关于曝气池污泥浓度测定方法

关于曝气池污泥浓度测定方法
关于曝气池污泥浓度测定方法

污泥浓度的测定

1 适用范围

曝气池活性污泥的污泥浓度、污泥指数、污泥沉降比。

2 定义

污泥浓度是指曝气池中污水和活性污泥混合后的混合液悬浮固体数量。单位:mg/L。

污泥沉降比是指曝气池混合液在100ml量筒中,静置沉淀30分钟后,沉淀污泥与混合液之体积比(%)。污泥指数是指曝气池出口处混合液经30分钟静沉后,1g干污泥所占的容积,以ml计。

3 仪器

3.1 天平

3.2 定量滤纸

3.3 烘箱

3.4 真空泵

3.5 扁嘴无齿镊子

3.6 实验室其它常用仪器

4 采样与样品保存

实验室样品采集在干净的玻璃瓶内,采样之前用待采的水样清洗三次,然后采集具有代表性的水样100―200ml,盖严瓶塞。应尽快分析。

5 测定步骤

5.1 滤纸准备

用扁嘴无齿镊子夹取定量滤纸放于事先恒重的称量瓶内,移入烘箱中于103―105℃烘干半小时后取出置于干燥器内冷却至室温,称其重量。反复烘干、冷却、称量,直至两次称量的重量差≤0.2mg,记录(W1)。将恒重的滤纸放在玻璃漏斗内。

5.2 试样测定

用100ml量筒量取充分混合均匀的试样100ml,静止30分钟后读取沉淀后污泥所占的体积V(ml)。

倾去上述量筒中清液,用准备好的滤纸进行过滤量筒中的污泥,并用少量蒸馏水冲洗量筒,合并滤液。(为提高过滤速度,应采用真空泵进行抽滤。)将载有污泥的滤纸放在原恒重的称量瓶里,移入烘箱中于103―105℃下烘2~3小时后移入干燥器中,使冷却到室温,称其重量。反复烘干、冷却、称量,直至两次称量的重量差≤0.4mg为止,记录(W2)。

6 计算

6.1 污泥浓度

C污泥浓度(mg/L)=(W2–W1)×106÷100

6.2 污泥指数

SVI(ml/g)= SV%×106÷C污泥浓度

6.3 污泥沉降比

SV(%)= V÷100×100%

式中:V —— 100ml试样在100ml量筒中,静止30分钟沉淀后污泥所占的体积,ml;

W1 ——过滤前,滤纸+ 称量瓶重量,g;

W2 ——过滤后,滤纸+ 称量瓶重量,g。

7 注意事项

7.1 用真空泵进行抽滤时要严格控制泵的抽力,以免滤纸被破坏。

7.2 当水样过滤结束后还要保持慢速抽滤3~5分钟,把水分充分除去。

7.3 用镊子夹出带污泥的滤纸,纵向折叠后放到称量瓶内(泥在下面)。当烘到2小时的时候将滤纸放置的方向进行颠倒(泥在上面),继续烘烤,这样有助于水分的蒸发。

蛋白质的测定方法

蛋白质的测定方法 测定食物中的蛋白质含量有二种方法,一是凯氏微量法,二是自动定氮分析法。 一.凯氏微量法 有手工滴定定氮和自动定氮仪定氮,实验者可根据经济条件设备而定。 1.原理 蛋白质是含氮的有机化合物。食品与硫酸和催化剂一同加热消化,使蛋白质分解,分解的氨与硫酸结合生成硫酸铵。然后碱化蒸馏使氨游离,用过量硼酸吸收后再以硫酸或盐酸标准溶液滴定,根据酸的消耗量乘以换算系数,即为蛋白质含量。 2NH2(CH2)2COOH+13H2SO4 (NH4)2SO4+6CO2+12SO2+16H2O (NH4)2SO4+2NaOH 2NH3+2H2O+Na2SO4 2.方法 本法参照GB 5009.5 -85 适用于各类食品及饲料中蛋白质的测定 3.试剂 所有试剂均用不含氨的蒸馏水配制。试剂均为分析纯。 3.1硫酸铜 3.2硫酸钾 3.3浓硫酸 3.4 2%硼酸溶液(或1%的硼酸) 3.5 混合指示剂:1份0.1%甲基红乙醇溶液与5份0.1%溴甲酚绿乙醇溶液临用时混合。也可用2份0.1%甲基红乙醇溶与1份0.1%次甲基蓝乙醇溶液临用时混合。 3.6饱和氢氧化钠:500g氢氧化钠加入500ml水中,搅拌溶解,冷却后放置数日,澄清后使用。 3.7 0.01mol/L或0.05mol/L盐酸标准溶液:需标定后使用(配制及标定方法见附录) 4.仪器 消化炉凯氏定氮蒸馏装置万分之一电子天平 凯氏定氮蒸馏装置:如图所示 5. 操作步骤 5.1样品处理:精密称取0.1~2.0g固体样品或2~5g半固体样品或吸取液体样品5~20ml,放入100ml或500ml凯氏烧瓶中,加入0.2g硫酸铜,0.3g硫酸钾及3~20ml浓硫酸,放置过夜后小心加热,待内容物全部炭化,泡沫完全停止后,加强火力,并保持瓶内液体微沸,至液体呈蓝绿色澄清透明后,取下放冷后用约2~10ml蒸馏水冲洗瓶壁,混匀后继续加热至液体呈蓝绿透明,取下放冷,小心加10~20ml水混匀,放冷后,移入100ml容量瓶中,并用少量水洗定氮瓶,洗液并入容量瓶中,再加水至刻度,混匀备用。取与处理样品相同量的硫酸铜、硫酸钾、硫酸按同一方法做试剂空白实验。 5.2按图装好定氮装置,于水蒸气发生瓶内装水至约2/3处,加甲基红指示液数滴及数毫升硫酸,以保持水呈酸性,加入数粒玻璃珠以防暴沸,加热煮沸水蒸气发生瓶内的水。 5.3向接收瓶内加入10ml ,1~2%硼酸溶液及混合指示液1滴,并使冷凝管的下端插入液面下,吸取10ml样品消化稀释液由小玻璃杯流入反应室,并以10ml水洗涤小烧杯使之流入反应室内,塞紧小玻璃杯的棒状玻璃塞。将3~10ml饱和氢氧化钠溶液倒入小玻璃杯中,提起玻璃塞使其缓缓流入反应室,立即将玻璃塞盖紧,并加水于小玻璃杯中以防漏气。加紧螺旋夹,开始蒸馏。蒸气通入反应室使氨通过冷凝管而进入接收瓶内,蒸馏2min,移动接收瓶,使冷凝管下端离开液面,然后用少量中性水冲洗冷凝管下端外部,再蒸馏1min取下接收瓶,以0.01或0.05mol/L盐酸标准溶液滴定至灰色或蓝紫色为终点。 同时吸取10ml试剂空白消化液按5.3操作。 6. 计算

污泥检测方法

PH 参考方法:城污水处理厂污泥检验方法CJ/T 221-2005 4 PH的测定电极法一、原理 PH由测量电池的电动势而得。以玻璃电极为指示电极,饱和甘汞电极组成电池。在25℃条件下,溶液中每变化1个PH单位,电位差改变为59.16mV,据此在仪器行直接以PH的读数表示。温度差异在仪器上没有补偿装置。 用无CO2水浸泡污泥样品,最终使污泥中的[H+]完全转化至水中,达到凝固平衡后,测定此时的PH值。 二、样品制备 对于脱水后的污泥样品称取5.00g置于150ml具塞磨口锥形瓶中,加入50mlCO2水浸泡,密封。置于复式振荡器上,于室温下振摇4h后,离心5min,取上清液作为待测液。 对于含水率大于99%的污泥,可直接将玻璃电极插入测定,但侧低昂数值至少要保持恒定30s。 对于不溶解粘稠状的污泥,则将样品进行离心5min后,收取足够量上清液于量筒中,作为待测液。 三、测试程序 1、样品测定 用PH酸度计测定经处理后的样品待测液的PH值,记录结果。 2、结果表示 PH值一般保留一位小数。 四、精密度和准确度

经过7个实验室,对13个样不同浓度污泥样品PH值进行测定,实验室内相对标准偏差为0.07%~0.74% 含水率 参考方法:城污水处理厂污泥检验方法CJ/T 221-2005 2 含水率的测定重量法 一、原理 将均匀的污泥样品放在称至恒重的蒸发皿中水浴上蒸干,放在103℃~105℃烘箱内烘至恒重,减少的重量以百分率计为含水率。 二、样品制备 测定含水率的样品应剔除各类大型纤维杂质和大小碎石块等无机杂质,特别注意样品的代表性。采集的样品应放入密封容器尽快分析。如需放置,应在密封贮存4℃冷藏冰箱中。 三、测试程序 1、分析条件 天平感量:0.001g 烘箱:0~300℃干燥器蒸发皿:100ml 2、样品测定 将已恒重为m1的蒸发皿称取经捣碎均匀的污泥样品约20g,精确至0.001g 记为m。将盛有污泥样品的蒸发皿至于水浴上蒸干,放入烘箱中干燥2h,取出放入干燥器内冷却至室温,称重,反复多次,直至恒重记为m2。 3、结果计算

(完整版)污泥浓缩池设计说明书

第一节 污泥重力浓缩池设计计算 采用带有竖向栅条污泥浓缩机的辐流式重力浓缩池,用带有栅条的刮泥机刮泥,采用静压排泥。计算草图如图10所示: d 1 图10 浓缩池计算草图 d 2 H i =0.0 5 D h 1. 设计参数 污泥总量计算及污泥浓度计算 二沉池排放的剩余污泥量: Q =870.86m 3 /d ,本设计含水P 率取为99.2%,浓缩后污泥含水率97% ,污泥浓度C 为8g/L ,二沉池污泥固体通量M 采用30kg/(m 2 ·d)。 采用中 温二级消化处理,消化池停留天数为30d ,其中一级消化20d ,二级消化10d 。消化池控制温度为33~35C o ,计算温度为35C o 。 2. 浓缩池面积 2870.8610362.86241 QC F m G ?= ==? 式中: C ——流入浓缩池的剩余污泥浓度(kg/s ),本设计取10kg/m 3 Q ——二沉池流入剩余污泥流量(m 3 /h ), G ——固体通量2/()kg m h ?????,一般采用0.8-1.22 /()kg m h ?;取1.0. 本设计采用四个污泥浓缩池,单个池面积为 90.72m 2 3. 浓缩池的直径 4490.72 10.75F D m ππ ?= = =,本设计取11.0m 4. 浓缩池的容积 3870.8616 145.144244 QT V m ?= ==? 式中:T ——浓缩池浓缩时间(h ),一般采用10-16h ,本设计取16h 。 5. 浓缩沉淀池有效水深

2145.14 1.6090.72 V h m F === 6.浓缩后剩余污泥量 31010010099.2 870.86232.23/10010097 P Q Q m d P --==?=-- 7. 池底高度 辐流沉淀池采用中心驱动刮泥机,池底需做成1%的坡度,刮泥机连续转 动将污泥推入泥斗。池底高度: 411 0.010.05522 D h i m = =?= 8. 污泥斗容积 5t ()55(1.250.25) 1.43h g a b tg m α=-=-= 式中: α— 泥斗倾角,为保证排泥顺畅,圆形污泥斗倾角本设计取55 a — 污泥斗上口半径(m );本设计取1.25m ; b — 污泥斗底部半径(m),本设计取0.25m 。 污泥斗的容积: 222231511 () 1.43(1.25 1.250.250.25) 2.933V h a ab b m ππ=++=??+?+= 9. 浓缩池总高度 本设计取浓缩池超高h 1 = 0.30 m ,缓冲层高度h 3 = 0.30 m , 23450.3 1.60.30.055 1.43 3.685H h h h h h m =++++=++++= 10. 浓缩后的污泥体积 剩余含水率P 1为99.2%,浓缩后的污泥含水率P 2为96%,浓缩后的污泥体积为: 3 12 (1)870.86(199.2%) 174.17/1196% Q P V m d P -?-= = =-- 11.排泥管 采用污泥管道最小管径DN150mm ,间歇将污泥排出贮泥池。

6种方法测定蛋白质含量

6种方法测定蛋白质含量 [ 文章来源: | 文章作者: | 发布时间:2006-12-25| 字体: [大 中 小] 一、微量凯氏(kjeldahl )定氮法 样品与浓硫酸共热。含氮有机物即分解产生氨(消化),氨又与硫酸作用,变成硫酸氨。经强碱碱化使之分解放出氨,借蒸汽将氨蒸至酸液中,根据此酸液被中和的程度可计算得样品之氮含量。若以甘氨酸为例,其反应式如下: nh 2ch 2cooh+3h 2so 4——2co 2+3so 2+4h 2o+nh 3 (1) 2nh 3+h 2so 4——(nh 4)2so 4 (2) (nh 4)2so 4+2naoh ——2h 2o+na 2so 4+2nh 3 (3) 反应(1)、(2)在凯氏瓶内完成,反应(3)在凯氏蒸馏装置中进行。 为了加速消化,可以加入cuso4作催化剂,k2so4以提高溶液的沸点。收集氨可用硼酸溶液,滴定则用强酸。实验和计算方法这里从略。 计算所得结果为样品总氮量,如欲求得 样品中蛋白含量,应将总氮量减去非蛋白 氮即得。如欲进一步求得样品中蛋白质的含量,即用样品中蛋白氮乘以6.25即得。 二、双缩脲法(biuret 法) (一)实验原理 双缩脲(nh3conhconh3)是两个分子脲经180℃左右加热,放出一个分子氨后得到的产物。在强碱性溶液中,双缩脲与cuso4形成紫色络合物,称为双缩脲反应。凡具有两个酰胺基或两个直接连接的肽键,或能过一个中间碳原子相连的肽键,这类化合物都有双缩脲反应。 紫色络合物颜色的深浅与蛋白质浓度成正比,而与蛋白质分子量及氨基酸成分无关,故可用来测定蛋白质含量。测定范围为1-10mg 蛋白质。干扰这一测定的物质主要有:硫酸铵、tris 缓冲液和某些氨基酸等。 此法的优点是较快速 ,不同的蛋白质产生颜色的深浅相近,以及干扰物质少。主要的缺点是灵敏度差。因此双缩脲法常用于需要快速,但并不需要十分精确的蛋白质测定。 (二)试剂与器材

污泥检测方法 ph

污泥干化生石灰指标及检测方法 石灰:与处理对象污泥中含有的水分反应,增加含固量,降低含水率,性状指标三要素如下: 活性度:表征生石灰水化反应速度的一个指标,即在足够长的时间内,以中和一定量的生石灰消化时产生的Ca(OH)2所消耗的4mol/L盐酸的毫升数表示。检测方法参见《冶金石灰物理检测方法》(YB/T105-2005)。该指标影响石灰活性度的组织结构包括体积密度、气孔率、比表面积和CaO矿物的晶粒尺寸。晶粒越小,比表面积越大,气孔率越高,石灰活性就越高,化学反应能力就越强。满足使用要求为200-300。 t60:作为活性度简易检测指标,即石灰加水后温度升高到60℃所需要的时间,一般应小于2min。具体检测办法为称取试样100g 置于500mL的大烧杯中,然后量取60mL水(温度10-20℃)倒入该大烧杯中,迅速搅拌混匀后开始计算时间,直至温度升至60℃,记录温升所需的时间。 目数:指物料的粒度或粗细度,一般定义是指在1英寸×1英寸的面积内有多少个网孔数,即筛网的网孔数,物料能通过该网孔即定义为多少目数。满足使用要求为150,即0.1mm以下。 有效氧化钙含量:满足使用要求为有效氧化钙(CaO)含量>80%。 干化污泥粒径分布测定方法 (1)用电子天平分别称取干化产品污泥m1000g。 (2)首先将干化产品污泥放入35mm筛套筛中,分离筛上物和筛下物,称重记录筛上物重量即为m1。 (3)将第(2)步的筛下物干化产品污泥放入10mm筛套筛中,分离筛上物和筛下物,称重记录筛上物重量即为m2和筛下物重量m3。 (4)将所称量的各粒径间的重量列入表中,并依次计算各粒径占总重量(1000g)的重量百分比。

污水处理厂计算说明书19415

流程图 上清液回流 污泥处理泥饼外运 污水处理流程图 .构筑物计算 平流沉砂池 1.1设计参数 最大设计流量:Q=360 L/S 1.2设计计算 (1)沉砂池长度: 设平流沉砂池设计流速为v=0.25 m/s,停留时间t=40s,则沉砂池水流部分的长度(即沉砂池两闸板之间的长度):L =v*t=0.25*40=10m (5)沉砂室所需的容积: V= Qmax ?T?86400?X (2)水流断面面积: Qmax A=— v 0.36 =1.44m 0.25

kz?10 V —沉砂室容积, T —排泥间隔天数,取2d;K z —流量总变化系数,取 1.4 代入数据得:V=86400* 0.36*2*3/(1.4*10 5) =1.333 m 3则每个沉砂斗容积为V ' =V/ (2*2)=1.333/(2*2)=0.333m 。 (6)沉砂斗的各部分尺寸: 设斗底宽a1=0.5 m,斗壁与水平面的倾角为55 °,斗高h3 / =0.5m,则沉砂斗上口宽: a=2* h 3 / /tg55 ° 沉砂斗的容积:+a1=2*0.5/1.428+0.5=1.2m V0 = ( h s x/6) * (2*a A2+ 2*a* a 什2a「2) =0.5/6* ( 2*1.2A2+ 2*1.2* 0.5+ 2* 0.5人2 ) =0.382m3 (略大于V 这与实际所需的污泥斗的容积很接近,符合要求; (7)沉砂室高度:采用重力排砂,设池底坡度为0.06,坡向砂斗长 L 2 =(L -2*a)/2=(10 -2*1.2)/2=(10 -2*1.2)/2=3.8m , h3 = h3 / +0.06 L 2 =0.5+0.06*3.8=0.728m 池总高度:设沉砂池的超高为h1=0.2m,贝U H= h1+h2+h3=0.2+0.6+0.728=1.528m (8)进水渐宽及出水渐窄部分长度: 进水渐宽长度L1= ( B-2*B 1) /tan 1= (242*1.0 ) /(tan20° )=1.1m 出水渐窄长度L 3= L1 =1.1m (9)校核最小流量时的流速: 最小流量为Q min =360/1.4=257l/s,贝U V min = Q min/A=0.257/1.44=0.178m/s > 0.15m/s 符合要求 沉砂池采用静水压力排砂,排出的砂子可运至污泥脱水间一起处理。 CASS也 CASS反应池沿长度方向分为两部分,前部为生物选择区也称预反应区,后部为主反应区,在主反应区后部安装了可升降的滗水装置,实现了连续进水间歇排水的周期循环运行,集曝气、沉淀、排水于一体。CASS工艺是一个好氧/缺氧/厌氧交替运行的过程,具有一定 脱氮除磷效果,废水以推流方式运行,而各反应区则以完全混合的形式运行以实现同步硝化一反硝化和生物除磷。 3.4.1容积 3 池总宽度:设n=2格,每格宽b=1.2m,则B=n*b=2*1.2=2.4m (未计隔离墙厚度, 可取0.2m) X—城市污水沉砂量,取 3 m 3 4砂量/10 5 m3污水

食品中蛋白质的含量测定

蛋白质的测定方法 测定食品中的蛋白质含量有二种方法,一是凯氏微量法,二是自动定氮分析法。 一.凯氏微量法 有手工滴定定氮和自动定氮仪定氮,实验者可根据经济条件设备而定。 1.原理 蛋白质是含氮的有机化合物。食品与硫酸和催化剂一同加热消化,使蛋白质分解,分解的氨与硫酸结合生成硫酸铵。然后碱化蒸馏使氨游离,用过量硼酸吸收后再以硫酸或盐酸标准溶液滴定,根据酸的消耗量乘以换算系数,即为蛋白质含量。 2NH2(CH2)2COOH+13H2SO4 (NH4)2SO4+6CO2+12SO2+16H2O (NH4)2SO4+2NaOH 2NH3+2H2O+Na2SO4 2.方法 本法参照GB 5009.5 -85 适用于各类食品及饲料中蛋白质的测定 3.试剂 所有试剂均用不含氨的蒸馏水配制。试剂均为分析纯。 3.1硫酸铜 3.2硫酸钾 3.3浓硫酸 3.4 2%硼酸溶液(或1%的硼酸) 3.5 混合指示剂:1份0.1%甲基红乙醇溶液与5份0.1%溴甲酚绿乙醇溶液临用时混合。也可用2 份0.1%甲基红乙醇溶与1份0.1%次甲基蓝乙醇溶液临用时混合。 3.6饱和氢氧化钠:500g氢氧化钠加入500ml水中,搅拌溶解,冷却后放置数日,澄清后使用。 3.7 0.01mol/L或0.05mol/L盐酸标准溶液:需标定后使用(配制及标定方法见附录) 4.仪器 消化炉凯氏定氮蒸馏装置万分之一电子天平 凯氏定氮蒸馏装置:如图所示 5. 操作步骤 5.1样品处理:精密称取0.1~2.0g固体样品或2~5g半固体样品或吸取液体样品5~20ml,放入100ml 或500ml凯氏烧瓶中,加入0.2g硫酸铜,0.3g硫酸钾及3~20ml浓硫酸,放置过夜后小心加热,待内容物全部炭化,泡沫完全停止后,加强火力,并保持瓶内液体微沸,至液体呈蓝绿色澄清透明后,取下放冷后用约2~10ml蒸馏水冲洗瓶壁,混匀后继续加热至液体呈蓝绿透明,取下放冷,小心加10~20ml水混匀,放冷后,移入100ml容量瓶中,并用少量水洗定氮瓶,洗液并入容量瓶中,再加水至刻度,混匀备用。取与处理样品相同量的硫酸铜、硫酸钾、硫酸按同一方法做试剂空白实验。

污泥指标测定

2.1.2 现场运行情况调研 对污泥沉降比SV%、溶解氧(DO )、微生物相、是否开启推进器及曝气机情况进行现场调研,内容如下: 1)现场测定污泥沉降比SV% 测试目的:为了反映曝气池正常运行时的污泥量,可用于控制剩余污泥的排放,同时及时反映出污泥膨胀等异常情况,便于及早查明原因、采取措施。 测试方法:曝气池混合液在100mL 量筒中,静置30min 后,沉淀污泥与混合液之体积比(%)。 2.2.1 水样及污泥样采集位置 水样采集:进水采取细格栅后的进水取样,出水采取紫外消毒后的水样,氧化沟反应池内取水样5个点。泥样采集:回流污泥、氧化沟内泥样取样点取1,2,3三点,同水样取样点位置。 2.2.3 污泥指标测定 取样回实验室,对氧化沟内的3个取样点的污泥样品及回流污泥测定污泥体积指数SVI ,污泥浓度MLSS ,MLVSS ,全N ,全P 。重金属检测每月一次,只检测剩余污泥。 2)污泥浓度MLSS 它是单位体积的曝气池混合液中所含污泥的干重,实际上是指混合液悬浮固体的数量,单位为mg/L 或g/L ,如表2-7所示。 实验操作步骤如下: 将滤纸和称量瓶放在103-105℃烘箱中干燥至恒重,称量并记录W1;将该滤纸剪好平铺在布氏漏斗上(剪掉的部分滤纸不要丢掉);将测定过沉降比的100ml 量筒内的污泥全部倒人漏斗,过滤(用水冲净量筒,水也倒人漏斗);将载有污泥的滤纸移入称量瓶重,放入烘箱(103-105℃)中烘干恒重,称量并记录W2;污泥干重= W2 - W1;进行污泥浓度计算。 3)污泥体积指数SVI 污泥体积指数是指曝气池混合液经30min 静沉后,1g 干污泥所占的容积(单位为mL/g)。SVI 值能较好地反映出活性污泥的松散程度(活性)和凝聚、沉淀性能。一般在100左右有为宜。计算公式如下: MLSS SV SVI 10?= 将计算后的数据记入表2-7中。 1000100)(12)/(?-=mL g W W L g MLSS

XSS1000超声波污泥浓度说明书资料

前言 非常感谢您选择本公司分析仪器!在使用本产品前,请详细阅读 本说明书,并保存以供参考。请遵守本说明书操作规程及注意事项。 ?由于不遵守本使用手册及安装说明书中规定的注意事项,所引起的 任何故障和损失均不在厂家的保修范围内,厂家亦不承担任何相关责任。请妥善保管好所有文件。如有疑问,请联系我公司售后服务部门或地区客服中心。 ?如果您需要英文说明书,请登陆本公司网站下载,或拨打服务热线, 联系我公司售后服务部门或地区客服中心。 ?在收到仪器时,请小心打开包装,检查仪器及配件是否因运送而损 坏,如有发现损坏,请联系我公司售后服务部门或地区客服中心,并保留包装物,以便寄回处理。 ?当仪器发生故障,请勿自行修理,请联系我公司售后服务部门或 地区客服中心。 以下标识将会在本手册或者仪器上出现: 注意保险丝接地端

目录 第一章概述 测量原理 (1) 产品特点 (1) 产品应用 (2) 第二章产品 变送器 (3) 传感器 (3) 第三章安装 注意事项 (4) 变送器安装 (6) 传感器安装 (7) 电气连接 (9) 第四章调试 控制面板 (11) 菜单结构 (12) 常规设置流程 (13) 标定 (14) 第五章维护 变送器的维护 (17) 传感器的维护 (17) 第六章疑问 (18)

一、概述 测量原理 超声波污泥浓度计利用水中固浮物对超声波的衰减,测量悬浮物浓度;超声波在污泥和悬浮物中的衰减与液体中的污泥和悬浮物的浓度有关,根据这一原理超声波污泥浓度计实现了污泥和悬浮物浓度的在线测量和监控。 产品特点适合不同种类液体中的污泥和悬浮物的测量。 现场标定简便。 可输出污泥浓度%或g/l,现场选择。 管段式为全不锈钢材质,耐腐蚀、抗沾附性更强。管段式带喷嘴和采样阀,用于自清洗和采样标定。浸没式传感器为不锈钢焊接结构防护等级 IP68 超宽液晶,棒图显示。 可选2点或3点标定,测量精度高。 输出电流值(4mA-20mA)与测量浓度值成比例。用户可以自由设定继电器的触发值。 用户可以设定故障报警电流输出值。 中文菜单,操作简便。 设定参数存贮在EEPROM,断电也能长期保持。

蛋白质定量检测方法

Bradford法蛋白定量(Bradford Protein Assay ) Bradford Assay is a rapid and accurate method commonly used to determine the total protein concentration of a sample. The assay is based on the observation that the absorbance maximum for an acidic solution of Coomassie Brilliant Blue G-250 shifts from 465 nm to 595 nm when binding to protein occurs. Both hydrophobic and ionic interactions stabilize the anionic form of the dye, causing a visible color change. Within the linear range of the assay (~5-25 mcg/mL), the more protein present, the more Coomassie binds. Reference Bradford, M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. (1976) 72, 248-254. 考马斯亮蓝染色法(Bradford法)测定蛋白质含量 原理 1976年Bradford建立了用考马斯亮蓝G250与蛋白质结合的原理,迅速、敏感的定量测定蛋白质的方法。染料与蛋白质结合后引起染料最大吸收的改变,从465nm变为595nm,光吸收增加。蛋白质-染料复合物具有高的消光系数,因此大大提高了蛋白质测定的灵敏度,最低检出量为1μg蛋白。染料与蛋白质的结合是很迅速的过程,大约需2min,结合物的颜色在1h内是稳定的。一些阳离子,如K+,Na+,Mg2+,(NH4)2SO4,乙醇等物质不干扰测定,而大量的去污剂如TritonX100,SDS等严重干扰测定,少量的去污剂可通过用适当的对照而消除。由于染色法简单迅速,干扰物质少,灵敏度高,现已广泛应用于蛋白质含量的测定。 操作 一、标准方法 取含10~100μg蛋白质溶液于小试管中,用双蒸水或缓冲液调体积到0.1mL,然后加入5mL蛋白试剂,充分振荡混合,2min后于595nm测定光吸收值。以0.1mL 双蒸水或缓冲液及5mL蛋白试剂作为空白对照。 二、微量蛋白分析法 取含1~10μg蛋白质溶液,用双蒸水调体积到0.8mL,加0.2mL蛋白试剂,充分振荡混合,2min后于595nm测定光吸收值,以0.8mL双蒸水及0.2mL蛋白试剂作为空白对照。用不同浓度的蛋白质溶液作标准曲线,以蛋白质浓度为横坐

污泥浓度的测定

污泥浓度、污泥指数、污泥沉降比的测定 污泥浓度的测定 污泥浓度是指曝气池中污水和活性污泥混合后的混合液悬浮固体数量。单位:mg/L。 实验室样品采集在干净的玻璃瓶内,采样之前用待采的水样清洗三次,然后采集具有代表性的水样100―200ml,盖严瓶塞。应尽快分析。 测定步骤 滤纸准备 用扁嘴无齿镊子夹取定量滤纸放于事先恒重的称量瓶内,移入烘箱中于103―105℃烘干半小时后取出置于干燥器内冷却至室温,称其重量。反复烘干、冷却、称量,直至两次称量的重量差≤0.2mg,记录(W1)。将恒重的滤纸放在玻璃漏斗内。 试样测定 用100ml量筒量取充分混合均匀的试样100ml,静止30分钟后读取沉淀后污泥所占的体积V(ml)。 倾去上述量筒中清液,用准备好的滤纸进行过滤量筒中的污泥,并用少量蒸馏水冲洗量筒,合并滤液。(为提高过滤速度,应采用真空泵进行抽滤。)将载有污泥的滤纸放在原恒重的称量瓶里,移入烘箱中于103―105℃下烘2~3小时后移入干燥器中,使冷却到室温,称其重量。反复烘干、冷却、称量,直至两次称量的重量差≤0.4mg为止,记录(W2)。 计算污泥浓度 C污泥浓度(mg/L)=(W2–W1)×106÷100 重铬酸钾法测COD时计算公式: CODCr=(V0-V1)×C×8×1000/V 式中 C——硫酸亚铁铵标准溶液的浓度,mol/L V——水样体积,mL V0——滴定空白时硫酸亚铁铵标准溶液的用量,mL V1——滴定水样时硫酸亚铁铵标准溶液的用量,mL

式中,(V0-V1)*C是水中污染物(还原性物质)的量,和氧化性物质的量可以配平。在换算成需氧量时,因为一个硫酸亚铁铵分子反应中失去一个电子,按氧来算,一个氧原子需要2个电子,氧原子的原子量是16,所以得到一摩尔电子的质量是8克。要计算质量,所以得用还原物质的量乘以8克/摩尔氧,所得值即为污染物的需氧量

污泥量计算公式

污水处理厂剩余污泥排放及用药计算 城关污水处理厂剩余污泥排放及用药计算 设计每天产泥量2.9吨。(进水20000m3,BOD进水200mg/l,出水20mg/l。) PAM投配比3‰至5‰,取中间值4‰。 则PAM用量每天为2.9*4=11.6kg。 剩余污泥浓度7000mg/l。 则每天排放的剩余污泥体积为2.9*1000/7=414.28m3。 设计脱水机单台进泥量每小时40m3。 脱水机运行时间为414.28/40=10.357h,取11h。 则PAM溶液浓度为11.6/(1.2*11)=0.8787kg/m3。(设计说明书上推荐1kg/m3。) 实际运行情况 产泥系数按照0.85kgDS/kgBOD计算。 每天产生剩余污泥量:0.85*(41.48-5.36)*15106=463.78kg。(41.48、5.36为09年1月至8月进出水平均浓度,15106为平均进水量。) 目前厂内剩余污泥平均浓度3500mg/l左右。 排放的剩余污泥体积:463.78/3.5=132.5m3 脱水机单台进泥量不高于20m3每小时。 脱水机每天运行时间132.5/20=6.625,实际运行8小时。 PAM溶液浓度为0.75kg/m3。 用药量为0.75*8*1.2=7.2kg。 投配比为7.2/0.43678=15.524kg/m3,即15.5‰ 。 实际投配比是设计投配比的4倍左右。(分析其原因可能是:脱水机进泥量设计是实际的 2倍,污泥浓度设计是实际的2倍。) 若要控制投配比在4‰,则应该降低PAM溶液的浓度。 PAM投配比取4‰。 每天理论投加量为0.46378*4=1.86kg。 加药泵的流量为1.2m3/h,每天运行8小时,则PAM溶液用量为1.2*8=9.6m3。

污泥指标测定

附件 1 剩余污泥指标测试方法 主要指标 PH 酸碱度 TS 干物质含量 VS 挥发性物质含量 VFA 挥发性脂肪酸 TCD 甲烷含量 TP 总磷 TN 总氮 NH4+-N 氨氮 PO43+-P 速效磷

目录 一污泥样品的PH测定—电位法 (1) 二污泥TS,VS测定 (3) 三气体CH4含量,VFA测定 (4) 四污泥—全氮(TN)的测定 (6) 五污泥—氨氮(NH4+-N)的测定 (9) 六污泥—全磷(TP)的测定 (11) 七污泥—速效磷(PO43+-P)测定 (13)

一污泥样品的PH测定—电位法 1. 药品 1)PH 4.01标准缓冲溶夜:称取经105℃烘干的苯二甲酸氢钾(KHC8H4O4,分析纯)。10.21g溶于蒸馏水中,并稀释至1L。 2)PH 6.87标准缓冲溶夜:称取经50℃烘干的磷酸二氢钾(KH2PO4,分析纯)3.39g和经120℃烘干过的无水磷酸二氢钠(Na2HPO4,分析纯)3.53g溶于蒸馏水中,并稀释至1L。 3)PH 9.18标准缓冲溶夜:称取经105℃烘干的称取 3.80g硼砂(Na2B4O7·10H2O,分析纯)溶于无CO2蒸馏水中,并稀释至1L,此溶液PH易变,注意保存。 4).无二氧化碳蒸馏水。将蒸馏水放入平底烧瓶中加热至沸腾,3-5min后取下冷却至室温(用带苏打石灰管的橡皮塞塞紧)。 2.主要仪器 酸度计,天平 3. 提取 1)提取 称取样品2g于50mL高型烧杯中,加入18g(相当于稀释20倍)无二氧化碳蒸馏水,剧烈搅拌1min,静置20min,同时将酸度计预热30min,用PH 9.18和PH 4.01的标准缓冲液反复校正仪器,使标准缓冲液的PH值与仪器标度上的PH一致。 2)测定 将PH玻璃电极和甘汞电极同时插入样品悬浊液的上部清液中,待显示的PH值稳定后,记录PH值。每测定完一个样品需要蒸馏水冲洗电极,用干滤纸吸干。每测定5-6个样品后,必须用PH缓冲液校正一次。 4. 注意事项 1)测定时记录PH值平衡时间,随不同污泥而异,一般规定平衡1-2min读取PH值。

污泥沉淀池操作规程标准范本

操作规程编号:LX-FS-A15134 污泥沉淀池操作规程标准范本 In The Daily Work Environment, The Operation Standards Are Restricted, And Relevant Personnel Are Required To Abide By The Corresponding Procedures And Codes Of Conduct, So That The Overall Behavior Can Reach The Specified Standards 编写:_________________________ 审批:_________________________ 时间:________年_____月_____日 A4打印/ 新修订/ 完整/ 内容可编辑

污泥沉淀池操作规程标准范本 使用说明:本操作规程资料适用于日常工作环境中对既定操作标准、规范进行约束,并要求相关人员共同遵守对应的办事规程与行动准则,使整体行为或活动达到或超越规定的标准。资料内容可按真实状况进行条款调整,套用时请仔细阅读。 一、定时巡视沉淀池的沉淀效果如出水浊度、泥面高度、沉淀的悬浮物状态、水面浮泥或浮渣情况等,检查各管道附件、排泥刮渣装置是否正常,各堰出流是否均匀,堰口是否严重堵塞,清理出水堰及出水槽内截留杂物及漂浮物。 二、根据污泥产量及贮泥时间及时排出污泥,一般存泥时间为2~4小时。利用阀门控制回流污泥量,剩余污泥打入污泥浓缩池,控制好回流污泥与净排污泥的比例。沉淀池污泥排放量可根据污泥沉降比、混合液污泥浓度及二次沉淀池泥面高度确定。 三、观察沉淀池出水水质,不允许沉淀池有污泥

食品中蛋白质的测定方法

食品中蛋白质的测定方法 蛋白质的测定方法分为两大类:一类是利用蛋白质的共性,即含氮量,肽链和折射率测定蛋白质含量,另一类是利用蛋白质中特定氨基酸残基、酸、碱性基团和芳香基团测定蛋白质含量。但是食品种类很多,食品中蛋白质含量又不同,特别是其他成分,如碳水化合物,脂肪和维生素的干扰成分很多,因此蛋白质的测定通常利用经典的剀氏定氮法是由样品消化成铵盐蒸馏,用标准酸液吸收,用标准酸或碱液滴定,由样品中含氮量计算出蛋白质的含量。由于食品中蛋白质含量不同又分为凯氏定氮常量法、半微量法和微量法,但它们的基本原理都是一样的。 一凯氏定氮法 我们在检验食品中蛋白质时,往往只限于测定总氮量,然后乘以蛋白质核算系数,得到蛋白质含量,实际上包括核酸、生物碱、含氮类脂、叶啉和含氮色素等非蛋白质氮化合物,故称为粗蛋白质。 (一)、常量凯氏定氮法 衡量食品的营养成分时,要测定蛋白质含量,但由于蛋白质组成及其性质的复杂性,在食品分析中,通常用食品的总氮量表示,蛋白质是食品含氮物质的主要形式,每一蛋白质都有其恒定的含氮量,用实验方法求得某样品中的含氮量后,通过一定的换算系数。即可计算该样品的蛋白质含量。 一般食品蛋白质含氮量为l6%,即1份氮素相当于6.25分蛋白质,以此为换算系数6.25,不同类的食物其蛋白质的换算系数不同.如玉米、高梁、荞麦,肉与肉制品取6.25,大米取5.95、小麦粉取5.7,乳制品取6.38、大豆及其制品取5.17,动物胶5.55。 测定原理: 食品经加硫酸消化使蛋白质分解,其中氮素以氨的形式与硫酸化合成硫酸铵。然后加碱蒸馏使氨游离,用硼酸液吸收形成硼酸铵,再用盐酸标准溶液或硫酸标准溶液滴定,根据盐酸消耗量计算出总氮量,再乘以一定的数值即为蛋白质含量,其化学反应式如下。 (1) 消化反应:有机物(含C、N、H、O、P、S等元素)+H2S04 -→(NH4)2S04+C02↑+S02↑+S03+H3PO4+CO2↑ (2) 蒸馏反应:(NH4)2SO4+2NAOH-→2NH3↑+2H2O+NA2SO4 2NH3+4H3BO3-→(NH4)2B4O7+5H2O (3) 滴定反应:(NH4)2B4O7+2HCH+5H2O-→2NH4CH+4H3BO3 或 (NH4)2B407+H2S04+5H20-(NH4)9SO4+4H2BO2 试剂与仪器: 1、硫酸钾;

蛋白质检测方法

蛋白质的检测(参考GB/T6432-94) 一、原理 凯氏定氮法测定试样中的含氮量,即在催化剂作用下,用浓硫酸破坏有机物,使含氮物转化为硫酸铵。加入强碱进行蒸馏使氮溢出,再用酸滴定,测出氮含量,将结果乘以换算系数 6.25,计算出粗蛋白含量。 二、试剂 (1)硫酸化学纯,含量为98%,无氮; (2)混合催化剂 0.4g硫酸铜,含5个结晶水,6g硫酸钾或硫酸钠,均为化学纯,磨碎混匀; (3)氢氧化钠化学纯,40%水溶液(m/V); (4)硼酸化学纯,2%水溶液(m/V); (5)混合指示剂甲基红0.1%乙醇溶液,溴甲酚绿0.5%乙醇溶液,两溶液等体积混合,在阴凉处保存期为3个月; (6)盐酸标准溶液基准无水碳酸钠法标定; a)0.1mol/l盐酸标准溶液:8.3mL盐酸注入1000mL蒸馏水中。 b)0.02mol/l盐酸标准溶液:1.67mL盐酸注入1000mL蒸馏水中。(7)蔗糖分析纯; (8)硫酸铵分析纯,干燥; (9)硼酸吸收液 1%硼酸水溶液1000mL,加入0.1%溴甲酚绿乙醇溶液10mL,0.1%甲基红乙醇溶液7mL,4%氢氧化钠水溶液,混合,置阴凉处保存期为1个月(全自动程序用)。

三、仪器设备 (1)实验室用样品粉碎机或研钵; (2)分样筛孔径0.45mm(40目); (3)分析天平感重0.0001g; (4)消煮炉或电炉; (5)滴定管酸式,10、25mL; (6)凯氏烧瓶 250mL; (7)凯氏蒸馏装置常量直接蒸馏式或半微量水蒸气蒸馏式; (8)锥形瓶 150、250mL; (9)容量瓶 100mL; (10)消煮管 250mL; (11)定氮仪以凯氏原理制造的各类型半自动、全自动蛋白质测定仪。 四、分析步骤 (一)仲裁法 1.试样的消煮称取试样0.5-1g(含氮量5-80mg)(精确至0.0002g), 放入凯式烧瓶中,加入6.4g混合催化剂,与试样混合均匀,再加入12mL硫酸和2粒玻璃珠,将凯式烧瓶置于电炉上加热,开始小火,待样品焦化、泡沫消失后,再加强活力(360-410℃)直至呈透明的蓝绿色,然后再继续加热,消化全过程至少2h。 2.氨的蒸馏 (1)常量蒸馏法将试样消煮液冷却,加入60-100mL蒸馏水,摇匀,

污泥浓度测定实验

实验一活性污泥性质的测定实验1 实验目的 (1)加深对活性污泥性能,特别是污泥活性的理解。 (2)掌握几项污泥性质的测定方法。 (3)掌握水分快速测定仪的使用。 2实验原理活性污泥是人工培养的生物絮凝体,它是由好氧微生物及其吸附的有机物组成的。活性污泥具有吸附和分解废水中的有机物(也有些可利用无机物质)的能力,显示出生物化学活性。在生物处理废水的设备运转管理中,除用显微镜观察外,下面几项污泥性质是经常要测定的。这些指标反映了污泥的活性,它们与剩余污泥排放量及处理效果等都有密切关系。3实验设备与试剂 (1)水分快速测定仪1台 (2)真空过滤装置1套。 (3)秒表l块。 (4)分析天平1台。 (5)马弗炉1台。 (6)坩埚数个。 (7)定量滤纸数张。 (8)100mL量筒4个。 (9)500mL烧杯2个。 (10)玻璃棒2根。 (11)烘箱1台。 4实验方法与操作步骤(1)污泥沉降比SV(%)它是指曝气池中取混合均匀的泥水混合液100mL置于100mL量筒中,静置30min后,观察沉降的污泥占整个混合液的比例,记下结果(表6-1)。(2)污泥浓度MLSS就是单位体积的曝气池混合液中所含污泥的干重,实际上是指混合液悬浮固体的数量,单位为g/L ①测定方法a.将滤纸放在105℃烘箱或水分快速测定仪中干燥至恒重,称量并记录(W1)(见 表4-5)b.将该滤纸剪好平铺在布氏漏斗上(剪掉的部分滤纸不要丢掉)。c.将测定过沉降比的100mL量筒内的污泥全部倒人漏斗,过滤(用水冲净量筒,水也倒人漏斗)。d.将载有污泥的滤纸移入烘箱(105℃)或快速水分测定仪中烘干恒重,称量并记录(W2)。②计算污泥浓度(g/L)=[(滤纸质量+污泥干重)一滤纸质量]×10(3)污泥指数SVI污泥指数全称污泥容积指数,是指曝气池混合液经30min静沉后,1g干污泥所占的容积(单位为mL/g)。计算式如下SVI值能较好地反映出活性污泥的松散程度(活性)和凝聚、沉淀性能。 一般在100左右有为宜。(4)污泥灰分和挥发性污泥浓度MLVSS挥发性污泥就是挥发性悬浮固体,它包括微生物和有机物,干污泥经灼烧后(600℃)剩下的灰分称为污泥灰分。 ①测定方法先将已知恒重的磁坩埚称量并记录(W3)(表4-8-1),再将测定过污泥干重的滤 纸和干污泥一并故入磁坩埚中,先在普通电炉上加热碳化,然后放入马弗炉内(600℃)烧40min,取出故人干燥器内冷却,称量(Wd)。②计算在一般情况下,MLVSS/MLSS 的比值较固定,对于生活污水处理池的活性污泥混合液,其比值常在0.75左右。5实验报告记载及数据处理式中W1——滤纸的净重,mg;W2——滤纸及截留悬浮物固体的质量之和,mg。V——水样体积,L

污泥量计算公式

污水处理厂剩余污泥排放及用药计算 2009-12-10 18:11:24| 分类:工作日记| 标签:|举报|字号大中小订阅 城关污水处理厂剩余污泥排放及用药计算 设计每天产泥量2.9吨。(进水20000m3,BOD进水200mg/l,出水20mg/l。) PAM投配比3‰至5‰,取中间值4‰。 则PAM用量每天为2.9*4=11.6kg。 剩余污泥浓度7000mg/l。 则每天排放的剩余污泥体积为2.9*1000/7=414.28m3。 设计脱水机单台进泥量每小时40m3。 脱水机运行时间为414.28/40=10.357h,取11h。 则PAM溶液浓度为11.6/(1.2*11)=0.8787kg/m3。(设计说明书上推荐1kg/m3。) 实际运行情况 产泥系数按照0.85kgDS/kgBOD计算。 每天产生剩余污泥量:0.85*(41.48-5.36)*15106=463.78kg。(41.48、5.36为09年1月至8月进出水平均浓度,15106为平均进水量。) 目前厂内剩余污泥平均浓度3500mg/l左右。 排放的剩余污泥体积:463.78/3.5=132.5m3 脱水机单台进泥量不高于20m3每小时。 脱水机每天运行时间132.5/20=6.625,实际运行8小时。 PAM溶液浓度为0.75kg/m3。 用药量为0.75*8*1.2=7.2kg。 投配比为7.2/0.43678=15.524kg/m3,即15.5‰ 。 实际投配比是设计投配比的4倍左右。(分析其原因可能是:脱水机进泥量设计是实际的 2倍,污泥浓度设计是实际的2倍。) 若要控制投配比在4‰,则应该降低PAM溶液的浓度。 PAM投配比取4‰。 每天理论投加量为0.46378*4=1.86kg。

蛋白质含量测定方法汇总

实验七蛋白质含量测定 测定蛋白质的定量方法有很多,目前常用的有染料法,双缩脲(Biuret)法,酚试剂法(Lowry)法及紫外吸收法。 [目的要求] 1.掌握测定蛋白质的含量基本方法。 2.了解染料法、双缩脲法、Lowry法和紫外吸收法测定原理。 一、染料法 [实验原理] 在酸性溶液中染料考马斯亮蓝G-250与蛋白质结合,此时考马斯亮蓝G-250颜色从红色变为蓝色,吸收高峰从460nm移至595nm。利用这个原理可以测定蛋白质含量。 该法近年在某些方面有取代经典的Lowry法趋势,因为它操作简单,反应时间短,染料-蛋白质颜色稳定,抗干扰性强。本法的缺点是:对于那些与标准蛋白氨基酸组成有较大差异的蛋白质,有一定误差,因为不同的蛋白质与染料的结合是不同的,故该法适合测定与标准蛋白质氨基酸组成相近的蛋白质。 [器材] 吸量管;试管;721型分光光度计 [试剂] 1.标准牛血清白蛋白溶液:配成0.1mg/ml的溶液。 2.待测蛋白质溶液。 3.染料溶液:称取考马斯亮蓝G-250 0.1g溶于95%的酒精50ml,再加入85%的浓磷酸100ml,用水稀释至1000ml,混匀备用。 [操作步骤] 按上表分别向各支试管内加入各种试剂,充分混匀,5min后在595nm波长处以0号管调零,测定各管吸光度值(A)。以吸光度值为纵坐标,蛋白质浓度为横坐标绘制标准曲线。 2.样品测定:

取1ml样品溶液(约含25~250微克蛋白质),加入染料溶液5ml混匀,5min后测定其595nm吸光度值,对照标准曲线求得蛋白质浓度。 二、双缩脲(Biuret)法测定蛋白质含量 [实验原理] 在碱性溶液中,双缩脲(H2N-CO-NH-CO-NH2)与二价铜离子作用形成紫红色的络合物,这一反应称双缩脲反应。凡分子中含二个或二个以上酰胺基(—CO-NH2),或与此相似的基团[如—CH2-NH2,—CS-NH2,—C(NH)NH2]的任何化合物,无论这类基团直接相连还是通过一个碳或氮原子间接相连,均可发生上述反应。蛋白质分子含有众多肽键(—CO-NH—),可发生双缩脲反应,且呈色强度在一定浓度范围内与肽键数量即与蛋白质含量成正比,可用比色法测定蛋白含量。测定范围为1~10mg蛋白质。干扰这一测定的物质主要有:硫酸铵、Tris缓冲液和某些氨基酸等。 此法的优点是较快速,不同的蛋白质产生颜色的深浅相近,以及干扰物质少。主要的缺点是灵敏度差。因此双缩脲法常用于快速,但并不需要十分精确的蛋白质测定。 [试剂] 1.双缩脲试剂:取CuSO4·5H20(c.P.)1.5g和酒石酸钾钠(c.P.)6.0g以少量蒸馏水溶解,再加2.5mol/L NaOH溶液300ml,KI 1.0g,然后加水至1000ml。棕色瓶中避光保存。长期放置后若有暗红色沉淀出现,即不能使用。 2.标准蛋白质溶液:用标准的结晶牛血清清蛋白(BSA)或标准酪蛋白,配制成10g/L的标准蛋白溶液,可用BSA浓度1g/L的A280为0.66来校正其纯度。如有需要,标准蛋白质还可预先用微量凯氏定氮法测定蛋白氮含量,计算出其纯度,再根据其纯度,称量配制成标准蛋白质溶液。牛血清清蛋白用H2O 或0.9%NaCl配制,酪蛋白用0.05mol/L NaOH配制。 [器材] 1.试管:15×150mm 试管7只; 2.1ml,5ml移液管; 3.坐标纸; 4.721分光光度计。 [操作步骤]

相关文档
最新文档