勾股定理的无字证明.1.2勾股定理的“无字证明”

合集下载

勾股定理无字证明过程

勾股定理无字证明过程

勾股定理无字证明过程嘿,你知道勾股定理不?就是那个在数学世界里超级重要的家伙!那咱今儿就来讲讲它的无字证明过程,可神奇啦!想象一下,有四个完全一样的直角三角形,它们的两条直角边分别是 a 和 b,斜边是 c。

咱把这四个三角形拼成一个边长是(a+b)的正方形。

你瞧,大正方形的面积就可以表示成(a+b)的平方。

但同时呢,这个大正方形又可以分成好几部分。

中间有个小正方形,它的边长就是斜边 c 呀,那它的面积就是 c 的平方。

周围呢,有四个直角三角形,每个三角形的面积是二分之一 ab。

这么一琢磨,大正方形的面积不就等于小正方形的面积加上四个三角形的面积嘛!那就是(a+b)的平方等于 c 的平方加上 4 乘以二分之一ab。

展开来算算,a 的平方加上 2ab 加上 b 的平方等于 c 的平方加上2ab,两边一减 2ab,嘿,不就得出 a 的平方加上 b 的平方等于 c 的平方了嘛!这就像是变魔术一样,通过巧妙地拼拼凑凑,就把勾股定理给证明出来了。

你说神奇不神奇?这就好像是解开了一道谜题,让人恍然大悟,忍不住拍案叫绝啊!勾股定理可是数学里的宝贝呢,在好多地方都用得到。

比如盖房子的时候,工程师就得用它来算算角度和长度,确保房子稳稳当当的。

还有那些设计桥梁、高塔的人,也都离不开勾股定理呀。

它就像是一把万能钥匙,能打开好多数学难题的大门。

而且,这个无字证明过程多直观呀,不需要太多复杂的文字和公式,就能让人明白其中的道理。

咱再想想,如果没有勾股定理,那这世界得乱成啥样呀?好多建筑可能都盖不起来,那些精巧的设计也没法实现了。

所以说呀,勾股定理可太重要啦!它就像是数学王国里的一颗璀璨明珠,闪耀着智慧的光芒。

而这个无字证明过程,更是让我们看到了数学的美妙和神奇之处。

怎么样,现在你对勾股定理的无字证明过程是不是有了更清楚的认识啦?是不是也觉得数学其实挺好玩的呀?以后再看到直角三角形,可别忘了它背后还有这么有趣的证明过程哦!。

第14章 勾股定理的无字证明 勾股定理16种证明方法

第14章 勾股定理的无字证明 勾股定理16种证明方法

勾股定理的证明【证法1】(课本的证明)做8个全等的直角三角形,设它们的两条直角边长分别为a 、b ,斜边长为c ,再做三个边长分别为a 、b 、c 的正方形,把它们像上图那样拼成两个正方形.从图上可以看到,这两个正方形的边长都是a + b ,所以面积相等. 即abc ab b a 214214222⨯+=⨯++, 整理得 222c b a =+.【证法2】(邹元治证明)以a 、b 为直角边,以c 为斜边做四个全等的直角三角形,则每个直角三角形的面积等于ab21.把这四个直角三角形拼成如图所示形状,使A 、E 、B 三点在一条直线上,B 、F 、C 三点在一条直线上,C 、G 、D 三点在一条直线上.∵ Rt ΔHAE ≌ Rt ΔEBF, ∴ ∠AHE = ∠BEF .∵ ∠AEH + ∠AHE = 90º, ∴ ∠AEH + ∠BEF = 90º. ∴ ∠HEF = 180º―90º= 90º.∴ 四边形EFGH 是一个边长为c 的 正方形. 它的面积等于c 2.∵ Rt ΔGDH ≌ Rt ΔHAE, ∴ ∠HGD = ∠EHA .∵ ∠HGD + ∠GHD = 90º, ∴ ∠EHA + ∠GHD = 90º. 又∵ ∠GHE = 90º,∴ ∠DHA = 90º+ 90º= 180º.∴ ABCD 是一个边长为a + b 的正方形,它的面积等于()2b a +.∴ ()22214c ab b a +⨯=+. ∴ 222c b a =+.【证法3】(赵爽证明)以a 、b 为直角边(b>a ), 以c 为斜边作四个全等的直角三角形,则每个直角三角形的面积等于ab21. 把这四个直角三角形拼成如图所示形状.∵ Rt ΔDAH ≌ Rt ΔABE, ∴ ∠HDA = ∠EAB .∵ ∠HAD + ∠HAD = 90º, ∴ ∠EAB + ∠HAD = 90º,∴ ABCD 是一个边长为c 的正方形,它的面积等于c 2. ∵ EF = FG =GH =HE = b ―a , ∠HEF = 90º.∴ EFGH 是一个边长为b ―a 的正方形,它的面积等于()2a b -.∴ ()22214c a b ab =-+⨯.∴ 222c b a =+. 【证法4】(1876年美国总统Garfield 证明)以a 、b 为直角边,以c 为斜边作两个全等的直角三角形,则每个直角三角形的面积等于ab21. 把这两个直角三角形拼成如图所示形状,使A 、E 、B 三点在一条直线上.∵ Rt ΔEAD ≌ Rt ΔCBE, ∴ ∠ADE = ∠BEC .∵ ∠AED + ∠ADE = 90º,∴ ∠AED + ∠BEC = 90º.∴ ∠DEC = 180º―90º= 90º. ∴ ΔDEC 是一个等腰直角三角形,它的面积等于221c.又∵ ∠DAE = 90º, ∠EBC = 90º, ∴ AD ∥BC .∴ ABCD 是一个直角梯形,它的面积等于()221b a +. ∴ ()222121221c ab b a +⨯=+. ∴ 222c b a =+.【证法5】(梅文鼎证明)做四个全等的直角三角形,设它们的两条直角边长分别为a 、b ,斜边长为c . 把它们拼成如图那样的一个多边形,使D 、E 、F 在一条直线上. 过C 作AC 的延长线交DF 于点P .∵ D 、E 、F 在一条直线上, 且Rt ΔGEF ≌ Rt ΔEBD,∴ ∠EGF = ∠BED ,∵ ∠EGF + ∠GEF = 90°,∴ ∠BED + ∠GEF = 90°,∴ ∠BEG =180º―90º= 90º.又∵ AB = BE = EG = GA = c , ∴ ABEG 是一个边长为c 的正方形∴ ∠ABC + ∠CBE = 90º. ∵ Rt ΔABC ≌ Rt ΔEBD, ∴ ∠ABC = ∠EBD . ∴ ∠EBD + ∠CBE = 90º.即 ∠CBD= 90º. 又∵ ∠BDE = 90º,∠BCP = 90º,BC = BD = a .∴ BDPC 是一个边长为a 的正方形. 同理,HPFG 是一个边长为b 的正方形. 设多边形GHCBE 的面积为S ,则,21222ab S b a ⨯+=+ abS c 2122⨯+=,∴ 222c b a =+.【证法6】(项明达证明)做两个全等的直角三角形,设它们的两条直角边长分别为a 、b (b>a ) ,斜边长为c . 再做一个边长为c 的正方形. 把它们拼成如图所示的多边形,使E 、A 、C 三点在一条直线上.过点Q 作QP ∥BC ,交AC 于点P . 过点B 作BM ⊥PQ ,垂足为M ;再过点 F 作FN ⊥PQ ,垂足为N . ∵ ∠BCA = 90º,QP ∥BC , ∴ ∠MPC = 90º, ∵ BM ⊥PQ , ∴ ∠BMP = 90º, ∴ BCPM 是一个矩形,即∠MBC = 90∵ ∠QBM + ∠MBA = ∠QBA = 90º,∠ABC + ∠MBA = ∠MBC = 90º, ∴ ∠QBM = ∠ABC ,又∵ ∠BMP = 90º,∠BCA = 90º,BQ = BA = c , ∴ Rt ΔBMQ ≌ Rt ΔBCA .同理可证Rt ΔQNF ≌ Rt ΔAEF . 从而将问题转化为【证法4】(梅文鼎证明). 【证法7】(欧几里得证明)做三个边长分别为a 、b 、c 的正方形,把它们拼成如图所示形状,使H 、C 、B 三点在一条直线上,连结BF 、CD . 过C 作CL ⊥DE ,交AB 于点M ,交DE 于点L . ∵ AF = AC ,AB = AD , ∠FAB = ∠GAD , ∴ ΔFAB ≌ ΔGAD , ∵ ΔFAB 的面积等于221aΔGAD 的面积等于矩形ADLM的面积的一半,∴ 矩形ADLM 的面积 =2a 同理可证,矩形MLEB 的面积 =2b .∵ 正方形ADEB 的面积= 矩形ADLM 的面积 + 矩形MLEB 的面积 ∴ 222b a c += ,即 222c b a =+. 【证法8】(利用相似三角形性质证明)如图,在Rt ΔABC 中,设直角边AC 、BC 的长度分别为a 、b ,斜边AB 的长为c ,过点C 作CD ⊥AB ,垂足是D .在ΔADC 和ΔACB 中,∵ ∠ADC = ∠ACB = 90º,∠CAD = ∠BAC , ∴ ΔADC ∽ ΔACB .AD ∶AC = AC ∶AB , 即 AB AD AC •=2.同理可证,ΔCDB ∽ ΔACB ,从而有 AB BD BC •=2.∴ ()222AB AB DB AD BC AC =•+=+,即 222c b a =+. 【证法9】(杨作玫证明)做两个全等的直角三角形,设它们的两条直角边长分别为a 、b (b>a ),斜边长为c . 再做一个边长为c 的正方形. 把它们拼成如图所示的多边形. 过A 作AF ⊥AC ,AF 交GT 于F ,AF 交DT 于R . 过B 作BP ⊥AF ,垂足为P . 过D 作DE 与CB 的延长线垂直,垂足为E ,DE 交AF 于H .∵ ∠BAD = 90º,∠PAC = 90º, ∴ ∠DAH = ∠BAC .又∵ ∠DHA = 90º,∠BCA = 90º, AD = AB = c ,∴ Rt ΔDHA ≌ Rt ΔBCA . ∴ DH = BC = a ,AH = AC = b .由作法可知, PBCA 是一个矩形,所以 Rt ΔAPB ≌ Rt ΔBCA . 即PB = CA = b ,AP= a ,从而PH = b ―a . ∵ Rt ΔDGT ≌ Rt ΔBCA , Rt ΔDHA ≌ Rt ΔBCA . ∴ Rt ΔDGT ≌ Rt ΔDHA .∴ DH = DG = a ,∠GDT = ∠HDA . 又∵ ∠DGT = 90º,∠DHF = 90º,∠GDH = ∠GDT + ∠TDH = ∠HDA+ ∠TDH = 90º, ∴ DGFH 是一个边长为a 的正方形.∴ GF = FH = a . TF ⊥AF ,TF = GT ―GF = b ―a .∴ TFPB 是一个直角梯形,上底TF=b ―a ,下底BP= b ,高FP=a +(b ―a ). 用数字表示面积的编号(如图),则以c 为边长的正方形的面积为543212S S S S S c ++++= ①∵()[]()[]a b a a b b S S S -+•-+=++21438 =ab b 212-, 985S S S +=,∴ 824321S ab b S S --=+= 812S S b -- . ②把②代入①,得98812212S S S S b S S c ++--++== 922S S b ++ = 22a b +.∴ 222c b a =+.【证法10】(李锐证明)设直角三角形两直角边的长分别为a 、b (b>a ),斜边的长为c . 做三个边长分别为a 、b 、c 的正方形,把它们拼成如图所示形状,使A 、E 、G 三点在一条直线上. 用数字表示面积的编号(如图).∵ ∠TBE = ∠ABH = 90º, ∴ ∠TBH = ∠ABE . 又∵ ∠BTH = ∠BEA = 90º, BT = BE = b , ∴ Rt ΔHBT ≌ Rt ΔABE . ∴ HT = AE = a .∴ GH = GT ―HT = b ―a . 又∵ ∠GHF + ∠BHT = 90º,∠DBC + ∠BHT = ∠TBH + ∠BHT = 90º, ∴ ∠GHF = ∠DBC .∵ DB = EB ―ED = b ―a , ∠HGF = ∠BDC = 90º,∴ Rt ΔHGF ≌ Rt ΔBDC . 即 27S S =.过Q 作QM ⊥AG ,垂足是M . 由∠BAQ = ∠BEA = 90º,可知 ∠ABE = ∠QAM ,而AB = AQ = c ,所以Rt ΔABE ≌ Rt ΔQAM . 又Rt ΔHBT ≌ Rt ΔABE . 所以Rt ΔHBT ≌ Rt ΔQAM . 即 58S S =.由Rt ΔABE ≌ Rt ΔQAM ,又得QM = AE = a ,∠AQM = ∠BAE .∵ ∠AQM + ∠FQM = 90º,∠BAE + ∠CAR = 90º,∠AQM = ∠BAE , ∴ ∠FQM = ∠CAR .又∵ ∠QMF = ∠ARC = 90º,QM = AR = a ,∴ Rt ΔQMF ≌ Rt ΔARC . 即64S S =.∵ 543212S S S S S c ++++=,612S S a +=,8732S S S b ++=,又∵ 27S S =,58S S =,64S S =,∴8736122S S S S S b a ++++=+ =52341S S S S S ++++=2c , 即 222c b a =+.【证法11】(利用切割线定理证明)在Rt ΔABC 中,设直角边BC = a ,AC = b ,斜边AB = c . 如图,以B 为圆心a 为半径作圆,交AB 及AB 的延长线分别于D 、E ,则BD = BE = BC = a . 因为∠BCA = 90º,点C 在⊙B 上,所以AC 是⊙B 的切线. 由切割线定理,得AD AE AC •=2=()()BD AB BE AB -+=()()a c a c -+= 22a c -,即222a cb -=, ∴ 222c b a =+.【证法12】在Rt ΔABC 中,设直角边BC = a ,AC = b ,斜边AB = c (如图). 过点A 作AD ∥CB ,过点B 作BD ∥CA ,则ACBD 为矩形,矩形ACBD 内接于一个圆. 根据多列米定理,圆内接四边形对角线的乘积等于两对边乘积之和,有BD AC BC AD DC AB •+•=•,∵ AB = DC = c ,AD = BC = a , AC = BD = b ,∴ 222AC BC AB +=,即 222b a c +=, ∴ 222c b a =+.【证法13】在Rt ΔABC 中,设直角边BC = a ,AC = b ,斜边AB = c . 作Rt ΔABC 的内切圆⊙O ,切点分别为D 、E、F (如图),设⊙O 的半径为r .∵ AE = AF ,BF = BD ,CD = CE ,∴ ()()()BF AF CD BD CE AE ABBC AC +-+++=-+= CD CE += r + r = 2r,即 r c b a 2=-+, ∴ c r b a +=+2.∴ ()()222c r b a +=+,即 ()222242c rc r ab b a ++=++,∵ab S ABC 21=∆,∴ ABC S ab ∆=42, 又∵ AOC BOCAOB ABC S S S S ∆∆∆∆++= = br ar cr 212121++ = ()r c b a ++21= ()r c c r ++221= rc r +2,∴()ABC S rc r ∆=+442, ∴ ()ab rc r242=+,∴ 22222c ab ab b a +=++, ∴ 222c b a =+.【证法14】(利用反证法证明)如图,在Rt ΔABC 中,设直角边AC 、BC 的长度分别为a 、b ,斜边AB 的长为c ,过点C 作CD ⊥AB ,垂足是D .假设222c b a ≠+,即假设 222AB BC AC ≠+,则由AB AB AB •=2=()BD AD AB +=BD AB AD AB •+•可知 AD AB AC •≠2,或者 BD AB BC •≠2. 即 AD :AC ≠AC :AB ,或者 BD :BC ≠BC :AB .在ΔADC 和ΔACB 中,∵ ∠A = ∠A ,∴ 若 AD :AC ≠AC :AB ,则∠ADC ≠∠ACB .在ΔCDB 和ΔACB 中, ∵ ∠B = ∠B ,∴ 若BD :BC ≠BC :AB ,则 ∠CDB ≠∠ACB . 又∵ ∠ACB = 90º,∴ ∠ADC ≠90º,∠CDB ≠90º.这与作法CD ⊥AB 矛盾. 所以,222AB BC AC ≠+的假设不能成立.∴ 222c b a =+.【证法15】(辛卜松证明)设直角三角形两直角边的长分别为a 、b ,斜边的长为c . 作边长是a+b 的正方形ABCD . 把正方形ABCD 划分成上方左图所示的几个部分,则正方形ABCD 的面积为()ab b a b a2222++=+;把正方形ABCD划分成上方右图所示的几个部分,则正方形ABCD 的面积为 ()22214c ab b a +⨯=+ =22c ab +.∴ 22222c ab ab b a +=++,∴ 222c b a =+.【证法16】(陈杰证明)设直角三角形两直角边的长分别为a 、b (b>a ),斜边的长为c . 做两个边长分别为a 、b 的正方形(b>a ),把它们拼成如图所示形状,使E 、H 、M 三点在一条直线上. 用数字表示面积的编号(如图). 在EH = b 上截取ED = a ,连结DA 、则 AD = c .∵ EM = EH + HM = b + a , ED = a ∴ DM = EM ―ED = ()a b +―a = b . 又∵ ∠CMD = 90º,CM = a ,∠AED = 90º, AE = b , ∴ Rt ΔAED ≌ Rt ΔDMC .D∴ ∠EAD = ∠MDC ,DC = AD = c . ∵ ∠ADE + ∠ADC+ ∠MDC =180º,∠ADE + ∠MDC = ∠ADE + ∠EAD = 90º, ∴ ∠ADC = 90º.∴ 作AB ∥DC ,CB ∥DA ,则ABCD 是一个边长为c 的正方形. ∵ ∠BAF + ∠FAD = ∠DAE + ∠FAD = 90º, ∴ ∠BAF=∠DAE .连结FB ,在ΔABF 和ΔADE 中,∵ AB =AD = c ,AE = AF = b ,∠BAF=∠DAE , ∴ ΔABF ≌ ΔADE .∴ ∠AFB = ∠AED = 90º,BF = DE = a . ∴ 点B 、F 、G 、H 在一条直线上. 在Rt ΔABF 和Rt ΔBCG 中,∵ AB = BC = c ,BF = CG = a , ∴ Rt ΔABF ≌ Rt ΔBCG .∵ 54322S S S S c +++=, 6212S S S b ++=, 732S S a +=,76451S S S S S +===,∴6217322S S S S S b a ++++=+ =()76132S S S S S ++++=5432S S S S +++=2c ∴ 222c b a =+.。

勾股定理种证明有图

勾股定理种证明有图

勾股定理的9种证明(有图)【证法1】(邹元治证明)以a 、b 为直角边,以c 为斜边做四个全等的直角三角形,则每个直角三角形的面积等于ab 21.把这四个直角三角形拼成如图所示形状,使A 、E 、B 三点在一条直线上,B 、F 、C 三点在一条直线上,C 、G 、D 三点在一条直线上.∵Rt ΔHAE ≌Rt ΔEBF, ∴∠AHE=∠BEF.∵∠AEH+∠AHE=90o,∴∠AEH+∠BEF=90o. ∴∠HEF=180o ―90o=90o.∴四边形EFGH 是一个边长为c 的 正方形.它的面积等于c 2.∵Rt ΔGDH ≌Rt ΔHAE,∴∠HGD=∠EHA.∵∠HGD+∠GHD=90o, ∴∠EHA+∠GHD=90o. 又∵∠GHE=90o,∴∠DHA=90o+90o=180o.∴ABCD 是一个边长为a+b 的正方形,它的面积等于()2b a +.∴()22214c ab b a +⨯=+.∴222c b a =+.【证法2】(梅文鼎证明)做四个全等的直角三角形,设它们的两条直角边长分别为a 、b ,斜边长为c.把它们拼成如图那样的一个多边形,使D 、E 、F 在一条直线上.过C 作AC 的延长线交DF 于点P. ∵D 、E 、F 在一条直线上,且Rt ΔGEF ≌Rt Δ∴∠EGF=∠BED , ∵∠EGF+∠GEF=90°,∴∠BED+∠GEF=90°,∴∠BEG=180o ―90o=90o. 又∵AB=BE=EG=GA=c ,∴ABEG 是一个边长为c 的正方形.∴∠ABC+∠CBE=90o.∵Rt ΔABC ≌Rt ΔEBD, ∴∠ABC=∠EBD.∴∠EBD+∠CBE=90o. 即∠CBD=90o.又∵∠BDE=90o ,∠BCP=90o ,BC=BD=a.∴BDPC 是一个边长为a 的正方形.同理,HPFG 是一个边长为b 的正方形. 设多边形GHCBE 的面积为S ,则abS c 2122⨯+=,∴222c b a =+. 【证法3】(项明达证明) 做两个全等的直角三角形,设它们的两条直角边长分别为a 、b (b>a ),斜边长为c.再做一个边长为c 的正方形.把它们拼成如图所示的多边形,使E 、A 、C 三点在一条直线上. 过点Q 作QP ∥BC ,交AC 于点P.过点B 作BM ⊥PQ ,垂足为M ;再过点F 作FN ⊥PQ ,垂足为N.∵∠BCA=90o ,QP ∥BC ,∴∠MPC=90o ,∵BM ⊥PQ , ∴∠BMP=90o ,∴BCPM 是一个矩形,即∠MBC=90o.∵∠QBM+∠MBA=∠QBA=90o ,∠ABC+∠MBA=∠MBC=90o , ∴∠QBM=∠ABC ,又∵∠BMP=90o ,∠BCA=90o ,BQ=BA=c , ∴Rt ΔBMQ ≌Rt ΔBCA.同理可证Rt ΔQNF ≌Rt ΔAEF. 从而将问题转化为【证法4】(梅文鼎证明). 【证法4】(欧几里得证明)做三个边长分别为a 、b 、c 的正方形,把它们拼成如图所示形状,使H 、C 、B 三点在一条直线上,连结 BF 、CD.过C 作CL ⊥DE , 交AB 于点M ,交DE 于点L.∵AF=AC ,AB=AD ,∠FAB=∠GAD , ∴ΔFAB ≌ΔGAD ,∵ΔFAB 的面积等于221a,ΔGAD 的面积等于矩形ADLM 的面积的一半,∴矩形ADLM 的面积=2a .同理可证,矩形MLEB 的面积=2b .∵正方形ADEB 的面积=矩形ADLM 的面积+矩形MLEB 的面积 ∴222b a c +=,即222c b a =+. 【证法5】(杨作玫证明) 做两个全等的直角三角形,设它们的两条直角边长分别为a 、b (b>a ),斜边长为c.再做一个边长为c 的正方形.把它们拼成如图所示的多边形.过A 作AF ⊥AC ,AF 交GT 于F ,AF 交DT 于R.过B 作BP ⊥AF ,垂足为P.过D 作DE 与CB 的延长线垂直,垂足为E ,DE 交AF 于H.∵∠BAD=90o ,∠PAC=90o ,∴∠DAH=∠BAC.又∵∠DHA=90o ,∠BCA=90o , AD=AB=c , ∴Rt ΔDHA ≌Rt ΔBCA.∴DH=BC=a ,AH=AC=b.由作法可知,PBCA 是一个矩形, 所以Rt ΔAPB ≌Rt ΔBCA.即PB= CA=b ,AP=a ,从而PH=b ―a.∵Rt ΔDGT ≌Rt ΔBCA, Rt ΔDHA ≌Rt ΔBCA.∴Rt ΔDGT ≌Rt ΔDHA.∴DH=DG=a ,∠GDT=∠HDA. 又∵∠DGT=90o ,∠DHF=90o ,∠GDH=∠GDT+∠TDH=∠HDA+∠TDH=90o , ∴DGFH 是一个边长为a 的正方形. ∴GF=FH=a.TF ⊥AF ,TF=GT ―GF=b ―a. ∴TFPB 是一个直角梯形,上底TF=b ―a ,下底BP=b ,高FP=a+(b ―a ). 用数字表示面积的编号(如图),则以c 为边长的正方形的面积为543212S S S S S c ++++=①∵()[]()[]a b a a b b S S S -+•-+=++21438=ab b 212-, 985S S S +=,∴824321S ab b S S --=+=812SS b --.② 把②代入①,得=922S S b ++=22a b +.∴222c b a =+.【证法6】(李锐证明)设直角三角形两直角边的长分别为a 、b (b>a ),斜边的长为c.做三个边长分别为a 、b 、c 的正方形,把它们拼成如图所示形状,使A 、E 、G 三点在一条直线上.用数字表示面积的编号(如图).∵∠TBE=∠ABH=90o , ∴∠TBH=∠ABE. 又∵∠BTH=∠BEA=90o , BT=BE=b , ∴Rt ΔHBT ≌Rt ΔABE. ∴HT=AE=a. ∴GH=GT ―HT=b ―a.又∵∠GHF+∠BHT=90o ,∠DBC+∠BHT=∠TBH+∠BHT=90o∴∠GHF=∠DBC.∵DB=EB ―ED=b ―a ,∠HGF=∠BDC=90o , ∴Rt ΔHGF ≌Rt ΔBDC.即27S S =.过Q 作QM ⊥AG ,垂足是M.由∠BAQ=∠BEA=90o ,可知∠ABE =∠QAM ,而AB=AQ=c ,所以Rt ΔABE ≌Rt ΔQAM.又Rt ΔHBT ≌ Rt ΔABE.所以Rt ΔHBT ≌Rt ΔQAM.即58S S =.由Rt ΔABE ≌Rt ΔQAM ,又得QM=AE=a ,∠AQM=∠BAE. ∵∠AQM+∠FQM=90o ,∠BAE+∠CAR=90o ,∠AQM=∠BAE , ∴∠FQM=∠CAR.又∵∠QMF=∠ARC=90o ,QM=AR=a ,∴Rt ΔQMF ≌Rt ΔARC.即64S S =.∵543212S S S S S c ++++=,612S S a +=,8732S S S b ++=,又∵27S S =,58S S =,64S S =,∴8736122S S S S S b a ++++=+=52341S S S S S ++++ =2c ,即222c b a =+. 【证法7】(利用多列米定理证明)在Rt ΔABC 中,设直角边BC=a ,AC=b ,斜边AB=c (如图).过点A 作AD ∥CB ,过点B 作BD ∥CA ,则ACBD 为矩形,矩形ACBD 内接于一个圆.根据多列米定理,圆内接四边形对角线的乘积等于两对边乘积之和,有BD AC BC AD DC AB •+•=•, ∵AB=DC=c ,AD=BC=a , AC=BD=b , ∴222AC BC AB +=,即222b a c +=, ∴222c b a =+.【证法8】(利用反证法证明)如图,在Rt ΔABC 中,设直角边AC 、BCb ,斜边AB 的长为c ,过点C 作CD ⊥AB ,垂足是D.假设222c b a ≠+,即假设222AB BC AC ≠+,则由AB AB AB •=2=()BD AD AB +=BD AB AD AB •+•可知AD AB AC •≠2,或者BD AB BC •≠2.即AD :AC ≠AC :AB ,或者BD :BC ≠BC :AB.在ΔADC 和ΔACB 中,∵∠A=∠A ,∴若AD :AC ≠AC :AB ,则∠ADC ≠∠ACB. 在ΔCDB 和ΔACB 中, ∵∠B=∠B , ∴若BD :BC ≠BC :AB ,则 ∠CDB ≠∠ACB. 又∵∠ACB=90o ,∴∠ADC ≠90o ,∠CDB ≠90o.这与作法CD ⊥AB 矛盾.所以,222AB BC AC ≠+的假设不能成立.∴222c b a =+. 【证法9】(辛卜松证明)设直角三角形两直角边的长分别为a 、b ,斜边的长为c.作边长是a+b 的正方形ABCD.把正方形ABCD 划分成上方左图所示的几个部分,则正方形ABCD 的面积为()ab b a b a 2222++=+;把正方形ABCD 划分成上方右图所示的几个部分,则正方形ABCD 的面积为()22214c ab b a +⨯=+=22c ab +.∴22222c ab ab b a +=++,∴222c b a =+.。

勾股定理证明(7种方法)

勾股定理证明(7种方法)
图七
在多种「无字证明」中,我最喜欢的有两个。图七是其中之一。做法是将一条垂直线和一条水 平线,将较大直角边的正方形边的正方形填入 斜边正方形之中,便可完成定理的证明。
事实上,以类似的「拼图」方式所做的证明非常之多,但在这裏就未有打算将它们一一尽录了。
另一个「无字证明」,可以算是最巧妙和最简单的,方法如下:
(a) (b)
图十
证明六
图十一
图十一中, 我们将中间的直角三角形 ABC 以 CD 分成两部分,其中 Ð C 为直角,D 位於 AB 之上并且 CD ^ AB。设 a = CB,b = AC,c = AB,x = BD,y = AD。留意图中的三个三角形都 是互相相似的,并且 D DBC ~ D CBA ~ D DCA,所以
2007-10-14 15:08 回复 221.223.96.* 2楼 又,如果从一个老师的角度来看,证明二和证明三都有一个共同的缺点,它就是需要到恒等式 (a ± b)2 = a2 ± 2ab + b2 了。虽然这个恒等式一般都包括在中二的课程之中,但有很多学生 都未能完全掌握,由於以上两个证明都使用了它,往往在教学上会出现学生不明白和跟不上等 问题。 证明四
由此得知勾股定理成立。
证明二可以算是一个非常直接了当的证明。最有趣的是,如果我们将图中的直角三角形翻转, 拼成以下的图三,我们依然可以利用相类似的手法去证明勾股定理,方法如下:
图三
由面积计算可得 c2 = 4(1/2 ab) + (b - a)2 展开得 = 2ab + b2 - 2ab + a2 化简得 c2 = a2 + b2(定理得证) 图三的另一个重要意义是,这证明最先是由一个中国人提出的!据记载,这是出自三国时代(即 约公元 3 世纪的时候)吴国的赵爽。赵爽为《周髀算经》作注释时,在书中加入了一幅他称为 「勾股圆方图」(或「弦图」)的插图,亦即是上面图三的图形了。 证明三

关于“勾股定理”的60种证法

关于“勾股定理”的60种证法

关于“勾股定理”的60种证法1.(面积法证明)1 证法1.1:证明:在直角三角形ABC 中,分别作以AB 、AC 、BC 为边的正方形ABED,正方形ACJI 和正方形BCHG ,连接线段IB 、CD 、AG 、CE 。

过点C 作DE 的垂线CK ,交DE 于点K ,交AB 于点L 。

90,,CAI BAD CAB CADCAB CAD AC AI AD AB ACD AIB∠=∠=∴∠=∠∠=∠==∴∆≅∆线段AI 平行于线段BJ ∴AIB ∆的面积等于AIC ∆ACD AIB ∆≅∆AIC ∴∆的面积等于ACD ∆ 线段AD 平行于线段CK∴矩形ADKL 的面积等于ACD ∆面积的两倍正方形ACJI 的面积等于AIC ∆的两倍,AIC ∆的面积等于ACD ∆ ∴矩形ADKL 的面积等于正方形ACJI 的面积同理,有:矩形BEKL 的面积等于正方形BCHG 的面积。

正方形ABED 的面积等于矩形ADKL 的面积加上矩形BEKL 的面积∴正方形ABED 的面积等于正方形ACJI 的面积与正方形BCHG 的面积之和即222AC BC AB +=.Remark :此为欧几里得(Euclid,约公元前330年-公元前275年)在几何原本中的证明方法。

2 证法1.2:证明:在上图中,整个正方形的面积为2()a b +,又等于四个直角三角形的面积加上里面的小正方形的面积,等于22ab c +。

因此,22()2a b ab c +=+,此即:222a b c +=。

Remark :此证法据Bretschneider 和Hankel 的推测,为毕达哥拉斯(Pythagoras ,约公元前580~约前500)的证法。

3 证法1.3(总统证明法)如图,三角形ABC 与三角形BDE 完全相等,易证三角形ABE 为等腰直角三角形。

整个直角梯形ACDE 的面积为21()2a b +,又等于两个直角三角形的面积加上等腰直角三角形ABE 的面积,等于212ab c +,故2211()22a b ab c +=+。

勾股定理的九种证明方法(附图)

勾股定理的九种证明方法(附图)

勾股定理的证明方法一、传说中毕达哥拉斯的证法(图1)左边的正方形是由1个边长为的正方形和1个边长为的正方形以及4个直角边分别为、,斜边为的直角三角形拼成的。

右边的正方形是由1个边长为的正方形和4个直角边分别为、,斜边为的直角三角形拼成的。

因为这两个正方形的面积相等(边长都是),所以可以列出等式,化简得。

二、美国第20任总统茄菲尔德的证法(图3)这个直角梯形是由2个直角边分别为、,斜边为的直角三角形和1个直角边为的等腰直角三角形拼成的。

因为3个直角三角形的面积之和等于梯形的面积,所以可以列出等式,化简得。

三、相似三角形的证法:4.相似三角形的方法:在学习了相似三角形以后,我们知道在直角三角形中,斜边上的高把这个直角三角形所分成的两个三直角角形与原三角形相似。

如图,Rt△ABC中,∠ACB=90°。

作CD⊥AB,垂足为D。

则△BCD∽△BAC,△CAD∽△BAC。

由△BCD∽△BAC可得BC2=BD ×BA,①由△CAD∽△BAC可得AC2=AD ×AB。

②我们发现,把①、②两式相加可得BC2+AC2=AB(AD+BD),而AD+BD=AB,因此有BC2+AC2=AB2,这就是a2+b2=c2。

这也是一种证明勾股定理的方法,而且也很简洁。

它利用了相似三角形的知识。

四、古人的证法:CABD如图,将图中的四个直角三角形涂上深红色,把中间小正方形涂上白色,,以弦为边的正方形称为弦实,然后经过拼补搭配,“令出入相补,各从其类”,他肯定了勾股弦三者的关系是符合勾股定理的。

即“勾股各自乘,并之为弦实,开方除之,即弦也”。

赵爽对勾股定理的证明,显示了我国数学家高超的证题思想,较为简明、直观。

五、项明达证法:作两个全等的直角三角形,设它们的两条直角边长分别为a、b(b>a),斜边长为c. 再做一个边长为c的正方形. 把它们拼成如图所示的多边形,使E、A、C三点在一条直线上.过点Q作QP∥BC,交AC于点P.过点B作BM⊥PQ,垂足为M;再过点F作FN⊥PQ,垂足为N.∵∠BCA = 90°,QP∥BC,∴∠MPC = 90°,∵ BM⊥PQ,∴∠BMP = 90°,∴ BCPM是一个矩形,即∠MBC = 90°.∵∠QBM + ∠MBA = ∠QBA =90 °,∠ABC + ∠MBA = ∠MBC = 90°,∴∠QBM = ∠ABC,又∵∠BMP = 90°,∠BCA = 90°,BQ = BA = c,∴ RtΔBMQ ≌ RtΔBCA.同理可证RtΔQNF ≌ RtΔAEF.即a^2+b^2=c^2六、欧几里德射影定理证法:如图,Rt△ABC中,∠ABC=90°,AD是斜边BC上的高,通过证明三角形相似则有射影定理如下:1)(BD)^2;=AD·DC,(2)(AB)^2;=AD·AC ,(3)(BC)^2;=CD·AC 。

古印度无字证明勾股定理的过程

古印度无字证明勾股定理的过程
古印度无字证明勾股定理的过程可以追溯到公元前800年左右的印度文明时期。

在这个时期,印度数学家发现了勾股定理,并用几何学的方法证明了这个定理的正确性。

在证明过程中,他们首先构造了一个直角三角形,其中直角所在的两条边的长度分别为a和b,斜边的长度为c。

然后,他们将这个三角形切成了两个小三角形,其中一个小三角形的两条边的长度分别为a和x,另一个小三角形的两条边的长度分别为b和y。

然后,他们发现,这两个小三角形的面积之和等于原来的大三角形的面积。

因此,他们可以得到以下公式:
a^2 + x^2 = c^2
b^2 + y^2 = c^2
a^2 + b^2 = c^2
因此,他们证明了勾股定理的正确性,而且他们的证明没有使用任何文字或符号,只是通过几何构造和逻辑推理得出结论。

这个证明方法被称为“无字证明”,是古印度数学的重要贡献之一。

- 1 -。

勾股定理16种证明方法

勾股定理16种证明方法操作方法01【证法1】(课本的证明)做8个全等的直角三角形,设它们的两条直角边长分别为a、b,斜边长为c,再做三个边长分别为a、b、c的正方形,把它们像上图那样拼成两个正方形.从图上可以看到,这两个正方形的边长都是a + b,所以面积相等. 即a²+b²+4x1/2ab=c²+4x1/2ab,整理得a²+b²=c²。

02【证法2】(邹元治证明)以a、b 为直角边,以c为斜边做四个全等的直角三角形,则每个直角三角1ab2形的面积等于. 把这四个直角三角形拼成如图所示形状,使A、E、B三点在一条直线上,B、F、C三点在一条直线上,C、G、D三点在一条直线上. ∵ RtΔHAE ≌ RtΔEBF, ∴ ∠AHE = ∠BEF.∵ ∠AEH + ∠AHE = 90o, ∴ ∠AEH + ∠BEF = 90o. ∴ ∠HEF = 180o―90o= 90o.∴ 四边形EFGH是一个边长为c的正方形. 它的面积等于c2. ∵ RtΔGDH ≌ RtΔHAE,∴ ∠HGD = ∠EHA. ∵ ∠HGD + ∠GHD = 90o,∴ ∠EHA + ∠GHD = 90o.又∵ ∠GHE = 90o,∴ ∠DHA = 90o+ 90o= 180o.∴ ABCD是一个边长为a + b的正方形,它的面积等于(a+b)².∴(a+b)²=4x1/2ab+c²∴ a²+b²=c²。

03【证法3】(赵爽证明)以a、b 为直角边(b>a),以c为斜边作四个全等的直角三角形,则每个直角 1ab2三角形的面积等于. 把这四个直角三角形拼成如图所示形状. ∵ RtΔDAH ≌ RtΔABE,∴ ∠HDA = ∠EAB.∵ ∠HAD + ∠HAD = 90o,∴ ∠EAB + ∠HAD = 90o,2∴ ABCD是一个边长为c的正方形,它的面积等于c.∵ EF = FG =GH =HE = b―a ,∠HEF = 90o.∴ EFGH是一个边长为b―a的正方形,它的面积等于(b-a)².∴(b-a)²=4x1/2ab+c²∴ a²+b²=c²。

勾股定理的证明(比较全的证明方法)课件

毕达哥拉斯证明法虽然不如欧几里得证明法那么简洁明了,但它也具有其独特的数 学美感和哲学思考。
总统证明法
美国总统加菲尔德在1876年独 立发现了勾股定理的一种新的 证明方法,后来被称为“总统 证明法”。
总统证明法利用了代数和三角 恒等式来证明勾股定理,这种 方法与前两种几何证明方法有 所不同。
总统证明法不仅证明了勾股定 理,而且也展示了数学中代数 和三角学的紧密联系。
05
勾股定理的推广
勾股定理的逆定理
勾股定理的逆定理
如果三角形三边满足勾股定理, 则这个三角形是直角三角形。
证明方法
利用勾股定理和三角形的性质, 通过反证法证明。假设三角形不 是直角三角形,则其三边不满足 勾股定理,与已知条件矛盾。
勾股定理的推广形式
勾股定理的推广
对于任意多边形,如果其内角和为 180度,则其边长满足勾股定理。
对未来研究的展望
深入研究和探索
勾股定理的证明方法有很多种,但还有很多 值得探索和研究的地方。例如,如何将不同 的证明方法进行比较和整合,如何进一步简 化证明过程等。这些问题的研究和探索,有 助于推动数学教育的发展和进步。
与其他学科的交叉研究
勾股定理不仅在数学中有应用,在其他学科 如物理学、工程学、经济学等也有广泛的应 用。如何将勾股定理与其他学科进行交叉研 究,发挥其在解决实际问题中的作用,也是 未来研究的一个重要方向。
03
勾股定理的代数证明方法
哈里奥特证明法
哈里奥特证明法是一种基于无穷小差分的代数证明方法。它 通过将直角三角形转化为等腰直角三角形,利用无穷小差分 的性质,推导出勾股定理。
哈里奥特证明法不仅证明了勾股定理,还为微积分学的发展 奠定了基础。
欧拉证明法

八年级数学上册《勾股定理的无字证明》教案、教学设计

1.关注学生对几何图形观察和分析的能力,引导他们从特殊到一般,逐步发现勾股定理;
2.注重培养学生的逻辑推理能力,通过问题驱动和小组不同学生的学习特点,因材施教,给予个性化指导,帮助学生克服学习中的困难;
4.强调数学知识在实际生活中的应用,激发学生的学习兴趣,提高他们解决实际问题的能力。
三、教学重难点和教学设想
(一)教学重难点
1.重点:理解并掌握勾股定理的表述和证明方法,能够灵活运用勾股定理解决实际问题。
2.难点:
-无字证明的理解:无字证明要求学生具备较强的逻辑思维能力和空间想象能力,这对学生来说是一个挑战。
-勾股定理在实际问题中的应用:如何将勾股定理与生活实际相结合,解决具体问题,是学生需要突破的难点。
(二)教学设想
1.教学方法:
-采用探究式教学,引导学生通过观察、分析、讨论,主动发现勾股定理;
-结合实际案例,让学生在实际问题中感受勾股定理的应用,提高解决问题的能力;
-利用信息技术手段,如多媒体、网络资源等,辅助教学,增强学生的直观感受。
2.教学过程:
(1)导入:通过一个简单的实际问题,引导学生思考直角三角形边长之间的关系,为新课的学习做好铺垫。
八年级数学上册《勾股定理的无字证明》教案、教学设计
一、教学目标
(一)知识与技能
1.知道勾股定理的表述,理解其含义,并能够准确地叙述出来;
2.掌握勾股定理的无字证明方法,并能够灵活运用到实际问题中;
3.能够运用勾股定理解决直角三角形中与边长有关的问题,如求斜边、已知两边求第三边等;
4.了解勾股定理在数学发展史上的地位,了解我国古代数学家在勾股定理研究方面的贡献。
-请尝试用勾股定理解决一些非直角三角形的问题,如:等腰三角形的边长关系。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

探究
美国总统詹姆士•阿•加菲尔德的证法
探究
约公元 263 年,三国时代魏国的数学家刘徽为 古籍《九章算术》作注释时,用“出入相补法” 证明了勾股定理.证明时不需用任何数学符号和 文字,更不需进行运算,隐含在图中的勾股定理 便清晰地呈现,整个证明单靠移动几块图形而得 出,被称为最美的“无字证明”法.
勾股定理的“无字证明”
引入
S大正方形=(a+b)2 S大正方形=c2 +4ab
(a+b)2 =c2 +4ab,即a2+b2 =c2
注意:这种根据图形可以极其简单地直观推 论或验证数学规律和公式的方法,简称为 “无字证明”.
探究
ቤተ መጻሕፍቲ ባይዱ
S大正方形=c2 S大正方形= (b-a)2+4ab
2
c2 = (b-a)2 +4ab,即a2+b2 =c2
自主探索
你还有其他的证明 方法吗?
相关文档
最新文档