初二几何证明经典难题(同名14972)

初二几何证明经典难题(同名14972)
初二几何证明经典难题(同名14972)

初二几何证明经典难题(同名14972)

初二几何证明经典难题

1、已知:如图,P 是正方形ABCD 内点,∠PAD =∠PDA =150.

求证:△PBC 是正三角形. 如下图做△DGC 使与△ADP 全等,可得△PDG 为等边△,从而可得

△DGC ≌△APD ≌△CGP,得出PC=AD=DC,和∠DCG=∠PCG =150

所以∠DCP=300 ,从而得出△PBC 是正三角形

A

P

C

D

B

2、已知:如图,在四边形ABCD

M 、N 分别是AB 、、BC 的延长线交MN 于求证:∠DEN =∠F .如下图连接AC 并取其中点Q ,连接QN 和QM ,所以可得∠QMF=∠F ,∠QNM=∠DEN 和∠QMN=∠QNM ,从而得出∠DEN =∠F 。

B

F 3

、如图,分别以△ABC 的在△ABC CBFG ,点P 是EF 求证:点P 到边AB 半.3.过E,C,F 点分别作AB 所在直线的高EG ,

CI ,FH 。可得PQ=

由△EGA ≌△AIC ,可得EG=AI ,由△BFH ≌△CBI ,可得FH=BI 。

2

EG FH

+

从而可得PQ=

=

,从而得证。

4

、如图,四边形ABCD 为正方形,DE ∥AC ,AE =AC ,AE 与CD 相交于F .

求证:CE =CF .

顺时针旋转△ADE ,到△ABG ,连接CG.

由于

∠ABG=∠ADE=900+450=1350

从而可得B ,G ,D 在一条直线上,可得△AGB ≌△CGB 。

推出AE=AG=AC=GC ,可得△AGC

为等边

2

AI BI +2

AB

三角形。

∠AGB=300,既得∠EAC=300,从而可得∠A EC=750。

又∠EFC=∠DFA=450+300=750. 可证:CE=CF 。

5、如图,四边形ABCD 为正方形,DE ∥AC ,且CE =CA ,直线EC 交DA 延长线于F .求证:AE =

E

连接BD 作CH

⊥DE ,可得四边形CGDH 是正方形。

由AC=CE=2GC=2CH ,

可得∠CEH=300,所以∠CAE=∠CEA=∠AED=150,

又∠FAE=900+450+150=1500,

从而可知道∠F=150,从而得出AE=AF 。

6、设P 是正方形ABCD 一边BC 上的任一点,PF ⊥AP ,CF 平分∠DCE .求证:PA =PF .

作FG

⊥CD ,FE ⊥BE ,可以得出GFEC 为正方形。

令AB=Y ,BP=X ,CE=Z ,可得PC=Y-X 。

tan ∠BAP=tan ∠

EPF==,可得

YZ=XY-X 2+XZ ,

即Z(Y-X)=X(Y-X) ,既得X=Z ,得出△ABP ≌△PEF ,

得到PA =PF ,得证 。

X

Y Z Y X Z

-

+

初二几何证明经典难题

初二几何证明经典难题 1、已知:如图,P 是正方形 ABCD 内点,/ 求 证:△ PBC 是正三角形. 如下图做^ DGC 使与△ ADP 全等,可得△ PDG 为等边△,从而可得 △ DGC ◎△ APDCGP,得出 所以/ DCP=30°,从而得出△ 如下图连接 AC 并取其中点Q,连接QN 和QM 所以可得/ QMF= / F , / QNM= / DEN 和/ QMN= / QNM ,从而得出/ DEN = / F 。 PC=AD=DC,和/ DCG= / PCG = 150 PBC 是正三角形 2、已知:如图,在四边形 ABCD 的延长线交MN 于E 、F . 求证:/ DEN =/ F . 中,AD = BC , M 、N 分别是 AB 、CD AD 、BC D C 的中点, M

3、如图,分别以^ ABC的AC和BC为一边,在△ ABC的外侧作正方形ACDE和正方形 CBFG,点P是EF的中点. 求证:点P到边AB的距离等于AB的一半. F EG F H。 3.过E,C,F点分别作AB所在直线的高EG C|,FH可得P Q= 由^ EGAAIC,可得EG=AI,由△ BFHCBI,可得FH=BI。 . AI + BI AB U 由/曰、T 从而可得PQ= ------ = ---- ,从而得证。 2 2

4、如图,四边形 ABCD 为正方形,DE // AC , AE = AC , AE 与CD 相交于F . 求证:CE = CF . 顺时针旋转△ ADE ,到△ ABG ,连接CG. 由于/ ABG= / ADE=9O O +45O =135O 从而可得B , G , D 在一条直线上,可得△ AGB ◎△ CGB 。 推出AE=AG=AC=GC ,可得△ AGC 为等边三角形。 / AGB=3O 0 ,既得/ EAC=3O 0 ,从而可得/ A EC=75O 。 又/ EFC= / DFA=45 O +3O O =75O . 可证: 又/ FAE=9O 0+450+150=15O 0 , F . 5、如图, 求证: 四边形 ABCD 为正方形,DE // AC ,且CE = CA ,直线EC 交DA 延长线于 AE = AF . CE=CF 。 E

(完整word版)初二几何证明整理(经典题型)

如何做几何证明题 【知识梳理】 1、几何证明是平面几何中的一个重要问题,它对培养学生逻辑思维能力有着很大作用。几何证明有两种基本类型:一是平面图形的数量关系;二是有关平面图形的位置关系。这两类问题常常可以相互转化,如证明平行关系可转化为证明角等或角互补的问题。 2、掌握分析、证明几何问题的常用方法: (1)综合法(由因导果),从已知条件出发,通过有关定义、定理、公理的应用,逐步向前推进,直到问题的解决; (2)分析法(执果索因)从命题的结论考虑,推敲使其成立需要具备的条件,然后再把所需的条件看成要证的结论继续推敲,如此逐步往上逆求,直到已知事实为止; (3)两头凑法:将分析与综合法合并使用,比较起来,分析法利于思考,综合法易于表达,因此,在实际思考问题时,可合并使用,灵活处理,以利于缩短题设与结论的距离,最后达到证明目的。 3、掌握构造基本图形的方法:复杂的图形都是由基本图形组成的,因此要善于将复杂图形分解成基本图形。在更多时候需要构造基本图形,在构造基本图形时往往需要添加辅助线,以达到集中条件、转化问题的目的。 【例题精讲】 【专题一】证明线段相等或角相等 两条线段或两个角相等是平面几何证明中最基本也是最重要的一种相等关系。很多其它问题最后都可化归为此类问题来证。证明两条线段或两角相等最常用的方法是利用全等三角形的性质,其它如线段中垂线的性质、角平分线的性质、等腰三角形的判定与性质等也经常用到。 【例1】已知:如图所示,?A B C 中,∠=?===C AC BC AD DB AE CF 90,,,。 求证:DE =DF F E D C B A

【巩固】如图所示,已知?A B C 为等边三角形,延长BC 到D ,延长BA 到E ,并且使AE =BD ,连结CE 、DE 。 求证:EC =ED 【例2】已知:如图所示,AB =CD ,AD =BC ,AE =CF 。 求证:∠E =∠F 【专题二】证明直线平行或垂直 在两条直线的位置关系中,平行与垂直是两种特殊的位置。证两直线平行,可用同位角、内错角或同旁内角的关系来证,也可通过边对应成比例、三角形中位线定理证明。证两条直线垂直,可转化为证一个角等于90°,或利用两个锐角互余,或等腰三角形“三线合一”来证。 【例3】如图所示,设BP 、CQ 是?A B C 的内角平分线,AH 、AK 分别为A 到BP 、CQ 的 垂线。 求证:KH ∥BC A C E D F B A B D C E A B Q P H C K

中考数学几何证明经典难题

1、已知:如图,O 是半圆的圆心,C 、E 是圆上的两点,CD ⊥AB ,EF ⊥AB ,EG ⊥CO . 求证:CD =GF .(初二) 2、已知:如图,P 是正方形ABCD 内点,∠PAD =∠PDA =150. 求证:△PBC 是正三角形.(初二) 3、如图,已知四边形ABCD 、A 1B 1C 1D 1都是正方形,A 2、B 2、C 2、D 2分别是AA 1、BB 1、 CC 1、DD 1的中点. 求证:四边形A 2B 2C 2D 2是正方形.(初二) 4、已知:如图,在四边形ABCD 中,AD =BC ,M 、N 分别是AB 、CD 的中点,AD 、BC 的延长线交MN 于E 、F . 求证:∠DEN =∠F . A P C D B A F G C E B O D D 2 C 2 B 2 A 2 D 1 C 1 B 1 C B D A A 1 B

F 1、已知:△ABC 中,H 为垂心(各边高线的交点),O (1)求证:AH =2OM ; (2)若∠BAC =600,求证:AH =AO .(初二) 2、设MN 是圆O 外一直线,过O 作OA ⊥MN 于A ,自A 及D 、E ,直线EB 及CD 分别交MN 于P 、Q . 求证:AP =AQ .(初二) 3、如果上题把直线MN 由圆外平移至圆内,则由此可得以下命题: 设MN 是圆O 的弦,过MN 的中点A 任作两弦BC 、DE ,设CD 、EB 分别交MN 于P 、Q . 求证:AP =AQ .(初二) 4、如图,分别以△ABC 的AC 和BC 为一边,在△ABC 的外侧作正方形ACDE 和正方形 CBFG ,点P 是EF 的中点. 求证:点P 到边AB 的距离等于AB 的一半.

初中几何证明的经典难题好题

初中几何证明题 一. 1.如图,点E 是BC 中点,BAE CDE ,求证:AB CD 2.如图,在ABC 中,90BAC ,AB AC ,//CD BA ,点P 是BC 上一点,连结AP ,过点P 做PE AP 交 CD 于E . 探究PE 与PA 的数量关系.

3.如图,在ABC中,AB AC,点D在AB上,点E在AC的延长线上,且BD CE,DE交BC于点P. 探究PE与PD的数量关系. 4.如图,在ABC中, 1 2 DBC ECB A,BD、CE交于点P. 探究BE与CD的数量关系.

5.如图,在EBC中,BD平分EBC,延长DE至点A,使得EA ED,且ABE C. 探究AB与CD的数量关系. C,AC BC,P为AB的中点,PE PF分别交AC、BC于E、F. 6.如图,在ABC中,90 探究PE、PF的数量关系.

7.如图,CB CD ,180ABC CDE ,AB DE . 探究:AF 与EF 之间的数量关系 8.如图,直线1l 、2l 相交于点A ,点B 、点C 分别在直线1l 、2l 上,AB k AC ,连结BC ,点D 是线段AC 上任意一点(不与A 、C 重合),作BDE BAC ,与ECF 的一边交于点E ,且ECF ABC . ⑴如图1,若1k ,且 90时,猜想线段BD 与DE 的数量关系,并加以证明; ⑵如图2,若 1k ,时,猜想线段BD 与DE 的数量关系,并加以证明.

二.倍长中线法: 11.如图,点E是BC中点,BAE CDE,求证:AB CD AC AE 13如图,在ABC中,CD AB,BAD BDA,AE是BD边的中线.求证:2 EG AD交CA延长线于E. 15.如图,在ABC中,AD平分BAC,G为BC的中点,// 求证:BF EC

初中数学几何证明经典题(含答案)

初中几何证明题 经典题(一) 1、已知:如图,O是半圆的圆心,C、E是圆上的两点,CD⊥AB,EF⊥AB,EG⊥CO. 求证:CD=GF.(初二) .如下图做GH⊥AB,连接EO。由于GOFE四点共圆,所以∠GFH=∠OEG, 即△GHF∽△OGE,可得EO GF = GO GH = CO CD ,又CO=EO,所以CD=GF得证。 2、已知:如图,P是正方形ABCD内点,∠PAD=∠PDA=150. 求证:△PBC是正三角形.(初二) .如下图做GH⊥AB,连接EO。由于GOFE四点共圆,所以∠GFH=∠OEG, 即△GHF∽△OGE,可得EO GF = GO GH = CO CD ,又CO=EO,所以CD=GF得证。 .如下图做GH⊥AB,连接EO。由于GOFE四点共圆,所以∠GFH=∠OEG, 即△GHF∽△OGE,可得EO GF = GO GH = CO CD ,又CO=EO,所以CD=GF得证。 A P C D B A F G C E B O D

3、如图,已知四边形ABCD 、A 1B 1C 1D 1都是正方形,A 2、B 2、C 2、D 2分别是AA 1、BB 1、 CC 1、DD 1的中点. 求证:四边形A 2B 2C 2D 2是正方形.(初二) 4、已知:如图,在四边形ABCD 中,AD =BC ,M 、N 分别是AB 、CD 的中点,AD 、BC 的延长线交MN 于E 、F . 求证:∠DEN =∠F . 经典题(二) 1、已知:△ABC 中,H 为垂心(各边高线的交点),O (1)求证:AH =2OM ; (2)若∠BAC =600,求证:AH =AO .(初二) D 2 C 2 B 2 A 2 D 1 C 1 B 1 C B D A A 1 B

(word完整版)初中数学相似三角形经典练习难题易错题(附详解)

相似三角形难题易错题 一.填空题(共2小题) 1.如图所示,已知AB∥EF∥CD,若AB=6厘米,CD=9厘米.求EF. 2.如图,?ABCD的对角线相交于点O,在AB的延长线上任取一点E,连接OE交BC于点F.若AB=a,AD=c,BE=b,则BF=_________. 二.解答题(共17小题) 3.如图所示.在△ABC中,∠BAC=120°,AD平分∠BAC交BC于D.求证:. 4.如图所示,?ABCD中,AC与BD交于O点,E为AD延长线上一点,OE交CD于F, EO延长线交AB于G.求证:.

5.一条直线截△ABC的边BC、CA、AB(或它们的延长线)于点D、E、F.求证:. 6.如图所示.P为△ABC内一点,过P点作线段DE,FG,HI分别平行于AB,BC和CA,且DE=FG=HI=d,AB=510,BC=450,CA=425.求d. 7.如图所示.梯形ABCD中,AD∥BC,BD,AC交于O点,过O的直线分别交AB,CD 于E,F,且EF∥BC.AD=12厘米,BC=20厘米.求EF.

8.已知:P为?ABCD边BC上任意一点,DP交AB的延长线于Q点,求证:. 9.如图所示,梯形ABCD中,AD∥BC,MN∥BC,且MN与对角线BD交于O.若AD=DO=a,BC=BO=b,求MN. 10.P为△ABC内一点,过P点作DE,FG,IH分别平行于AB,BC,CA(如图所示). 求证:.

11.如图所示.在梯形ABCD中,AB∥CD,AB<CD.一条直线交BA延长线于E,交DC 延长线于J,交AD于F,交BD于G,交AC于H,交BC于I.已知EF=FG=GH=HI=IJ,求DC:AB. 12.已知P为△ABC内任意一点,连AP,BP,CP并延长分别交对边于D,E,F. 求证:(1)(2)三者中,至少有一个不大于2,也至少有一个不少于2. 13.如图所示.在△ABC中,AM是BC边上的中线,AE平分∠BAC,BD⊥AE的延长线于D,且交AM延长线于F.求证:EF∥AB.

初中几何证明的经典难题

几何证明 1.如图,点E是BC中点,CDE AB= ∠,求证:CD = BAE∠ 2. 如图,在ABC ∠90 AB=,BA BAC,AC ?中,? = CD//,点P是BC上一点,连结AP,过点P做AP PE⊥交CD于E.探究PE与PA的数量关系. 3. 如图,在ABC BD=,DE交 AB=,点D在AB上,点E在AC的延长线上,且CE ?中,AC BC于点P.探究PE与PD的数量关系.

4. 如图,在ABC ?中,A ECB DBC ∠=∠=∠2 1,BD 、CE 交于点P .探究BE 与CD 的数量关系. 5.如图,在EBC ?中,BD 平分EBC ∠,延长DE 至点A ,使得ED EA =,且C ABE ∠=∠. 探究AB 与CD 的数量关系. 6.如图,在ABC ?中,?=∠90C ,BC AC =,P 为AB 的中点,PF PE ⊥分别交AC 、BC 于E 、F .探究PE 、PF 的数量关系. 7. 如图,CD CB =,?=∠+∠180CDE ABC ,DE AB =.探究:AF 与EF 之间的数量关系

8.如图,直线1l 、2l 相交于点A ,点B 、点C 分别在直线1l 、2l 上,AC k AB ?=,连结BC ,点D 是线段AC 上任意一点(不与A 、C 重合),作α=∠=∠BAC BDE ,与ECF ∠的一边交于点E ,且ABC ECF ∠=∠. ⑴如图1,若1=k ,且?=∠90α时,猜想线段BD 与DE 的数量关系,并加以证明; ⑵如图2,若1≠k ,时,猜想线段BD 与DE 的数量关系,并加以证明. 9.如图,在ABC ?中,AB CD =,BDA BAD ∠=∠,AE 是BD 边的中线.求证:AE AC 2= 10.如图,在ABC ?中,AD 平分BAC ∠,G 为BC 的中点,AD EG //交CA 延长线于E . 求证:EC BF = 11.如图,等腰直角ABC ?与等腰直角BDE ?,P 为CE 中点,连接PA 、PD .探究PA 、PD 的关系.

初二几何证明经典难题.

1 / 4 初二几何证明经典难题 1、已知:如图, P 是正方形 ABCD 内点,∠ PAD =∠ PDA =150. 求证:△ PBC 是正三角形. 如下图做△ DGC 使与△ ADP 全等,可得△ PDG 为等边△,从而可得△ DGC ≌△ APD ≌△ CGP, 得出 PC=AD=DC,和∠ DCG=∠ PCG =150 所以∠ DCP=300 ,从而得出△ PBC 是正三角形 2、已知:如图,在四边形 ABCD 中, AD =BC , M 、 N 分别是 AB 、 CD 的中点, AD 、 BC 的延长线交 MN 于 E 、 F . 求证:∠ DEN =∠ F . 如下图连接 AC 并取其中点 Q , 连接 QN 和 QM , 所以可得∠ QMF=∠ F , ∠QNM=∠ DEN 和∠ QMN=∠ QNM ,从而得出∠ DEN =∠ F 。 A C

D B B 2 / 4 F 3 、如图,分别以△ ABC 的 AC 和 BC 为一边,在△ ABC 的外侧作正方形 ACDE 和正方形 CBFG ,点 P 是 EF 的中点.

求证:点 P 到边 AB 的距离等于 AB 的一半. 3. 过 E,C,F 点分别作 AB 所在直线的高 EG , CI , FH 。可得 PQ= 2 EG FH +。由△ EGA ≌△ AIC ,可得 EG=AI,由△ BFH ≌△ CBI ,可得 FH=BI。从而可得 PQ= 2 AI BI += 2AB ,从而得证。 3 / 4 4 、如图,四边形 ABCD 为正方形, DE ∥ AC , AE =AC , AE 与 CD 相交于 F . 求证:CE =CF .

初中数学几何经典难题精选

初三数学总复习辅导学习资料(6)——几何经典难题 1.已知:如图,O 是半圆的圆心,C 、E 是圆上的两点,CD ⊥AB ,EF ⊥AB ,EG ⊥CO .求证:CD =GF . 2.已知:如图,P 是正方形ABCD 内点,∠PAD =∠PDA =150 .求证:△PBC 是正三角形. 3.如图,已知四边形ABCD 、A 1B 1C 1D 1都是正方形,A 2、B 2、 C 2、 D 2分别是AA 1、BB 1、CC 1、DD 1的中点. 求证:四边形A 2B 2 C 2 D 2是正方形. 4、已知:如图,在四边形ABCD 中,AD =BC ,M 、N 分别是AB 、CD 的中点,AD 、BC 的延长线交MN 于E 、F . 求证:∠DEN =∠F . 5.已知:△ABC 中,H 为垂心(各边高线的交点),O 为外心,且OM ⊥BC 于M .(1)求证:AH =2OM ;(2)若∠BAC =600 ,求证:AH =AO . A P C D B A F G C E B O D D 2 C 2 B 2 A 2 D 1 C 1 B 1 C B D A A 1

F 6.设MN 是圆O 外一直线,过O 作OA ⊥MN 于A ,自A 引圆的两条直线,交圆于B 、C 及D 、E ,直线EB 及 CD 分别交MN 于P 、Q .求证:AP =AQ . 7.如果上题把直线MN 由圆外平移至圆内,则由此可得以下命题:设MN 是圆O 的弦,过MN 的中点A 任作 两弦BC 、DE ,设CD 、EB 分别交MN 于P 、Q .求证:AP =AQ . 8.如图,分别以△ABC 的AC 和BC 为一边,在△ABC 的外侧作正方形ACDE 和正方形CBFG ,点P 是EF 的中点.求证:点P 到边AB 的距离等于AB 的一半. 9.如图,四边形ABCD 为正方形,DE ∥AC ,AE =AC ,AE 与CD 相交于 10.如图,四边形ABCD 为正方形,DE ∥AC ,且CE =CA ,直线EC 交DA 延长线于F .求证:AE =AF . E

初二几何证明经典难题.

初二几何证明经典难题 1、已知:如图,P是正方形ABCD内点,/ PAD = / PDA =150. 求证:△ PBC是正三角形. 如下图做△ DGC使与△ ADP全等,可得△ PDG为等边△,从而可得△ DGC APD CGP,得出PC=AD=DC,和/ DCG= / PCG =150 所以/ DCP=300 , 从而得出△ PBC是正三角形 2、已知:如图,在四边形ABCD中,AD =BC , M、N分别是AB、CD的中点, AD、BC 的延长线交MN于E、F . 求证:/ DEN = / F . 如下图连接AC并取其中点Q ,连接QN和QM ,所以可得/ QMF= / F , / QNM= / DEN 和/ QMN= / QNM ,从而得出 / DEN = / F。

、如图分别以△ ABC的AC和BC为一边,在厶ABC的外侧作正方形ACDE 和正方形CBFG,点P是EF的中点. 求证:点P到边AB的距离等于AB的一半. 3. 过E,C,F点分别作AB所在直线的高EG , CI , FH。可得PQ=

EG FH +。由厶EGA AIC ,可得EG=AI,由△ BFH CBI ,可得FH=BI。从而可得PQ= 2 AI BI += 2AB ,从而得证。 3 / 4 4 、如图,四边形ABCD为正方形,DE // AC , AE =AC , AE与CD相交于F .求证:CE =CF . 顺时针旋转△ ADE ,到△ ABG ,连接CG .由于/ ABG= / ADE=900+450=1350

从而可得B , G , D在一条直线上,可得△ AGB ◎△ CGB。推出 AE=AG=AC=GC,可得△ AGC为等边三角形。 / AGB=300,既得/ EAC=300,从而可得/ A EC=750。又/ EFC=Z DFA=450+300=750.可证:CE=CF。 5、如图,四边形ABCD为正方形,DE // AC ,且CE =CA ,直线EC交DA延长 线于F . 求证:AE =AF . 连接BD作CH丄DE

初二几何证明经典难题

初二几何证明经典难题

初二几何证明经典难题 1、已知:如图,P 是正方形ABCD 内点,∠PAD =∠PDA =150. 求证:△PBC 是正三角形. 如下图做△DGC 使与△ADP 全等,可得△PDG 为等边△,从而可得 △DGC ≌△APD ≌△CGP,得出PC=AD=DC,和∠DCG=∠PCG =150 所以∠DCP=300 ,从而得出△PBC 是正三角形A P C D B

2、已知:如图,在四边形ABCD 中,AD =BC , M 、N 分别是AB 、CD 的中点,AD 、BC 的延长线交MN 于E 、F . 求证:∠DEN =∠F .如下图连接AC 并取其中点Q ,连接QN 和QM ,所以可得∠QMF=∠F ,∠QNM=∠DEN 和∠QMN=∠QNM ,从而得出∠DEN =∠F 。 A N F E C D M B

F 3 、如图,分别以△ABC 的在△ABC CBFG ,点P 是EF 求证:点P 到边AB 半.3.过E,C,F 点分别作AB 所在直线的高EG , CI ,FH 。可得PQ=。 由△EGA ≌△AIC ,可得EG=AI ,由△BFH ≌△CBI ,可得FH=BI 。 2EG FH +

从而可得PQ= = ,从而得证。 4、如图,四边形ABCD 为正方形,DE ∥AC , AE =AC ,AE 与CD 相交于F .求证:CE =CF .顺时针旋转 △ADE ,到△ABG ,连接CG. 由于∠ABG=∠ADE=900+450=1350 从而可得B ,G ,D 在一条直线上,可得△AGB ≌△CGB 。 推出AE=AG=AC=GC ,可得△AGC 为等边 2AI BI +2AB

初二几何证明经典难题

初二几何证明经典难题 1、已知:如图,P 是正方形ABCD 内点,∠PAD =∠PDA =150. 求证:△PBC 是正三角形. 如下图做△DGC 使与△ADP 全等,可得△PDG 为等边△,从而可得 △DGC ≌△APD ≌△CGP,得出PC=AD=DC,和∠DCG=∠PCG =150 所以∠DCP=300 ,从而得出△PBC 是正三角形 2、已知:如图,在四边形ABCD 中,AD =BC ,M 、N 分别是AB 、CD 的中点,AD 、BC 的延长线交MN 于E 、F . 求证:∠DEN =∠F . 如下图连接AC 并取其中点Q ,连接QN 和QM ,所以可得∠QMF=∠F ,∠QNM=∠DEN 和∠QMN=∠QNM ,从而得出∠DEN =∠F 。 A P C D B A N F E C D M B

P C G F B Q A D E 3 、如图,分别以△ABC 的AC 和BC 为一边,在△ABC 的外侧作正方形ACDE 和正方形CBFG ,点P 是EF 的中点. 求证:点P 到边AB 的距离等于AB 的一半. 3.过E,C,F 点分别作AB 所在直线的高EG ,CI ,FH 。可得PQ= 2 EG FH +。 由△EGA ≌△AIC ,可得EG=AI ,由△BFH ≌△ CBI ,可得FH=BI 。 从而可得PQ= 2 AI BI += 2AB ,从而得证。

4 、如图,四边形ABCD 为正方形,DE ∥AC ,AE =AC ,AE 与CD 相交于F . 求证:CE =CF . 顺时针旋转△ADE ,到△ABG ,连接CG . 由于∠ABG=∠ADE=900+450=1350 从而可得B ,G ,D 在一条直线上,可得△AGB ≌△CGB 。 推出AE=AG=AC=GC ,可得△AGC 为等边三角形。 ∠AGB=300,既得∠EAC=300,从而可得∠A EC=750。 又∠EFC=∠DFA=450+300=750. 可证:CE=CF 。 5、如图,四边形ABCD 为正方形,DE ∥AC ,且CE =CA ,直线EC 交DA 延长线于F . 求证:AE =AF . 连接BD 作CH ⊥DE ,可得四边形CGDH 是正方形。 由AC=CE=2GC=2CH , 可得∠CEH=300,所以∠CAE=∠CEA=∠AED=150, 又∠FAE=900+450+150=1500, A F D E C B E D A C B F

初二几何经典难题集锦(含答案)

初二几何经典训练题 1、如图,在直角梯形ABCD中,AB∥DC,∠ABC=90°,AB=2DC,对角线AC⊥BD,垂足为F,过点F作EF∥AB,交AD于点E,CF=4cm. ⑴求证:四边形ABFE是等腰梯形; ⑵求AE的长. 2、如图,矩形ABCD的对角线AC、BD相交于点O,E、F分别是OA、OB的中点. (1)求证:△ADE≌△BCF; (2)若AD=4cm,AB=8cm,求CF和OF的长。 3、如图,已知直角梯形ABCD中,AD∥BC,∠B=90°,AB=12cm,BC=8cm,DC=13cm,动点P沿A→D→C线路以2cm/秒的速度向C运动,动点Q沿B→C线路以1cm/秒的速度向C运动.P、Q两点分别从A、B同时出发,当其中一点到达C点时,另一点也随之停止.设运动时间为t秒,△PQB的面积为ycm2.(1)求A D的长及t的取值范围;(2)当≤t≤t0(t0为(1)中t的最大值)时,求y关于t的函数关系式;(3)请具体描述:在动点P、Q的运动过程中,△PQB的面积随着t的变化而变化的规律。 4、如图,AB与CD相交于E,AE=EB,CE=ED,D为线段FB的中点,GF与AB相交于点G,若CF=15cm,求GF之长。

5、如图所示,在平行四边形ABCD中,过点B作BE⊥CD,垂足为E,连接AE,F为AE上的一点,且∠BFE =∠C。(1)求证:△ABF∽△EAD;(2)若AB=4,∠BAE=30°,求AE的长;(3)在(1)、(2)的条件下,若AD=3,求BF的长(计算结果可含根号)。 6、如图是一个常见铁夹的侧面示意图,OA,OB表示铁夹的两个面,C是轴,CD⊥OA于点D,已知DA=15mm,DO=24mm,DC=10mm, 我们知道铁夹的侧面是轴对称图形,请求出A、B两点间的距离。 7、如图,用三个全等的菱形ABGH、BCFG、CDEF拼成平行四边形ADEH,连接AE与BG、CF分别交于P、Q,(1)若AB=6,求线段BP的长; (2)观察图形,是否有三角形与△ACQ全等并证明你的结论. 8、如图已知点E、F在△ABC的边AB所在的直线上,且AE=BF,FH∥FG∥AC,FH、EG分别交边BC所在的直线于点H、G。 (1)如图1,如果点E、F在边AB上,那么EG+FH=AC; (2)如图2,如果点E在边AB上,点F在AB的延长线上,那么线段EG、FH、AC的长度关系是_________ ;(3)如图3,如果点E在AB的反向延长线上,点F在AB的延长线上,那么线段EG、FH、AC的长度关系是_____________。

初二几何经典难题集锦(含答案)

初二几何经典训练题 1、如图, 在直角梯形ABCD中,AB∥DC,∠ABC=90° ,AB=2DC,对角线AC⊥BD,垂足为F,过点F 作EF∥AB,交 AD于点E,CF=4cm. ⑴求证:四边形ABFE是等腰梯形 ⑵求AE的长. 1)求证:△ ADE≌△ BCF; 2)若AD=4cm,AB=8cm,求CF和OF的长。 3、如图,已知直角梯形ABCD中,AD∥BC,∠B=90°,AB=12cm,BC=8cm,DC=13cm,动点P沿A→D→C线路以2cm/秒的速度向C运动,动点Q沿B→C线路以1cm/秒的速度向C运动.P、Q两点分别从A、B 同时出发,当其中一点到达C点时,另一点也随之停止.设运动时间为t 秒,△ PQB的面积为ycm2.(1)求A D的长及t 的取值范围;(2)当≤t ≤t0 (t0 为(1)中t 的最大值)时,求y关于t 的函数关系式;(3)请具体描述:在动点P、Q的运动过程中,△ PQB的面积随着t 的变化而变化的规律。 4、如图,AB 与CD相交于E,AE=EB,CE=ED,D为线段FB的中点,GF与AB相交于点G,若CF=15cm,求GF之长。

5、如图所示,在平行四边形ABCD中,过点B 作BE⊥CD,垂足为E,连接AE,F为AE上的一点, 且∠ BFE =∠C。(1)求证:△ ABF∽△ EAD;(2)若AB=4,∠ BAE=30°,求AE的长;(3)在 (1)、(2)的条件下,若AD=3,求BF 的长(计算结果可含根号)。 6、如图是一个常见铁夹的侧面示意图,OA,OB表示铁夹的两个面,C 是轴,CD⊥OA于点D,已 知DA=15mm, DO=24mm,DC=10mm, 我们知道铁夹的侧面是轴对称图形,请求出A、B 两点间的距离。 7、如图,用三个全等的菱形ABGH、BCFG、CDEF拼成平行四边形ADEH,连接AE与BG、CF 分别交于P、Q,(1)若AB=6,求线段BP 的长; (2)观察图形,是否有三角形与△ ACQ全等并证明你的结论. 8、如图已知点E、F 在△ ABC的边AB所在的直线上,且AE=BF,FH∥FG∥AC,FH、EG分别交边BC所在的直线于点H、G。 (1)如图1,如果点E、F 在边AB上,那么EG+FH=A;C (2)如图2,如果点E在边AB上,点F在AB的延长线上,那么线段EG、FH、AC的长度关系是_________

初中几何证明题五大经典含问题详解

标准文档 实用文案 经典题(一) 1、已知:如图,O是半圆的圆心,C、E是圆上的两点,CD⊥AB,EF⊥AB,EG⊥CO.求证:CD=GF.(初二) 证明:过点G作GH⊥AB于H,连接OE ∵EG⊥CO,EF⊥AB ∴∠EGO=90°,∠EFO=90° ∴∠EGO+∠EFO=180° ∴E、G、O、F四点共圆 ∴∠GEO=∠HFG ∵∠EGO=∠FHG=90°

∴△EGO∽△FHG ∴FGEO=HGGO ∵GH⊥AB,CD⊥AB ∴GH∥CD ∴CDCOHGGO? ∴CDCOFGEO? ∵EO=CO ∴CD=GF 2、已知:如图,P是正方形ABCD内部的一点,∠PAD=∠PDA=15°。 求证:△PBC是正三角形.(初二) 证明:作正三角形ADM,连接MP ∵∠MAD=60°,∠PAD=15° ∴∠MAP=∠MAD+∠PAD=75° ∵∠BAD=90°,∠PAD=15° ∴∠BAP=∠BAD-∠PAD=90°-15°=75° ∴∠BAP=∠MAP ∵MA=BA,AP=AP ∴△MAP≌△BAP ∴∠BPA=∠MPA,MP=BP 同理∠CPD=∠MPD,MP=CP ∵∠PAD=∠PDA=15°∴PA=PD,∠BAP=∠CDP=75° ∵BA=CD ∴△BAP≌∠CDP ∴∠BPA=∠CPD ∵∠BPA=∠MPA,∠CPD=∠MPD ∴∠MPA=∠MPD=75° ∴∠BPC=360°-75°×4=60° ∵MP=BP,MP=CP ∴BP=CP ∴△BPC是正三角形 标准文档 实用文案

3、已知:如图,在四边形ABCD中,AD=BC,M、N分别是AB、CD的中点,AD、BC的延长线交MN于E、F. 求证:∠DEN=∠F. 证明:连接AC,取AC的中点G,连接NG、MG ∵CN=DN,CG=DG ∴GN∥AD,GN=21AD ∴∠DEN=∠GNM ∵AM=BM,AG=CG ∴GM∥BC,GM=21BC ∴∠F=∠GMN ∵AD=BC ∴GN=GM ∴∠GMN=∠GNM ∴∠DEN=∠F 经典题(二) 1、已知:△ABC中,H为垂心(各边高线的交点),O为外心,且OM⊥BC于M. (1)求证:AH=2OM; (2)若∠BAC=600,求证:AH=AO.(初二) 证明:(1)延长AD交圆于F,连接BF,过点O作OG⊥AD于G ∵OG⊥AF ∴AG=FG ∵AB⌒ =AB⌒ ∴∠F=∠ACB 又AD⊥BC,BE⊥AC ∴∠BHD+∠DBH=90° ∠ACB+∠DBH=90° ∴∠ACB=∠BHD ∴∠F=∠BHD ∴BH=BF又AD⊥BC ∴DH=DF ∴AH=AG+GH=FG+GH=GH+DH+DF+GH=2GH+2DH=2(GH+DH)=2GD 又AD⊥BC,OM ⊥BC,OG⊥AD ∴四边形OMDG是矩形 ∴OM=GD ∴AH=2OM (2)连接OB、OC ∵∠BAC=60∴∠BOC=120° ∵OB=OC,OM⊥BC ∴∠BOM=21∠BOC=60°∴∠OBM=30° ∴BO=2OM 由(1)知AH=2OM∴AH=BO=AO 标准文档

初中几何证明的经典难题

初中几何证明的经典难题 一.割补法: 1.(全等)如图,点E 是BC 中点,CDE BAE ∠=∠,求证:CD AB = (相似)如图,点E 是BC 上一点,EC k BE ?=,CDE BAE ∠=∠,猜想AB 、CD 的数量关系. 2. (全等)如图,在ABC ?中,?=∠90BAC ,AC AB =,BA CD //,点P 是BC 上一点,连结AP ,过点P 做AP PE ⊥交CD 于E . 探究PE 与PA 的数量关系. (相似)如图,在ABC ?中,?=∠90BAC ,AC k AB ?=,BA CD //,点P 是BC 上一点,连结AP ,过点P 做AP PE ⊥交CD 于E . 探究PE 与PA 的数量关系.

3. (全等)如图,在ABC ?中,AC AB =,点D 在AB 上,点E 在AC 的延长线上,且CE BD =,DE 交BC 于点P . 探究PE 与PD 的数量关系. (相似)如图,在ABC ?中,AC k AB ?=,点D 在AB 上,点E 在AC 的延长线上,且CE BD =,DE 交BC 于点P . 探究PE 与PD 的数量关系. 4. (全等)如图,在ABC ?中,A ECB DBC ∠=∠=∠2 1,BD 、CE 交于点P . 探究BE 与CD 的数量关系. (相似)如图,在ABC ?中,A ECB DBC ∠=∠+∠,BD 、CE 交于点P ,PC k PB ?=. 探究BE 与CD 的数量关系.

5.(全等)如图,在EBC ?中,BD 平分EBC ∠,延长DE 至点A ,使得ED EA =,且C ABE ∠=∠. 探究AB 与CD 的数量关系. (相似)如图,BD 平分EBC ∠,D '是BD 上一点,且D B k BD '?=,连结C D '、DE ,并延长DE 至点A ,使得ED EA =,且C ABE ∠=∠. 探究AB 与D C '的数量关系. 6.(全等)如图,在ABC ?中,?=∠90C ,BC AC =,P 为AB 的中点,PF PE ⊥分别交AC 、BC 于E 、F . 探究PE 、PF 的数量关系. (相似)如图,在ABC ?中,?=∠90C ,BC AC =,P 为AB 上一点,且PB k AP ?=,PF PE ⊥分别交AC 、BC 于E 、F . 探究PE 、PF 的数量关系.

初中数学经典几何难题与答案解析

经典难题(一) 1、已知:如图,O 是半圆的圆心,C 、E 是圆上的两点,CD ⊥AB ,EF ⊥AB ,EG ⊥CO . 求证:CD =GF .(初二) 第1题图 第2题图 2、已知:如图,P 是正方形ABCD 内点,∠PAD =∠PDA =150 . 求证:△PBC 是正三角形.(初二) 3、如图,已知四边形ABCD 、A 1B 1C 1D 1都是正方形,A 2、B 2、C 2、D 2分别是AA 1、BB 1、CC 1、DD 1的中点.求证:四边形A 2B 2C 2D 2是正方形.(初二) 第3题图 第4 题图 4、已知:如图,在四边形ABCD 中,AD =BC ,M 、N 分别是AB 、CD 的中点,AD 、BC 的延长线交MN 于E 、F .求证:∠DEN =∠F . 经典难题(二) 1、已知:△ABC 中,H 为垂心(各边高线的交点),O 为外心,且OM ⊥BC 于M . (1)求证:AH =2OM ; (2)若∠BAC =600 ,求证:AH =AO .(初二) B D 2 C 2 B 2 A 2 D 1 C 1 B 1 C B D A A 1 A P C D B A F G C E B O D

第1题图 第2题图 2、设MN 是圆O 外一直线,过O 作OA ⊥MN 于A ,自A 引圆的两条直线,交圆于B 、C 及D 、E ,直线EB 及CD 分别交MN 于P 、Q .求证:AP =AQ .(初二) 3、如果上题把直线MN 由圆外平移至圆内,则由此可得以下命题: 设MN 是圆O 的弦,过MN 的中点A 任作两弦BC 、DE ,设CD 、EB 分别交MN 于P 、Q . 求证:AP =AQ .(初二) 第3题图 第4题图 4、如图,分别以△ABC 的AC 和BC 为一边,在△ABC 的外侧作正方形ACDE 和正方形CBFG ,点P 是EF 的中点. 求证:点P 到边AB 的距离等于AB 的一半.(初二) 经典难题(三) 1、如图,四边形ABCD 为正方形,DE ∥AC ,AE =AC ,AE 与CD 相交于F . 求证:CE =CF .(初二) F

精选初中数学几何证明经典试题(含答案)

十二周培优精选 1、已知:如图,O 是半圆的圆心,C 、E 是圆上的两点,CD ⊥AB ,EF ⊥AB ,EG ⊥CO . 求证:CD =GF . 2、已知:如图,P 是正方形ABCD 内点,∠PAD =∠PDA =150. 求证:△PBC 是正三角形. 4、已知:如图,在四边形ABCD 中,AD =BC ,M 、 N 分别是AB 、CD 的中点,AD 、BC 的延长线交MN 于E 、F . 求证:∠DEN =∠F . 1、如图,四边形ABCD 为正方形,DE ∥AC ,AE =AC ,AE 与CD 相交于F . 求证:CE =CF .(初二) 2、如图,四边形ABCD 为正方形,DE ∥AC ,且CE =CA ,直线求证:AE =AF .(初二) A P C D B A F G C E B O D

3、设P 是正方形ABCD 一边BC 上的任一点,PF ⊥AP ,CF 平分∠DCE . 求证:PA =PF .(初二) 经典题4 1、已知:△ABC 是正三角形,P 是三角形内一点,PA =3,PB =4, 求:∠APB 的度数.(初二) 2、设P 是平行四边形ABCD 内部的一点,且∠PBA =∠PDA . 求证:∠PAB =∠PCB . 4、平行四边形ABCD 中,设E 、F 分别是BC 、AB 上的一点,AE 与CF 相交于P ,且 AE =CF .求证:∠DPA =∠DPC .( 经典题(一) 1.如下图做GH ⊥AB,连接EO 。由于GOFE 四点共圆,所以∠GFH =∠OEG,即△GHF ∽△OGE,可得 EO GF =GO GH =CO CD ,又CO=EO ,所以CD=GF 得证。 2. 如下图做△DGC 使与△ADP 全等,可得△PDG 为等边△,从而可得 △DGC ≌△APD ≌△CGP,得出PC=AD=DC,和∠DCG=∠PCG =150 所以∠DCP=300 ,从而得出△PBC 是正三角形 D

初二几何证明经典难题(同名14972)

初二几何证明经典难题(同名14972)

初二几何证明经典难题 1、已知:如图,P 是正方形ABCD 内点,∠PAD =∠PDA =150. 求证:△PBC 是正三角形. 如下图做△DGC 使与△ADP 全等,可得△PDG 为等边△,从而可得 △DGC ≌△APD ≌△CGP,得出PC=AD=DC,和∠DCG=∠PCG =150 所以∠DCP=300 ,从而得出△PBC 是正三角形 A P C D B

2、已知:如图,在四边形ABCD , M 、N 分别是AB 、、BC 的延长线交MN 于求证:∠DEN =∠F .如下图连接AC 并取其中点Q ,连接QN 和QM ,所以可得∠QMF=∠F ,∠QNM=∠DEN 和∠QMN=∠QNM ,从而得出∠DEN =∠F 。 B

F 3 、如图,分别以△ABC 的在△ABC CBFG ,点P 是EF 求证:点P 到边AB 半.3.过E,C,F 点分别作AB 所在直线的高EG , CI ,FH 。可得PQ= 。 由△EGA ≌△AIC ,可得EG=AI ,由△BFH ≌△CBI ,可得FH=BI 。 2 EG FH +

从而可得PQ= = ,从而得证。 4 、如图,四边形ABCD 为正方形,DE ∥AC ,AE =AC ,AE 与CD 相交于F . 求证:CE =CF . 顺时针旋转△ADE ,到△ABG ,连接CG. 由于 ∠ABG=∠ADE=900+450=1350 从而可得B ,G ,D 在一条直线上,可得△AGB ≌△CGB 。 推出AE=AG=AC=GC ,可得△AGC 为等边 2 AI BI +2 AB

2016中考 几何证明题 经典试题(含答案)

证明题 经典题(一) 1、已知:如图,O 是半圆的圆心,C 、E 是圆上的两点,CD ⊥AB ,EF ⊥AB ,EG ⊥CO . 求证:CD =GF .(初二) 2、已知:如图,P 是正方形ABCD 内点,∠PAD =∠PDA =150. 求证:△PBC 是正三角形.(初二) 3、如图,已知四边形ABCD 、A 1B 1C 1D 1都是正方形,A 2、B 2、C 2、D 2分别是AA 1、BB 1、 CC 1、DD 1的中点. 求证:四边形A 2B 2C 2D 2是正方形.(初二) 4、已知:如图,在四边形ABCD 中,AD =BC ,M 、N 分别是AB 、CD 的中点,AD 、BC 的延长线交MN 于E 、F . 求证:∠DEN =∠F . A P C D B A F G C E B O D D 2 C 2 B 2 A 2 D 1 C 1 B 1 C B D A A 1 B

F 经典题(二) 1、已知:△ABC 中,H 为垂心(各边高线的交点),O (1)求证:AH =2OM ; (2)若∠BAC =600,求证:AH =AO .(初二) 2、设MN 是圆O 外一直线,过O 作OA ⊥MN 于A ,自A 及D 、E ,直线EB 及CD 分别交MN 于P 、Q . 求证:AP =AQ .(初二) 3、如果上题把直线MN 由圆外平移至圆内,则由此可得以下命题: 设MN 是圆O 的弦,过MN 的中点A 任作两弦BC 、DE ,设CD 、EB 分别交MN 于P 、Q . 求证:AP =AQ .(初二) 4、如图,分别以△ABC 的AC 和BC 为一边,在△ABC 的外侧作正方形ACDE 和正方形CBFG ,点P 是EF 的中点. 求证:点P 到边AB 的距离等于AB 的一半.

相关文档
最新文档