山东大学数据结构实验报告四

山东大学数据结构实验报告四
山东大学数据结构实验报告四

大学软件工程学院

数据结构课程实验报告

using namespace std;

class ChainHashTable

{

public:

ChainHashTable(int divisor);

~ChainHashTable();

bool Insert(int k);

bool Search(int k);

void print();

private:

int d;

ChainHashTableNode *ht;

};

ChainHashTableNode.cpp

#include"ChainHashTable.h"

#include

using namespace std;

ChainHashTable::ChainHashTable(int divisor) {

d = divisor;

ht = new ChainHashTableNode[d];

}

bool ChainHashTable::Insert(int k)

{

int j = k%d;

if (ht[j].Insert(k))

{

return true;

}

else{

return false;

}

}

void ChainHashTable::print()

{

for (int i = 0; i < d; i++)

{

ht[i].print();

}

}

ChainHashTableNode.h

#pragma once

#include"Node.h"

class ChainHashTableNode

{

public:

ChainHashTableNode();

bool Insert(int k);

bool Search(int k);

void print();

private:

Node *first;

};

ChainHashTableNode.cpp

#include"ChainHashTableNode.h"

#include

using namespace std; ChainHashTableNode::ChainHashTableNode() {

first = 0;

}

bool ChainHashTableNode::Search(int k) {

if (first == 0) return false;

Node *current = first;

while (current)

{

if (current->value == k)

{

return true;

}

current = current->link;

if (current)

{

if (current->value == k)

{

return true;

}

}

}

return false;

}

bool ChainHashTableNode::Insert(int k) {

if (Search(k))

{

cout << "已经存在此元素" << endl;

return false;

}

else {

Node *p = new Node();

p->value = k;

if (first == 0)

{

first = p;

return true;

}

else

{

p->link = first;

first = p;

return true;

}

}

}

void ChainHashTableNode::print()

{

Node *current = first;

if (first)

{

while (first)

{

cout << first->value << " ";

first = first->link;

}

cout << endl;

first = current;

}

else {

cout << -1 << endl;

}

}

HashTable.h

#pragma once

class HashTable

{

public:

HashTable(int divisor);

~HashTable();

int Search(int k);//搜索算法

bool Insert(int e);

void print();

private:

int hSearch(int k);

int d;//除数

int *ht;//桶,大小取决于d就是除数是多少

bool *empty;//一维数组,用来存储第I个桶是否存入了元素};

HashTable.cpp

#include"HashTable.h"

#include

using namespace std;

HashTable::HashTable(int divisor)

{

d = divisor;

ht = new int[d];

empty = new bool[d];

for (int i = 0; i < d; i++)

{

empty[i] = true;

ht[i] = 0;

}

}

HashTable::~HashTable()

{

delete[]ht;

delete[]empty;

}

int HashTable::hSearch(int k)//搜索值为K的元素

{

int i = k%d;

int j = i;

do{

if (ht[j] == k || empty[j]) return j;

j = (j + 1) % d;

} while (j != i);

return j;

}

int HashTable::Search(int k)//搜索值为K的元素

{

int b = hSearch(k);

if (ht[b] == k) return b;

return -1;

}

bool HashTable::Insert(int e)

{

int b = hSearch(e);

if (empty[b])

{

ht[b] = e;

empty[b] = false;

return true;

}

else if (ht[b] == e)

{

cout << "已经存在此元素" << endl;

return false;

}

else

{

cout << "表已经满了" << endl;

return false;

}

}

void HashTable::print()

{

for (int i = 0; i < 961; i++){

cout << ht[i] << " ";

}

cout << endl;

return;

}

LowerTriangularMatrix.h

#pragma once

class LowerTriangularMatrix

{

public:

LowerTriangularMatrix(int size);

void Store(int x, int i, int j);//向矩阵里存储一个元素int Retrieve(int i, int j);//返回矩阵中的一个元素

void print();

private:

int n;//矩阵维数

int sum;//矩阵非零元素个数

int *t;//用数组来存储矩阵

};

LowerTriangularMatrix.cpp

#include"LowerTriangularMatrix.h"

#include

using namespace std;

LowerTriangularMatrix::LowerTriangularMatrix(int size)

{

n = size;

sum = n*(n + 1) / 2;

t = new int[sum];

}

void LowerTriangularMatrix::Store(int x, int i, int j)

{

if (i<0 || j<0 || i >= n || j >= n)

{

cout << "下三角矩阵行列输入错误" << i << " " << j << endl;

return;

}

else if (x == 0)

{

cout << "下三角所添加的元素必须非零" << endl;

return;

}

else if (i

{

cout << "下三角添加元素位置错误" << endl;

return;

}

t[sum - ((n - j)*(n - j + 1) / 2) + (i - j)] = x;

return;

}

int LowerTriangularMatrix::Retrieve(int i, int j)

{

if (i<0 || j<0 || i >= (n - 1) || j >= (n - 1))

{

cout << "三对角矩阵行列输入错误" << endl;

return -1;

}

else if (i >= j)

{

return t[sum - ((n - j)*(n - j + 1) / 2) + (i - j)];

}

else{

return 0;

}

}

void LowerTriangularMatrix::print()

{

for (int i = 0; i < sum; i++){

cout << t[i] << " ";

}

cout << endl;

return;

}

Node.h

#pragma once

class Node

{

friend class ChainHashTableNode;

private:

int value;

Node *link;

};

Node.cpp

#include"Node.h"

using namespace std;

SparseMatrix.h

#pragma once

#include"Term.h"

class SparseMatrix

{

public:

SparseMatrix(int row, int col);

void transpose();

void Store(int x, int i, int j);//向矩阵里存储一个元素

void Add(SparseMatrix &b);//两个稀疏矩阵相加

void print();

private:

int row, col;//数组维数

int sum;//元素个数

int maxsum;//最多的元素个数

Term *t;//存储的数组

};

SparseMatrix.cpp

#include"SparseMatrix.h"

#include

using namespace std;

SparseMatrix::SparseMatrix(int r, int c)

{

row = r;

col = c;

sum = 0;

maxsum = r*c;

t = new Term[maxsum];

}

void SparseMatrix::transpose()

{

Term *cur = new Term[maxsum];

int *ColSize = new int[col];

int *RowNext = new int[row];

for (int i = 0; i < col; i++) ColSize[i] = 0;

for (int i = 0; i < row; i++) RowNext[i] = 0;

for (int i = 0; i < sum; i++) ColSize[t[i].col]++;//表示每一列的非零元素个数

RowNext[0] = 0;

for (int i = 1; i < col; i++) RowNext[i] = RowNext[i - 1] + ColSize[i - 1];//表示新矩阵中每一行的矩阵的前面的矩阵的个数

//进入转置操作

for (int i = 0; i < sum; i++)

{

int j = RowNext[t[i].col]++;

cur[j].value = t[i].value;

cur[j].col = t[i].row;

cur[j].row = t[i].col;

}

delete t;

t = cur;

}

void SparseMatrix::Store(int x, int i, int j)

{

t[sum].value = x;

t[sum].row = i;

t[sum].col = j;

sum++;

return;

}

void SparseMatrix::print()

{

for (int i = 0; i < sum; i++){

cout << t[i].value << " ";

}

cout << endl;

return;

}

void SparseMatrix::Add(SparseMatrix &b)//两个稀疏矩阵相加

{

if (col != b.col || row != b.row){

cout << "两个矩阵行列不同无法相加" << endl;

return;

}

int sa = 0;

int sb = 0;

Term *cur = new Term[maxsum];

int k = 0;

while (sa < sum || sb < b.sum)

{

if (t[sa].col == b.t[sb].col&&t[sa].row == b.t[sb].row)

{

cur[k].col = t[sa].col;

cur[k].row = t[sa].row;

cur[k].value = t[sa].value + b.t[sb].value;

k++;

sa++;

sb++;

}

else if (t[sa].row < b.t[sb].row)

{

cur[k].value = t[sa].value;

cur[k].row = t[sa].row;

cur[k].col = t[sa].col;

k++;

sa++;

}

else if (t[sa].row > b.t[sb].row)

{

cur[k].value = b.t[sb].value;

cur[k].row = b.t[sb].row;

cur[k].col = b.t[sb].col;

k++;

sb++;

}

else if (t[sa].col < t[sb].col)

{

cur[k].col = t[sa].col;

cur[k].row = t[sa].row;

cur[k].value = t[sa].value;

k++;

sa++;

}

else

{

cur[k].value = b.t[sb].value;

cur[k].row = b.t[sb].row;

cur[k].col = b.t[sb].col;

k++;

sb++;

}

}

sum = k;

delete t;

t = cur;

return;

}

Term.h

#pragma once

class Term

{

friend class SparseMatrix;

private:

int col, row;

int value;

};

Term.cpp

#include"Term.h"

TridiagonalMatrix.h

#pragma once

class TridiagonalMatrix

{

public:

TridiagonalMatrix(int size);

void Store(int x, int i, int j);//向矩阵里存储一个元素int Retrieve(int i, int j);//返回矩阵中的一个元素

void print();

private:

int n;//矩阵非0元素个数

int *t;//用数组来存储矩阵

};

TridiagonalMatrix.cpp

#include"TridiagonalMatrix.h"

#include

using namespace std;

TridiagonalMatrix::TridiagonalMatrix(int size)

{

n = size;

t = new int[3 * n - 2];

}

void TridiagonalMatrix::Store(int x, int i, int j)

{

if (i<0 || j<0 || i >= n || j >= n)

{

cout << "三对角矩阵行列输入错误" << i << " " << j << endl;

return;

}

else if (x == 0)

{

cout << "三对角矩阵所添加的元素必须非零" << endl;

return;

}

else if (abs(i - j)>1)

{

cout << "三对角矩阵添加元素位置错误" << endl;

return;

}

switch (i - j)

{

case -1:

t[3 * j - 1] = x;

break;

case 0:

t[3 * j] = x;

break;

case 1:

t[3 * j + 1] = x;

break;

}

return;

int TridiagonalMatrix::Retrieve(int i, int j)

{

if (i<0 || j<0 || i >= (n - 1) || j >= (n - 1)) {

cout << "三对角矩阵行列输入错误" << endl;

return -1;

}

else if (abs(i - j) <= 1)

{

return t[3 * j + (i - j)];

}

else{

return 0;

}

}

void TridiagonalMatrix::print()

{

for (int i = 0; i < 3 * n - 2; i++){

cout << t[i] << " ";

}

cout << endl;

return;

}

Test.cpp

#include

#include

#include

#include"TridiagonalMatrix.h"

#include"LowerTriangularMatrix.h"

#include"SparseMatrix.h"

#include"HashTable.h"

#include"ChainHashTable.h"

using namespace std;

int wei, num[100][100];

void c()

{

for (int i = 0; i < wei; i++)

for (int j = 0; j < wei; j++)

cin >> num[i][j];

}

int main()

{

int k = 0, l = 0;

/*三对角矩阵实验开始

测试数据4~10~3n-2

4

1 2 0 0

3 4 5 0

0 7 8 9

0 0 8 7

*/

cout << "请输入三对焦矩阵维数及容:" << endl;

cin >> wei;

c();

TridiagonalMatrix *TM = new TridiagonalMatrix(wei);

for (int i = 0; i < wei; i++)

for (int j = 0; j < wei; j++)

if (num[j][i] != 0)

TM->Store(num[j][i], j, i);

TM->print();

cout << "请输入要查询的元素的位置" << endl;

cin >> k >> l;

l = TM->Retrieve(k, l);

cout << "查询结果:" << l << endl;

cout << "***********************************************" << endl;

/*下三角矩阵实验开始

测试数据4~10~n*(n+1)/2

4

1 0 0 0

2 3 0 0

4 5 6 0

7 8 9 -1

*/

cout << "请输入下三角矩阵维数及容:" << endl;

k = 0, l = 0;

cin >> wei;

c();

LowerTriangularMatrix *LTM = new LowerTriangularMatrix(wei);

for (int i = 0; i < wei; i++)

for (int j = 0; j < wei; j++)

if (num[j][i] != 0)

LTM->Store(num[j][i], j, i);

cout << "请输入要查询的元素的位置" << endl;

cin >> k >> l;

l = LTM->Retrieve(k, l);

cout << "查询结果:" << l << endl;

cout << "***********************************************" << endl;

/*稀疏角矩阵实验开始

测试数据4 5

4 5

1 0 0 0 2

0 3 0 0 0

4 0 0

5 0

0 6 7 0 8

4 5

8 0 7 6 0

0 5 0 0 4

0 0 0 3 0

2 0 0 0 1

9 0 7 6 2

0 8 0 0 4

4 0 0 8 0

2 6 7 0 9

*/

cout << "请输入稀疏矩阵的维数及容:" << endl;

cin >> k >> l;

SparseMatrix *SM = new SparseMatrix(k, l);

for (int i = 0; i < k; i++)

for (int j = 0; j < l; j++)

{

cin >> num[i][j];

if (num[i][j])

SM->Store(num[i][j], i, j);

}

cout << "稀疏矩阵为: ";

SM->print();

SM->transpose();

cout << "转置后稀疏矩阵为: ";

SM->print();

SM->transpose();

cout << "重新转置后稀疏矩阵为: ";

cout << "矩阵相加开始,请输入要使用的矩阵维数及容:" << endl;

cin >> k >> l;

SparseMatrix *SM2 = new SparseMatrix(k, l);

for (int i = 0; i < k; i++)

for (int j = 0; j < l; j++)

{

cin >> num[i][j];

if (num[i][j])

SM2->Store(num[i][j], i, j);

}

cout << "新矩阵为: ";

SM2->print();

SM->Add(*SM2);

cout << "矩阵相加后为: ";

SM->print();

cout << "***********************************************" << endl;

cin.get();

system("pause");

/*使用散列表设计实现一个字典,假设关键字为整数且D为961,在字典中插入随机产生的500个不同的整数,实

现字典的建立和搜索操作。分别使用线性开型寻址和链表散列解决溢出

*/

k = 0; l = 0;

cout << "随即建立关键字为961,500个元素的散列表" << endl;

HashTable *BT = new HashTable(961);

for (int i = 0; i < 500;)

{

int j = rand() % 64435 + 1;

if (BT->Insert(j)) i++;

}

BT->print();

cout << "请输入要搜索的元素" << endl;

cin >> k;

l = BT->Search(k);

cout << "元素位置为: " << l << endl;

cout << "输入要插入的元素" << endl;

cin >> k;

BT->Insert(k);

BT->print();

cout << "实现溢出处理,插入所插入元素*2的元素" << endl;

BT->Insert(2 * k);

cout << "***********************************************" << endl; system("pause");

/*

链表散列解决溢出

*/

cout << "链表散列解决溢出,关键字为50,元素个数100" << endl; ChainHashTable *HT = new ChainHashTable(50);

for (int i = 0; i < 100;)

{

int j = rand() % 9661 + 1;

if (HT->Insert(j))

{

i++;

}

}

HT->print();

cout << "输入要插入的元素" << endl;

cin >> k;

HT->Insert(k);

HT->print();

cout << "实现溢出处理,插入所插入元素*2的元素" << endl;

HT->Insert(2 * k);

HT->print();

cout << "***********************************************" << endl; cin.get();

system("pause");

}

实验结果:

数据结构实验报告格式

《数据结构课程实验》大纲 一、《数据结构课程实验》的地位与作用 “数据结构”是计算机专业一门重要的专业技术基础课程,是计算机专业的一门核心的关键性课程。本课程较系统地介绍了软件设计中常用的数据结构以及相应的存储结构和实现算法,介绍了常用的多种查找和排序技术,并做了性能分析和比较,内容非常丰富。本课程的学习将为后续课程的学习以及软件设计水平的提高打下良好的基础。 由于以下原因,使得掌握这门课程具有较大的难度: (1)内容丰富,学习量大,给学习带来困难; (2)贯穿全书的动态链表存储结构和递归技术是学习中的重点也是难点; (3)所用到的技术多,而在此之前的各门课程中所介绍的专业性知识又不多,因而加大了学习难度; (4)隐含在各部分的技术和方法丰富,也是学习的重点和难点。 根据《数据结构课程》课程本身的技术特性,设置《数据结构课程实验》实践环节十分重要。通过实验实践内容的训练,突出构造性思维训练的特征, 目的是提高学生组织数据及编写大型程序的能力。实验学时为18。 二、《数据结构课程实验》的目的和要求 不少学生在解答习题尤其是算法设计题时,觉得无从下手,做起来特别费劲。实验中的内容和教科书的内容是密切相关的,解决题目要求所需的各种技术大多可从教科书中找到,只不过其出现的形式呈多样化,因此需要仔细体会,在反复实践的过程中才能掌握。 为了帮助学生更好地学习本课程,理解和掌握算法设计所需的技术,为整个专业学习打好基础,要求运用所学知识,上机解决一些典型问题,通过分析、设计、编码、调试等各环节的训练,使学生深刻理解、牢固掌握所用到的一些技术。数据结构中稍微复杂一些的算法设计中可能同时要用到多种技术和方法,如算法设计的构思方法,动态链表,算法的编码,递归技术,与特定问题相关的技术等,要求重点掌握线性链表、二叉树和树、图结构、数组结构相关算法的设计。在掌握基本算法的基础上,掌握分析、解决实际问题的能力。 三、《数据结构课程实验》内容 课程实验共18学时,要求完成以下六个题目: 实习一约瑟夫环问题(2学时)

数据结构实验答案1

重庆文理学院软件工程学院实验报告册 专业:_____软件工程__ _ 班级:_____软件工程2班__ _ 学号:_____201258014054 ___ 姓名:_____周贵宇___________ 课程名称:___ 数据结构 _ 指导教师:_____胡章平__________ 2013年 06 月 25 日

实验序号 1 实验名称实验一线性表基本操作实验地点S-C1303 实验日期2013年04月22日 实验内容1.编程实现在顺序存储的有序表中插入一个元素(数据类型为整型)。 2.编程实现把顺序表中从i个元素开始的k个元素删除(数据类型为整型)。 3.编程序实现将单链表的数据逆置,即将原表的数据(a1,a2….an)变成 (an,…..a2,a1)。(单链表的数据域数据类型为一结构体,包括学生的部分信息:学号,姓名,年龄) 实验过程及步骤1. #include #include #include #define OK 1 #define ERROR 0 #define TRUE 1 #define FALSE 0 #define ElemType int #define MAXSIZE 100 /*此处的宏定义常量表示线性表可能达到的最大长度*/ typedef struct

{ ElemType elem[MAXSIZE]; /*线性表占用的数组空间*/ int last; /*记录线性表中最后一个元素在数组elem[ ]中的位置(下标值),空表置为-1*/ }SeqList; #include "common.h" #include "seqlist.h" void px(SeqList *A,int j); void main() { SeqList *l; int p,q,r; int i; l=(SeqList*)malloc(sizeof(SeqList)); printf("请输入线性表的长度:"); scanf("%d",&r); l->last = r-1; printf("请输入线性表的各元素值:\n"); for(i=0; i<=l->last; i++) { scanf("%d",&l->elem[i]); } px(l,i); printf("请输入要插入的值:\n");

山东大学数据库实验答案2—8

山东大学数据库实验答案2—8 CREATE TABLE test2_01 AS SELECT SID, NAME FROM pub.STUDENT WHERE sid NOT IN ( SELECT sid FROM pub.STUDENT_COURSE ) CREATE TABLE test2_02 AS SELECT SID, NAME FROM PUB.STUDENT WHERE SID IN ( SELECT DISTINCT SID FROM PUB.STUDENT_COURSE WHERE CID IN ( SELECT CID FROM PUB.STUDENT_COURSE WHERE SID='200900130417' ) ) CREATE TABLE test2_03 AS

select SID,NAME from PUB.STUDENT where SID in ( select distinct SID from PUB.STUDENT_COURSE where CID in (select CID from PUB.COURSE where FCID='300002') ) CREATE TABLE test2_04 AS select SID,NAME from PUB.STUDENT where SID in ( select distinct SID from PUB.STUDENT_COURSE where CID in (select CID from PUB.COURSE where NAME='操作系统') intersect select distinct SID from PUB.STUDENT_COURSE where CID in (select CID from PUB.COURSE where NAME='数据结构') ) create table test2_05 as with valid_stu(sid,name) as ( select SID,NAME from PUB.STUDENT where AGE=20 and SID in (select SID from PUB.STUDENT_COURSE) ) select sid,name as name,ROUND(avg(score)) as avg_score,sum(score) as sum_score from PUB.STUDENT_COURSE natural join valid_stu where SID in (select SID from valid_stu) group by SID,NAME create table test2_06 as

数据结构实验报告(四)

《数据结构》实验报告 班级: 学号: 姓名:

实验四二叉树的基本操作实验环境:Visual C++ 实验目的: 1、掌握二叉树的二叉链式存储结构; 2、掌握二叉树的建立,遍历等操作。 实验内容: 通过完全前序序列创建一棵二叉树,完成如下功能: 1)输出二叉树的前序遍历序列; 2)输出二叉树的中序遍历序列; 3)输出二叉树的后序遍历序列; 4)统计二叉树的结点总数; 5)统计二叉树中叶子结点的个数; 实验提示: //二叉树的二叉链式存储表示 typedef char TElemType; typedef struct BiTNode{ TElemType data; struct BiTNode *lchild,*rchild; }BiTNode,*BiTree;

一、程序源代码 #include #include #define MAXSIZE 30 typedef char ElemType; typedef struct TNode *BiTree; struct TNode { char data; BiTree lchild; BiTree rchild; }; int IsEmpty_BiTree(BiTree *T) { if(*T == NULL) return 1; else return 0;

} void Create_BiTree(BiTree *T){ char ch; ch = getchar(); //当输入的是"#"时,认为该子树为空 if(ch == '#') *T = NULL; //创建树结点 else{ *T = (BiTree)malloc(sizeof(struct TNode)); (*T)->data = ch; //生成树结点 //生成左子树 Create_BiTree(&(*T)->lchild); //生成右子树 Create_BiTree(&(*T)->rchild); } } void TraverseBiTree(BiTree T) { //先序遍历 if(T == NULL) return;

数据结构实验报告

数据结构实验报告 一.题目要求 1)编程实现二叉排序树,包括生成、插入,删除; 2)对二叉排序树进行先根、中根、和后根非递归遍历; 3)每次对树的修改操作和遍历操作的显示结果都需要在屏幕上用树的形状表示出来。 4)分别用二叉排序树和数组去存储一个班(50人以上)的成员信息(至少包括学号、姓名、成绩3项),对比查找效率,并说明在什么情况下二叉排序树效率高,为什么? 二.解决方案 对于前三个题目要求,我们用一个程序实现代码如下 #include #include #include #include "Stack.h"//栈的头文件,没有用上 typedefintElemType; //数据类型 typedefint Status; //返回值类型 //定义二叉树结构 typedefstructBiTNode{ ElemType data; //数据域 structBiTNode *lChild, *rChild;//左右子树域 }BiTNode, *BiTree; intInsertBST(BiTree&T,int key){//插入二叉树函数 if(T==NULL) { T = (BiTree)malloc(sizeof(BiTNode)); T->data=key; T->lChild=T->rChild=NULL; return 1; } else if(keydata){ InsertBST(T->lChild,key); } else if(key>T->data){ InsertBST(T->rChild,key); } else return 0; } BiTreeCreateBST(int a[],int n){//创建二叉树函数 BiTreebst=NULL; inti=0; while(i

《数据结构》实验报告

苏州科技学院 数据结构(C语言版) 实验报告 专业班级测绘1011 学号10201151 姓名XX 实习地点C1 机房 指导教师史守正

目录 封面 (1) 目录 (2) 实验一线性表 (3) 一、程序设计的基本思想,原理和算法描述 (3) 二、源程序及注释(打包上传) (3) 三、运行输出结果 (4) 四、调试和运行程序过程中产生的问题及采取的措施 (6) 五、对算法的程序的讨论、分析,改进设想,其它经验教训 (6) 实验二栈和队列 (7) 一、程序设计的基本思想,原理和算法描述 (8) 二、源程序及注释(打包上传) (8) 三、运行输出结果 (8) 四、调试和运行程序过程中产生的问题及采取的措施 (10) 五、对算法的程序的讨论、分析,改进设想,其它经验教训 (10) 实验三树和二叉树 (11) 一、程序设计的基本思想,原理和算法描述 (11) 二、源程序及注释(打包上传) (12) 三、运行输出结果 (12) 四、调试和运行程序过程中产生的问题及采取的措施 (12) 五、对算法的程序的讨论、分析,改进设想,其它经验教训 (12) 实验四图 (13) 一、程序设计的基本思想,原理和算法描述 (13) 二、源程序及注释(打包上传) (14) 三、运行输出结果 (14) 四、调试和运行程序过程中产生的问题及采取的措施 (15) 五、对算法的程序的讨论、分析,改进设想,其它经验教训 (16) 实验五查找 (17) 一、程序设计的基本思想,原理和算法描述 (17)

二、源程序及注释(打包上传) (18) 三、运行输出结果 (18) 四、调试和运行程序过程中产生的问题及采取的措施 (19) 五、对算法的程序的讨论、分析,改进设想,其它经验教训 (19) 实验六排序 (20) 一、程序设计的基本思想,原理和算法描述 (20) 二、源程序及注释(打包上传) (21) 三、运行输出结果 (21) 四、调试和运行程序过程中产生的问题及采取的措施 (24) 五、对算法的程序的讨论、分析,改进设想,其它经验教训 (24) 实验一线性表 一、程序设计的基本思想,原理和算法描述: 程序的主要分为自定义函数、主函数。自定义函数有 InitList_Sq、Out_List、ListInsert_Sq、ListDelete_Sq、LocateElem_Sq 、compare。主函数在运行中调用上述的自定义函数,每个自定义函数实现程序的每部分的小功能。 1.程序设计基本思想 用c语言编译程序,利用顺序存储方式实现下列功能:根据键盘输入数据建立一个线性表,并输出该线性表;然后根据屏幕菜单的选择,可以进行数据的插入、删除、查找,并在插入或删除数据后,再输出线性表;最后在屏幕菜单中选择结束按钮,即可结束程序的运行。 2.原理 线性表通过顺序表现,链式表示,一元多项式表示,其中链式表示又分为静态链表,双向链表,循环链表等,在不同的情况下各不相同,他可以是一个数字,也可以是一个符号,通过符号或数字来实现程序的运行。 3.算法描述

山东大学《数据库系统》上机实验答案 详细整理 2013最新版

数据库实验(一) 熟悉环境、建立/删除表、插入数据 Drop table 表名 update dbtest set test=1 select * from dbscore 1.教师信息(教师编号、姓名、性别、年龄、院系名称) test1_teacher:tid char 6 not null、name varchar 10 not null、sex char 2、age int、dname varchar 10。 根据教师名称建立一个索引。 1、create table test1_teacher( tid char(6) primary key, name varchar(10) not null, sex char(2), age int, dname varchar(10) ) 2.学生信息(学生编号、姓名、性别、年龄、出生日期、院系名称、班级)test1_student:sid char 12 not null、name varchar 10 not null、sex char 2、age int、birthday date(oracle的date类型是包含时间信息的,时间信息全部为零)、dname varchar 10、class varchar(10)。 根据姓名建立一个索引。 2、create table test1_student(

sid char(12) primary key, name varchar(10) not null, sex char(2), age int, birthday date, dname varchar(10), class varchar(10) ) 3.课程信息(课程编号、课程名称、先行课编号、学分) test1_course:cid char 6 not null、name varchar 10 not null、fcid char 6、credit numeric 2,1(其中2代表总长度,1代表小数点后面长度)。 根据课程名建立一个索引。 3、create table test1_course( cid char(6) primary key, name varchar(10) not null, fcid char(6), credit numeric(2,1) ) 4.学生选课信息(学号、课程号、成绩、教师编号) test1_student_course:sid char 12 not null、cid char 6 not null、 score numeric 5,1(其中5代表总长度,1代表小数点后面长度)、tid char 6。 4、 create table test1_student_course( sid char(12) , cid char(6) , score numeric(5,1), tid char(6), primary key(sid,cid),

数据结构实验报告全集

数据结构实验报告全集 实验一线性表基本操作和简单程序 1.实验目的 (1)掌握使用Visual C++ 6.0上机调试程序的基本方法; (2)掌握线性表的基本操作:初始化、插入、删除、取数据元素等运算在顺序存储结构和链表存储结构上的程序设计方法。 2.实验要求 (1)认真阅读和掌握和本实验相关的教材内容。 (2)认真阅读和掌握本章相关内容的程序。 (3)上机运行程序。 (4)保存和打印出程序的运行结果,并结合程序进行分析。 (5)按照你对线性表的操作需要,重新改写主程序并运行,打印出文件清单和运行结果 实验代码: 1)头文件模块 #include iostream.h>//头文件 #include//库头文件-----动态分配内存空间 typedef int elemtype;//定义数据域的类型 typedef struct linknode//定义结点类型 { elemtype data;//定义数据域 struct linknode *next;//定义结点指针 }nodetype; 2)创建单链表

nodetype *create()//建立单链表,由用户输入各结点data域之值,//以0表示输入结束 { elemtype d;//定义数据元素d nodetype *h=NULL,*s,*t;//定义结点指针 int i=1; cout<<"建立一个单链表"<> d; if(d==0) break;//以0表示输入结束 if(i==1)//建立第一个结点 { h=(nodetype*)malloc(sizeof(nodetype));//表示指针h h->data=d;h->next=NULL;t=h;//h是头指针 } else//建立其余结点 { s=(nodetype*) malloc(sizeof(nodetype)); s->data=d;s->next=NULL;t->next=s; t=s;//t始终指向生成的单链表的最后一个节点

数据结构实验报告(2015级)及答案

数据结构实验报告(2015级)及答案

《数据结构》实验报告 专业__信息管理学院______ 年级__2015级___________ 学号___ _______ 学生姓名___ _ _______ 指导老师____________ 华中师范大学信息管理系编

I 实验要求 1.每次实验中有若干习题,每个学生至少应该完成其中的两道习题。 2.上机之前应作好充分的准备工作,预先编好程序,经过人工检查无误后,才能上机,以提高上机效率。 3.独立上机输入和调试自己所编的程序,切忌抄袭、拷贝他人程序。 4.上机结束后,应整理出实验报告。书写实验报告时,重点放在调试过程和小节部分,总结出本次实验中的得与失,以达到巩固课堂学习、提高动手能力的目的。 II 实验内容 实验一线性表 【实验目的】 1.熟悉VC环境,学习如何使用C语言实现线性表的两种存储结构。 2.通过编程、上机调试,进一步理解线性表的基本概念,熟练运用C语言实现线性表基本操作。 3.熟练掌握线性表的综合应用问题。 【实验内容】 1.一个线性表有n个元素(n

的顺序不变。设计程序实现。要求:采用顺序存储表示实现;采用链式存储表示方法实现;比较两种方法的优劣。 2. 从单链表中删除指定的元素x,若x在单链表中不存在,给出提示信息。 要求: ①指定的值x由键盘输入; ②程序能处理空链表的情况。 3.设有头结点的单链表,编程对表中的任意值只保留一个结点,删除其余值相同的结点。 要求: ①该算法用函数(非主函数)实现; ②在主函数中调用创建链表的函数创建一个单链表, 并调用该函数,验证算法的正确性。 LinkedList Exchange(LinkedList HEAD,p)∥HEAD是单链表头结点的指针,p是链表中的一个结点。本算法将p所指结点与其后 继结点交换。 {q=head->next;∥q是工作指针,指向链表中当前待处理结点。 pre=head;∥pre是前驱结点指针,指向q的前驱。 while(q!=null && q!=p){pre=q;q=q->next;} ∥

山东大学操作系统实验报告4进程同步实验

山东大学操作系统实验报告4进程同步实验

计算机科学与技术学院实验报告 实验题目:实验四、进程同步实验学号: 日期:20120409 班级:计基地12 姓名: 实验目的: 加深对并发协作进程同步与互斥概念的理解,观察和体验并发进程同步与互斥 操作的效果,分析与研究经典进程同步与互斥问题的实际解决方案。了解 Linux 系统中 IPC 进程同步工具的用法,练习并发协作进程的同步与互斥操作的编程与调试技术。 实验内容: 抽烟者问题。假设一个系统中有三个抽烟者进程,每个抽烟者不断地卷烟并抽烟。抽烟者卷起并抽掉一颗烟需要有三种材料:烟草、纸和胶水。一个抽烟者有烟草,一个有纸,另一个有胶水。系统中还有两个供应者进程,它们无限地供应所有三种材料,但每次仅轮流提供三种材料中的两种。得到缺失的两种材料的抽烟者在卷起并抽掉一颗烟后会发信号通知供应者,让它继续提供另外的两种材料。这一过程重复进行。请用以上介绍的 IPC 同步机制编程,实现该问题要求的功能。 硬件环境: 处理器:Intel? Core?i3-2350M CPU @ 2.30GHz ×4 图形:Intel? Sandybridge Mobile x86/MMX/SSE2 内存:4G 操作系统:32位 磁盘:20.1 GB 软件环境: ubuntu13.04 实验步骤: (1)新建定义了producer和consumer共用的IPC函数原型和变量的ipc.h文件。

(2)新建ipc.c文件,编写producer和consumer 共用的IPC的具体相应函数。 (3)新建Producer文件,首先定义producer 的一些行为,利用系统调用,建立共享内存区域,设定其长度并获取共享内存的首地址。然后设定生产者互斥与同步的信号灯,并为他们设置相应的初值。当有生产者进程在运行而其他生产者请求时,相应的信号灯就会阻止他,当共享内存区域已满时,信号等也会提示生产者不能再往共享内存中放入内容。 (4)新建Consumer文件,定义consumer的一些行为,利用系统调用来创建共享内存区域,并设定他的长度并获取共享内存的首地址。然后设定消费者互斥与同步的信号灯,并为他们设置相应的初值。当有消费进程在运行而其他消费者请求时,相应的信号灯就会阻止它,当共享内存区域已空时,信号等也会提示生产者不能再从共享内存中取出相应的内容。 运行的消费者应该与相应的生产者对应起来,只有这样运行结果才会正确。

数据结构实验报告模板

2009级数据结构实验报告 实验名称:约瑟夫问题 学生姓名:李凯 班级:21班 班内序号:06 学号:09210609 日期:2010年11月5日 1.实验要求 1)功能描述:有n个人围城一个圆圈,给任意一个正整数m,从第一个人开始依次报数,数到m时则第m个人出列,重复进行,直到所有人均出列为止。请输出n个人的出列顺序。 2)输入描述:从源文件中读取。 输出描述:依次从显示屏上输出出列顺序。 2. 程序分析 1)存储结构的选择 单循环链表 2)链表的ADT定义 ADT List{ 数据对象:D={a i|a i∈ElemSet,i=1,2,3,…n,n≧0} 数据关系:R={< a i-1, a i>| a i-1 ,a i∈D,i=1,2,3,4….,n} 基本操作: ListInit(&L);//构造一个空的单链表表L ListEmpty(L); //判断单链表L是否是空表,若是,则返回1,否则返回0. ListLength(L); //求单链表L的长度 GetElem(L,i);//返回链表L中第i个数据元素的值; ListSort(LinkList&List) //单链表排序 ListClear(&L); //将单链表L中的所有元素删除,使单链表变为空表 ListDestroy(&L);//将单链表销毁 }ADT List 其他函数: 主函数; 结点类; 约瑟夫函数 2.1 存储结构

[内容要求] 1、存储结构:顺序表、单链表或其他存储结构,需要画示意图,可参考书上P59 页图2-9 2.2 关键算法分析 结点类: template class CirList;//声明单链表类 template class ListNode{//结点类定义; friend class CirList;//声明链表类LinkList为友元类; Type data;//结点的数据域; ListNode*next;//结点的指针域; public: ListNode():next(NULL){}//默认构造函数; ListNode(const Type &e):data(e),next(NULL){}//构造函数 Type & GetNodeData(){return data;}//返回结点的数据值; ListNode*GetNodePtr(){return next;}//返回结点的指针域的值; void SetNodeData(Type&e){data=e;}//设置结点的数据值; void SetNodePtr(ListNode*ptr){next=ptr;} //设置结点的指针值; }; 单循环链表类: templateclass CirList { ListNode*head;//循环链表头指针 public: CirList(){head=new ListNode();head->next=head;}//构造函数,建立带头节点的空循环链表 ~CirList(){CirListClear();delete head;}//析构函数,删除循环链表 void Clear();//将线性链表置为空表 void AddElem(Type &e);//添加元素 ListNode *GetElem(int i)const;//返回单链表第i个结点的地址 void CirListClear();//将循环链表置为空表 int Length()const;//求线性链表的长度 ListNode*ListNextElem(ListNode*p=NULL);//返回循环链表p指针指向节点的直接后继,若不输入参数,则返回头指针 ListNode*CirListRemove(ListNode*p);//在循环链表中删除p指针指向节点的直接后继,且将其地址通过函数值返回 CirList&operator=(CirList&List);//重载赋

数据结构实验报告-答案

数据结构(C语言版) 实验报告

专业班级学号姓名 实验1 实验题目:单链表的插入和删除 实验目的: 了解和掌握线性表的逻辑结构和链式存储结构,掌握单链表的基本算法及相关的时间性能分析。 实验要求: 建立一个数据域定义为字符串的单链表,在链表中不允许有重复的字符串;根据输入的字符串,先找到相应的结点,后删除之。 实验主要步骤: 1、分析、理解给出的示例程序。 2、调试程序,并设计输入数据(如:bat,cat,eat,fat,hat,jat,lat,mat,#),测 试程序的如下功能:不允许重复字符串的插入;根据输入的字符串,找到相应的结点并删除。 3、修改程序: (1)增加插入结点的功能。 (2)将建立链表的方法改为头插入法。 程序代码: #include"" #include"" #include"" #include"" typedef struct node . . 示意图:

head head head 心得体会: 本次实验使我们对链表的实质了解更加明确了,对链表的一些基本操作也更加熟练了。另外实验指导书上给出的代码是有一些问题的,这使我们认识到实验过程中不能想当然的直接编译执行,应当在阅读并完全理解代码的基础上再执行,这才是实验的意义所在。

实验2 实验题目:二叉树操作设计和实现 实验目的: 掌握二叉树的定义、性质及存储方式,各种遍历算法。 实验要求: 采用二叉树链表作为存储结构,完成二叉树的建立,先序、中序和后序以及按层次遍历 的操作,求所有叶子及结点总数的操作。 实验主要步骤: 1、分析、理解程序。 2、调试程序,设计一棵二叉树,输入完全二叉树的先序序列,用#代表虚结点(空指针), 如ABD###CE##F##,建立二叉树,求出先序、中序和后序以及按层次遍历序列,求 所有叶子及结点总数。 实验代码 #include"" #include"" #include"" #define Max 20 ertex=a; irstedge=NULL; irstedge; G->adjlist[i].firstedge=s; irstedge; R[i] 留在原位

山大网络教育《数据结构》(-C-卷)

山大网络教育《数据结构》(-C-卷)

《数据结构》模拟卷 一、单项选择题 1.数据结构是()。 A.一种数据类型 B.数据的存储结构 C.一组性质相同的数据元素的集合 D.相互之间存在一种或多种特定关系的数据元素的集合 2.算法分析的目的是( B )。 A.辨别数据结构的合理性 B.评价算法的效率 C.研究算法中输入与输出的关系 D.鉴别算法的可读性 3.在线性表的下列运算中,不.改变数据元素之间结构关系的运算是( D )。 A.插入B.删除 C.排序D.定位 4.若进栈序列为1,2,3,4,5,6,且进栈和出栈可以穿插进行,则可能出现的出栈序列为( B )。 A.3,2,6,1,4,5 B.3,4,2,1,6,5

C.1,2,5,3,4,6 D.5,6,4,2,3,1 5.设串sl=″Data Structures with Java″,s2=″it″,则子串定位函数index(s1,s2)的值为( D )。 A.15 B.16 C.17 D.18 6.二维数组A[8][9]按行优先顺序存储,若数组元素A[2][3]的存储地址为1087,A[4][7]的存储地址为1153,则数组元素A[6][7]的存储地址为( A )。 A.1207 B.1209 C.1211 D.1213 7.在按层次遍历二叉树的算法中,需要借助的辅助数据结构是( A )。 A.队列B.栈 C.线性表D.有序表 8.在任意一棵二叉树的前序序列和后序序列中,各叶子之间的相对次序关系( B )。A.不一定相同B.都相同 C.都不相同D.互为逆序 9.若采用孩子兄弟链表作为树的存储结构,则树的后序遍历应采用二叉树的( C )。

数据结构实验报告

实验一约瑟夫问题 实验学时:3学时 实验类型:设计 实验要求:必修 一、实验目的 熟练掌握线性链表的基础知识; 能够使用C++或其他程序设计语言编程实现线性链表; 能够使用线性链表构造正确而且时间复杂度低的算法解决实际问题; 锻炼程序设计能力。 二、实验内容 M个教徒和N个非教徒在深海上遇险,必须将N个人投入海中,其余的人才能幸免于难,于是想了一个办法:所有人围成一圆圈,从第一个人开始依次报数,每数到第K个人就将他扔入大海,如此循环进行直到仅余M个人为止。设计一个算法,找出这样一个排序:使每次被扔进大海的都是非教徒。并用程序设计语言实现。 三、实验原理、方法和手段 使用循环单链表,将每个人作为一个结点,每个结点的指针域指向下一个人,采用循环链表的遍历对每隔N-1个结点的结点进行标记,直至标记出N个结点为止。该实验亦可用顺序表实现。 四、实验组织运行要求 本实验采用集中授课形式,每个同学独立完成上述实验要求。 五、实验条件 每人一台计算机独立完成实验,有如下条件: (1)硬件:联想高性能PC机; (2)软件:VC++ 6.0、VC++.Net。 六、实验步骤 (1)编写循环链表构造函数Node *Create( ),使链表中每个结点的数据域值为0,并让最后一个结点的指针域指向第一个结点; (2)编写约瑟夫问题函数 Node *Move(Node *H,int n); void Insert(Node *H,int pos,int data); (5)主函数中调用Create,Move和Insert,采用具体数据计算,输出结果。 七、实验程序 // stdafx.h : 标准系统包含文件的包含文件, // 或是经常使用但不常更改的 // 特定于项目的包含文件 // #pragma once #include"targetver.h" #include #include #include using namespace std;

数据结构实验报告-答案.doc

数据结构实验报告-答案 数据结构(C语言版)实验报告专业班级学号姓名实验1实验题目:单链表的插入和删除实验目的:了解和掌握线性表的逻辑结构和链式存储结构,掌握单链表的基本算法及相关的时间性能分析。 实验要求:建立一个数据域定义为字符串的单链表,在链表中不允许有重复的字符串;根据输入的字符串,先找到相应的结点,后删除之。 实验主要步骤:1、分析、理解给出的示例程序。 2、调试程序,并设计输入数据(如:bat,cat,eat,fat,hat,jat,lat,mat,#),测试程序的如下功能:不允许重复字符串的插入;根据输入的字符串,找到相应的结点并删除。 3、修改程序:(1)增加插入结点的功能。 (2)将建立链表的方法改为头插入法。 程序代码:#include“stdio.h“#include“string.h“#include“stdlib.h“#include“ctype. h“typedefstructnode//定义结点{chardata[10];//结点的数据域为字符串structnode*next;//结点的指针域}ListNode;typedefListNode*LinkList;//自定义LinkList单链表类型LinkListCreatListR1();//函数,用尾插入法建立带头结点的单链表LinkListCreatList(void);//函数,用头插入法建立带头结点的单链表ListNode*LocateNode();//函数,按值查找结点voidDeleteList();//函数,删除指定值的结点voidprintlist();//函数,打印链表中的所有值voidDeleteAll();//函数,删除所有结点,释放内存

山东大学操作系统实验二

软件学院操作系统实验报告 实验题目: 实验二、线程和进程/线程管道通信实验 学号:201100300124 日期:2013年04月19日 班级:5班姓名:韩俊晓 Email:hanjunxiao188@https://www.360docs.net/doc/b811118541.html, 实验目的: 通过Linux 系统中线程和管道通信机制的实验,加深对于线程控制和管道通信概念的理解,观察和体验并发进/线程间的通信和协作的效果,练习利用无名管道进行进/线程间通信的编程和调试技术。 实验要求: 设有二元函数f(x,y) = f(x) + f(y) 其中:f(x) = f(x-1) * x(x >1) f(x)=1(x=1) f(y) = f(y-1) + f(y-2)(y> 2) f(y)=1(y=1,2) 请编程建立3个并发协作进程(或线程),它们分别完成f(x,y)、f(x)、f(y) 其中由父进程(或主线程)完成:f(x,y) = f(x) + f(y) 由子进程1(或线程1)完成:f(x) = f(x-1) * x(x >1) f(x)=1(x=1)

由子进程2(或线程2)完成:f(y) = f(y-1) + f(y-2)(y> 2) f(y)=1(y=1,2) 硬件环境: 实验室计算机 软件环境: Ubuntu08.4-Linux操作系统 BASH_VERSION='3.2.33(1)-release gcc version 4.1.2 gedit 2.18.2 OpenOffice 2.3 实验步骤: 1.实验说明: 1)与线程创建、执行有关的系统调用说明 线程是在共享内存中并发执行的多道执行路径,它们共享一个进程的资源,如进程程序段、文件描述符和信号等,但有各自的执行路径和堆栈。线程的创建无需像进程那样重新申请系统资源,线程在上下文切换时也无需像进程那样更换内存映像。多线程的并发执行即避免了多进程并发的上下文切换的开销又可以提高并发处理的效率。 Linux 利用了特有的内核函数__clone 实现了一个叫phread 的线程库,__clone是fork 函数的替代函数,通过更多的控制父子进程共享哪些资源而实现了线程。Pthread 是一个标准化模型,用它可把一个程序分成一组能够并发执行的多个任务。phread 线程库是POSIX 线程标

数据结构实验报告

本科实验报告 课程名称:数据结构(C语言版) 实验项目:线性表、树、图、查找、内排序实验地点:明向校区实验楼208 专业班级:学号: 学生姓名: 指导教师:杨永强 2019 年 1 月10日

#include #include #include #define OK 1 typedef struct{//项的表示,多项式的项作为LinkList的数据元素float coef;//系数 int expn;//指数 }term,ElemType; typedef struct LNode{ //单链表节点结构 ElemType data; struct LNode *next; }LNode, *LinkList; typedef LinkList polynomial; int CreatLinkList(polynomial &P,int n){ //创建多项式P = (polynomial)malloc(sizeof(LNode)); polynomial q=P; q->next=NULL; polynomial s; for(int i = 0; i < n; i++){ s = (polynomial)malloc(sizeof(LNode)); scanf("%f%d",&(s->data.coef),&(s->data.expn)); q->next = s; s->next = NULL; q=q->next; } return OK; } 运行结果 2. void PrintfPolyn(polynomial P){ polynomial q; for(q=P->next;q;q=q->next){ if(q->data.coef!=1) printf("%g",q->data.coef);

数据结构实验报告图实验

邻接矩阵的实现 1. 实验目的 (1)掌握图的逻辑结构 (2)掌握图的邻接矩阵的存储结构 (3)验证图的邻接矩阵存储及其遍历操作的实现2. 实验内容 (1)建立无向图的邻接矩阵存储 (2)进行深度优先遍历 (3)进行广度优先遍历3.设计与编码MGraph.h #ifndef MGraph_H #define MGraph_H const int MaxSize = 10; template class MGraph { public: MGraph(DataType a[], int n, int e); ~MGraph(){ void DFSTraverse(int v); void BFSTraverse(int v); private: DataType vertex[MaxSize]; int arc[MaxSize][MaxSize]; }

int vertexNum, arcNum; }; #endif MGraph.cpp #include using namespace std; #include "MGraph.h" extern int visited[MaxSize]; template MGraph::MGraph(DataType a[], int n, int e) { int i, j, k; vertexNum = n, arcNum = e; for(i = 0; i < vertexNum; i++) vertex[i] = a[i]; for(i = 0;i < vertexNum; i++) for(j = 0; j < vertexNum; j++) arc[i][j] = 0; for(k = 0; k < arcNum; k++) { cout << "Please enter two vertexs number of edge: " cin >> i >> j; arc[i][j] = 1; arc[j][i] = 1; } }

数据结构实验报告四林昌雄

一、算法基本思想: (1) 顺序查找:建立顺序表,从表内第一个数值开始与给定值比较,若相等,则查找成功;否则,用下一个数值继续进行比较,直到数值等于给定值或者线性表已比较完(查找不成功)为止。 (2) 首先提示用户建立有序数组的长度,然后输入有序的数据,接着提示用户输入要查找的元素,通过调用binarySearch()来判断用户要查找的元素是否在此数组中,如果返回值是-1则说明用户查找的数据不在此数组中,否则输出在此数组中。但是,折半查找的先决条件是查找表中的数据元素必须有序。查找过程中采用跃式方查找,即先以有序数列的中点位置为比较对象,如果要找的元素值小于该中点元素,则待查序列缩小为左半部分,否则为右半部分。通过一次比较,将查找区间缩小一半。折半查找是一种高效的查找方法。它可以明显减少比较次数,提高查找效率。 二、结构定义: 线性表的结构定义:有序表的结构定义: typedef struct typedef struct { { Elemtype *elem; KeyType Key; int length; } int listsize; }Elemtype; }SqList; 三、算法描述: int Search_Bin2(SqList &L,KeyType key) {//在有序表ST中折半查找其关键字等于//key的数据元素。若找到,则函数值为该元//素在表中的位置,否则为0 int low,high,mid; low=1; high=L.length;//置区间初值 while(low<=high){ mid=(low+high)/2; if(EQ(key,L.elem[mid].key)) //找到待查元素 {printf("待查元素的位置:%d\n",mid+1); return OK; }

相关文档
最新文档