确;对于B :根据题意可知,{m 2−4n ≥0n 2−4m ≥0 , ∴{n ≤m 24m ≤n 24 ∵m >0,n >0,∴n ≤n 464,解得n ≥4.同理m ≥4,∴m +n ≥8,即x 1+x 2+x 3+x 4=−(m +n )≤−8,故B 不正确,D 正确;对于C :由A 知,x 3<0,x 4<0,x 3,x 4是整数,所以x 3≤−1,x 4≤−1.由韦达定理有m −n +1=x 3x 4+x 3+x 4+1=(x 3+1)(x 4+1)≥0,所以n ≤m +1,故C 正确;故选:ACD .10、已知a∈Z,关于x的一元二次不等式x2﹣4x+a≤0的解集中有且仅有3个整数,则a的值可以是()A.0B.1C.2D.3答案:BCD分析:把每个选项中的数代入关于x的一元二次不等式x2﹣4x+a≤0验证即可.解:当a=0时,一元二次不等式x2﹣4x+a≤0即为x2﹣4x≤0,解得0≤x≤4,有5个整数解,∴A错;当a=1时,一元二次不等式x2﹣4x+a≤0即为x2﹣4x+1≤0解得2−√3≤x≤2+√3,有3个整数解“1,2,3”,∴B对;当a=2时,一元二次不等式x2﹣4x+a≤0即为x2﹣4x+2≤0,解得2−√2≤x≤2+√2,有3个整数解“1,2,3”,∴C对;当a=3时,一元二次不等式x2﹣4x+a≤0即为x2﹣4x+3≤0,解得1≤x≤3,有3个整数解“1,2,3”,∴D对;故选:BCD.11、下列命题中,正确的是()A.若a>b,则ac2>bc2B.若a>b,则a3>b3C.若a>b>0,m>0,则b+ma+m >baD.若−1<a<5,2<b<3,则−4<a−b<3答案:BCD解析:利用不等式的性质,对ABCD一一验证.取c=0,代入验证A,有0>0,错误,故A不正确;对于B:记f(x)=x3,则f(x)为增函数,所以a>b时有f(a)>f(b),故B正确;对于C:记f(x)=b+xa+x (a>b>0,x≥0),易证f(x)为增函数,所以m>0时有f(m)>f(0),即b+ma+m>ba成立,故C正确;对于D:∵2<b<3,∴−3<−b<−2,又有−1<a<5,利用同向不等式相加,有:−4<a−b<3,故D 正确.故选:BCD小提示:利用不等式的性质,判断不等式是否成立的问题:对于不成立的情况,只用举一个反例就可以;对于成立的情况,需要利用不等式的性质进行证明.填空题12、已知关于x的不等式ax2+bx+c>0(a,b,c∈R)的解集为{x|3<x<4},则c2+5a+b的取值范围为________________.答案:[4√5,+∞)分析:由一元二次不等式的解集与一元二次方程根的关系,应用韦达定理把b,c用a表示,化待求式为一元函数,再利用基本不等式得结论.由不等式解集知a<0,由根与系数的关系知{−ba=3+4=7, ca=3×4=12,∴b=−7a,c=12a,则c2+5a+b =144a2+5−6a=−24a+5−6a≥2√(−24a)×5−6a=4√5,当且仅当−24a=5−6a ,即a=−√512时取等号.所以答案是:[4√5,+∞).小提示:易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件:(1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方。

高中数学必修5一元二次不等式及其解法精选题目(附答案)

高中数学必修5一元二次不等式及其解法精选题目(附答案)

高中数学必修5一元二次不等式及其解法精选题目(附答案)1.一元二次不等式我们把只含有一个未知数,并且未知数的最高次数是2的不等式,称为一元二次不等式,即形如ax2+bx+c>0(≥0)或ax2+bx+c<0(≤0)(其中a≠0)的不等式叫做一元二次不等式.2.一元二次不等式的解与解集使一元二次不等式成立的x的值,叫做这个一元二次不等式的解,其解的集合,称为这个一元二次不等式的解集.3.一元二次不等式与相应的二次函数及一元二次方程的关系表题型一:一元二次不等式解法1.解下列不等式:(1)2x2+5x-3<0;(2)-3x2+6x≤2;(3)4x2+4x+1>0;(4)-x2+6x-10>0.题型二:三个“二次”关系的应用2.若不等式ax 2+bx +2>0的解集是⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-12<x <13,则a +b 的值为( )A .14B .-10C .10D .-143.已知一元二次不等式x 2+px +q <0的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-12<x <13,求不等式qx 2+px +1>0的解集.题型三:解含参数的一元二次不等式4.解关于x 的不等式x 2+(1-a )x -a <0.巩固练习:1.不等式6x 2+x -2≤0的解集为( )A.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-23≤x ≤12B.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ≤-23或x ≥12 C.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ≥12D.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ≤-23 2.设a <-1,则关于x 的不等式a (x -a )⎝ ⎛⎭⎪⎫x -1a <0的解集为( )A.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x <a 或x >1a B .{x |x >a } C.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x >a 或x <1aD.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x <1a 3.在R 上定义运算⊙:a ⊙b =ab +2a +b ,则满足x ⊙(x -2)<0的实数x 的取值范围为( )A .(0,2)B .(-2,1)C .(-∞,-2)∪(1,+∞)D .(-1,2)4.不等式mx 2-ax -1>0(m >0)的解集可能是( )A.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x <-1或x >14 B .R C.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-13<x <32 D .∅5.函数y =17-6x -x 2的定义域为( )A .[-7,1]B .(-7,1)C .(-∞,-7]∪[1,+∞)D .(-∞,-7)∪(1,+∞)6.已知全集U =R ,A ={x |x 2-1≥0},则∁U A =________.7.若二次函数y =ax 2+bx +c (a <0)的图象与x 轴的两个交点为(-1,0)和(3,0),则不等式ax 2+bx +c <0的解集是________.8.已知函数f (x )=⎩⎨⎧x 2+2x ,x ≥0,-x 2+2x ,x <0.若f (a )≤3,则a 的取值范围是________.9.解关于x 的不等式x 2-3ax -18a 2>0. 10.若函数f (x )=2 018ax 2+2ax +2的定义域是R ,求实数a 的取值范围.参考答案:1.[解] (1)Δ=49>0,方程2x 2+5x -3=0的两根为x 1=-3,x 2=12, 作出函数y =2x 2+5x -3的图象,如图①所示.由图可得原不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-3<x <12.(2)原不等式等价于3x 2-6x +2≥0.Δ=12>0,解方程3x 2-6x +2=0,得x 1=3-33,x 2=3+33,作出函数y =3x 2-6x +2的图象,如图②所示,由图可得原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x ≤3-33或x ≥3+33. (3)∵Δ=0,∴方程4x 2+4x +1=0有两个相等的实根x 1=x 2=-12.作出函数y =4x 2+4x +1的图象如图所示.由图可得原不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ≠-12,x ∈R.(4)原不等式可化为x 2-6x +10<0,∵Δ=-4<0, ∴方程x 2-6x +10=0无实根,∴原不等式的解集为∅. 2.解:由已知得,ax 2+bx +2=0的解为-12,13,且a <0. ∴⎩⎪⎨⎪⎧-b a =-12+13,2a =⎝ ⎛⎭⎪⎫-12×13,解得⎩⎨⎧a =-12,b =-2,∴a +b =-14.3.解:因为x 2+px +q <0的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-12<x <13,所以x 1=-12与x 2=13是方程x 2+px +q =0的两个实数根,由根与系数的关系得⎩⎪⎨⎪⎧13-12=-p ,13×⎝ ⎛⎭⎪⎫-12=q ,解得⎩⎪⎨⎪⎧p =16,q =-16 .所以不等式qx 2+px +1>0即为-16x 2+16x +1>0,整理得x 2-x -6<0,解得-2<x <3.即不等式qx 2+px +1>0的解集为{x |-2<x <3}.4.[解] 方程x 2+(1-a )x -a =0的解为x 1=-1,x 2=a ,函数y =x 2+(1-a )x -a 的图象开口向上,则当a <-1时,原不等式解集为{x |a <x <-1};当a =-1时,原不等式解集为∅;当a >-1时,原不等式解集为{x |-1<x <a }. 5.设a ∈R ,解关于x 的不等式ax 2+(1-2a )x -2>0.5.解:(1)当a =0时, 不等式可化为x -2>0,解得x >2,即原不等式的解集为{x |x >2}.(2)当a ≠0时,方程ax 2+(1-2a )x -2=0的两根分别为2和-1a .①当a <-12时,解不等式得-1a <x <2,即原不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-1a <x <2;②当a =-12时,不等式无解,即原不等式的解集为∅;③当-12<a <0时,解不等式得2<x <-1a ,即原不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪2<x <-1a ; ④当a >0时,解不等式得x <-1a 或x >2,即原不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x <-1a 或x >2. 练习:1.解析:选A 因为6x 2+x -2≤0⇔(2x -1)·(3x +2)≤0,所以原不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-23≤x ≤12. 2.解析:选A ∵a <-1,∴a (x -a )·⎝ ⎛⎭⎪⎫x -1a <0⇔(x -a )·⎝ ⎛⎭⎪⎫x -1a >0.又a <-1,∴1a >a ,∴x >1a 或x <a .3.解析:选B 由a ⊙b =ab +2a +b ,得x ⊙(x -2)=x (x -2)+2x +x -2=x 2+x -2<0,所以-2<x <1.4.解析:选A 因为Δ=a 2+4m >0,所以函数y =mx 2-ax -1的图象与x 轴有两个交点,又m >0,所以原不等式的解集不可能是B 、C 、D ,故选A.5.解析:选B 由7-6x -x 2>0,得x 2+6x -7<0,即(x +7)(x -1)<0,所以-7<x <1,故选B.6.解析:∁U A ={x |x 2-1<0}={x |-1<x <1}. 答案:{x |-1<x <1}7.解析:根据二次函数的图象知所求不等式的解集为(-∞,-1)∪(3,+∞). 答案:(-∞,-1)∪(3,+∞)8.解析:当a ≥0时,a 2+2a ≤3,∴0≤a ≤1;当a <0时,-a 2+2a ≤3,∴a <0.综上所述,a 的取值范围是(-∞,1].9.解:将x 2-3ax -18a 2>0变形得(x -6a )(x +3a )>0, 方程(x -6a )(x +3a )=0的两根为6a ,-3a .所以当a >0时,6a >-3a ,原不等式的解集为{x |x <-3a 或x >6a };当a =0时,6a =-3a =0,原不等式的解集为{x |x ≠0}; 当a <0时,6a <-3a ,原不等式的解集为{x |x <6a 或x >-3a }. 10.解:因为f (x )的定义域为R ,所以不等式ax 2+2ax +2>0恒成立. (1)当a =0时,不等式为2>0,显然恒成立;(2)当a ≠0时,有⎩⎨⎧ a >0,Δ=4a 2-8a <0,即⎩⎨⎧a >0,0<a <2,所以0<a <2.综上可知,实数a 的取值范围是[0,2).。

高中数学一元二次函数方程和不等式真题

高中数学一元二次函数方程和不等式真题

(每日一练)高中数学一元二次函数方程和不等式真题单选题1、若不等式ax 2+bx +2>0的解集是{x |−12<x <13},则ax +b >0的解集为( )A .(−∞,−16)B .(−∞,16)C .(−16,+∞)D .(16,+∞) 答案:A分析:利用根于系数的关系先求出a,b ,再解不等式即可. 不等式ax 2+bx +2>0的解集是{x |−12<x <13}则根据对应方程的韦达定理得到:{(−12)+13=−ba(−12)⋅13=2a , 解得{a =−12b =−2,则−12x −2>0的解集为(−∞,−16) 故选:A2、已知x >0,y >0,且x +y =2,则下列结论中正确的是( ) A .2x+2y 有最小值4B .xy 有最小值1C .2x +2y 有最大值4D .√x +√y 有最小值4 答案:A分析:利用基本不等式和不等式的性质逐个分析判断即可解:x>0,y>0,且x+y=2,对于A,2x +2y=12(x+y)(2x+2y)=2+xy+yx≥2+2√xy⋅yx=4,当且仅当x=y=1时取等号,所以A正确,对于B,因为2=x+y≥2√xy,所以xy≤1,当且仅当x=y=1时取等号,即xy有最大值1,所以B错误,对于C,因为2x+2y≥2√2x⋅2y=2√2x+y=4,当且仅当x=y=1时取等号,即2x+2y有最小值4,所以C 错误,对于D,因为(√x+√y)2=x+y+2√xy≤2(x+y)=4,当且仅当x=y=1时取等号,即√x+√y有最大值4,所以D错误,故选:A3、若正实数a,b,满足a+b=1,则b3a +3b的最小值为()A.2B.2√6C.5D.4√3答案:C分析:化简b3a +3b=b3a+3a+3bb=b3a+3ab+3,然后利用基本不等式求解即可根据题意,若正实数a,b,满足a+b=1,则b3a +3b=b3a+3a+3bb=b3a+3ab+3≥2√b3a⋅3ab+3=5,当且仅当b=3a=34时等号成立,即b3a +3b的最小值为5;故选:C小提示:此题考查基本不等式的应用,属于基础题4、设a>b>1,y1=b+1a+1,y2=ba,y3=b−1a−1,则y1,y2,y3的大小关系是()A.y1<y2<y3B.y2<y1<y3C.y3<y2<y1D.y2<y3<y1答案:C分析:利用作差法先比较y1,y2,再比较y2,y3即可得出y1,y2,y3的大小关系.解:由a>b>1,有y1﹣y2=b+1a+1−ba=ab+a−ab−b(a+1)a=a−b(a+1)a>0,即y1>y2,由a>b>1,有y2﹣y3=ba −b−1a−1=ab−b−ab+aa(a−1)=a−ba(a−1)>0,即y2>y3,所以y1>y2>y3,故选:C.5、下列命题正确的是()A.若ac>bc,则a>b B.若ac=bc,则a=bC.若a>b,则1a <1bD.若ac2>bc2,则a>b答案:D分析:由不等式性质依次判断各个选项即可.对于A,若c<0,由ac>bc可得:a<b,A错误;对于B,若c=0,则ac=bc=0,此时a=b未必成立,B错误;对于C,当a>0>b时,1a >0>1b,C错误;对于D,当ac2>bc2时,由不等式性质知:a>b,D正确.故选:D.6、已知y=(x−m)(x−n)+2022(n>m),且α,β(α<β)是方程y=0的两实数根,则α,β,m,n的大小关系是()A.α<m<n<βB.m<α<n<βC.m<α<β<n D.α<m<β<n答案:C分析:根据二次函数图像特点,结合图像平移变换即可得到答案.∵α,β为方程y=0的两实数根,∴α,β为函数y=(x−m)(x−n)+2022的图像与x轴交点的横坐标,令y1=(x−m)(x−n),∴m,n为函数y1=(x−m)(x−n)的图像与x轴交点的横坐标,易知函数y=(x−m)(x−n)+2022的图像可由y1=(x−m)(x−n)的图像向上平移2022个单位长度得到,所以m<α<β<n.故选:C.7、若(x−a)2<4成立的一个充分不必要条件是1+12−x≤0,则实数a的取值范围为()A.(−∞,4]B.[1,4]C.(1,4)D.(1,4]答案:D分析:解一元二次不等式、分式不等式求得题设条件为真时对应x的范围,再根据条件的充分不必要关系求参数a的取值范围.由(x−a)2<4,可得:a−2<x<a+2;由1+12−x =3−x2−x≤0,则{(x−2)(x−3)≤02−x≠0,可得2<x≤3;∵(x−a)2<4成立的一个充分不必要条件是1+12−x≤0,∴{a−2≤2a+2>3,可得1<a≤4.故选:D.8、已知−1≤x+y≤1,1≤x−y≤5,则3x−2y的取值范围是()A.[2,13]B.[3,13]C.[2,10]D.[5,10]答案:A分析:设3x −2y =m (x +y )−n (x −y )=(m −n )x +(m +n )y ,求出m,n 的值,根据x +y,x −y 的范围,即可求出答案.设3x −2y =m (x +y )−n (x −y )=(m −n )x +(m +n )y ,所以{m −n =3m +n =−2,解得:{m =12n =−52,3x −2y =12(x +y )+52(x −y ), , 因为−1≤x +y ≤1,1≤x −y ≤5,所以3x −2y =12(x +y )+52(x −y )∈[2,13], 故选:A.9、y =x +4x (x ≥1)的最小值为( )A .2B .3C .4D .5 答案:C分析:利用均值不等式求解即可.因为y =x +4x(x ≥1),所以x +4x≥2√x ×4x=4,当且仅当x =4x即x =2时等号成立.所以当x =2时,函数y =x +4x 有最小值4. 故选:C.10、若a >0,b >0,则下面结论正确的有( ) A .2(a 2+b 2)≤(a +b)2B .若1a+4b=2,则 a +b ≥92C .若ab +b 2=2,则a +b ≥4D .若a +b =1,则ab 有最大值12答案:B分析:对于选项ABD 利用基本不等式化简整理求解即可判断,对于选项C 取特值即可判断即可. 对于选项A :若a >0,b >0,由基本不等式得a2+b2≥2ab,即2(a2+b2)≥(a+b)2,当且仅当a=b时取等号;所以选项A不正确;对于选项B:若a>0,b>0,1 2×(1a+4b)=1,a+b=12×(1a+4b)(a+b)=12(5+ba+4ab)≥12(5+2√ba⋅4ab)=92,当且仅当1a +4b=2且ba=4ab,即a=32,b=3时取等号,所以选项B正确;对于选项C:由a>0,b>0,ab+b2=b(a+b)=2,即a+b=2b,如b=2时,a+b=22=1<4,所以选项C不正确;对于选项D:ab≤(a+b2)2=14,当且仅当a=b=12时取等则ab有最大值14,所以选项D不正确;故选:B填空题11、a>b>c,n∈N∗,且1a−b +1b−c≥na−c恒成立,则n的最大值为__.答案:4分析:将不等式变形分离出n,不等式恒成立即n大于等于右边的最小值;由于a−c=a−b+b−c,凑出两个正数的积是常数,利用基本不等式求最值.解:由于1+1≥n恒成立,且a>c即n ≤a−c a−b+a−c b−c恒成立只要n ≤a−c a−b +a−cb−c 的最小值即可 ∵ a−ca−b +a−cb−c =a−b+b−c a−b+a−b+b−c b−c=2+b −c a −b +a −bb −c∵a >b >c∴a −b >0,b −c >0,故(a−ca−b +a−cb−c )≥4,因此n ≤4 所以答案是:4.12、x −y ≤0,x +y −1≥0,则z =x +2y 的最小值是___________. 答案:32##1.5分析:分析可得x +2y =32(x +y )−12(x −y ),利用不等式的基本性质可求得z =x +2y 的最小值.设x +2y =m (x +y )+n (x −y )=(m +n )x +(m −n )y ,则{m +n =1m −n =2 ,解得{m =32n =−12, 所以,z =x +2y =32(x +y )−12(x −y )≥32,因此,z =x +2y 的最小值是32.所以答案是:32.13、若正数a ,b 满足1a+1b=1,则4a−1+16b−1的最小值为__.答案:16分析:由条件可得1b−1=ab ,1a−1=ba ,代入所求式子,再由基本不等式即可求得最小值,注意等号成立的条件. 解:因为正数a ,b 满足1a +1b =1, 则有1a =1−1b =b−1b,则有1b−1=ab,1 b =1−1a=a−1a,即有1a−1=ba,则有4a−1+16b−1=4ba+16ab≥2√4ba⋅16abb=16,当且仅当4ba =16ab即有b=2a,又1a+1b=1,即有a=32,b=3,取得最小值,且为16.所以答案是:16.14、命题p:∀x∈R,x2+ax+a≥0,若命题p为真命题,则实数a的取值范围为___________. 答案:[0,4]分析:根据二次函数的性质判别式解题即可.∀x∈R,要使得x2+ax+a≥0,则Δ=a2−4a≤0,解得0≤a≤4.若命题p为真命题,则实数a的取值范围为[0,4].所以答案是:[0,4].15、已知a,b,c均为正实数,且aba+2b ⩾13,bcb+2c⩾14,cac+2a⩾15,那么1a+1b+1c的最大值为__________.答案:4分析:本题目主要考察不等式的简单性质,将已知条件进行简单变形即可因为a,b,c均为正实数,所以由题可得:0<a+2bab ≤3,0<b+2cbc≤4,0<c+2aac≤5,即0<1b+2a≤3,0<1c+2b≤4,0<1a +2c≤5,三式相加得:0<3(1a+1b+1c)≤12,所以0<1a+1b+1c≤4所以1a +1b+1c的最大值为4所以答案是:416、已知关于x的不等式−x2+6ax−3a2≥0(a>0)的解集为[x1,x2],则x1+x2+3ax1x2的最小值是___________. 答案:2√6分析:由题知x 1+x 2=6a,x 1x 2=3a 2,进而根据基本不等式求解即可. 解:因为关于x 的不等式−x 2+6ax −3a 2≥0(a >0)的解集为[x 1,x 2], 所以x 1,x 2是方程−x 2+6ax −3a 2=0(a >0)的实数根, 所以x 1+x 2=6a,x 1x 2=3a 2, 因为a >0,所以x 1+x 2+3ax 1x 2=6a +1a ≥2√6,当且仅当6a =1a ,即a =√66时等号成立, 所以x 1+x 2+3ax1x 2的最小值是2√6所以答案是:2√617、已知a >b >0,那么当代数式a 2+4b (a−b )取最小值时,点P (a,b )的坐标为______答案:(2,1)分析:根据题意有b(a −b)≤(b+a−b 2)2,当且仅当b =a −b ,即a =2b 时取等号,所以a 2+4b (a−b )≥a 2+16a 2≥16,结合a >b >0以及两个不等式等号成立的条件可求出a,b 的值,从而可求得答案 解:由a >b >0,得a −b >0,所以b(a −b)≤(b+a−b 2)2=a 24,当且仅当b =a −b ,即a =2b 时取等号,所以a 2+4b (a−b )≥a 2+16a 2≥16,其中第一个不等式等号成立的条件为a =2b ,第二个不等式等号成立的条件为a 2=16a 2,所以当a 2+4b (a−b )取最小值时,{a 2=16a 2a =2b a >b >0,解得{a =2b =1所以点P (a,b )的坐标为(2,1), 所以答案是:(2,1)小提示:关键点点睛:此题考查基本不等式的应用,解题的关键是多次使用基本不等式,但不要忽视每次取等号的条件,考查计算能力,属于中档题18、已知实数x ,y ,满足{−1≤x +y ≤4,2≤x −y ≤3,则z =2x −3y 的取值范围是________.(用区间表示)答案:[3,8]分析:直接用x +y,x −y 表示出2x −3y ,然后由不等式性质得出结论. 2x −3y =m(x +y)+n(x −y)=(m +n )x +(m −n )y ,则{m +n =2m −n =−3 解得{m =−12n =52 ,则2x −3y =−12(x +y)+52(x −y), 又−1≤x +y ≤4,2≤x −y ≤3, −2≤−12(x +y )≤12, 5≤52(x −y )≤152∴5−2≤2x −3y ≤12+152,即3≤2x −3y ≤8, 所以答案是:[3,8].19、 设x >0,y >0,x +2y =4,则(x+1)(2y+1)xy的最小值为__________.答案:92.分析:把分子展开化为(x+1)(2y+1)xy=2xy+x+2y+1xy=2xy+5xy=2+5xy,再利用基本不等式求最值.由x +2y =4,得x +2y =4≥2√2xy ,得xy ≤2(x+1)(2y+1)xy=2xy+x+2y+1xy=2xy+5xy=2+5xy ≥2+52=92,等号当且仅当x=2y,即x=2,y=1时成立.故所求的最小值为92.小提示:使用基本不等式求最值时一定要验证等号是否能够成立.20、已知∀a∈[0,2]时,不等式ax2+(a+1)x+1−32a<0恒成立,则x的取值范围为__________.答案:(−2,−1)分析:由题意构造函数关于a的函数f(a)=(x2+x−32)a+x+1,则可得{f(0)<0f(2)<0,从而可求出x的取值范围.由题意,因为当a∈[0,2],不等式ax2+(a+1)x+1−32a<0恒成立,可转化为关于a的函数f(a)=(x2+x−32)a+x+1,则f(a)<0对任意a∈[0,2]恒成立,则满足{f(0)=x+1<0f(2)=2x2+2x−3+x+1<0,解得−2<x<−1,即x的取值范围为(−2,−1).所以答案是:(−2,−1)解答题21、已知关于x的不等式ax2−x+1−a≤0.(1)当a∈R时,解关于x的不等式;(2)当a∈[2,3]时,不等式ax2−x+1−a≤0恒成立,求x的取值范围.答案:(1)答案见解析;(2)[−12,1].分析:(1)不等式ax2−x+1−a≤0可化为(x−1)(ax+a−1)≤0,然后分a=0,a<0,0<a<12,a =12,a >12五种情况求解不等式; (2)不等式ax 2−x +1−a ≤0对a ∈[2,3]恒成立,把a 看成自变量,构造函数f (a )=(x 2−1)a +(−x +1),则可得{f (2)≤0f (3)≤0,解不等式组可求出x 的取值范围 解:(1)不等式ax 2−x +1−a ≤0可化为(x −1)(ax +a −1)≤0,当a =0时,不等式化为x −1≥0,解得x ≥1,当a <0时,不等式化为(x −1)(x −1−a a )≥0, 解得x ≤1−a a ,或x ≥1;当a >0时,不等式化为(x −1)(x −1−a a )≤0; ①0<a <12时,1−a a >1,解不等式得1≤x ≤1−a a , ②a =12时,1−a a =1,解不等式得x =1, ③a >12时,1−a a <1,解不等式得1−a a ≤x ≤1.综上,当a =0时,不等式的解集为{x|x ≥1},当a <0时,不等式的解集为{x |x ≤1−a a或x ≥1}, 0<a <12时,不等式的解集为{x|1≤x ≤1−a a }, a =12时,不等式的解集为{x|x =1},a >12时,不等式的解集为{x|1−a a ≤x ≤1}.(2)由题意不等式ax 2−x +1−a ≤0对a ∈[2,3]恒成立,可设f (a )=(x 2−1)a +(−x +1),a ∈[2,3],则f (a )是关于a 的一次函数,要使题意成立只需:{f (2)≤0f (3)≤0 ⇒{2x 2−x −1≤03x 2−x −2≤0, 解得:−12≤x ≤1,所以x 的取值范围是[−12,1].22、设y =f (x )是定义在R 上的奇函数,且当x ≥0时,f (x )=2x −x 2.(1)求当x <0时,f (x )的解析式;(2)请问是否存在这样的正数a ,b ,当x ∈[a,b ]时,g (x )=f (x ),且g (x )的值域为[1b ,1a ]?若存在,求出a ,b 的值;若不存在,请说明理由.答案:(1)当x <0时,f (x )=x 2+2x (2)a =1,b =1+√52分析:(1)根据函数的奇偶性f (x )=−f (−x ),求解解析式即可;(2)根据题意,结合函数单调性,将问题转化为a ,b (0<a <b )是方程−x 2+2x =1x 的两个根的问题,进而解方程即可得答案.(1)当x <0时,−x >0,于是f (−x )=2(−x )−(−x )2=−2x −x 2.因为y =f (x )是定义在R 上的奇函数,所以f (x )=−f (−x )=−(−2x −x 2)=2x +x 2,即f (x )=2x +x 2(x <0).(2)假设存在正实数a 、b ,当x ∈[a,b ]时,g(x)=f(x)且g(x)的值域为[1b ,1a ], 根据题意,g (x )=−x 2+2x (x >0),因为g (x )=−x 2+2x =−(x −1)2+1≤1 ,则0<1a ≤1,得a ≥1.又函数g (x )在[1,+∞)上是减函数,所以{g(a)=1a g(b)=1b ,由此得到:a,b (1≤a <b )是方程−x 2+2x =1x的两个根, 解方程求得a =1,b =1+√52所以,存在正实数a =1,b =1+√52,当x ∈[a,b ]时,g(x)=f(x)且g(x)的值域为[1b ,1a ]。

(精选试题附答案)高中数学第二章一元二次函数方程和不等式必须掌握的典型题

(精选试题附答案)高中数学第二章一元二次函数方程和不等式必须掌握的典型题

(名师选题)(精选试题附答案)高中数学第二章一元二次函数方程和不等式必须掌握的典型题单选题1、已知x,y,z 都是正实数,若xyz =1,则 (x +y )(y +z )(z +x ) 的最小值为( ) A .2B .4C .6D .8 答案:D分析:均值定理连续使用中要注意等号是否同时成立. 由x >0,y >0,z >0可知x +y ≥2√xy >0(当且仅当x =y 时等号成立) y +z ≥2√yz >0(当且仅当y =z 时等号成立) x +z ≥2√xz >0(当且仅当x =z 时等号成立) 以上三个不等式两边同时相乘,可得(x +y )(y +z )(z +x )≥8√x 2y 2z 2=8(当且仅当x =y =z =1时等号成立) 故选:D2、已知使不等式x 2+(a +1)x +a ≤0成立的任意一个x ,都满足不等式3x −1≤0,则实数a 的取值范围为( )A .(−∞,−13)B .(−∞,−13] C .[−13,+∞)D .(−13,+∞) 答案:C分析:使不等式x 2+(a +1)x +a ≤0成立的任意一个x ,都满足不等式3x −1≤0,则不等式x 2+(a +1)x +a ≤0的解集是(−∞,13]的子集,求出两个不等式的解集,利用集合的包含关系列不等式求解. 解:由3x −1≤0得x ≤13,因为使不等式x 2+(a +1)x +a ≤0成立的任意一个x ,都满足不等式3x −1≤0 则不等式x 2+(a +1)x +a ≤0的解集是(−∞,13]的子集, 又由x 2+(a +1)x +a ≤0得(x +a )(x +1)≤0, 当a =1,x ∈{−1}⊆(−∞,13],符合;当a <1,x ∈[−1,−a ]⊆(−∞,13],则−a ≤13,∴1>a ≥−13,当a >1,x ∈[−a,−1]⊆(−∞,13],符合, 故实数a 的取值范围为[−13,+∞). 故选:C.3、若a ,b ,c 为实数,且a <b ,c >0,则下列不等关系一定成立的是( ) A .a +c <b +c B .1a <1b C .ac >bc D .b −a >c 答案:A分析:由不等式的基本性质和特值法即可求解.对于A 选项,由不等式的基本性质知,不等式的两边都加上(或减去)同一个数或同一个整式,不等号方向不变,则a <b ⇒a +c <b +c ,A 选项正确;对于B 选项,由不等式的基本性质知,不等式的两边都乘以(或除以)同一个负数,不等号方向改变,若a =−2,b =−1,则1a >1b ,B 选项错误;对于C 选项,由不等式的基本性质知,不等式的两边都乘以(或除以)同一个正数,不等号方向不变,c >0,0<a <b ⇒ac <bc ,C 选项错误;对于D 选项,因为a <b ⇒b −a >0,c >0,所以无法判断b −a 与c 大小,D 选项错误. 4、下列不等式恒成立的是( )A .a 2+b 2≤2abB .a 2+b 2≥−2abC .a +b ≥−2√|ab |D .a +b ≤2√|ab | 答案:B分析:由基本不等式,可判定A 不正确;由a 2+b 2+2ab =(a +b)2≥0,可判定B 正确;根据特例,可判定C 、D 不正确;由基本不等式可知a 2+b 2≥2ab ,故A 不正确;由a 2+b 2≥−2ab ,可得a 2+b 2+2ab ≥0,即(a +b )2≥0恒成立,故B 正确; 当a =−1,b =−1时,不等式不成立,故C 不正确; 当a =0,b =1时,不等式不成立,故D 不正确. 故选:B.5、若x >53,则3x +43x−5的最小值为( ) A .7B .4√3C .9D .2√3 答案:C分析:利用基本不等式即可求解. 解:∵ x >53,∴ 3x −5>0,则3x +43x−5=(3x −5)+43x−5+5≥2√(3x −5)⋅43x−5+5=9, 当且仅当3x −5=2时,等号成立, 故3x +43x−5的最小值为9,故选:C .6、已知a >0,b >0且ab =1,不等式12a +12b +ma+b ≥4恒成立,则正实数m 的取值范围是( ) A .m ≥2B .m ≥4C .m ≥6D .m ≥8答案:D分析:由条件结合基本不等式可求a +b 的范围,化简不等式可得m ≥4(a +b )−(a+b )22,利用二次函数性质求4(a +b )−(a+b )22的最大值,由此可求m 的取值范围.不等式12a +12b +ma+b ≥4可化为a+b2ab +ma+b ≥4,又a >0,b >0,ab =1, 所以m ≥4(a +b )−(a+b )22,令a +b =t ,则m ≥4t −t 22,因为a >0,b >0,ab =1,所以t =a +b ≥2√ab =2,当且仅当a =b =1时等号成立, 又已知m ≥4t −t 22在[2,+∞)上恒成立,所以m ≥(4t −t 22)max因为4t −t 22=12(8t −t 2)=−12(t −4)2+8≤8,当且仅当t =4时等号成立,所以m ≥8,当且仅当a =2−√3,b =2+√3或a =2−√3,b =2+√3时等号成立, 所以m 的取值范围是[8,+∞), 故选:D.7、已知函数y =ax 2+2bx −c(a >0)的图象与x 轴交于A (2,0)、B (6,0)两点,则不等式cx 2+2bx −a <0 的解集为( )A .(−6,−2)B .(−∞,16)∪(12,+∞)C .(−12,−16)D .(−∞,−12)∪(−16,+∞)答案:D解析:利用函数图象与x 的交点,可知ax 2+2bx −c =0(a >0)的两个根分别为x 1=2或x 2=6,再利用根与系数的关系,转化为b =−4a ,c =−12a ,最后代入不等式cx 2+2bx −a <0,求解集. 由条件可知ax 2+2bx −c =0(a >0)的两个根分别为x 1=2或x 2=6, 则2+6=−2ba,2×6=−ca ,得b =−4a ,c =−12a , ∴cx 2+2bx −a <0⇔−12ax 2−8ax −a <0,整理为:12x 2+8x +1>0⇔(2x +1)(6x +1)>0, 解得:x >−16或x <−12,所以不等式的解集是(−∞,−12)∪(−16,+∞).故选:D小提示:思路点睛:本题的关键是利用根与系数的关系表示b =−4a ,c =−12a ,再代入不等式cx 2+2bx −a <0化简后就容易求解. 8、若不等式2x 2+2mx+m 4x 2+6x+3<1对一切实数x 均成立,则实数m 的取值范围是( )A .(1,3)B .(−∞,1)C .(−∞,1)∪(3,+∞)D .(3,+∞) 答案:A分析:因为4x 2+6x +3=4(x +34)2+34>0恒成立,则2x 2+2mx+m 4x 2+6x+3<1恒成立可转化为2x 2+(6−2m )x +(3−m )>0恒成立,则Δ<0,即可解得m 的取值范围 因为4x 2+6x +3=4(x +34)2+34>0恒成立 所以2x 2+2mx+m 4x 2+6x+3<1恒成立⇔2x 2+2mx +m <4x 2+6x +3恒成立 ⇔2x 2+(6−2m )x +(3−m )>0恒成立 故Δ=(6−2m )2−4×2×(3−m )<0 解之得:1<m <3 故选:A9、已知集合M ={x |−4<x <2 },N ={x |x 2−x −6 <0},则M ∩N = A .{x |−4<x < 3}B .{x |−4<x < −2}C .{x |−2<x < 2}D .{x |2<x < 3} 答案:C分析:本题考查集合的交集和一元二次不等式的解法,渗透了数学运算素养.采取数轴法,利用数形结合的思想解题.由题意得,M ={x |−4<x <2 },N ={x |−2<x <3 },则 M ∩N ={x |−2<x <2 }.故选C .小提示:不能领会交集的含义易致误,区分交集与并集的不同,交集取公共部分,并集包括二者部分. 10、设m ,n 为正数,且m +n =2,则4m+1+1n+1的最小值为( )A .134B .94C .74D .95 答案:B分析:将m +n =2拼凑为m+14+n+14=1,利用“1”的妙用及其基本不等式求解即可.∵m +n =2,∴(m +1)+(n +1)=4,即m+14+n+14=1,∴4m+1+1n+1 =(4m+1+1n+1)(m+14+n+14) =n+1m+1+m+14(n+1)+54≥2√n+1m+1⋅m+14(n+1)+54 =94,当且仅当n+1m+1=m+14(n+1),且m +n =2时,即 m =53,n =13时等号成立. 故选:B . 填空题11、已知a ,b ∈R ,且a >b 2>0,则a 2+1(2a−b)b的最小值是 _____.答案:2分析:两次利用基本不等式即可得出结论. ∵a >b2>0, ∴a 2+1(2a−b)b ≥a 2+1(2a−b+b 2)2=a 2+1a 2≥2 ,当且仅当a =1=b 时取等号,其最小值是2,所以答案是:2.12、若正数a 、b 满足a +b =1,则13a+2+13b+2的最小值为________. 答案:47分析:由a +b =1可得(3a +2)+(3b +2)=7,将代数式(3a+2)+(3b+2)7与13a+2+13b+2相乘,展开后利用基本不等式可求得13a+2+13b+2的最小值.已知正数a 、b 满足a +b =1,则(3a +2)+(3b +2)=7,所以,13a+2+13b+2=(3a+2)+(3b+2)7⋅(13a+2+13b+2) =17(3b+23a+2+3a+23b+2+2)≥17(2√3b+23a+2⋅3a+23b+2+2)=47, 当且仅当a =b =12时,等号成立. 因此,13a+2+13b+2的最小值为47. 所以答案是:47.小提示:本题考查利用基本不等式求代数式的最值,考查了1的妙用,考查计算能力,属于基础题. 13、函数y =2√x 2+1的最小值是___________.答案:4分析:根据基本不等式可求出结果. 令t =√x 2+1≥1,则y =2√x 2+1=t +4t≥4,当且仅当t =2,即x =±√3时,y min =4.所以函数y =2√x 2+1的最小值是4.所以答案是:4小提示:易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.14、若x,y∈R+,(x−y)2=(xy)3,则1x +1y的最小值为___________.答案:2分析:根据题中所给等式可化为(1y −1x)2=xy,再通过平方关系将其与1x+1y联系起来,运用基本不等式求解最小值即可.因为(x−y)2=(xy)3且x,y∈R+,则两边同除以(xy)2,得(1y −1x)2=xy,又因为(1x +1y)2=(1y−1x)2+41xy=xy+41xy≥2√xy⋅41xy=4,当且仅当xy=41xy,即x=2+√2,y=2−√2时等号成立,所以1x +1y≥√4=2.故答案为:215、方程x2−(2−a)x+5−a=0的两根都大于2,则实数a的取值范围是_____.答案:−5<a≤−4分析:根据一元二次方程根的分布即可求解.解:由题意,方程x2-(2-a)x+5-a=0的两根都大于2,令f(x)=x2-(2-a)x+5-a,可得{△≥0f(2)>02−a 2>2,即{a2≥16a+5>02−a>4,解得-5<a≤-4.所以答案是:−5<a≤−4.解答题16、已知关于x的不等式(a2+4a−5)x2−4(a−1)x+3>0的解集为R,求实数a的取值范围.答案:1≤a<19分析:按照两种情况讨论:①当a2+4a−5=0时,可得a=1符合;②当a2+4a−5≠0时,根据图象的开口方向和判别式列式可解得结果.根据题意,分两种情况①当a 2+4a −5=0时,即a =1或a =−5时, 若a =1,不等式变为3>0,成立,符合条件;若a =−5,不等式变为24x +3>0,解集为{x|x >−18},不符合题意.②当a 2+4a −5≠0时,不等式为一元二次不等式,要使解集为R ,则对应二次函数的图象开口只能向上,且Δ=16(a −1)2−12(a 2+4a −5)<0, 即a 2+4a −5>0且Δ=16(a −1)2−12(a 2+4a −5)<0, 则a <−5或a >1,且a 2−20a +19<0, 所以a <−5或a >1,且1<a <19, 即1<a <19,综上,实数a 的取值范围1≤a <19.小提示:本题考查了分类讨论思想,考查了一元二次不等式恒成立问题,属于基础题. 17、已知a ,b 都是正数.(1)若a +b =1−2√ab ,证明:b √a +a √b ≥4ab ; (2)当a ≠b 时,证明:a √a +b √b >b √a +a √b . 答案:(1)证明见解析 (2)证明见解析分析:(1)根据a +b =1−2√ab 可得√a +√b =1,再结合b √a+a √bab化简,利用基本不等式证明即可(2)根据证明的不等式逆推即可 (1)证明:由a +b =1−2√ab ,得(√a +√b)2=1,即√a +√b =1b √a+a √bab=√ab(√b+√a)ab=√a +√b=(√a √b)(√a +√b)=2+√b √a√a √b≥2+2√√b √a√a √b=4,当且仅当a =b =14时“=”成立.所以b √a +a √b ≥4ab . (2)要证a √a +b √b >b √a +a √b , 只需证√a(a −b)−√b(a −b)>0, 即证(√a −√b)(a −b)>0, 即证(√a −√b)2(√a +√b)>0,因为(√a −√b)2>0,√a +√b >0,所以上式成立, 所以a √a +b √b >b √a +a √b 成立. 18、设函数y =ax 2+bx +3(a ≠0)(1)若不等式ax 2+bx +3>0的解集为(−1,3),求a,b 的值; (2)若a +b =1,a >0,b >0,求1a +4b 的最小值 答案:(1){a =−1,b =2;(2)9.分析:(1)由不等式f(x)>0的解集(−1,3).−1,3是方程f(x)=0的两根,由根与系数的关系可求a ,b 值; (2)由a +b =1,将所求变形为(a +b)(1a +4b )展开,整理为基本不等式的形式求最小值.解析:(1)∵不等式ax 2+bx +3>0的解集为(-1,3),∴-1和3是方程ax 2+bx +3=0的两个实根, 从而有{a −b +3=09a +3b +3=0解得{a =−1,b =2.(2)∵a +b =1,又a >0,b >0,∴1a +4b =(1a +4b ) (a +b )= 5+ba +4ab ≥5+2√ba ⋅4a b=9,当且仅当{ba =4ab a +b =1即{a =13b =23 时等号成立,∴1a +4b 的最小值为9.【小提示】本题考查了二次函数的图象和性质,运用基本不等式求最值,属于中档题.19、已知函数f (x )=x 2+ax −2,f (x )>0的解集为{x |x <−1 或x >b }.(1)求实数a 、b 的值;(2)若x ∈(0,+∞)时,求函数g (x )=f (x )+4x 的最小值. 答案:(1)a =−1,b =2(2)2√2−1分析:(1)分析可知−1、b 是方程x 2+ax −2=0的两个根,利用一元二次方程根与系数的关系可求得a 、b 的值;(2)求得g (x )=x +2x −1,利用基本不等式可求得g (x )在(0,+∞)上的最小值.(1)解:因为关于x 的不等式x 2+ax −2>0的解集为{x |x <−1 或x >b },所以,−1、b 是方程x 2+ax −2=0的两个根,所以,{1−a −2=0−1⋅b =−2 ,解得{a =−1b =2. (2)解:由题意知g (x )=f (x )+4x =x 2−x+2x =x +2x −1, 因为x >0,由基本不等式可得g (x )=x +2x −1≥2√x ⋅2x −1=2√2−1,当且仅当x =2x 时,即x =√2时,等号成立故函数g (x )的最小值为2√2−1.。

高中数学必修五同步练习题库:一元二次不等式及其解法(选择题:一般)

高中数学必修五同步练习题库:一元二次不等式及其解法(选择题:一般)

一元二次不等式及其解法(选择题:一般)1、不等式组的解集是()A. B. C. D.或2、关于的不等式的解集为,且,则()A. B. C. D.3、已知不等式的解集为,则不等式的解集为()A. B.C. D.4、若不等式对一切恒成立,则实数取值的集合为()A. B. C. D.5、已知不等式的解集为,则不等式的解集为( ) A. B.C. D.6、已知集合则 ( )A. B. C. D.7、关于的不等式()的解集为,且,则()A. B. C. D.8、已知不等式对任意,恒成立,则实数的取值范围是()A. B. C. D.9、不等式对于恒成立,则的取值范围是()A. B. C. D.10、对于任意实数,不等式恒成立,则实数的取值范围是( ) A. B. C. D.11、对于任意实数,不等式恒成立,则实数的取值范围是( ) A. B.(-∞,2] C. D.12、若关于的不等式的解集为,则实数的值是()A.1 B.2 C.3 D.413、若二次不等式在区间[2,5]上有解,则的取值范围是A. B. C. D.14、不等式的解集是()A. B.C. D.15、不等式的解为()A. B. C. D.16、已知不等式的解集是,则的值为()A. B. C. D.17、不等式x2-x+m>0在R上恒成立”的一个必要不充分条件是( )A. B. C. D.18、关于的不等式的解集为,则不等式的解为()A. B. C. D.19、若不等式的解集为,则的值为 ( )A. B. C. D.20、不等式的解集是()A. B. C. D.21、对于任意实数x,不等式( a-2)x2-2(a-2)x-4<0恒成立,则实数a的取值范围是( )A.(-∞,2) B.(-∞,2]C.(-2,2) D.(-2,2]22、若不等式的解集为,则的值为 ( )A. B. C. D.23、设集合P={m|-1<m≤0,Q={m∈R|mx2+4mx-4<0对任意实数x成立,则下列关系中成立的是()A.P Q B.Q P C.P=Q D.P∩Q=φ24、若实数,且,满足,,则代数式的值为()A.-20 B.2 C.2或-20 D.2或2025、若实数,且满足,,则代数式的值为()A.-20 B.2 C.2或-20 D.2或2026、已知关于的不等式对任意恒成立,则有( )A. B. C. D.27、若为的解集,则的解集为()A.或 B.C. D.或28、若对任意实数x∈R,不等式恒成立,则实数m的取值范围是()A.[2,6] B.[-6,-2] C.(2,6) D.(-6,-2)29、用表示非空集合中的元素个数,定义,若,,且,则的取值范围是( ) A.或 B.或C.或 D.或30、已知集合,,则()A. B. C. D.31、已知方程组的解为非正数,为非负数,则的取值范围是()A. B. C. D.32、已知集合,,则A. B. C. D.33、已知集合,,则A. B. C. D.34、已知函数的值域为,若关于的不等式的解集为,则实数的值为( )A.6 B.7 C.9 D.1035、不等式组的解集是()A. B. C. D.或36、若“”是“不等式成立”的一个充分不必要条件,则实数的取值范围是()A. B. C. D.37、不等式的解集是()A. B. C. D.38、已知,则()A. B. C. D.39、若关于x的不等式ax2+bx+2<0的解集为,则a﹣b的值是()A.﹣14 B.﹣12 C.12 D.1440、对任意实数x,若不等式恒成立,则实数m的取值范围是()A. B. C. D.41、若不等式的解集为,则的值为 ( )A. B. C. D.42、不等式ax2+bx+2>0的解集是,则a-b等于()A.-10 B.10 C.-14 D.1443、当时,不等式恒成立,则k之的取值范围是()A. B. C. D.(0,4)44、若不等式和不等式的解集相同,则、的值为()A.=﹣8 =﹣10 B.=﹣4 =﹣9C.=﹣1 =9 D.=﹣1 =245、若{x|2<x<3}为x2+ax+b<0的解集,则bx2+ax+1>0的解集为()A.{x|x<2或x>3} B.{x|2<x<3}C. D.46、当时,不等式恒成立,则的取值范围是A. B.C. D.47、若不等式x2-kx+k-1>0对x∈(1,2)恒成立,则实数k的取值范围是()A.(-∞,2] B.(1,+∞) C.(-∞,2) D.[1,+∞)48、函数的定义域是()A.{x|x<-4或x>3} B.{x|-4<x<3}C.{x|x≤-4或x≥3} D.{x|-4≤x≤3}49、当|x|≤1时,函数y=ax+2a+1的值有正也有负,则实数a的取值范围是()A.a≥- B.a≤-1C.-1<a<- D.-1≤a≤-50、不等式的解集为()A.或 B. C. D.或51、当x∈R时,不等式kx2-kx+1>0恒成立,则k的取值范围是()A.(0,+∞) B.[0,+∞) C.[0,4) D.(0,4)52、已知关于x的不等式ax2-x+b≥0的解集为[-2,1],则关于x的不等式bx2-x+a≤0的解集为()A.[-1,2] B.[-1, ] C.[-,1] D.[-1,-]53、若关于的不等式的解集不是空集,则实数的取值范围是( )A.[2,+∞) B.(-∞,-6] C.[-6,2] D.(-∞,-6]∪[2,+∞)54、已知不等式的解集为,则不等式的解集为( ) A. B.C. D.55、若关于x的不等式在区间内有解,则实数a的取值范围是()A. B. C. D.56、不等式的解集为A. B. C.R D.57、当|x|≤1时,函数y=ax+2a+1的值有正也有负,则实数a的取值范围是()A.a≥- B.a≤-1C.-1<a<- D.-1≤a≤-58、二次函数的部分对应值如下表:则一元二次不等式的解集是A. B.C. D.59、对于任意实数,不等式恒成立,则实数的取值范围是()A. B. C. D.60、若关于的不等式的解集为,且,则()A. B. C. D.61、已知关于x的不等式ax2-x+b≥0的解集为[-2,1],则关于x的不等式bx2-x+a≤0的解集为()A.[-1,2] B.[-1, ] C.[-,1] D.[-1,-]62、不等式的解集是 ( )A. B.C. D.63、若关于的不等式在区间上有解,则实数的取值范围为()A. B. C. D.64、设,=,C U A=,则m的取值范围是()A.[0, ) B.{0} (,+)C.(-,0] D.( -,0] (,+)65、关于x的不等式ax-b>0的解集是(1,+),则关于x的不等式(ax+b)(x-2)>0的解集是()A.(1,2) B.(-1,2)C.(-,-1)(2,+) D.(-,1)(2,+)66、当x>0时,若不等式x2+ax+4≥0恒成立,则a的最小值为()A.-2 B.2 C.-4 D.467、若关于的不等式在区间上有解,则实数的取值范围为()A. B. C. D.68、若关于的不等式在区间上有解,则实数的取值范围为()A. B. C. D.69、函数的定义域为_______________.70、关于x的不等式的解集中,恰有个整数,则a的取值范围是()A. B. C. D.参考答案1、C2、A3、B4、D5、B6、C.7、A8、B9、A10、C11、D12、A13、A14、D15、C16、A17、B18、C19、B20、A21、D22、B23、C24、A25、A26、A27、D28、A29、D30、B31、D32、A33、A34、C35、C36、D37、D38、B39、A40、A41、B42、A43、C44、B45、D46、C47、A48、C49、C50、C51、C52、C53、D54、B55、A56、A57、C58、C59、A60、D61、C62、B63、A64、A65、C66、C67、A68、A69、70、D【解析】1、求解不等式:可得:;求解不等式:可得:;据此可得不等式组的解集是.本题选择C选项.点睛:解一元二次不等式时,当二次项系数为负时要先化为正,再根据判别式符号判断对应方程根的情况,然后结合相应二次函数的图象写出不等式的解集.2、试题分析:原不等式等价于,,所以不等式的解集为:,所以,解得,故选A.考点:一元二次不等式3、由题意可知的两个根为,不等式即为,解不等式得解集为.考点:三个二次之间的关系.4、当时,恒成立;当时,有解得,所以.考点:不等式恒成立问题.5、试题分析:由已知可得是方程的两根.由根与系数的关系可知,,.代入不等式解得.考点:本题考查一元二次不等式的解法.6、试题分析:解得,,故选C.考点:1.一元二次不等式的解法;2.集合的运算.7、试题分析:由得,,所以.所以选A. 考点:1.含参的二次不等式的解法.8、不等式等价于,令,由得在上是减函数,时,取最大值,故选B.9、不等式对于恒成立,(1)时,不等式成立;当时,,;综上可知:的取值范围是.10、,即时,恒成立,时,则有,解得,故选C.11、首先讨论当二次项系数为0时,即a=2时,原不等式为-4<0,恒成立;当时,该函数是二次函数,则要求开口向下,判别式小于零,,且两种情况并到一起,得到a的范围为。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学一元二次不等式练习题第一篇:高中数学一元二次不等式练习题一、解下列一元二次不等式:1、x2+5x+6>02、x2-5x-6≤03、x2+7x+12<04、x2-7x+6≥05、x2-x-12<06、x2+x-12>07、x2-8x+12≥08、x2-4x-12<09、3x2+5x-12>0 10、3x2+16x-12>011、3x2-37x+12>012、2x2+15x+7≤0 13、2x2+11x+12≥014、3x2-7x>1015、-2x2+6x-5<0 16、10x2-33x+20≤01719、-x2-2x+3≥022、3x2-7x+2<02325、2x2+11x+6<02628、5x2+14x-3≤02931、8x2-2x-3>03234、2x2-x-21>03537、5x2+17x-12≤03840、16x2+8x-3<04143、4x2-29x-24≤04446、12x2+16x-3>04749、6x2+25x+14≤050、x2-4x+5<018、-6x2-x+2≤0、6x2+x-1≤024、-3x2-11x+4>027、12x2+7x-12>030、8x2+10x-3≥033、4x2+8x-21>036、10x2-11x-6>039、10x2-7x-12≥042、4x2-21x-18>045、4x2-9<048、20x2-41x+9≤051、-x2+4x-4>021、x2-3x+5>0、4x2+4x-3>0、x2-4≤0、2x2-11x-21≥0、4x2-15x-4<0、4x2-8x-5<0、16x2-8x-3>0、10x2+x-2>0、9x2+6x-8>0、12x2-20x+3>0、(x+2)(x-3)<620第二篇:一元二次不等式基础练习题一元二次不等式强化一、十字相乘法练习:1、x2+5x+6=2、x2-5x+6=3、x2+7x+12=4、x2-7x+6=5、x2-x-12=6、x2+x-12=7、x2+7x+12=8、x2-8x+12=9、x2-4x-12=10、3x+5x-12=11、3x+16x-12=12、3x2-37x+12=13、2x2+15x+7=14、2x2-7x-15=15、2x2+11x+12=16、2x2+2x-12=二、一元二次不等式 22解一元二次不等式时化为一般格式:ax2+bx+c>0(a>0)或ax2+bx+c<0(a>0);练习:1、解下列不等式:(1)3x2-7x>10;(2)-2x2+6x-5<0;(3)x2-4x+5<0 ;(4)10x2-33x+20<0;(5)-x2+4x-4>0;(6)x2-(2m+1)x+m2+m<0;(7)(x+5)(3-x)>0;(8)(5-x)(3-x)<0;x--4(9)(5+2x)(3-x)<0;(10>0;x+32-x(11)<0;4+x2、(1)解关于x的不等式x2-2ax-3a2<0(2)解关于x的不等式x+(1-a)x-a<0.3、(1)若不等式ax2+bx+c>0的解集是{x-3(2)已知一元二次不等式ax2+bx+2>0的解集为{x|-2A.a<0;B.-20≤a<0;C.-20≤a≤0;........D.-20(3)对任意实数x,不等式x2+x+k>0恒成立,则k的取值范围是___________第三篇:一元二次不等式综合练习题一元二次不等式综合练习题解答题1.已知集合A={x|x2-x-2≤0},B={x|a<x<a+3},且A I B=φ,求实数a的取值范围是2.若不等式ax2+bx+c>0的解集为{x|2<x<5},解不等式cx2+bx+a<03.解关于x的不等式2x2-(4+a)x-2a<04.已知函数f(x)=(k2+4k-5)x2+4(1-k)x+3的图像在x轴上,求实数k的取值范围x25.已知函数f(x)=(a,b为常数),且方程f(x)-x+12=0有两个实数ax+bx1=3,x2=4.(1)求函数f(x)的解析式;(2)设k>1,解关于x的不等式f(x)<(k+1)x-k 2-x第四篇:一元二次不等式基础练习题答案一、十字相乘法练习:1、x2+5x+6=(x+2)(x+3)2、x2-5x+6=(x-2)(x-3)3、x2+7x+12=(x+3)(x+4)4、x2-7x+6=(x-1)(x-6)5、x2-x-12=(x-4)(x+3)6、x2+x-12=(x+4)(x-3)7、x2+7x+12=(x+4)(x+3)8、x2-8x+12=(x-2)(x-6)9、x2-4x-12=(x+2)(x-6)10、3x+5x-12=(3x-4)(x+3)11、3x+16x-12=(3x-2)(x+6)12、3x2-37x+12=(3x-1)(x-12)13、2x2+15x+7=(2x+1)(x+7)14、2x2-7x-15=(2x+3)(x-5)15、2x2+11x+12=(2x+3)(x+4)16、2x2+2x-12=2(x-2)(x+3)二、一元二次不等式 22解一元二次不等式时化为一般格式:ax2+bx+c>0(a>0)或ax2+bx+c<0(a>0);练习:1、解下列不等式:10(2)-2x2+6x-5<0;R3(3)x2-4x+5<0 ;空集(4)10x2-33x+20<0;0.810;x(5)-x2+4x-4>0;空集(6)x2-(2m+1)x+m2+m<0;m(7)(x+5)(3-x)>0;-55x--4>0;x4x+32-x(11)<0;x24+x2、(1)解关于x的不等式x2-2ax-3a2<0a>0时,不等式解为:-aa<0时,不等式解为:3aa=0时,不等式解为:空集(2)解关于x的不等式x+(1-a)x-a<0.a>-1时,不等式解为:-1a<-1时,不等式解为:aa=-1时,不等式解为:空集3、(1)若不等式ax2+bx+c>0的解集是{x-3(2)已知一元二次不等式ax2+bx+2>0的解集为{x|-2A.a<0;B.-20≤a<0;C.-20≤a≤0;........D.-20(2)对于任意实数x,不等式ax2+2ax-(a+2)<0恒成立,则a的取值范围是______________________________-1(3)对任意实数x,不等式x2+x+k>0恒成立,则k的取值范围是___________k>0.25第五篇:一元二次不等式及其解法1.a.b.c.解一元二次不等式化为标准型。

判断△的符号。

若△<0,则不等式是在R上恒成立或恒不成立。

若△>0,则求出两根,在数轴上标出,每个根上画一条竖线,再从右到左相间标正负号,不等式大于0则取标正的范围,小于0则取标负的范围。

2.解简单一元高次不等式a.化为标准型。

b.将不等式分解成若干个因式的积。

c.求出各个根,在数轴上标出,每个根上画一条竖线,再从右到左相间标正负号,不等式大于0则取标正的范围,小于0则取标负的范围。

3.解分式不等式的解a.化为标准型。

b.可将分式化为整式,将整式分解成若干个因式的积。

c.求出各个根,在数轴上标出,每个根上画一条竖线,再从右到左相间标正负号,不等式大于0则取标正的范围,小于0则取标负的范围。

(如果不等式是非严格不等式,则要注意分式分母不等于0。

)4.解含参数的一元二次不等式a.对二次项系数a的讨论。

若二次项系数a中含有参数,则须对a的符号进行分类讨论。

分为a>0,a=0,a<0。

b.对判别式△的讨论若判别式△中含有参数,则须对△的符号进行分类讨论。

分为△>0,△=0,△<0。

c.对根大小的讨论若不等式对应的方程的根x1、x2中含有参数,则须对x1、x2的大小进行分类讨论。

分为x1>x2,x1=x2,x1<x2。

5.一元二次方程的根的分布问题a.将方程化为标准型。

(a的符号)b.画图观察,若有区间端点对应的函数值小于0,则只须讨论区间端点的函数值。

若没有区间端点对应的函数值小于0,则须讨论区间端点的函数值、△、轴。

6.一元二次不等式的应用⑴在R上恒成立问题(恒不成立问题相反,在某区间恒成立可转化为实根分布问题)a.对二次项系数a的符号进行讨论,分为a=0与a≠0。

b.a=0时,把a=0带入,检验不等式是否成立,判断a=0是否属于不等式解集。

a≠0时,则转化为二次函数图像全在x轴上方或下方。

若f(x)>0,则要求a>0,△<0。

若f(x)<0,则要求a<0,△<0。

⑵特殊题型:已知一不等式的解集(含有字母),求另一不等式的解集(与原不等式系数大小相同,位置不同)。

a.写出原不等式对应的方程,由韦达定理得出解集字母与方程系数间的关系。

b.写出变换后不等式对应的方程,由由韦达定理得出解集字母与方程系数间的关系。

c.将a中得到的关系变化后带入b的关系中,得到变换后方程的两根。

d.判断两根的大小,变换后不等式二次项的系数,从而写出所求解集。

相关文档
最新文档