平衡吊的动力学与运动学仿真

平衡吊的动力学与运动学仿真
平衡吊的动力学与运动学仿真

平衡吊的运动学与动力学仿真

作者:** 指导老师:**

********** ***************

1绪论

1.1平衡吊的概要

平衡吊是的主要结构是平行四边形连杆机构的放大形态和螺母升降结构,通过外力的作用下达到重物的上升和下降的目的,平衡吊可以满足重物随时停留在需要的工作区域。比其他的吊装设备更具有优越性,它比一般吊装设备更加的灵活,从而更加的精准,与机械手相比等其他吊装设备比,其结构更加得合理,性能较好,广泛的使用于重工业的生产中,在机床厂中更是被用作吊装作业,在小型企业装卸货物,例如码头的施工,集装箱的搬运,非常适合于作业区域窄,时间间隔短的作业方式。其极大减少了人力使用,有效地节约了人力资源。

平衡吊在市场上主要常见的有3种,机械式,气动式,液压式,机械式,顾名思义,通过外力的使用,使其达到升降的目的,主要在生产,搬运的的领域中常见,后期,更是添加了电动装置,优化了他的配置,有效地提高了生产效率。气动式平衡吊主要是对于气压的控制原理实现升降功能的我们成为气动式平衡吊,液压式,主要是根据液压系统来设置的,在大多数重工业生产地使用广泛。现在主要使用的为气动式平衡吊,主要省力,都是自动化进行的,按照平衡吊臂的类型还可以将平衡吊分为通用和专用类型,他们各有各的特色,相对于大型的吊车来说,其缺点是工作的行程围较小,区域局限化。

平衡吊的种类及其特点:

液压平衡吊的特点:液压平衡吊有3大类,有级,单级,无级变速的,他们通过不同的油路控制来达到不同的工作地点;

气动平衡吊的特点:体积不大,比一般的平衡吊具有灵活的特色;

电动平衡吊:又称为机械式平衡吊,具有控制重物在任意指定地点的特点,一般为定速转动;

Cad(2D)+solidworks(3D)图纸整套免费获取,需要

的加QQ1162401387

1.2平衡吊的结构

平衡吊主要有大小臂,起重臂,短臂,电机,立柱,丝杆螺母传动副构成的,其中的几个臂件通过平行四边形连杆机构构成的。在外力的作用下起到升降重物的作用。

1.3平衡吊存在的缺陷

以下是平很吊仍旧存在的一些缺陷,我们根据国外的吊装装置进行了对比,后期需要集中地优化和处理,产品的质量稳定性一直是个广泛受关注的焦点,国的产品一直较国外的稳定系差距很大,极影响了使用的期限,出产的配件较少,我国的平衡吊的吊钩部分仅为吊钩,虽然可佩手抓机构,由缺少配件极大了使得生产灵活性受到了限制。平衡吊在安装的途径,设计的流程,可靠性能,外观和细节中和国外有很大的差距,其系列还不够完善,规格和种类相对较少,在特定的领域具有很大的局限性,在传动装置的设计方面不够理想,我国的标准型电动平衡吊为定速的升降速度,极降低了零部件的使用寿命,并极影响了使用和安全性。气动,液压式虽然有无级和有级的变速,达到稳定性,控制性却很低,我们需要进一步的研究其控制性能,才能使其满足生产作业的需求。

2平衡吊的设计

以下部分主要是机构的选择和计算,包括对于整个装置的受力分析,得到相应的的数据,由得出的数据进行后续的SolidWorks建模与动力学与运动学的仿真分析。

2.1平衡吊的工作原理

如图(a)(b)所示,吊钩处施加外力的作用可以带动物体使平行四边形连杆机构做水平方向左右往复运动,而电动机带动丝杆螺母机构进行上下往复运动,再由平行四边形连杆机构传递运动,进而控制吊钩处的物体上下运动,此外,,平行四边形连杆机构的上部分还可以通过立柱进行360度的旋转,通过外力的作用下就可以使整个平衡吊装置处于一个较大围的立体工作区间,具有较高的工作效率,为作业提供了较高的便利。

平衡吊设计理念本就是在设计一个平衡机构,在不同的时间地点他能随时保持平衡。平衡吊的平行四边形杆件长度必须满足一定的比例要求,其平衡状态才有可能完成。而这个最基本的条件是:平行四边形杆件满足杆长的比值相同,即:

AD/AB=DF/DE=m

m为平行四边形机构的比例因数。由上公式可得在平衡吊在工作区域的任意位置,忽略连杆的自重,摩擦力,连杆的承载变形,其他的一些客观因素,可以使其平衡状态得到实现。在竖直导轨出杆件节点处上下的滑动,带动真个机构上下运动,固定竖直方向的运动,在水平向添加外力,带动吊钩F运动,其运动距离为x=X/m,外力消失的条件下,电机带动螺旋机构向上或者向下运动距离Y,吊重点F运动距离y,满足y=2Y/(m—1)。

以下证明上述的原理公式,以下的分析是在理想条件下进行的,忽略一切的摩擦力,杆的重力,连杆承受载荷后所受的变形等因素。

图2.2机构运动简图

以下分析图2.3的连杆机构杆件的受力情况,如图所示杆ABD,DEF在受力分析可得受到3个力的作用,由此可得为三力杆件,根据静力平衡原理,这三个

力所受的合力为零,且三个力的作用线汇交与一点,而杆件BC,EC受到两个力的作用,且为二力杆件。DEF在F点吊起物体,力的方向竖直向下,CE杆通过铰链E施加给DEF的力P的方向和CE的方向相同,G力和P力相交于K点,Q力的方向经过D点和K点,已知重力G的大小和方向,Q力和P力的方向也知道,可知Q力和P力的大小。

图2.3 连杆机构受力图

同理可得ABD同样受到三个力的作用,根据作用力与反作用力的原理,DEF 对ABD的作用力Q’与Q力的方向相反,且处于同一条直线上,如图2.3所示,二力杆BC通过B点给ABD的作用力S沿着BC轴线方向,Q’力和S力相交于J点,第三个力为固定铰链A对于ABD杆的支持力R力,R力必须通过J点,满足以下受力分析图。已知Q’力的大小和方向,S力的方向已知,有作图法可得R力和S力的大小和方向。

图2.4为ABD杆的受力分析图

平衡吊必须达到平衡状态的主要条件是R力必须只受到竖直方向的力,将ABD杆和DEF杆的受力分析图综合到一起研究,以下是综合受力分析图4。

图2.5平衡吊的平行四边形连杆机构力的封闭图

根据以上受力分析可得,当连杆装置满足过F点做一条轴向线FK和EC杆相交于K点,在连接K,D两点,并与BC杆相交于J点,但J点恰好过A点的轴向线,可以满足R力竖直向下。

机构需要满足下列的几何条件:△KEF∽△ABJ ,△KDE∽△DJB

根据三角形相似比的原理可得以下比例公式:

AB/BJ=KE/EF ,KE/DE=DB/JB

由以上公式联立可得:AB/BD=DE/EF

经以上推倒可得: △ABC∽ △CEF,可得AC∥CF

又因为AC和CF有公共点C,可得A,C,F三点共线,AC=(m-1)CF;

2.2.平衡吊的运动分析

平衡吊的运动由横轴向,纵轴向组成,以下单独对两个方向的装置的运动状态进行分析

2.2.1对装置横轴向状态的计算

进行运动分析,当A点不动时,水平移动C点,看F点的运动轨迹是怎样变化。如图2.5所示,过C点做一条水平直线MN,A点与F点的投影在这条直线上分别为,M,N两点。对C点进行平移,平移后为C’点,F点则平移至F’点,同样得到A,F’,C’共线,F’点在MN上的投影为N’点。

在C点左右水平移动之前有:

FEC∽△CBA,CE/AB=EF/BC=FC/CA=m—l

AFN∽△AMC,FC/CA=FN/AM= m—l

所以有FN=(m-1)*AM

C点移动后有:

△F’E’C∽△C’B’A,则

C’E’/A’B’=E’F’/B’C’=F’C’/C’A’= m—l

F’C’/C’A=F’N’/AM=m-1,F’N’=(m-1)*AM

所以可得:F’N’= FN

可证明当C点做水平方向移动时,C’点也是沿着水平方向移动的,△AFF’∽ △AC’C,得:FF’=m*CC’

所以可得当F点做水平方向匀速直线运动的时候,C点也随着F点做匀速直线运动,且F点的速度是C点速度的m倍;

2.2.2:对装置纵轴向状态的计算

当A点运动时,F点的运动轨迹,C点固定住,A点移动到A’点的位置上,由图可得F’,C,A’处于同一条直线上,过C点做一条水平线MN,可得FN⊥MN, △CFE∽△ACB,CF/AC=EF/BC=m-1

同理:△CNF∽△CMA,CN/CM=CF/AC=m-1

再对F点的位置变化进行分析,以上公式可以推导出△CNF’ ∽△CMA’,即NF’∥MA’,F点一直在竖直方向上运动,由公式△CNF’ ∽△CMA’可得到FF’/AA’ =m-1,即F点的竖直方向速度是A点速度的m-1倍,当A点做匀速运动的条件下,F点也是做匀速直线运动的,且F点的位移是是A点位移的m-1倍。

在以上的的计算中可以看出:再设计过程中m的取值直接影响到平衡吊的结构,与平衡吊的建模有着密切的关系,一般的m的取值围为5到10之间,但m的取值不易过大或者过小,过小会造成工作围较小,过大会导致各杆件受力不均匀,出现倒伏的现象。该平衡吊的吊钩处悬挂重载荷,m的取值相对较小,取6,从而使其结构更加的紧凑,符合其作业要求。

2.3平衡吊的设计流程

平衡吊设计主要步骤为,机构的选取,分析及选取合适材料,加以计算,根据材料及其机构的配合确定最后方案,检验是否合适。

1.连杆机构的设计→整理基本布局图→计算各部分铰链所受的力→杆件的材料的选择→截面尺寸与杆件长度的选择→再进行校核验算→确定杆的配重及质心的位置

2.丝杆螺母的设计→对螺母受力分析及其计算→螺母的设计→螺母的校核→选择合适的外力

3.将两个设计流程联合起来,所得到的数据进行SOLIDWORKS建模

2.3.1平行四边形连杆机构的设计

以下图示是机构的作业简化图,由图示可以清楚地求出作业的工作区域,吊钩处的最大和最小移动距离,整个连杆机构的运动状态可以精准的看出来,包括

各杆件在上下左右移动时候的角度变化趋势,对以下建立模型时提供了直观的运动体系,方便了建模时的尺寸的计算出错等。

图2.6 作业方框图

根据查阅的资料得出一般IT平衡吊的工作区域为:s=1800,z=1500,吊钩在悬挂重物的条件下上升的速度为6米每秒,根据力学平衡的原理分析已知:A,C,F三点共线,AF/AC=FF’/CC’=m=6;

当A点固定的情况下,重物点F水平方向上移动,则C点也会沿着水平方向上移动,重物点F的距离和C点呈现m倍的关系,水平移动的距离S=1800mm,理论上可在水平导向槽里移动300mm的距离;

同理,当C点固定不动时,重物F在上升或下降的移动中,A点也会随着F的轨迹移动,方向相同大小不等,他们的关系呈现为F是A的m-1倍,即竖直移动的距离z=1500mm,理论上竖直导向槽的距离为300mm。令K=0,由以下经验公式

H0=L0=1/2√(s+r)2+r2+z2·m2/(m-1)

令H0为最小Ⅱ杆长,L0为最小Ⅰ杆长,初步取H0= L0=1650,为杆H最小值,实际尺寸H应大于H0,最后确定最终布局图;

忽略自身的重力的情况下,对各个铰链受力分析,确定各杆件的截面尺寸;

图2.7平行四边形连杆机构简图

通过以上图示可以测出4个极限位置的时候,α,β的角度值如下表格所示:表2对α和β角度值的大小对应的各个点的极限位置

αβ

上-7°55°

上外45o35°

下-30o-19°

下外40°-25°

根据所查阅的文献资料,当所受的载荷为1T是,各铰链计算公式:

I—IV铰链,IV—III、V铰链的计算公式:

R=±sinα·m·G /cos(α-β) α角的±和公式中的±保持一致

I—II铰链计算公式:G√(m-1)2(sinα) +[cosα+m·sinα·tan(α-β) ]2

1I—Ⅵ铰链计算公式:R=(m一1)G

V-Ill,IV铰链计算公式:R=N=m·G

以上公式中的α,β角的正负值的判断,根据以上纵横方向的界限划分,α,Β所在的方向确定他们的正负值。

位置α β F1 F2F3F4 F5F6 F7

(Kg) (Kg) (Kg) (Kg) (Kg) (Kg) (Kg)

上-7° 53° 1300 6030 2110 4000 5010

上外43° 35° 3500 4950 3040

下-30° -20° 2500 4800 2336

平衡吊的动力学与运动学仿真

平衡吊的运动学与动力学仿真 作者:** 指导老师:** ********** *************** 1 绪论 1.1 平衡吊的概要平衡吊是的主要结构是平行四边形连杆机构的放大形态和螺母升降结构,通过外力的作用下达到重物的上升和下降的目的,平衡吊可以满足重物随时停留在需要的工作区域。比其他的吊装设备更具有优越性,它比一般吊装设备更加的灵活,从而更加的精准,与机械手相比等其他吊装设备比,其结构更加得合理,性能较好,广泛的使用于重工业的生产中,在机床厂中更是被用作吊装作业,在小型企业装卸货物,例如码头的施工,集装箱的搬运,非常适合于作业区域窄,时间间隔短的作业方式。其极大减少了人力使用,有效地节约了人力资源。平衡吊在市场上主要常见的有3 种,机械式,气动式,液压式,机械式,顾名思义,通过外力的使用,使其达到升降的目的,主要在生产,搬运的的领域中常见,后期,更是添加了电动装置,优化了他的配置,有效地提高了生产效率。气动式平衡吊主要是对于气压的控制原理实现升降功能的我们成为气动式平衡吊,液压式,主要是根据液压系统来设置的,在大多数重工业生产地使用广泛。现在主要使用的为气动式平衡吊,主要省力,都是自动化进行的,按照平衡吊臂的类型还可以将平衡吊分为通用和专用类型,他们各有各的特色,相对于大型的吊车来说,其缺点是工作的行程围较小,区域局限化。 平衡吊的种类及其特点:液压平衡吊的特点:液压平衡吊有3 大类,有级,单级,无级变速的,他们通过不同的油路控制来达到不同的工作地点; 气动平衡吊的特点:体积不大,比一般的平衡吊具有灵活的特色;电动平衡吊:又称为机械式平衡吊,具有控制重物在任意指定地点的特点,一般为定速转动; Cad(2D)+solidworks(3D) 图纸整套免费获取,需要的 加QQ1162401387 1.2 平衡吊的结构 平衡吊主要有大小臂,起重臂,短臂,电机,立柱,丝杆螺母传动副构成的,其中的几个臂件通过平行四边形连杆机构构成的。在外力的作用下起到升降重物的作用。

动力学主要仿真软件

车辆动力学主要仿真软件 I960年,美国通用汽车公司研制了动力学软件DYNA主要解决多自由度 无约束的机械系统的动力学问题,进行车辆的“质量一弹簧一阻尼”模型分析。作为第一代计算机辅助设计系统的代表,对于解决具有约束的机械系统的动力学问题,工作量依然巨大,而且没有提供求解静力学和运动学问题的简便形式。 随着多体动力学的谨生和发展,机械系统运动学和动力学软件同时得到了迅速的发展。1973年,美国密西根大学的N.Orlandeo和,研制的ADAM 软件,能够简单分析二维和三维、开环或闭环机构的运动学、动力学问题,侧重于解决复杂系统的动力学问题,并应用GEAR刚性积分算法,采用稀疏矩阵技术提高计算效率° 1977年,美国Iowa大学在,研究了广义坐标分类、奇异值分解等算法并编制了DADS软件,能够顺利解决柔性体、反馈元件的空间机构运动学和动力学问题。随后,人们在机械系统动力学、运动学的分析软件中加入了一些功能模块,使其可以包含柔性体、控制器等特殊元件的机械系统。 德国航天局DLF早在20世纪70年代,Willi Kort tm教授领导的团队就开始从事MBS软件的开发,先后使用的MBS软件有Fadyna (1977)、MEDYNA1984),以及最终享誉业界的SIMPAC( 1990).随着计算机硬件和数值积分技术的迅速发展,以及欧洲航空航天事业需求的增长,DLR决定停止开发基于频域求解技术的MED YN软件,并致力于基于时域数值积分技术的发展。1985年由DLR开发的相对坐标系递归算法的SIMPACI软件问世,并很快应用到欧洲航空航天工业,掀起了多体动力学领域的一次算法革命。 同时,DLR首次在SIMPAC嗽件中将多刚体动力学和有限元分析技术结合起来,开创了多体系统动力学由多刚体向刚柔混合系统的发展。另外,由于SIMPACI算法技术的优势,成功地将控制系统和多体计算技术结合起来,发

平衡吊的动力学与运动学仿真

平衡吊得运动学与动力学仿真 作者:** 指导老师:** ********** *************** 1绪论 1、1平衡吊得概要 平衡吊就是得主要结构就是平行四边形连杆机构得放大形态与螺母升降结构,通过外力得作用下达到重物得上升与下降得目得,平衡吊可以满足重物随时停留在需要得工作区域内。比其她得吊装设备更具有优越性,它比一般吊装设备更加得灵活,从而更加得精准,与机械手相比等其她吊装设备比,其结构更加得合理,性能较好,广泛得使用于重工业得生产中,在机床厂中更就是被用作吊装作业,在小型企业装卸货物,例如码头得施工,集装箱得搬运,非常适合于作业区域窄,时间间隔短得作业方式。其极大减少了人力使用,有效地节约了人力资源。 平衡吊在市场上主要常见得有3种,机械式,气动式,液压式,机械式,顾名思义,通过外力得使用,使其达到升降得目得,主要在生产,搬运得得领域中常见,后期,更就是添加了电动装置,优化了她得配置,有效地提高了生产效率。气动式平衡吊主要就是对于气压得控制原理实现升降功能得我们成为气动式平衡吊,液压式,主要就是根据液压系统来设置得,在大多数重工业生产地使用广泛。现在主要使用得为气动式平衡吊,主要省力,都就是自动化进行得,按照平衡吊臂得类型还可以将平衡吊分为通用与专用类型,她们各有各得特色,相对于大型得吊车来说,其缺点就是工作得行程范围较小,区域局限化。 平衡吊得种类及其特点: 液压平衡吊得特点:液压平衡吊有3大类,有级,单级,无级变速得,她们通过不同得油路控制来达到不同得工作地点; 气动平衡吊得特点:体积不大,比一般得平衡吊具有灵活得特色; 电动平衡吊:又称为机械式平衡吊,具有控制重物在任意指定地点得特点,一般为定速转动; Cad(2D)+solidworks(3D)图纸整套免费获取,需要得 加QQ1162401387 1、2平衡吊得结构 平衡吊主要有大小臂,起重臂,短臂,电机,立柱,丝杆螺母传动副构成得,其中得几个臂件通过平行四边形连杆机构构成得。在外力得作用下起到升降重物得作用。

仿人机器人运动学和动力学分析

国防科学技术大学 硕士学位论文 仿人机器人运动学和动力学分析 姓名:王建文 申请学位级别:硕士 专业:模式识别与智能系统 指导教师:马宏绪 20031101

能力;目前,ASIMO代表着仿人机器人研究的最高水平,见图卜2。2000年,索尼公司也推出了自己研制的仿人机器人SDR一3X,2002年又研制出了SDR一4X,见图卜3。日本东京大学也一直在进行仿人机器人的研究,与Kawada工学院合作相继研制成功了H5、H6和H7仿人机器人,其中H6机器人高1.37米,体重55公斤,具有35个自由度,目前正在开发名为Isamu的新一代仿人机器人,其身高1.5米,体重55公斤,具有32个自由度。日本科学技术振兴机构也在从事PINO机器人的研究,PINO高0.75米,采用29个电机驱动,见图卜4。日本Waseda大学一直在从事仿人机器人研究计划,研制的wL系列仿人机器人和WENDY机器人在机器人界有很大的影响,至今已投入100多万美元,仍在研究之中。Tohoku大学研制的Saika3机器人高1.27米,重47公斤,具有30个自由度。美国的MIT和剑桥马萨诸塞技术学院等单位也一直在从事仿人机器人研究。德国、英国和韩国等也有很多单位在进行类似的研究。 图卜1P2机器人图卜2ASIMO机器人图1.3SDR-4X机器人图1-4PINO机器人 图卜5第一代机器人图l-6第二代机器人图1.7第三代机器人图1—8第四代机器人 在国家“863”高技术计划和自然科学基金的资助下,国内也开展了仿人机器人的研究工作。目前,国内主要有国防科技大学、哈尔滨工业大学和北京理工大学等单位从事仿人机器人的研究。国防科技大学机器人实验室研制机器人已有10余年的历史,该实验室在这期间分四阶段推出了四代机器人,其中,2000年底推出的仿人机器入一“先行者”一是国内第一台仿人机器人。2003年6月,又成功研制了一台具有新型机械结构和运动特性的仿人机器人,这台机器人身高1.55米,体重63.5公斤,共有36个自由度,脚踝有力 第2页

QJ1E47FMD发动机运动学及动力学仿真计算

QJ147FMD发动机运动学及动力学仿真计算 一、QJ147FMD发动机的参数: 标定转速:6000r/min 曲轴半径:19.6mm 连杆长度:80mm 缸径:47mm 曲柄连杆比:0.245 二、曲柄连杆机构再ADAMS软件中的仿真计算: 上图是燃气的爆发压力和往复惯性力以及合力的曲线图。 上图是用ADAMS软件仿真计算出的往复惯性力和理论计算的比较图。粉色——理论计算,蓝色——仿真计算。理论计算:max=745N,min=-1230N; 仿真计算:max=546.6316N,min=-901.3991N. 出现上诉的原因个人理解是: (1)仿真计算的往复加速度=理论计算的往复加速度,那么产生仿真计算所得到的往复惯性力和理论计算所得到的往复惯性力之所以不同的原因就在于往复质量的计算;(2)在理论计算中,往复质量的计算是由活塞组的质量+连杆小头的质量,而在小头质量的换算过程中教科书上介绍的方法一般有两种,即两质量和三质量系统来等效代替

连杆。并且可以确定的是用三质量系统来代替两质量系统计算的更为精确只是计算起来比较困难。那么我们可以推想如果可以的话用四质量系统来代替连杆所得到的结果应该比三质量系统来代替连杆是不是更为精确?如果答案是肯定的,那么我们就有理由相信:用无数个质量点来代替连杆系统所计算得到的结果将会比2质量系统来代替连杆计算的精度要高很多,这一点用ADAMS软件可以轻松的做到。(3)现在我们来做一个对比,即同一个连杆用两质量系统和三质量系统分别来代替的时候,同一个连杆在换算到连杆小头质量是如何变化的?很容易想到用三质量系统来代替连杆的时候换算到连杆小头的质量应该比两质量换算到连杆小头的质量要小,那么我们有理由相信:当用无数个质量点来代替连杆的时候,换算到连杆小头的质量要比教科书上按两质量系统来代替连杆换算到连杆小头出的往复质量要小。(4)由于摩托车的发动机的转速很高,所以他的往复加速度很大。我们这次所研究的发动机的加速度的数量级:几千。可见,当往复质量减少1%时,则往复惯性力将减少几十牛。(这也是我们在设计高速发动机的时候要注意减少往复惯性质量的原因,而我们按照理论公式来计算的时候,实际上已经人为的增大了往复质量。)由以上的分析,我们有理由认为用ADAMS仿真软件来进行计算,所得到的结果比按纯理论方法所计算的更为精确。 三、主轴径的受力分析: (1)我们用ADAMS软件,将所研究的发动机的轴径作为刚体并且还考虑到了轴承的安装位置以及曲柄系统的质心位置的影响之后所得到的曲轴主轴径的受力分析图。 上图是曲轴的两个轴径受力的极坐标图。

刚体的运动学与动力学问题

刚体的运动学与动力学问题 编者按中国物理学会全国中学生物理竞赛委员会2000 年第十九次会议对《全国中学生物理竞赛内容提要》作了一些调整和补充,并决定从2002 年起在复赛题与决赛题中使用提要中增补的内容. 一、竞赛涉及有关刚体的知识概要 1. 刚体 在无论多大的外力作用下,总保持其形状和大小不变的物体称为刚体.刚体是一种理想化模型,实际物体在外力作用下发生的形变效应不显着可被忽略时,即可将其视为刚体,刚体内各质点之间的距离保持不变是其重要的模型特征. 2 . 刚体的平动和转动 刚体运动时,其上各质点的运动状态(速度、加速度、位移)总是相同的,这种运动叫做平动.研究刚体的平动时,可选取刚体上任意一个质点为研究对象.刚体运动时,如果刚体的各个质点在运动中都绕同一直线做圆周运动,这种运动叫做转动,而所绕的直线叫做转轴.若转轴是固定不动的,刚体的运动就是定轴转动.刚体的任何一个复杂运动总可看做平动与转动的叠加,刚体的运动同样遵从运动独立性原理. 3. 质心质心运动定律 质心这是一个等效意义的概念,即对于任何一个刚体(或质点系),总可以找到一点C,它的运动就代表整个刚体(或质点系)的平动,它的运动规律就等效于将刚体(或质点系)的质量集中在点C,刚体(或质点系)所受外力也全部作用在点C时,这个点叫做质心.当外力的作用线通过刚体的质心时,刚体仅做平动;当外力作用线不通过质心时,整个物体的运动是随质心的平动及绕质心的转动的合成.质心运动定律物体受外力F 作用时,其质心的加速度为aC,则必有F=maC,这就是质心运动定律,该定律表明:不管物体的质量如何分布,也不管外力作用点在物体的哪个位置,质心的运动总等效于物体的质量全部集中在此、外力亦作用于此点时应有的运动. 4 . 刚体的转动惯量J 刚体的转动惯量是刚体在转动中惯性大小的量度,它等于刚体中每个质点的质量mi与该质点到转轴的距离ri的平方的乘积的总和,即 J=miri2. 从转动惯量的定义式可知,刚体的转动惯量取决于刚体各部分的质量及对给定转轴的分布情况.我们可以利用微元法求一些质量均匀分布的几何体的转动惯量. 5. 描述转动状态的物理量 对应于平动状态参量的速度v、加速度a、动量p=mv、动能Ek=(1 /2 )mv2;描述刚体定轴转动状态的物理量有: 角速度ω角速度的定义为ω=Δθ/Δt.在垂直于转轴、离转轴距离r处的线速度与角速度之间的关系为v=rω. 角加速度角加速度的定义为α=Δω/Δt.在垂直于转轴、离转轴距离r处的线加速度与角加速度的关系为at=rα. 角动量L角动量也叫做动量矩,物体对定轴转动时,在垂直于转轴、离转轴距离r处某质量为m的质点的角动量大小是mvr=mr2ω ,各质点角动量的总和即为物体的角动量,即 L=miviri=(miri2)ω=Jω. 转动动能Ek当刚体做转动时,各质点具有共同的角速度ω及不同的线速度v,若第i个质点质

运动学、静力学、动力学概念

运动学、静力学、动力学概念 运动学 运动学是理论力学的一个分支学科,它是运用几何学的方法来研究物体的运动,通常不考虑力和质量等因素的影响。至于物体的运动和力的关系,则是动力学的研究课题。 用几何方法描述物体的运动必须确定一个参照系,因此,单纯从运动学的观点看,对任何运动的描述都是相对的。这里,运动的相对性是指经典力学范畴内的,即在不同的参照系中时间和空间的量度相同,和参照系的运动无关。不过当物体的速度接近光速时,时间和空间的量度就同参照系有关了。这里的“运动”指机械运动,即物体位置的改变;所谓“从几何的角度”是指不涉及物体本身的物理性质(如质量等)和加在物体上的力。 运动学主要研究点和刚体的运动规律。点是指没有大小和质量、在空间占据一定位置的几何点。刚体是没有质量、不变形、但有一定形状、占据空间一定位置的形体。运动学包括点的运动学和刚体运动学两部分。掌握了这两类运动,才可能进一步研究变形体(弹性体、流体等)的运动。 在变形体研究中,须把物体中微团的刚性位移和应变分开。点的运动学研究点的运动方程、轨迹、位移、速度、加速度等运动特征,这些都随所选的参考系不同而异;而刚体运动学还要研究刚体本身的转动过程、角速度、角加速度等更复杂些的运动特征。刚体运动按运动的特性又可分为:刚体的平动、刚体定轴转动、刚体平面运动、刚体定点转动和刚体一般运动。 运动学为动力学、机械原理(机械学)提供理论基础,也包含有自然科学和工程技术很多学科所必需的基本知识。 运动学的发展历史 运动学在发展的初期,从属于动力学,随着动力学而发展。古代,人们通过对地面物体和天体运动的观察,逐渐形成了物体在空间中位置的变化和时间的概念。中国战国时期在《墨经》中已有关于运动和时间先后的描述。亚里士多德在《物理学》中讨论了落体运动和圆运动,已有了速度的概念。

《运动学与动力学仿真》实验指导书

《运动学与动力学仿真》实验指导书适用专业:机械电子工程 上海电机学院 2014年10月

实验一虚拟样机几何建模 一、实验目的 1、了解虚拟样机建模的目的 2、掌握利用Adams/View 进行几何体建模的方法,熟悉典型几何体的建模命令和相关的属性调整方法 二、实验要求 实验前预习相关知识和实验内容。 三、实验原理 Adams/view 中的几何建模工具集如图1所示。 图1 几何建模工具集 调用几何建模工具通常有两种方法:使用主工具箱上的建模工具集选择工具图标,或通过菜单选择几何建模工具命令。 使用主工具箱建模方法: 1)在主工具箱中,用鼠标右键选择上部的几何建模按钮,屏幕弹出如图1所示的几何建模工具集; 2)用鼠标选择相应的建模工具集的图标; 3)在参数设置对话框,修改参数值。 4)按照屏幕下方状态栏的提示,绘制几何图形。

图形 图2 基本形体图库 四、实验设备 机房,adams软件 五、实验步骤 1)在几何建模工具集中选取所要建的三维实体建模工具图标; 2)在参数设置栏,设置所建立的几何体是新构件(New Part)、添加到现有构件(Add to Part)还是添加到地基上(On Ground); 3)在参数设置栏,选择输入有个尺寸参数。 4)按照屏幕下方状态栏的提示,用鼠标确定起始绘图点; 5)按住鼠标左键,拖动鼠标,屏幕出现所绘图形。可以在参数设置栏设置形体的尺寸; 6)释放鼠标,完成简单形体建模,绘图结束点定义了几何体的方向和部分形体。 六、实验注意事项 无 七、实验报告要求 1、根据原理和要求画出2个基本的形体

实验二约束类型及工具 一、实验目的 1. 了解运动学与动力学分析中常用的约束类型 2. 掌握 Adams/View中添加运动约束的方法 二、实验要求 实验前预习相关知识和实验内容 三、实验原理 ADANMS/View提供了12种常用的运动副工具。作用:可以将两个构件连接起来。条件:被连接的构件可以是刚体构件、柔性构件或者是点质量。常用运动副如图1所示。 图1 常用的运动副 1)在连接工具集或者在连接对话框,选择连接工具图标。

机械系统动力学作业---平面二自由度机械臂运动学分析

机械系统动力学作业---平面二自由度机械臂运动学分 析 -标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

平面二自由度机械臂动力学分析 [摘要] 机器臂是一个非线性的复杂动力学系统。动力学问题的求解比较困难,而且需要较长的运算时间,因此,这里主要对平面二自由度机械臂进行动力学研究。本文采用拉格朗日方程在多刚体系统动力学的应用方法分析平面二自由度机械臂的正向动力学。经过研究得出平面二自由度机械臂的动力学方程,为后续更深入研究做铺垫。 [关键字] 平面二自由度机械臂动力学拉格朗日方程 一、介绍 机器人是一个非线性的复杂动力学系统。动力学问题的求解比较困难,而且需要较长的运算时间,因此,简化解的过程,最大限度地减少工业机器人动力学在线计算的时间是一个受到关注的研究课题。 机器人动力学问题有两类: (1) 给出已知的轨迹点上的,即机器人关节位置、速度和加速度,求相应的关节力矩向量Q r。这对实现机器人动态控制是相当有用的。 (2) 已知关节驱动力矩,求机器人系统相应的各瞬时的运动。也就是说,给出关节力矩向量τ,求机器人所产生的运动。这对模拟机器人的运动是非常有用的。 二、二自由度机器臂动力学方程的推导过程 机器人是结构复杂的连杆系统,一般采用齐次变换的方法,用拉格朗日方程建立其系统动力学方程,对其位姿和运动状态进行描述。机器人动力学方程的具体推导过程如下: (1) 选取坐标系,选定完全而且独立的广义关节变量θr ,r=1, 2,…, n。 (2) 选定相应关节上的广义力F r:当θr是位移变量时,F r为力;当θr是角度变量时, F r为力矩。 (3) 求出机器人各构件的动能和势能,构造拉格朗日函数。 (4) 代入拉格朗日方程求得机器人系统的动力学方程。 下面以图1所示说明机器人二自由度机械臂动力学方程的推导过程。

(完整版)曲柄连杆机构运动学仿真

课程设计任务书

目录 1 绪论 (1) 1.1CATIA V5软件介绍 (1) 1.2ADAMS软件介绍 (1) 1.3S IM D ESIGNER软件介绍 (2) 1.4本次课程设计的主要内容及目的 (2) 2 曲柄连杆机构的建模 (3) 2.1活塞的建模 (3) 2.2活塞销的建模 (5) 2.3连杆的建模 (5) 2.4曲轴的建模 (6) 2.5汽缸体的建模 (8) 3 曲柄连杆机构的装配 (10) 3.1将各部件导入CATIA装配模块并利用约束命令确定位置关系 (10) 4 曲柄连杆机构导入ADAMS (14) 4.1曲柄连杆机构各个零部件之间运动副分析 (14) 4.2曲柄连杆机构各个零部件之间运动副建立 (14) 4.3曲柄连杆机构导入ADAMS (16) 5 曲柄连杆机构的运动学分析 (17) 结束语 (22) 参考文献 (23)

1 绪论 1.1 CATIA V5软件介绍 CATIA V5(Computer-graphics Aided Three-dimensional Interactive Application)是法国Dassault公司于1975年开发的一套完整的3D CAD/CAM/CAE一体化软件。它的内容涵盖了产品概念设计、工业设计、三维建模、分析计算、动态模拟与仿真、工程图的生成、生产加工成产品的全过程,其中还包括了大量的电缆和管道布线、各种模具设计与分析、人机交换等实用模块。CATIA V5不但能保证企业内部设计部门之间的协同设计功能而且还可以提供企业整个集成的设计流程和端对端的解决方案。CATIA V5大量应用于航空航天、汽车及摩托车行业、机械、电子、家电与3C产业、NC加工等领域。 由于其功能的强大而完美,CATIA V5已经成为三维CAD/CAM领域的一面旗帜和争相遵从的标准,特别是在航空航天、汽车及摩托车领域。法国的幻影2000系列战斗机就是使用CATIA V5进行设计的一个典范;波音777客机则使用CATIA V5实现了无图纸设计。另外,CATIA V5还用于制造米其林轮胎、伊莱克斯电冰箱和洗衣机、3M公司的粘合剂等。CATIA V5不仅给用户提供了详细的解决方案,而且具有先进的开发性、集成性及灵活性。 CATIA V5的主要功能有:三维几何图形设计、二维工程蓝图绘制、复杂空间曲面设计与验证、三维计算机辅助加工制造、加工轨迹模拟、机构设计及运动分析、标准零件管理。 1.2 ADAMS软件介绍 ADAMS即机械系统动力学自动分析(Automatic Dynamic Analysis of Mechanical Systems),该软件是美国MDI公司(Mechanical Dynamics Inc.)开发的虚拟样机分析软件。目前,ADAMS己经被全世界各行各业的数百家主要制造商采用。根据1999年机械系统动态仿真分析软件国际市场份额的统计资料,ADAMS软件销售总额近八千万美元、占据了51%的份额。 ADAMS软件使用交互式图形环境和零件库、约束库、力库,创建完全参数化的机械系统几何模型,其求解器采用多刚体系统动力学理论中的拉格郎日方程方法,建立系统动力学方程,对虚拟机械系统进行静力学、运动学和动力学分析,输出位移、速度、加速度和反作用力曲线。ADAMS软件的仿真可用于预测机械系统的性能、运动范围、

动力学主要仿真软件

车辆动力学主要仿真软件 1960年,美国通用汽车公司研制了动力学软件DYNA,主要解决多自由度无约束的机械系统的动力学问题,进行车辆的“质量-弹簧-阻尼”模型分析。作为第一代计算机辅助设计系统的代表,对于解决具有约束的机械系统的动力学问题,工作量依然巨大,而且没有提供求解静力学和运动学问题的简便形式。 随着多体动力学的诞生和发展,机械系统运动学和动力学软件同时得到了迅速的发展。1973年,美国密西根大学的N.Orlandeo和,研制的ADAMS软件,能够简单分析二维和三维、开环或闭环机构的运动学、动力学问题,侧重于解决复杂系统的动力学问题,并应用GEAR 刚性积分算法,采用稀疏矩阵技术提高计算效率。1977年,美国Iowa 大学在,研究了广义坐标分类、奇异值分解等算法并编制了DADS软件,能够顺利解决柔性体、反馈元件的空间机构运动学和动力学问题。随后,人们在机械系统动力学、运动学的分析软件中加入了一些功能模块,使其可以包含柔性体、控制器等特殊元件的机械系统。 德国航天局DLR早在20世纪70年代,Willi Kortüm教授领导的团队就开始从事MBS软件的开发,先后使用的MBS软件有Fadyna (1977)、MEDYNA(1984),以及最终享誉业界的SIMPACK(1990).随着计算机硬件和数值积分技术的迅速发展,以及欧洲航空航天事业需求的增长,DLR决定停止开发基于频域求解技术的MEDYNA软件,并致力于基于时域数值积分技术的发展。1985年由DLR开发的相对坐标系递归算法的SIMPACK软件问世,并很快应用到欧洲航空航天工业,掀起了多体动力学领域的一次算法革命。 同时,DLR首次在SIMPACK软件中将多刚体动力学和有限元分析技术结合起来,开创了多体系统动力学由多刚体向刚柔混合系统的发展。另外,由于SIMPACK算法技术的优势,成功地将控制系统和多体

机器人机械臂运动学分析(仅供借鉴)

平面二自由度机械臂动力学分析 [摘要] 机器臂是一个非线性的复杂动力学系统。动力学问题的求解比较困难,而且需要较长的运算时间,因此,这里主要对平面二自由度机械臂进行动力学研究。本文采用拉格朗日方程在多刚体系统动力学的应用方法分析平面二自由度机械臂的正向动力学。经过研究得出平面二自由度机械臂的动力学方程,为后续更深入研究做铺垫。 [关键字] 平面二自由度 一、介绍 机器人是一个非线性的复杂动力学系统。动力学问题的求解比较困难,而且需要较长的运算时间,因此,简化解的过程,最大限度地减少工业机器人动力学在线计算的时间是一个受到关注的研究课题。 机器人动力学问题有两类: (1) 给出已知的轨迹点上的,即机器人关节位置、速度和加速度,求相应的关节力矩向量Q r。这对实现机器人动态控制是相当有用的。 (2) 已知关节驱动力矩,求机器人系统相应的各瞬时的运动。也就是说,给出关节力矩向量τ,求机器人所产生的运动。这对模拟机器人的运动是非常有用的。 二、二自由度机器臂动力学方程的推导过程 机器人是结构复杂的连杆系统,一般采用齐次变换的方法,用拉格朗日方程建立其系统动力学方程,对其位姿和运动状态进行描述。机器人动力学方程的具体推导过程如下: (1) 选取坐标系,选定完全而且独立的广义关节变量θr ,r=1, 2,…, n。 (2) 选定相应关节上的广义力F r:当θr是位移变量时,F r为力;当θr是角度变量时, F r为力矩。 (3) 求出机器人各构件的动能和势能,构造拉格朗日函数。 (4) 代入拉格朗日方程求得机器人系统的动力学方程。 下面以图1所示说明机器人二自由度机械臂动力学方程的推导过程。

ADAMS软件在汽车前悬架-转向系统运动学及动力学分析中的应用上课讲义

ADAMS软件在汽车前悬架-转向系统 运动学及动力学分析中的应用 尤瑞金 北京吉普汽车有限公司 摘要:本文介绍利用国际上著名的ADAMS软件对工程上多刚体系统进行运动学和动力学分析的 方法,并用这一方法模拟了某货车悬架-转向系统的运动学及动力学特性,研究开发了前、后处理专 用程序,使该软件适用于车辆系 统,并得出了许多具有工程意义的结果。 主题词:汽车总布置-计算机辅助设计县架转向系 一、前言 汽车悬架和转向的动学及动力学分析是汽车总布置设计、运动校核的重要内容之一, 也是研究平顺性、操纵稳定性等汽车性能的基础。由于汽车前悬架一转向系统是比较复杂的空间机构,特别是前独立悬架,一般多设计成主销内倾和后倾,并且控制臂轴也大多倾斜布置。这些就给运动学、动力学分析带来较大困难。过去多用简化条件下的图解法一般的分析计算法进行分析计算。所得的结果误差较大,并且费时费力。近年来,随着计算机技术和计算方法的不断提高,国外研制了IMP、ADAMS及DAMN等很多专用程序,用于车辆运动学及 动力学分析。 本文是在消化吸收引进的ADAMS软件过程中,结合汽车设计,解决运动学及动力学问题,从而提高设计质量。 二、ADAMS软件概述 ADAMS(Automatic Dynamic Analysis of Mechanical Systems,即机械系统动力学自动化分析软件包)是由美国机械动力公司开发的。由于该软件采用的比较先进的计算方法,大大地缩短了计算时间,其精确度也相当高,因上,被广泛应用于机械设计的各个领域。 1.ADAMS软件功能如下: 一般ADAMS分析功能如下: (1)可有效地分析三维机构的运动与力。例如可以利用ADAMS来模拟作用在轮胎上的垂直、转向、陀螺效应、牵引与制动、力与力矩;还可应用ADAMS进行整个车辆或悬架系统道路操纵性的研究。 (2)利用ADAMS可模拟大位移的系统。ADAMS很容易处理这种模型的非线性方程, 而且可进行线性近似。 (3)可分析运动学静定(对于非完整的束或速度约束一般情况的零自由度)系统。 (4)对于一个或多外自由度机构,ADAMS可完成某一时间上的静力学分析或某一时 间间隔内的静力学分析。

质点运动学和动力学习题答案

质点运动学和动力学习题参考答案 一、选择题 1、D 解析:题目只说明质点作直线运动,没有确定是匀加速还是变加速直线运动,故任意时刻的速度都不确定。 2、D 3、C 解析:2t 时间内,质点恰好运动2圈回到初始位置,其位移为0,路程为4πr ,所以其平均速度大小为0,平均速率为2πr/t 。 4、C 解析:有题目可知人与风运动速度可用下图表示,由速度合成得到可知人感受到的风高手刀锋来自西北方向。 5、B 解析:a B =2a A ,对于B 物体有:mg-T=ma B 对于A 物体有2T=ma A 上3式联解得:a B =4g/5 6、A 解析:物体收尾时作匀速运动,则其加速度为零,即mg =kv 2,即得收尾速度为v =(mg /k )1/2。 7、D 解析: 22 tan sin mg mR m l θωωθ== 1 2 2c o s 2l T g π θπω??== ??? 8、A 解析:设绳中张力为T ,则弹簧秤的读数为2T ,因为A 、B 两物体的加速度大小相等,方向相反,可设加速度大小为a ,对A 、B 两物体应用牛顿运动定律m 1g -T =m 1a ,T -m 2g =m 2a ,可得。 二、填空题 1、j 50cos50t i 50sin5t - v +=,a τ=0,a n =250m/s 2,圆; 解析:有运动方程可知:x =10cos5t y =10sin5t ;则其运动轨迹方程为:x 2+y 2=102,所以其轨迹为圆; j 50cos50t i 50sin5t - /dt r d v +==,50v =m/s,所以圆周运动的a τ=0; a n =v 2/r 。 mg T T

量子论的运动学与动力学

量子论的运动学与动力学 200890513216号李香文计081-2班 正如大家所知,1927年3月,海森堡在《量子论的运动学与动力学的知觉内容》论文中,提出了量子力学的另一种测不准关系,海森堡认为,科学研究工作宏观领域进入微观领域时,会遇到测量仪器是宏观的,而研究对象是微观的矛盾,在微观世界里,对于质量极小的粒子来说,宏观仪器对微观粒子的干扰是不可忽视的,也是无法控制点额,测量的结果也就同粒子的原来状态不完全相同。所以在微观系统中,不能使用实验手段同时准确的测出微观粒子的位置和动量,时间和能量。由数学推导,海森堡给出了一个测不准关系式:。对于微观粒子一些成对的物理量,在这里指位置和动量,时间和能量,不能同时具有确定的数值,其中一个量愈确定,则另一个就愈不确定。所谓测不准关系,主要是普朗克常量h使量子结果与经典结果有所不同。如果h为零,则对测量没有任何根本的限制,这是经典的观点;如果h很小,在宏观情况下,仍然能以很大的精确性同时测定动量与位置或能量与时间的关系,但是在微观的场合就不能同时测定。实验表明,决定微观系统的未来行为,只能是观察结果所出现的概率,测不准关系已经被认为是微观粒子的客观特性。 海森堡提出了测不准关系后,立即在哥本哈根学派中引起了强烈的反响,泡利欢呼“现在是量子力学的黎明”,玻尔试图从哲学上进行概括。1927年9月,玻尔在与意大利科摩召开的国际物理学会议上提出了著名的“互补原理”,用以解释量子现象基本特征的波粒二象性,它认为量子现象的空间和时间坐标和动量守恒定律,能量守恒定律不能同时在同一个实验中表现出来,而只能在互相排斥的实验条件下出来不能统一与统一图景中,只能用波和粒子这些互相排斥的经典概念来反映。波和粒子这两个概念虽然是互相排斥的,但两者在描写量子现象是却又是缺一不可的。因此玻尔认为他们二者是互相补充的,量子力学就是量子现象的终极理论。“互补原理”实质上是一种哲学原理,称为量子力学的“哥本哈根解释”。30年代后成为量子力学的“正统”解释,波恩称此为“现代科学哲学的顶峰。” 1927年10月在布鲁塞尔第五届索尔卡物理学会议上,量子力学的哥本哈根解释为许多物理学家所接受,同时也受到爱因斯坦等一些人的强烈反对。爱因斯坦为此精心设计了一系列理想实验,企图超越不确定关系的限制来揭露量子力学理论的逻辑矛盾。玻尔和海森堡等人则把量子理论同相对论作比较,有利地驳斥了爱因斯坦。1930年10月第六届索尔卡物理学会议上,爱因斯坦又绞尽脑汁提出了一个“光子箱”的理想实验, 既然在微观状态下,存在测不准关系,那么在宏观状态下,还存在测不准关系吗?这

运动学与动力学答案二册CH4

4-1. 在图示机构中,曲柄OA 上作用一力偶,其矩为M ,另在滑块D 上作用水平力F 。机构尺寸如图所示。求当机构平衡时,力F 与力偶矩M 的关系。 4-3. 组合梁由铰链C 铰接AC 和CE 而成,载荷分布如图所示。已知跨度l=8m ,P=4900N ,均布力q=2450N/m ,力偶矩M=4900N ?m ;求支座反力。 N 2450N 14700N 2450==?=E B A F F F ,,

4-4解: 4-6. 试求图示梁-桁架组合结构中1、2两杆的内力。已知kN 41=F ,kN 52=F 。 1.求杆1内力,给图(a )虚位移,虚功表达式为 0cos δcos δδδ1N 1N 21=′++????G F E D r F r F y F y F 因为 θδ3δ=D y ,θδ2δ=E y , θδ5δ=F r ,θδ5δ=G r 所以 05 3 δ553δ5δ2δ31N 1N 21=??′+??+????θθθθF F F F

211N 236F F F += 31132211 N =+=F F F kN (受拉) N1 N1A 2.求杆2内力,给图(b )虚位移,则 θ δ 4δ=H r ,θδ3δ=D r θδ2δ=E r ,θ δ5δ=G r F r δ, G r δ在FG 方向投影响相等,即 ??cos δcos δG F r r = G F r r δδ= 虚功式 0sin δδδδN2 22N 1=′?????F E H D r F r F r F r F 即 05 4 524δ3N222N 1=? δ??δ??δ????θF θF θF θF 2223821N2?=??=F F F kN 4 112N ? =F kN A 4-7. 在图示结构中,已知F = 4kN ,q = 3kN/m ,M = 2kN · m ,BD = CD ,AC

相关文档
最新文档