数学模型数学建模 第四次作业 整数规划和对策论模型范文

数学模型数学建模 第四次作业 整数规划和对策论模型范文
数学模型数学建模 第四次作业 整数规划和对策论模型范文

数学模型第四次作业 整数规划和对策论模型

4.1实验目的

学会建立整数规划模型、对策论模型,学会用LINGO 软件求解。

4.2 基本实验

1. 工程安排问题

三年内有五项工程可以考虑施工,每项工程的期望收入和年度费用如表4.1所示。假定每一项已经选定的工程要在整个三年内完成。目标是要选出使总收入达到最大的那些工程。

解:根据题意,设0 1 i i x i ?=??第个工程未被选中第个工程被选中

,i=1,2,3,4,5

目标函数为:123452*********Max x x x x x =++++

限制条件为:

12345123451

23455437825794625..8102102501

i x x x x x x x x x x s t x x x x x x ++++≤??++++≤??++++≤???为或 使用Lingo 编程:

model :

max=20*x1+40*x2+20*x3+15*x4+30*x5;

5*x1+4*x2+3*x3+7*x4+8*x5<=25;

1*x1+7*x2+9*x3+4*x4+6*x5<=25;

8*x1+10*x2+1*x3+2*x4+10*x5<=25;

@bin(x1);

@bin(x2);

@bin(x3);

@bin(x4);

@bin(x5);

end

运行得到结果:

Global optimal solution found.

Objective value: 95.00000

Objective bound: 95.00000

Infeasibilities: 0.

Extended solver steps: 0

Total solver iterations: 0

Variable Value Reduced Cost

X1 1. -20.00000

X2 1. -40.00000

X3 1. -20.00000

X4 1. -15.00000

X5 0. -30.00000

Row Slack or Surplus Dual Price

1 95.00000 1.

2 6. 0.

3 4. 0.

4 4. 0.

分析结果易知,总收入达到最大为95(千元),应选第一、二、三、四项工程可以使总收入达到最大。

2. 固定费用问题

一服装厂生产三种服装,生产不同种类的服装要租用不同的设备,设

备租金和其他的经济参数如表4.2所示。假定市场需求不成问题,服装厂每月可用人工工时为2000小时,该厂如何安排生产可以使每月利润达到最大?

解:

根据题意三种服装的利润分别为120元、10元、100元.

设x i 表示生成第i (i =1,2,3)种服装的数量,y i 表示是否生产第i 种服装。 列出目标函数:

列出限制条件:

5x 1+x 2+4x 3≤2000

3x 1≤300y 1

0.5x 2≤300y 2

2x 3≤300y 3

使用Lingo 编程求解:

model :

sets

:

???=种服装

,不生产第种服装

生产第i i y i 0,1)

000320005000(10010120max 321321y y y x x x ---++=

m/1,2,3/:x,y;

endsets

[obj]max=100*x(1)+10*x(2)+100*x(3)-5000*y(1)-2000*y(2)-3000*y(3);

5*x(1)+x(2)+4*x(3)<=2000;

3*x(1)<=300*y(1);

0.5*x(2)<=300*y(2);

2*x(3)<=300*y(3);

@for(m(i):x(i)>=0;@bin(y(i)););

end

得到结果:

Global optimal solution found.

Objective value: 21000.00

Objective bound: 21000.00

Infeasibilities: 0.

Extended solver steps: 0

Total solver iterations: 0

Variable Value Reduced Cost

X( 1) 100.0000 0.

X( 2) 600.0000 0.

X( 3) 150.0000 0.

Y( 1) 1. -5000.000

Y( 2) 1. -4000.000

Y( 3) 1. -12000.00

Row Slack or Surplus Dual Price

OBJ 21000.00 1.

2 300.0000 0.

3 0. 33.33333

4 0. 20.00000

5 0. 50.00000

6 100.0000 0.

7 600.0000 0.

8 150.0000 0.

所以三种服装应该都生产,且生产西服100件、衬衫600件、羽绒服150件时可以使每月利润达到最大21000元。

3. 串并联系统可靠性问题

有一台电器由三个部件组成,这三个部件串联,假如有一个部件发生

故障,电器就不能工作。可以通过在每个部件里安装1到2个备份元件来提高该电器的可靠性(不发生故障的概率)。表4.3列出了可靠性和成本费用。假设制造该电器的已有资金共10万元,那么怎样来构造这件电器呢?

解:

构造集合bujian/1..3/(部件),yuanjian/1..2/(每个部件可并联的元件数集合),links(bujian,yuanjian):p,C,R 。

其中???=,其他个元件

部件并联,给01j i p ij

列出Lingo 程序:

model :

sets :

bujian/1..3/; !部件1,2,3;

yuanjian/1..2/; !每个部件可装元件1,2;

links(bujian,yuanjian)/1,1 1,2 2,1 2,2 3,1 3,2/:p,C,R;!p(i,j)=1,则表示部件i 上并联j 个元件,否则,p(i,j)=0.C,R 分别为成本,可靠性;

!links 中的元素必须罗列出来;

endsets

data :

C=1 2

3 5

2 4;

R=0.60 0.80

0.70 0.80

0.50 0.70;

enddata

max=@prod(bujian(I):@sum(yuanjian(J)|@in(links,I,J):p(I,J)*R(I,J) )); !整个系统的可靠性,为每个部件的可靠性之积;

@for(bujian(I):@sum(yuanjian(J)|@in(links,I,J):p(I,J))=1);

@for(links(I,J)|@in(links,I,J):@bin(p(I,J)));

!对于每一个部件,并联的元件数是一定的,p(I,J)只能取0或1,且p(I,J)的和为1;

@sum(bujian(I):

@sum(yuanjian(J)|@in(links,I,J):p(I,J)*C(I,J)))<=10; !总成本小于10(万元);

end

运行得到如下结果:

Linearization components added:

Constraints: 64

Variables: 16

Integers: 16

Global optimal solution found.

Objective value: 0.

Objective bound: 0.

Infeasibilities: 0.

Extended solver steps: 0

Total solver iterations: 12

Variable Value Reduced Cost

P( 1, 1) 0. 0.

P( 1, 2) 1. 0.

P( 2, 1) 1. 0.

P( 2, 2) 0. 0.

P( 3, 1) 0. 0.

P( 3, 2) 1. 0.

C( 1, 1) 1. 0.

C( 1, 2) 2. 0.

C( 2, 1) 3. 0.

C( 2, 2) 5. 0.

C( 3, 1) 2. 0.

C( 3, 2) 4. 0.

R( 1, 1) 0. 0.

R( 1, 2) 0. 0.

R( 2, 1) 0. 0.

R( 2, 2) 0. 0.

R( 3, 1) 0. 0.

R( 3, 2) 0. 0.

Row Slack or Surplus Dual Price

1 0. 1.

2 0. 0.

3 0. 0.

4 0. 0.

5 1. 0.

因此,此时的最优解可以得到:

即在第一个部件上并联两个元件,第二个部件上并联一个元件,第三个部件上并联两个元件,此时系统的在成本允许的情况下稳定性达到最大0.392。

4. 二选一约束条件

某汽车公司正在考虑生产3种类型的汽车:微型、中型和大型。表4.4给出了每种汽车需要的资源及产生的利润。目前有6000吨钢材和60000小时的劳动时间。要生产一种在经济效益上可行的汽车,这种汽车必须至少生产1000辆。试为该公司制定一个使生产利润达到最大的方案。

解:

设X1、X2、X3分别表示生产微型汽车、中型汽车、大型汽车的数

量。引入0-1变量,化为整数规划。设yi 只取0, 1两个值,则生产1000辆或不生产用数学表达为:

目标函数:

max=2000*x1+3000*x2+4000*x3;

限制条件:

1.5 *x1+3 *x2+5 *x3<=6000;

30* x1+25*x2+40* x3<=60000;

x1<=5000*y1; (取个合理范围)

x1>=1000* y1;

x2<=5000*y2;

x2>=1000* y2;

x3<=5000*y3;

x3>=1000*y3;

x1,x2,x3为整数;

用Lingo 编程求解:

model :

max =2000*x1+3000*x2+4000*x3;

3

,2,1},1,0{1000=∈=i y yi xi i ???-=变量不生产该车型,生产该车型100,1i

y

1.5*x1+3*x2+5*x3<=6000;

30* x1+25*x2+40*x3<=60000;

x1<=5000*y1;

x1>=1000*y1;

x2<=5000*y2;

x2>=1000*y2;

x3<=5000*y3;

x3>=1000*y3;

@bin(y1);

@bin(y2);

@bin(y3);

@gin(x1);

@gin(x2);

@gin(x3);

End

运行得到结果:

Objective value: .

Objective bound: .

Infeasibilities: 0.

Extended solver steps: 1

Total solver iterations: 8

Variable Value Reduced Cost X1 0. -2000.000

X2 2000.000 -3000.000 X3 0. -4000.000

Y1 0. 0.

Y2 1. 0.

Y3 0. 0.

Row Slack or Surplus Dual Price

1 . 1.

2 0. 0.

3 10000.00 0.

4 0. 0.

5 0. 0.

6 3000.000 0.

7 1000.000 0.

8 0. 0.

9 0. 0.

易知生产中型车2000辆可以使生产利润达到最大为美元。

5.最小覆盖问题

某市管辖6个区(区1?区6).这个市必须明确在什么地方修建消防站,在保证至少有一个消防站在每个区的15分钟(行驶时间)路程内的情况下,这个市希望修建的消防站最少。表4.5给出了该市各个区之间行驶需要的时间(单位为分钟)。这个市需要多少个消防站,以及它们所在的位置。

解:

根据题意,设x表示是否在某区建消防站,c表示两区之间是否15分钟内可以到达,使用Lingo编程:

model:

sets:

area/1..6/:x;

link(area,area):t,c;

endsets

data:

t=

0 10 20 30 30 20

10 0 25 35 20 10

20 25 0 15 30 20

30 35 15 0 15 25

30 20 30 15 0 14

20 10 20 25 14 0;

enddata

calc:

@for(link:c=@if(t#le#15,1,0));

endcalc

min=@sum(area:x);

@for(area:@bin(x));

@for(area(i):@sum(area(j):c(i,j)*x*(i))>=1);

End

解得如下结果:

Global optimal solution found.

Objective value: 2.

Objective bound: 2.

Infeasibilities: 0.

Extended solver steps: 0

Total solver iterations: 0

Variable Value Reduced Cost

X( 1) 0. 1.

X( 2) 1. 1.

X( 3) 0. 1.

X( 4) 1. 1.

X( 5) 0. 1.

X( 6) 0. 1. …………………………………………

因此,若要修建消防站最少,只需在区2、区4建立消防站就可以。

6. 对策问题1

在一次野餐会上,两个二人组在玩捉迷藏游戏。共有四个隐藏地点(A、

B、C和D),隐藏组的两个成员可以分别藏在四个地点的任何两个,搜寻组人有机会寻找任何两个地点。如果他们都找到了隐藏组的二个人,搜寻组就可以得到一分奖励,假如两个人都没找到,他们就输一分。其它情况下,结果是平局。将这个问题表示成一个二人零和对策,求出搜寻组最优搜寻策略和它们的赢得值。

解:

设此题目局中人为甲乙两组

列出支付函数:

因为每行或列得分的和均为0,即局中人得失总和为零,所以该对策为二人零和对策。

MODEL:

sets:

playerA/1..6/: x;

playerB/1..6/;

game(playerA,playerB) : C;

endsets

data:

C =

1 0 0 0 0 -1

0 1 0 0 -1 0

0 0 1 -1 0 0

0 0 -1 1 0 0

0 -1 0 0 1 0

-1 0 0 0 0 1;

enddata

max=v_A;

@free(v_A);

@for(playerB(j):

@sum(playerA(i) : C(i,j)*x(i))>=v_A);

@sum(playerA : x)=1;

end

得到结果:

Global optimal solution found.

Objective value: 0.

Infeasibilities: 0.

Total solver iterations: 5

Variable Value Reduced Cost

V_A 0. 0.

X( 1) 0. 0.

X( 2) 0. 0.

X( 3) 0. 0.

X( 4) 0. 0.

X( 5) 0. 0.

X( 6) 0. 0.

因此推出,若搜索组采用50%的概率派出队员去搜索AB和CD的策略,可以得到的赢得值为0。

7. 对策问题2

甲手中有两张牌,各为1点和4点;乙手中有两张牌,各为2点和3

点。两人同时各出一张牌,并依据两人所出牌的点数之和来决定各自的收益当点数和为偶数时,甲赢得为两张牌的点数和,乙羸得两张牌的点数差;当点数和为奇数时,甲赢得为两张牌的点数差,乙羸得两张牌的点数和。求甲乙二人各自的最优策略和各自的羸得值。

解:

根据题意列出支付函数:

该题为一个典型的二人非常数和对策,每人的收益矩阵是不相同的,为双矩阵对策。

利用Lingo软件求解:

MODEL:

sets:

optA/1..2/: x;

optB/1..2/: y;

AXB(optA,optB) : Ca, Cb;

endsets

data:

Ca=

1 4

6 1;

Cb=

4 2

2 7;

enddata

Va=@sum(AXB(i,j): Ca(i,j)*x(i)*y(j));

Vb=@sum(AXB(i,j): Cb(i,j)*x(i)*y(j));

@for(optA(i):

@sum(optB(j) : Ca(i,j)*y(j))<=Va);

@for(optB(j):

@sum(optA(i) : Cb(i,j)*x(i))<=Vb);

@sum(optA : x)=1; @sum(optB : y)=1;

@free(Va);@free(Vb);

End

求得结果:

Infeasibilities: 0.E-12

Total solver iterations: 20

Variable Value

VA 2.

VB 3.

X( 1) 0.

X( 2) 0.

Y( 1) 0.

Y( 2) 0.

CA( 1, 1) 1.

CA( 1, 2) 4.

CA( 2, 1) 6.

CA( 2, 2) 1.

CB( 1, 1) 4.

CB( 1, 2) 2.

CB( 2, 1) 2.

CB( 2, 2) 7.

计算得到混合对策的平衡点为(5/7, 2/7), (3/8, 5/8),此时的各自的赢得值为2.875和3.。

4.3 加分实验(乒乓球团体赛上场队员排序问题)

乒乓球团体赛的比赛规则如下:从一个队中挑选出的三名比赛队员和

一个队长(可由参赛队员兼任,亦可由其他人员专任)组成。比赛之前,双方队长应抽签决定A、B、C和X、Y、Z的选择,并向裁判提交每个运动员分配到一个字母的队伍名单。现行的比赛顺序:第一场A—X,第二场B—Y,第三场C—Z,第四场A—Y,第五场B—X。每场比赛为三局两胜制。当一个队已经赢得三场个人比赛时,该次比赛应结束。

现有甲队挑选出的三名比赛队员分别是:A1、A2、A3,乙队挑选出的三名比赛队员分别是:B1、B2、B3,根据以往的历史资料,甲队

与乙队比赛,甲队运动员在每一局中获胜的概率如表B.1所示。

1. 甲队教练将如何安排上场运动员的次序,使得本队获胜的概率最大。建立相应的数学模型,并说明你的理由。

2. 如果每一局比赛,A1胜B3的概率改为0.45,A3胜B1的概率改为0.55。在这种情况下,甲队教练将如何调整甲队队员的上场次序?

解:

分析此问题,属于运筹学排序问题。

推理建立模型如下:

这是一个排列问题,用lingo软件,

目标函数:max=@sum(shunxu:p*x);

设x(i,j)为0,1变量,x为一个3*3的0,1矩阵,x(i,j)表示第i同学是否在第j同学前面,

p为A选手胜B选手的概率=

0.50 0.55 0.60

0.45 0.50 0.55

0.40 0.45 0.50;

约束条件:

选手比赛的前后顺序;

每阶段只有一名选手比赛。

列出Lingo程序:

model:

sets:

aa/1..3/:a;

bb/1..3/:b;

cc/1..6/:c;

ps/1..5/;

psc(ps,cc):p;

para(aa,bb):p1,p2,p3,p4,p5,p6,x;

pp(aa,bb,cc):pb,ppb;

endsets

data:

!x y z;

p1=0.5 0.55 0.60

0.45 0.50 0.55

0.40 0.45 0.50;

!y x z;

p2=0.55 0.60 0.5

0.50 0.55 0.45

0.45 0.50 0.40 ;

!z,x,y;

p3=0.60 0.50 0.55

0.55 0.45 0.50

0.50 0.40 0.45 ;

!x,z,y;

p4=0.50 0.60 0.55

0.45 0.55 0.50

0.40 0.50 0.45;

!y,z,x;

p5=0.55 0.60 0.50

0.50 0.55 0.45

0.45 050 0.40;

!z,y,x;

p6=0.60 0.55 0.50

0.55 0.50 0.45

0.50 0.45 0.40;

enddata

!yueshu;

calc:

@for(pp(i,j,k):pb(i,j,1)=p1(i,j));

@for(pp(i,j,k):pb(i,j,2)=p2(i,j));

@for(pp(i,j,k):pb(i,j,3)=p3(i,j));

@for(pp(i,j,k):pb(i,j,4)=p4(i,j));

@for(pp(i,j,k):pb(i,j,5)=p5(i,j));

@for(pp(i,j,k):pb(i,j,6)=p6(i,j));

endcalc

@for(bb(j):@sum(aa(i):x(i,j))=1);

@for(aa(i):@sum(bb(j):x(i,j))=1);

@for(para:@bin(x));

@for(pp(i,j,k):ppb(i,j,k)=x(i,j)*pb(i,j,k));

@for(psc(i,j):p(i,j)=@sum(pp(i,k,j):ppb(i,k,j)));

@for(cc(j):c(j)=p(1,j)*p(2,j)*p(3,j)+

p(1,j)*p(2,j)*(1-p(3,j))*p(4,j)*(1-p(5,j))+ p(1,j)*p(2,j)*(1-p(3,j))*(1-p(4,j))*p(5,j)+ p(1,j)*(1-p(2,j))*p(3,j)*p(4,j)*(1-p(5,j))+ p(1,j)*(1-p(2,j))*p(3,j)*(1-p(4,j))*p(5,j)+ p(1,j)*(1-p(2,j))*(1-p(3,j))*p(4,j)*p(5,j)+ (1-p(1,j))*p(2,j)*p(3,j)*p(4,j)+

(1-p(1,j))*p(2,j)*p(3,j)*(1-p(4,j))*p(5,j)+ (1-p(1,j))*p(2,j)*(1-p(3,j))*p(4,j)*p(5,j)+ (1-p(1,j))*(1-p(2,j))*p(3,j)*p(4,j)*p(5,j));

!@for(cc(i):@free(c));

p_sum=@sum(cc(i):c);

max=p_sum;

end

计算得到结果如下:

Local optimal solution found.

Objective value: 13.11500

Objective bound: 13.11500

Infeasibilities: 0.E-15

Extended solver steps: 2

Total solver iterations: 63

Variable Value Reduced Cost P_SUM 13.11500 0.

A( 1) 0. 0.

A( 2) 0. 0.

A( 3) 0. 0.

B( 1) 0. 0.

B( 2) 0. 0.

B( 3) 0. 0.

C( 1) 0. 0.

C( 2) 0. 0.

C( 3) 0. 0.

C( 4) 0. 0.

C( 5) 12.50000 0.

C( 6) 0. 0.

P( 1, 1) 0. 0.

P( 1, 2) 0. 0.

P( 1, 3) 0. 0.

P( 1, 4) 0. 0.

P( 1, 5) 0. 0.

P( 1, 6) 0. 0.

P( 2, 1) 0. 0.

P( 2, 2) 0. 0.

P( 2, 3) 0. 0.

P( 2, 4) 0. 0.

P( 2, 5) 0. 0.

P( 2, 6) 0. 0.

P( 3, 1) 0. 0.

P( 3, 2) 0. 0.

P( 3, 4) 0. 0.

P( 3, 5) 50.00000 0. P( 3, 6) 0. 0.

P( 4, 1) 0. 0.

P( 4, 2) 0. 0.

P( 4, 3) 0. 0.

P( 4, 4) 0. 0.

P( 4, 5) 0. 0.

P( 4, 6) 0. 0.

P( 5, 1) 0. 0.

P( 5, 2) 0. 0.

P( 5, 3) 0. 0.

P( 5, 4) 0. 0.

P( 5, 5) 0. 0.

P( 5, 6) 0. 0.

P1( 1, 1) 0. 0.

P1( 1, 2) 0. 0.

P1( 1, 3) 0. 0.

P1( 2, 1) 0. 0.

P1( 2, 2) 0. 0.

P1( 2, 3) 0. 0.

P1( 3, 1) 0. 0.

P1( 3, 2) 0. 0.

P1( 3, 3) 0. 0.

P2( 1, 1) 0. 0.

P2( 1, 2) 0. 0.

P2( 1, 3) 0. 0.

P2( 2, 1) 0. 0.

P2( 2, 2) 0. 0.

P2( 2, 3) 0. 0.

P2( 3, 1) 0. 0.

P2( 3, 2) 0. 0.

P2( 3, 3) 0. 0.

P3( 1, 1) 0. 0.

P3( 1, 2) 0. 0.

P3( 1, 3) 0. 0.

P3( 2, 1) 0. 0.

P3( 2, 2) 0. 0.

P3( 2, 3) 0. 0.

P3( 3, 1) 0. 0.

P3( 3, 2) 0. 0.

P3( 3, 3) 0. 0.

P4( 1, 1) 0. 0.

数学建模作业

郑重声明: 本作业仅供参考,可能会有错误,请自己甄别。 应用运筹学作业 6.某工厂生产A,B,C,D四种产品,加工这些产品一般需要经刨、磨、钻、镗四道工序,每种产品在各工序加工时所需设备台时如表1-18所示,设每月工作25天,每天工作8小时,且该厂有刨床、磨床、钻床、镗床各一台。问:如何安排生产,才能使月利润最大?又如A,B,C,D四种产品,每月最大的销售量分别为300件、350件、200件和400件,则该问题的线性规划问题又该如何? 1234 四种产品的数量,则得目标函数: Max=(200?150)x1+(130?100)x2+(150?120)x3+(230?200)x4 =50x1+30x2+30x3+30x4 生产四种产品所用时间: (0.3+0.9+0.7+0.4)x1+(0.5+0.5+0.5+0.5)x2+(0.2+0.7+0.4+ 0.8)x3+(0.4+0.8+0.6+0.7)x4≤25×8 即:2.3x1+2.0x2+2.1x3+2.5x4≤200 又产品数量不可能为负,所以:x i≥0(i=1,2,3,4) 综上,该问题的线性规划模型如下: Max Z=50x1+30x2+30x3+30x4 S.T.{2.3x1+2.0x2+2.1x3+2.5x4≤200 x i≥0(i=1,2,3,4) 下求解目标函数的最优解: max=50*x1+30*x2+30*x3+30*x4; 2.3*x1+2.0*x2+2.1*x3+2.5*x4<200; Global optimal solution found. Objective value: 4347.826 Total solver iterations: 0 Variable Value Reduced Cost X1 86.95652 0.000000 X2 0.000000 13.47826 X3 0.000000 15.65217

数学建模大作业

兰州交通大学 数学建模大作业 学院:机电工程学院 班级:车辆093 学号:200903812 姓名:刘键学号:200903813 姓名:杨海斌学号:200903814 姓名:彭福泰学号:200903815 姓名:程二永学号:200903816 姓名:屈辉

高速公路问题 1 实验案例 (2) 1.1 高速公路问题(简化) (2) 1.1.1 问题分析 (3) 1.1.2 变量说明 (3) 1.1.3 模型假设 (3) 1.1.4 模型建立 (3) 1.1.5 模型求解 (4) 1.1.6 求解模型的程序 (4) 1实验案例 1.1 高速公路问题(简化) A城和B城之间准备建一条高速公路,B城位于A城正南20公里和正东30公里交汇处,它们之间有东西走向连绵起伏的山脉。公路造价与地形特点有关,图4.2.4给出了整个地区的大致地貌情况,显示可分为三条沿东西方向的地形带。 你的任务是建立一个数学模型,在给定三种地形上每公里的建造费用的情况下,确定最便宜的路线。图中直线AB显然是路径最短的,但不一定最便宜。而路径ARSB过山地的路段最短,但是否是最好的路径呢? A B 图8.2 高速公路修建地段

1.1.1 问题分析 在建设高速公路时,总是希望建造费用最小。如果要建造的起点、终点在同一地貌 中,那么最佳路线则是两点间连接的线段,这样费用则最省。因此本问题是一个典型的最优化问题,以建造费用最小为目标,需要做出的决策则是确定在各个地貌交界处的汇合点。 1.1.2 变量说明 i x :在第i 个汇合点上的横坐标(以左下角为直角坐标原点),i =1,2,…,4;x 5=30(指目的地B 点的横坐标) x=[x 1,x 2,x 3,x 4]T l i :第i 段南北方向的长度(i =1,2, (5) S i :在第i 段上地所建公路的长度(i =1,2, (5) 由问题分析可知, () ()() () 2 542552 432442 322332212 222 1211x x l S x x l S x x l S x x l S x l S -+=-+=-+=-+=+= C 1:平原每公里的造价(单位:万元/公里) C 2:高地每公里的造价(单位:万元/公里) C 3:高山每公里的造价(单位:万元/公里) 1.1.3 模型假设 1、 假设在相同地貌中修建高速公路,建造费用与公路长度成正比; 2、 假设在相同地貌中修建高速公路在一条直线上。在理论上,可以使得建造费用最少, 当然实际中一般达不到。 1.1.4 模型建立 在A 城与B 城之间建造一条高速公路的问题可以转化为下面的非线性规划模型。优化目标是在A 城与B 城之间建造高速公路的费用。 () 4,3,2,1300. .)(min 5142332211=≤≤++++=i x t s S C S C S C S C S C x f i

数学建模作业——实验1

数学建模作业——实验1 学院:软件学院 姓名: 学号: 班级:软件工程2015级 GCT班 邮箱: 电话: 日期:2016年5月10日

基本实验 1.椅子放平问题 依照1.2.1节中的“椅子问题”的方法,将假设中的“四腿长相同并且四脚连线呈正方形”,改为“四腿长相同并且四脚连线呈长方形”,其余假设不变,问椅子还能放平吗?如果能,请证明;如果不能,请举出相应的例子。 答:能放平,证明如下: 如上图,以椅子的中心点建立坐标,O为原点,A、B、C、D为椅子四脚的初始位置,通过旋转椅子到A’、B’、C’、D’,旋转的角度为α,记A、B两脚,C、D两脚距离地面的距离为f(α)和g(α),由于椅子的四脚在任何位置至少有3脚着地,且f(α)、g(α)是α的连续函数,则f(α)和g(α)至少有一个的值为0,即f(α)g(α)=0,f(α)≥ 0,g(α)≥0,若f(0)>0,g(0)=0,

则一定存在α’∈(0,π),使得 f(α’)=g(α’)=0 令α=π(即椅子旋转180°,AB 边与CD 边互换),则 f(π)=0,g(π)>0 定义h(α)=f(α)-g(α),得到 h(0)=f(0)-g(0)>0 h(π)=f(π)-g(π)<0 根据连续函数的零点定理,则存在α’∈(0,π),使得 h(α’)=f(α’)-g(α’)=0 结合条件f(α’)g(α’)=0,从而得到 f(α’)=g(α’)=0,即四脚着地,椅子放平。 2. 过河问题 依照1.2.2节中的“商人安全过河”的方法,完成下面的智力游戏:人带着猫、鸡、米过河,船除需要人划之外,至多能载猫、鸡、米之一,而当人不在场时,猫要吃鸡、鸡要吃米,试设计一个安全过河的方案,并使渡河的次数尽量的少。 答:用i =1,2,3,4分别代表人,猫,鸡,米。1=i x 在此岸,0=i x 在对岸,()4321,,,x x x x s =此岸状态,()43211,1,1,1x x x x D ----=对岸状态。安全状态集合为 :

数学建模范例

前两页空白且不编页码

从该页开始编页码摘要 本文在依照电力市场交易原则和输电阻塞管理原则的前提下,通过多元线性回归分析、目标规划等方法,对电力市场的输电阻塞管理问题进行了研究。 问题1中,通过对散点图进行分析,可以得到所有机组出力值都与各线路的有功潮流值存在线性关系。于是,我们利用多元线性回归分析模型,分别得到6条线路的有功潮流与8个机组出力的带有常数项的线性表达式,其中,模型中的参数用最小二乘法估计,并进行了检验,证明函数关系可行。 问题2中,通过分析可知,阻塞费用主要是包括两部分,分别是序内容量不能出力的部分和报价高于清算价的序外容量出力的部分。“公平对待”就理解为电网公司赔偿两者在交易中所有的收入损失,从而制定出了阻塞费用的计算规则和公式。 针对问题3,为了下一个时段各机组的出力分配预案,我们按照电力市场规则,以在各机组出力存在上下极限(受爬坡速率影响)和机组出力值之和必须满足预报负荷为约束条件,以购电费用最少为目标函数,建立线性规划模型。最终各机组的出力分配预案为: 机组1 机组2 机组3 机组4 机组5 机组6 机组7 机组8 150 79 180 99.5 125 140 95 113.5 按照此出力分配预案,清算价为303元/兆瓦小时,购电费用为74416.8元。 问题4中,把问题3的计算数据代入问题4,通过问题1所得函数关系的计算易知部分线路出现阻塞,需调整出力方案。于是,我们以在各条线路上的有功潮流的绝对值不超出限值,各机组出力在其上下极限范围内以及机组出力值之和必须满足预报负荷为约束条件,以阻塞费用最低为目标函数,建立非线性目标规划模型,得到调整之后的出力分配方案为: 机组1 机组2 机组3 机组4 机组5 机组6 机组7 机组8 150.1 88 228 82.3 152 95 70.1 117 此时,清算价为303元/兆瓦小时,购电费用为74416.8元,阻塞费用为4619元。 针对问题5,重复问题3、4的工作。但因其预报负荷较大,无法输电阻塞消除,需将安全裕度纳入考虑范围之内。于是,根据安全且经济的原则的原则,以各条线路上的有功潮流的绝对值不超出安全裕度上限,各机组出力在其上下极限范围内以及机组出力值之和必须满足预报负荷为约束条件,以每条线路上潮流的绝对值超过限值的百分比最小和阻塞费用最低为目标函数,建立双目标规划模型,并利用加权法进行求解。调整之后的方案为: 机组1 机组2 机组3 机组4 机组5 机组6 机组7 机组8 153 88 188.2 99.5 150 155 102.1 117 此时,清算价为356元/兆瓦小时,购电费用为93699.2元,阻塞费用为1310.2元。 关键词:多元线性回归分析;最优解;非线性规划;多目标规划

数学建模期末大作业

数学建模期末大作业论文 题目:A题美好的一天 组长:何曦(2014112739) 组员:李颖(2014112747)张楚良(2014112740) 班级:交通工程三班 指导老师:陈崇双

美好的一天 摘要 关键字:Dijkstra算法多目标规划有向赋权图 MATLAB SPSS

1 问题的重述 Hello!大家好,我是没头脑,住在西南宇宙大学巨偏远的新校区(节点22)。明天我一个外地同学来找我玩,TA叫不高兴,是个镁铝\帅锅,期待ing。我想陪TA在城里转转,当然是去些不怎么花钱的地方啦~~。目前想到的有林湾步行街(节点76)、郫郫公园(节点91),大川博物院(节点72)。交通嘛,只坐公交车好了,反正公交比较发达,你能想出来的路线都有车啊。另外,进城顺便办两件事,去老校区财务处一趟(节点50),还要去新东方(节点34)找我们宿舍老三,他抽奖中了两张电影票,我要霸占过来明晚吃了饭跟TA一起看。电影院嘛,TASHIWODE电影院(节点54)不错,比较便宜哈。我攒了很久的钱,订了明晚开心面馆(节点63)的烛光晚餐,额哈哈,为了TA,破费一下也是可以的哈。哦,对了,老三说了,他明天一整天都上课,只有中午休息的时候能接见我给我票。 我主要是想请教一下各位大神: 1)明天我应该怎么安排路线才能够让花在坐车上的时间最少? 2)考虑到可能堵车啊,TA比较没耐心啊,因为TA叫不高兴嘛。尤其是堵车啊,等车啊,这种事,万一影响了气氛就悲剧了。我感觉路口越密的地方越容易堵,如果考虑这个,又应该怎么安排路线呢? 3)我们城比较挫啊,连地图也没有,Z老师搞地图测绘的,他有地图,跟他要他不给,只给了我一个破表格(见附件,一个文件有两页啊),说“你自己画吧”。帮我画一张地图吧,最好能标明我们要去的那几个地方和比较省时的路线啊,拜托了~ 2 问题的分析 2.1 对问题一的分析 问题一要求安排路线使得坐车花费的时间最少。 对于问题一,假设公交车的速度维持不变,要使花费的时间最少,则将问题转化为对最短路径的求解。求解最短路径使用Dijkstra算法很容易进行求解,在运用MATLAB编程,得到最优的一条路径,则这条路径所对应的时间即为最少用时。 2.2 对问题二的分析 问题二要求在考虑堵车的情况下,路口越密越容易发生拥堵,安排路线是乘车时间最短。 对于问题二,在问题的基础上增加了附加因素,即公交车的速度会因道路的密集程度而发生改变,从而问题一建立的基本Dijkstra算法对于问题二就不再适用了,因此对问题一的基本Dijkstra算法进行改进,并结合蚁群算法的机理与特点,运用MATLAB求解出最短路径,保证了花费时间的最少性。 2.3 对问题三的分析 问题三要求根据提供的附件,画出一张地图,标明要去的那几个地方和比较省时的路线。 对于问题三,在问题一和问题二的基础上,根据求解的结果,运用SPSS软件画出地图。

数学建模优秀论文模板(全国一等奖模板)

Haozl觉得数学建模论文格式这么样设置 版权归郝竹林所有,材料仅学习参考 版权:郝竹林 备注☆ ※§等等字符都可以作为问题重述左边的。。。。。一级标题 所有段落一级标题设置成段落前后间距13磅 图和表的标题采用插入题注方式题注样式在样式表中设置居中五号字体 Excel中画出的折线表字体采用默认格式宋体正文10号 图标题在图上方段落间距前0.25行后0行 表标题在表下方段落间距前0行后0.25行 行距均使用单倍行距 所有段落均把4个勾去掉 注意Excel表格插入到word的方式在Excel中复制后,粘贴,word2010粘贴选用使用目标主题嵌入当前 Dsffaf 所有软件名字第一个字母大写比如E xcel 所有公式和字母均使用MathType编写 公式编号采用MathType编号格式自己定义

农业化肥公司的生产与销售优化方案 摘 要 要求总分总 本文针对储油罐的变位识别与罐容表标定的计算方法问题,运用二重积分法和最小二乘法建立了储油罐的变位识别与罐容表标定的计算模型,分别对三种不同变位情况推导出的油位计所测油位高度与实际罐容量的数学模型,运用matlab 软件编程得出合理的结论,最终对模型的结果做出了误差分析。 针对问题一要求依据图4及附表1建立积分数学模型研究罐体变位后对罐容表的影响,并给出罐体变位后油位高度间隔为1cm 的罐容表标定值。我们作图分析出实验储油罐出现纵向倾斜 14.时存在三种不同的可能情况,即储油罐中储油量较少、储油量一般、储油量较多的情况。针对于每种情况我们都利用了高等数学求容积的知识,以倾斜变位后油位计所测实际油位高度为积分变量,进行两次积分运算,运用MATLAB 软件推导出了所测油位高度与实际罐容量的关系式。并且给出了罐体倾斜变位后油位高度间隔为1cm 的罐容标定值(见表1),最后我们对倾斜变位前后的罐容标定值残差进行分析,得到样本方差为4103878.2-?,这充分说明残差波动不大。我们得出结论:罐体倾斜变位后,在同一油位条件下倾斜变位后罐容量比变位前罐容量少L 243。 表 1.1 针对问题二要求对于图1所示的实际储油罐,试建立罐体变位后标定罐容表的数学模型,即罐内储油量与油位高度及变位参数(纵向倾斜角度α和横向偏转角度β)之间的一般关系。利用罐体变位后在进/出油过程中的实际检测数据(附件2),根据所建立的数学模型确定变位参数,并给出罐体变位后油位高度间隔为10cm 的罐容表标定值。进一步利用附件2中的实际检测数据来分析检验你们模型的正确性与方法的可靠性。我们根据实际储油罐的特殊构造将实际储油罐分为三部分,左、右球冠状体与中间的圆柱体。运用积分的知识,按照实际储油罐的纵向变位后油位的三种不同情况。利用MATLAB 编程进行两次积分求得仅纵向变位时油量与油位、倾斜角α的容积表达式。然后我们通过作图分析油罐体的变位情况,将双向变位后的油位h 与仅纵向变位时的油位0h 建立关系表达式01.5(1.5)cos h h β=--,从而得到双向变位油量与油位、倾斜角α、偏转角β的容积表达式。利用附件二的数据,采用最小二乘法来确定倾斜角α、偏转角β的值,用matlab 软件求出03.3=α、04=β α=3.30,β=时总的平均相对误差达到最小,其最小值为0.0594。由此得到双向变位后油量与油位的容积表达式V ,从而确定了双向变位后的罐容表(见表2)。 本文主要应用MATLAB 软件对相关的模型进行编程求解,计算方便、快捷、准确,整篇文章采取图文并茂的效果。文章最后根据所建立的模型用附件2中的实际检测数据进行了误差分析,结果可靠,使得模型具有现实意义。 关键词:罐容表标定;积分求解;最小二乘法;MATLAB ;误差分

数学建模论文大作业-打车软件竞争问题

打车软件的竞争问题 班级:电子科学与技术1102班组员: 二零一四年五月

打车软件的竞争问题 摘要:随着打车软件的日趋火热,越来越多的出行者使用打车软件预约出租车。基于移动互联网的打车软件相对于已往的传统的统一出租车电招平台庞杂的预定流程,显示出了很大的便捷优势,这种约车新形式服务正在悄然改变人们传统打车模式,它的新颖性、神奇性、创新性、高效性以及便利性在一定程度上迎合了人们现代化的生活方式。消费者每次使用打车软件预约出租车,被使用的软件公司都会给予司机和消费者相应的补贴,而且随着竞争的升级,补贴的力度越来越大。打车软件给一部分人带来了便捷,同时也带来了很多的社会问题,如拒载、爽约、空车不停等。正是这些争议性问题使得人们对这种新事物的出现产生一些疑虑。因此,国内一些城市开始对这类打车软件紧急进行“叫停”,使得目前这些打车软件的发展陷入迷茫状态。 本文通过建立科学的数学模型,论述了打车软件目前发展模式和存在的问题,并阐述了如何对打车软件进行安全管理与标准化的建议;同时,通过模型分析讨论了打车软件之间的竞争问题;最后指出打车软件企业需要不断地完善自己的软件产品,提高用户体验,使打车软件更符合出租车营运行业市场的需求。 关键词:打车软件;软件补贴;竞争;发展前景

一、打车软件市场发展状况 随着移动互联网的飞速发展,打车软件开始变得异常的火热,开始成为了越来越多的年轻时尚人士出行必备的工具。随着竞争的深入,各家打车软件公司依托于背后强大的母公司支撑和金元的后盾,开始了现金补贴的营销战略,消费者每次使用打车软件预约出租车,被使用的软件公司都会给予司机和消费者相应的补贴,而且随着竞争的升级,补贴的力度越来越大。如表1所示。 表1 补贴政策 时间事件 1月10日 嘀嘀打车软件在32个城市开通微信支付,使用微信支付,乘客车费立减10元、 司机立奖10元。 1月20日“快的打车”和支付宝宣布,乘客车费返现10元,司机奖励10元。 1月21日快的和支付宝再次提升力度,司机奖励增至15元。 2月10日嘀嘀打车宣布对乘客补贴降至5元。 2月10日快的打车表示奖励不变,乘客每单仍可得到10元奖励。 2月17日嘀嘀打车宣布,乘客奖10元,每天3次;北京、上海、深圳、杭州的司机每单奖10元,每天10单,其他城市的司机每天前5单每单奖5元,后5单每单奖10元。新乘客首单立减15元,新司机首单立奖50元。 2月17日支付宝和快的也宣布,乘客每单立减11元。司机北京每天奖10单,高峰期每单奖11元(每天5笔),非高峰期每单奖5元(每天5笔);上海、杭州、广州、深圳每天奖10单。 2月18日 嘀嘀打车开启“游戏补贴”模式:使用嘀嘀打车并且微信支付每次能随机获得 12至20元不等的补贴,每天3次。 2月18日快的打车表示每单最少给乘客减免13元,每天2次。 随之而来的是出租车行业的怪相:出租车司机的主要收入变成了软件公司的补贴,一个司机一个月保守的收入增加都在800~1800元;而消费者打车的费用也同样基本变由打车软件承担,有些短途的打车变成了免费甚至还赚钱。与此同时,问题和矛盾也出现了:不使用打车软件的消费者无法打到车,拒载、空车不停等投诉也比比皆是;司机开车时频频使用手机看打车软件,也产生了潜在交通

数学建模作业

习 题 1 1. 请编写绘制以下图形的MA TLAB 命令,并展示绘得的图形. (1) 221x y +=、224x y +=分别是椭圆2241x y +=的内切圆和外切圆. (2) 指数函数x y e =和对数函数ln y x =的图像关于直线y=x 对称. (3) 黎曼函数 1, (0)(0,1) 0 , (0,1), 0,1 q x p q q x y x x x =>∈?=? ∈=?当为既约分数且当为无理数且或者 的图像(要求分母q 的最大值由键盘输入). 3. 两个人玩双骰子游戏,一个人掷骰子,另一个人打赌掷骰子者不能掷出所需点数,输赢的规则如下:如果第一次掷出3或11点,打赌者赢;如果第一次掷出2、7或12点,打赌者输;如果第一次掷出4、5、6、8、9或10点,记住这个点数,继续掷骰子,如果不能在掷出7点之前再次掷出该点数,则打赌者赢. 请模拟双骰子游戏,要求写出算法和程序,估计打赌者赢的概率. 你能从理论上计算出打赌者赢的精确概率吗?请问随着试验次数的增加,这些概率收敛吗?

4. 根据表1.14的数据,完成下列数据拟合问题: (1) 如果用指数增长模型0()0()e r t t x t x -=模拟美国人口从1790年至2000年的变化过程,请用MATLAB 统计工具箱的函数nlinfit 计算指数增长模型的以下三个数据拟合问题: (i) 取定0x =3.9,0t =1790,拟合待定参数r ; (ii) 取定0t =1790,拟合待定参数0x 和r ; (iii) 拟合待定参数0t 、0x 和r . 要求写出程序,给出拟合参数和误差平方和的计算结果,并展示误差平方和最小的拟合效果图. (2) 通过变量替换,可以将属于非线性模型的指数增长模型转化成线性模型,并用MA TLAB 函数polyfit 进行计算,请说明转化成线性模型的详细过程,然后写出程序,给出拟合参数和误差平方和的计算结果,并展示拟合效果图. (3) 请分析指数增长模型非线性拟合和线性化拟合的结果有何区别?原因是什么? (4) 如果用阻滞增长模型00 () 00()()e r t t Nx x t x N x --= +-模拟美国人口从1790年至2000年的变化过程,请用MA TLAB 统计工具箱的函数nlinfit 计算阻滞增长模型的以下三个数据拟合问题: (i) 取定0x =3.9,0t =1790,拟合待定参数r 和N ; (ii) 取定0t =1790,拟合待定参数0x 、r 和N ; (iii) 拟合待定参数0t 、0x 、r 和N . 要求写出程序,给出拟合参数和误差平方和的计算结果,并展示误差平方和最小的拟合效果图. 年份 1790 1800 1810 1820 1830 1840 1850 1860 1870 1880 1890

数学建模创新思维大作业

数学建模创新思维课大作业 一、使用MATLAB 求解一下问题,请贴出代码. 1. cos 1000x mx y e =,求''y >>clear >>clc >> syms x m; >> y=exp(x)*cos(m*x/1000); >> dfdx2=diff(y,x,2) dfdx2 = exp(x)*cos((m*x)/1000) - (m*exp(x)*sin((m*x)/1000))/500 - (m^2*exp(x)*cos((m*x)/1000))/1000000 >> L=simplify(dfdx2) L = -(exp(x)*(2000*m*sin((m*x)/1000) - 1000000*cos((m*x)/1000) + m^2*cos((m*x)/1000)))/1000000 2.计算22 1100x y e dxdy +?? >> clear >> clc; >> syms x y >> L=int(int(exp(x^2+y^2),x,0,1),y,0,1) L = (pi*erfi(1)^2)/4 3. 计算4 224x dx m x +? >> clear; >> syms x m; >> f=x^4/(m^2+4*x^2); >> intf=int(f,x) intf =

(m^3*atan((2*x)/m))/32 - (m^2*x)/16 + x^3/12 >> L=simplify(intf) L = (m^3*atan((2*x)/m))/32 - (m^2*x)/16 + x^3/12 4. (10)cos ,x y e mx y =求 >> clear; >> syms x m; >> y=exp(x)*cos(m*x); >> L=diff(y,x,10); >> L=simplify(L) L = -exp(x)*(10*m*sin(m*x) - cos(m*x) + 45*m^2*cos(m*x) - 210*m^4*cos(m*x) + 210*m^6*cos(m*x) - 45*m^8*cos(m*x) + m^10*cos(m*x) - 120*m^3*sin(m*x) + 252*m^5*sin(m*x) - 120*m^7*sin(m*x) + 10*m^9*sin(m*x)) 5. 0x =的泰勒展式(最高次幂为4). >> clear; >> syms m x; >> y=sqrt(m/1000.0+x); >> y1=taylor(y,x,'order',5); >> L=simplify(y1) L = (10^(1/2)*(m^4 + 500*m^3*x - 125000*m^2*x^2 + 62500000*m*x^3 - 39062500000*x^4))/(100*m^(7/2)) 6. Fibonacci 数列{}n x 的定义是121,1x x ==12,(3,4, )n n n x x x n --=+=用循环语句编程 给出该数列的前20项(要求将结果用向量的形式给出)。 >> x=[1,1]; >> for n=3:20

数学建模作业

分析,我们仅利用1x 和2x 来建立y 的预测模型。 四、模型建立 (显示模型函数的构造过程) (1)为了大致地分析y 与1x 和2x 的关系,首先利用表一的数据分别作出y 对1x 和2x 的散点图 y 与x1的关系 程序代码: x1=[ 0 0 ]; y=[ ]; A=polyfit(x1,y,1) y1=polyval(A,x1); plot(x1,y1,x1,y,'go') y 与x2的关系 x2=[ ]; y=[ ]; A=polyfit(x2,y,2) x3=::; y2=polyval(A,x3); plot(x2,y,'go',x3,y2)

图1 y 对x1的散点图 图2 y 与x2的散点图 从图1 可以发现,随着1x 的增加,y 的值有比较明显的线性增长趋势,图中的直线是用线性模型 011y x ββε=++ (1) 拟合的(其中ε是随机误差),而在图2中,当2x 增大时,y 有向上弯曲增长的趋势,图中的曲 线是用二次函数模型 2 01122y x x βββε=+++ (2) 拟合的。 综合上面的分析,结合模型(1)和(2)建立如下的回归模型 2 0112232y x x x ββββε=++++ (3) (3)式右端的1x 和2x 称为回归变量(自变量),2 0112232x x x ββββ+++是给定价格差1x ,广告费 用2x 时,牙膏销售量y 的平均值,其中的参数0123,,,ββββ称为回归系数,由表1的数据估计,影响y 的其他因素作用都包含在随机误差ε中,如果,模型选择的合适,ε应大致服从均值为0的正态分布。 五、模型求解 (2)确定回归模型系数,求解出教程中模型(3); 程序代码:

初中数学建模论文范文

初中数学建模论文范文 数学建模随着人类的进步,科技的发展和社会的日趋数字化,应用领域越来越广泛,人们身边的数学内容越来越丰富。强调数学应用及培养应用数学意识对推动素质教育的实施意义十分巨大。数学建模在数学教育中的地位被提到了新的高度,通过数学建模解数学应用题,提高学生的综合素质。本文将结合数学应用题的特点,把怎样利用数学建模解好数学应用问题进行剖析,希望得到同仁的帮助和指正。 一、数学应用题的特点 我们常把来源于客观世界的实际,具有实际意义或实际背景,要通过数学建模的方法将问题转化为数学形式表示,从而获得解决的一类数学问题叫做数学应用题。数学应用题具有如下特点: 第一、数学应用题的本身具有实际意义或实际背景。这里的实际是指生产实际、社会实际、生活实际等现实世界的各个方面的实际。如与课本知识密切联系的源于实际生活的应用题;与模向学科知识网络交汇点有联系的应用题;与现代科技发展、社会市场经济、环境保护、实事政治等有关的应用题等。 第二、数学应用题的求解需要采用数学建模的方法,使所求问题数学化,即将问题转化成数学形式来表示后再求解。 第三、数学应用题涉及的知识点多。是对综合运用数学知识和方法解决实际问题能力的检验,考查的是学生的综合能力,涉及的知识点一般在三个以上,如果某一知识点掌握的不过关,很难将问题正确解答。 二、数学应用题如何建模 第一层次:直接建模。 根据题设条件,套用现成的数学公式、定理等数学模型,注解图为: 第二层次:直接建模。可利用现成的数学模型,但必须概括这个数学模型,对应用题进行分析,然后确定解题所需要的具体数学模型或数学模型中所需数学量需进一步求出,然后才能使用现有数学模型。 第三层次:多重建模。对复杂的关系进行提炼加工,忽略次要因素,建立若干个数学模型方能解决问题。 第四层次:假设建模。要进行分析、加工和作出假设,然后才能建立数学模型。如研究十字路口车流量问题,假设车流平稳,没有突发事件等才能建模。 三、建立数学模型应具备的能力

2015年数学建模作业题

数学模型课程期末大作业题 要求: 1)选题方式:共53题,每个同学做一题,你要做的题目编号是你的学号mod52所得的值+1。(例如:你的学号为119084157,则你要做的题为mod(119084157,52)+1=50)。 2)该类题目基本为优划问题,要求提交一篇完整格式的建模论文,文字使用小四号宋体,公式用word的公式编辑器编写,正文中不得出现程序以及程序冗长的输出结果,程序以附录形式附在论文的后面,若为规划求解必须用lingo 集合形式编程,其它可用Matlab或Mathmatica编写。 3)论文以纸质文档提交,同时要交一份文章和程序电子文档,由班长统一收上来,我要验证程序。 1、生产安排问题 某厂拥有4台磨床,2台立式钻床,3台卧式钻床,一台镗床和一台刨床,用以生产7种产品,记作p1至p7。工厂收益规定作产品售价减去原材料费用之余。每种产品单件的收益及所需各机床的加工工时(以小时计)列于下表(表1): 表 到6月底每种产品有存货50件。 工厂每周工作6天,每天2班,每班8小时。 不需要考虑排队等待加工的问题。 在工厂计划问题中,各台机床的停工维修不是规定了月份,而是选择最合

适的月份维修。除了磨床外,每月机床在这6个月中的一个月中必须停工维修;6个月中4台磨床只有2台需要维修。扩展工厂计划模型,以使可作上述灵活安排维修时间的决策。停工时间的这种灵活性价值若何? 注意,可假设每月仅有24个工作日。 5、生产计划 某厂有4台磨床,2台立钻,3台水平钻,1台镗床和1台刨床,用来生产7种产品,已知生产单位各种产品所需的有关设备台时以及它们的利润如表所示: 台镗床,4月—1台立钻,5月—1台磨床和1台立钻,6月—1台刨床和1台水平钻,被维修的设备在当月内不能安排生产。又知从1月到6月份市场对上述7种产品最大需求量如表所示: 量均不得超过100件。现在无库存,要求6月末各种产品各贮存50件。若该厂每月工作24天,每天两班,每班8小时,假定不考虑产品在各种设备上的加工顺序,要求: (a)该厂如何安排计划,使总利润最大; (b)在什么价格的条件下,该厂可考虑租用或购买有关的设备。 34、瓶颈机器上的任务排序 在工厂车间中,经常会出现整个车间的生产能力取决于一台机器的情况(例如,仅有一台的某型号机床,生产线上速度最慢的机器等)。这台机器就称为关键机器或瓶颈机器。此时很重要的一点就是尽可能地优化此机器将要处理的任务计划。

数学建模作业43950

题目: 某种电子系统由三种元件组成,为了使系统正常运转,每个元件都必须工作良好,如果一个或多个元件安装备用件将会提高系统的可靠性,已知系统运转的可靠性为各元件可靠性的乘积,而每一个元件的可靠性是备用元件函数,具体数值见下表。 若全部备用件费用限制为150元,重量限制为20公斤,问每个元件安装多少备用件可使系统可靠性达到极大值? 要求:①作出全局最优解 ②列出这个问题的整数规划模型

假设:系统在运转过程中相互间没有影响,并且系统在增加备用件后 可靠性可以相互叠加。 建模: 设原件1,2,3需要的备用件各为x,y,z,可靠性为p分别为xp,yp,zp,整 个设备的可靠性为p,则由题意可得到: p=xp*yp*zp; 2x+4y+6z<=20; 20x+30y+40z<=150; x,y,z均为整数; 求出适当的x,y,z使p的值最大。 运用穷举法,编写C++程序如下: #include void main() { using namespace std; int x=0,y=0,z=0;//备à?用??零¢?件t数oy目? double xp[6]={0.5,0.6,0.7,0.8,0.9,1},yp[4]={0.6,0.75,0.95,1},zp[3]={0.7,0.9,1}; double p=0,temp=0;//可¨|靠?性? int i=0,j=0,k=0; cout<<"x\ty\tz\tp\n"; for(i=0;i<6;i++) { y=0; for(j=0;j<4;j++) { z=0; for(k=0;k<3;k++) {if((x+2*y+3*z<=10)&&(2*x+3*y+4*z<=15)) {temp=p; p=xp[x]*yp[y]*zp[z]; cout<

数学建模作业题

数学建模作业题 习题1第4题. 根据表1.14的数据,完成下列数据拟合问题: (1) 如果用指数增长模型0()0()e r t t x t x -=模拟美国人口从1790年至2000年的变化过程,请用MATLAB 统计工具箱的函数nlinfit 计算指数增长模型的以下三个数据拟合问题: (i) 取定0x =3.9,0t =1790,拟合待定参数r ; (ii) 取定0t =1790,拟合待定参数0x 和r ; (iii) 拟合待定参数0t 、0x 和r . 要求写出程序,给出拟合参数和误差平方和的计算结果,并展示误差平方和最小的拟合效果图. (2) 通过变量替换,可以将属于非线性模型的指数增长模型转化成线性模型,并用MATLAB 函数polyfit 进行计算,请说明转化成线性模型的详细过程,然后写出程序,给出拟合参数和误差平方和的计算结果,并展示拟合效果图. (3) 请分析指数增长模型非线性拟合和线性化拟合的结果有何区别?原因是什么? (4) 如果用阻滞增长模型00 () 00()()e r t t Nx x t x N x --=+-模拟美国人口从1790年至2000年的 变化过程,请用MATLAB 统计工具箱的函数nlinfit 计算阻滞增长模型的以下三个数据拟合问题: (i) 取定0x =3.9,0t =1790,拟合待定参数r 和N ; (ii) 取定0t =1790,拟合待定参数0x 、r 和N ; (iii) 拟合待定参数0t 、0x 、r 和N . 要求写出程序,给出拟合参数和误差平方和的计算结果,并展示误差平方和最小的拟合效果图. 习题2第1题. 继续考虑第2.2节“汽车刹车距离”案例,请问“两秒准则”和“一车长度准则”一样吗?“两秒准则”是否足够安全?对于安全车距,你有没有更好的建议? 习题2第2题. 一盘录像带,从头转到尾,时间用了184分钟,录像机计数器读数从0000变到6061. 表2.5是观测得到的计数器读数,图2.7是录像机计数器工作原理示意图. 请问当计数器读数为4580时,剩下的一段录像带还能否录下一小时的节目?

数学建模期末大作业-2013年

期末大作业题目 一、小行星的轨道问题 一天文学家要确定一颗小行星绕太阳运行的轨道,他在轨道平面内建立了以太阳为原点的直角坐标系,在两坐标轴上取天文观测单位。在5个不同的时间对 (1 ) 建立小行星运行的轨道方程并画出其图形; (2) 求出近日点和远日点及轨道的中心(是太阳吗?); (3) 计算轨道的周长。 二、发电机使用计划 为了满足每日电力需求(单位:兆瓦),可以选用四种不同类型的发电机。每日电力需求如下所示: 一最小输出功率。所有发电机都存在一个启动成本,以及工作于最小功率状态时的固定的每小时成本,并且如果功率高于最小功率,则超出部分的功率每兆瓦每小时还存在一个成本,即边际成本。这些数据均列于下表中。 电机不需要付出任何代价。我们的问题是: (1)在每个时段应分别使用哪些发电机才能够使每天的总成本最小? (2)如果增加表3中的关闭成本,那么在每个时段应分别使用哪些发电机才能够使每天的总成本最小?

(3)如果增加表4中的关闭成本,那么在每个时段应分别使用哪些发电机才能够使每天的总成本最小? 三、合理计税问题

所以此人一年上税为: 245×12+11445=14385元 在实际的执行过程中,每月的岗位津贴和年末一次性奖金实际上是放在一起结算给个人的,而具体每月发放多少岗位津贴和年末一次性发放多少奖金可以由职工本人在年初根据自己的需要进行选择。显然,不同的选择发放方式所缴纳的税是不同的,这就产生一个合理计税的问题。假定该事业单位一年中的津贴与奖金之和的上限是160000元,试解决下面这个问题: 四、光伏电池的选购问题 早在1839年,法国科学家贝克雷尔(Becqurel)就发现,光照能使半导体材料的不同部位之间产生电位差。这种现象后来被称为“光生伏特效应”,简称“光伏效应”。1954年,美国科学家恰宾和皮尔松在美国贝尔实验室首次制成了实用的单晶硅太阳电池,诞生了将太阳光能转换为电能的实用光伏发电技术。据预测,太阳能光伏发电在未来会占据世界能源消费的重要席位,不但要替代部分常规能源,而且将成为世界能源供应的主体。 现有一家公司欲在面积为30平方米的一片向阳的屋顶安装光伏电池以解决部分电力紧张的问题。请你利用附件提供的数据通过建立数学模型解决下面三个问题: (1)如果该公司准备投资6万5千元购买A或者B两种类型的光伏电池,请你为该公司确定购买方案使得发电总功率最大。 (2)如果购买的光伏电池的开路电压之间的差不能超过2V,请你为该公司重新确定购买方案。 (3)实际中还要考虑电池串并联后并网发电的要求,即如果要购买两种或者两种类型以上的电池时,不同型号的电池的购买数量应该相等。请你在满足(1)

数学建模作业

数学建模作业 :成靖 学号:1408030311 班级:计科1403班 日期:2015.12.30

1.某班准备从5名游泳队员中选4人组成接力队,参加学校的4×100m混合泳接力比赛,5名队员4种泳姿的百米平均成绩如下表所示,问应如何选拔队员组成接力队? 如果最近队员丁的蛙泳成绩有较大的退步,只有1′15"2;而队员戊经过艰苦训练自由泳成绩有所进步,达到57"5,组成接力队的方案是否应该调整? 名队员4种泳姿的百米平均成绩 ij 若参选择队员i加泳姿j 的比赛,记x ij=1, 否则记x ij=0 目标函数: 即 min=66.8*x11+75.6*x12+87*x13+58.6*x14+57.2*x21+66*x22+66.4*x23+53*x24 +78*x31+67.8*x32+84.6*x33+59.4*x34+70*x41+74.2*x42+69.6*x43+57.2*x44+ 67.4*x51+71*x52+83.8*x53+62.4*x54; 约束条件: x11+x12+x13+x14<=1; x21+x22+x23+x24<=1; x31+x32+x33+x34<=1; x41+x42+x43+x44<=1; x51+x52+x53+x54<=1; x11+x21+x31+x41+x51=1; x12+x22+x32+x42+x52=1; x13+x23+x33+x43+x53=1; x14+x24+x34+x44+x54=1; ∑∑ == = 4 1 5 1 j i ij ij x c Z Min

lingo模型程序和运行结果 因此,最优解为x14=1,x21=1,x32=1,x43=1,其余变量为0 成绩为253.2(秒)=4′13"2 即:甲~ 自由泳、乙~ 蝶泳、丙~ 仰泳、丁~ 蛙泳.

数学建模优秀范文

数学建模竞赛例题 B题温室中的绿色生态臭氧病虫害防治2009年12月,哥本哈根国际气候大会在丹麦举行之后,温室效应再次成为国际社会的热点。如何有效地利用温室效应来造福人类,减少其对人类的负面影响成为全社会的聚焦点。 臭氧对植物生长具有保护与破坏双重影响,其中臭氧浓度与作用时间是关键因素,臭氧在温室中的利用属于摸索探究阶段。 假设农药锐劲特的价格为10万元/吨,锐劲特使用量10mg/kg-1水稻;肥料100元/亩;水稻种子的购买价格为5.60元/公斤,每亩土地需要水稻种子为2公斤;水稻自然产量为800公斤/亩,水稻生长自然周期为5个月;水稻出售价格为2.28元/公斤。 根据背景材料和数据,回答以下问题: (1)在自然条件下,建立病虫害与生长作物之间相互影响的数学模型;以中华稻蝗和稻纵卷叶螟两种病虫为例,分析其对水稻影响的综合作用并进行模型求解和分析。 (2)在杀虫剂作用下,建立生长作物、病虫害和杀虫剂之间作用的数学模型;以水稻为例,给出分别以水稻的产量和水稻利润为目标的模型和农药锐劲特使用方案。 (3)受绿色食品与生态种植理念的影响,在温室中引入O3型杀虫剂。建立O3对温室植物与病虫害作用的数学模型,并建立效用评价函数。需要考虑O3浓度、合适的使用时间与频率。 (4)通过分析臭氧在温室里扩散速度与扩散规律,设计O3在温室中的扩散方案。可以考虑利用压力风扇、管道等辅助设备。假设温室长50 m、宽11 m、高3.5 m,通过数值模拟给出臭氧的动态分布图,建立评价模型说明扩散方案的优劣。 (5)请分别给出在农业生产特别是水稻中杀虫剂使用策略、在温室中臭氧应用于病虫害防治的可行性分析报告,字数800-1000字。

数学建模大作业

《建模基础》习题 1.超市进货问题 一家大型超市每天需要储存大量物品以满足顾客的需要。现在只考虑其中一种物品的销售和进货情况。 (1)假设需求是随机的,不考虑缺货损失的情况下,确定最佳进货策略。 (2)考虑缺货损失情况下的最佳进货策略。 (3)可进一步考虑有替代品的情况下的最佳进货策略。 注:测试数据可以自己设置。 2.城市快速交通线项目问题 随着经济和社会的快速发展,我们不得不面对城市快速交通线项目问题。城市快速交通线项目的建设与运营涉及公众利益,政府通常要对票价实行管制。票价的高低影响到公众的利益、项目投资者的利益和政府的财政支出。因此,应兼顾公众利益、投资者利益和政府的财政支付能力。 要求: (1)试建立最优票价模型,从而为乘客选择交通工具提供指导。 (2)城市快速交通线项目票价和运量之间存在着相关关系,对于城市快速交通线项目,需要兼顾公众的利益、项目投资者的利益和政府的承受能力。请建立数学模型,结合运量预测研究票价的合理水平。 (3)当项目的票款收入不足于维持正常运营或不足于使民间投资者获得合理的投资回报时,政府需要采取适当的方式给予投资者以合理的经济补偿。试分析并确定合理的年经济补偿或一次性的经济补偿。 3.电梯控制问题 学校某楼北楼有两台电梯。等电梯的人给出要上下的信号,电梯只有在空闲或同方向行进时才接受这个指令。然而,电梯经常出现十分拥挤的状况,特别在上下课的时候,要等很长的时间,所以埋怨声很多。你能否为电梯设计一个调度方案,减少大家的等待时间,减少师生的不满。 4传染病的疫情分析 假设某直接接触性高危型传染病是经由近距离接触已被传染病人,或在病源存活时间内直接接触受病源感染的物件才有可能感染。以往研究已有结果显示一个人的人际关系及活动范围大部分是固定不变的,也就是一个人大部分时间会近接触的人都是以前的熟识,到访的地点大多以前曾去过。而且一个人熟识常往来的亲友数目不多,常去的地点也不太多。只有一些很小的机会会近距离接触到不熟识的人和去以前较少去过的地点。请以上述讨论为出发点,建立一个模型,分析一个正在蔓延中的传染病。在模型建立时可以再参考以下事项: (1)可以H1N1为实例,搜集相关资料;

相关文档
最新文档