络合铁脱硫与PDS脱硫的对比分析

合集下载

焦化脱硫工艺应用络合铁催化剂的探讨

焦化脱硫工艺应用络合铁催化剂的探讨

络合铁催化剂应用于焦化脱硫工艺的探讨络合铁法是从Lo—cat改进的可自循环的运行成本低、副盐产生量小的催化剂,是煤气脱硫催化剂发展的方向,特别是在我国,煤炭大国,铁基催化剂的应用更是发展急需。

铁基催化剂主要是铁离子在络合剂配合中氧化还原自循环。

理论上铁基催化剂价格低,自循环,运行费用低,而实际中焦化煤气脱硫的络合铁法催化剂成本是PDS催化剂的5~10倍,用量更是达到以吨计。

与提盐成本相比焦化企业是这样核算的:100万吨焦化用PDS催化剂成本约4000元/d,吨废液提盐的能耗、人工等合计在500~600元,甚至达到700元,产品价格按零计算。

这样来看,PDS催化剂加提盐每天运行成本基本等于络合铁药剂的成本,其实如果算上熔硫,成本还要高于络合铁药剂。

传统提盐,间歇釜分步法没有进步,的确让焦化企业谈盐色变。

络合铁法开始运行效果好,也的确因自循环产生副盐少。

这么好的技术无怪于不了解络合铁催化剂特征的焦化企业对络合铁法的应用的渴望和趋之若鸿。

而实际使用当中,经过几个月的市场运行,开始是大家讨论堵塔和铁离子去哪里了,以为是谣传,经几天的调研:的确很多企业要么是因成本高停了,要么是堵塔停了,要么是因系统崩溃不停了。

原因个人认为不是络合铁法催化剂的问题,是推销产品的企业的问题:第一、号称不改原有设备,试用调配药剂就可以,这个说法误导了焦化企业。

络合铁法产生副盐少,硫增加了1/4多,除非原设计脱硫处理量大于实际约30%,原系统是不可能适应突然增加的硫产生量,悬浮硫高,堵塔和冒液必然。

第二、络合铁法是靠铁离子氧化H2S直接生成硫,是在脱硫塔内就进行反应的,依靠原适合PDS工艺的塔盘来保证适合络合铁法在塔内产生大量硫泡沫是不可能的,堵塔也是必然要发生的。

第三、推销络合铁催化剂的讲不产生盐,对副作用闭口不提,也不提为什么要加入那么多的络合铁催化剂。

实际上铁离子是靠配比的络合剂自循环于脱硫液中,产生的硫泡沫就是副产品,是脱硫废液,如果压滤,损失在硫膏内;如果用熔硫釜,多余水分蒸发,催化剂损失在硫渣中。

流脱硫技术及比较.

流脱硫技术及比较.

分子筛 在用
分子筛 再生
再生气
加热器
过滤器 合格天然气
合格天然气去用户


40℃的原料气进入分子筛脱硫塔的顶部,自上 而下在分子筛脱硫塔内完成吸附脱水过程。干 燥后的天然气经粉尘过滤器过滤后去用户。 过滤器出来的部分天然气成为再生气,再生气 经再生气加热器加热,加热后的再生气先自上 而下进入分子筛脱硫塔热吹,分子筛吸附的硫 化氢被高温再生气加热脱附,脱附后的硫化氢 与再生气一起进入火炬燃烧。
F.初始药剂(VM-630)
在处理过程中会连续产生出少量的硫代硫酸盐,虽然硫 代硫酸盐是一种副产品,但它有减少螯合物降解的有益 副作用。由于在系统启动的初始阶段中溶液里的硫代硫 酸盐非常少,因此需要在这段时间内加入浓缩的硫代硫 酸盐溶液,用以阻止螯合物的降解。
G.KOH
在一定程度上会发生少量具有竞争性的副反应,需要添 加入一些碱性材料以维持溶液pH 值的相对稳定,确保硫 化氢的吸收状况良好。
氧化器被整合为一个装置,从而减少一个容器,也省去溶
液循环泵以及相关的管道等装置。
自循环OR-GREEN脱硫流程
自循环OR-GREEN脱硫工艺原理
再生溶液 合格天然气 氧化 分离 尾气去火炬
滤液
吸收H2S
含硫溶液 空气
硫浆
过滤器
含硫化氢天然气
自循环OR-GREEN脱硫 工艺原理


再生出的H2S用Claus硫回收工艺转化为硫磺。
湿式催化氧化法(络合铁法)脱硫工艺流程图
湿式脱硫特点
湿式的络合铁法工艺与PDS法基本相似,所不同的是 催化剂是三价铁离子,硫容相对PDS法更高一些;
络合铁法工艺同样存在硫磺堵塞管道及腐蚀问题以及

TEA络合铁法脱硫的研究_郑志胜

TEA络合铁法脱硫的研究_郑志胜

TEA络合铁法脱硫的研究_郑志胜TEA(三乙醇胺)络合铁法是一种常用于烟气脱硫的方法。

在这种方法中,利用三乙醇胺与铁离子形成络合物,通过络合物与二氧化硫进行反应,将其转化为硫酸铁(FeSO4)来实现脱硫的目的。

这种方法具有工艺简单、工艺成本低廉的优点,在烟气脱硫领域得到了广泛应用。

TEA络合铁法的研究主要集中在脱硫效率的提升和工艺流程的优化上。

目前,研究者们通过改变络合物的结构、改进反应条件和优化工艺参数等方式来提高脱硫效率。

这种方法的脱硫效率受到很多因素的影响,包括TEA和铁离子的浓度、反应温度、反应时间等。

因此,很多研究致力于寻求最佳的工艺条件,以提高脱硫效率。

同时,对TEA络合铁法的反应机理也进行了深入研究。

研究者们发现,在络合物与二氧化硫反应的过程中,主要发生的是硫酸铁与二氧化硫之间的氧化还原反应。

其反应机理主要包括络合物的分解、硫酸铁的氧化还原等步骤。

通过对反应机理的研究,研究者们能够更好地理解脱硫过程的原理和影响因素,为脱硫工艺的优化提供了理论依据。

此外,TEA络合铁法的脱硫机理研究也涉及到了废水的处理和资源化利用。

在脱硫的过程中,不可避免地会产生大量的废水,其中含有大量的TEA和铁离子。

研究者们致力于研究如何高效地处理这些废水,并将其中的有用物质进行资源化利用。

例如,通过配制合适的解吸剂,可以将废水中的TEA回收利用,从而节约成本和减少环境污染。

总之,TEA络合铁法作为一种常用的烟气脱硫方法,一直受到研究者们的关注。

目前的研究主要集中在提高脱硫效率、优化工艺流程和研究反应机理等方面。

未来,随着环境污染问题的日益严重,TEA络合铁法有望继续得到推广和应用,从而为减少二氧化硫排放做出更大的贡献。

煤化工GLT络合铁技术与传统湿法技术碱耗分析

煤化工GLT络合铁技术与传统湿法技术碱耗分析

煤化工GLT络合铁技术与传统湿法技术碱耗分析由于煤源紧张以及企业节能降耗等多重因素的影响,致使高硫煤在生产中被迅速应用,煤气中H2S的含量在1g/Nm3以下的企业越来越少了,很多企业都在烧2g/Nm3甚至3g/Nm3以上的高硫煤。

随着企业的生产规模越来越大,使脱硫系统单位时间内脱除硫化氢的量越来越多。

在这种情况下,传统脱硫系统暴露许多问题,特别表现在系统脱硫效率下降,溶液中副盐的增长量加快,碱耗增加,硫回收率明显下降等现象。

从而使脱硫的辅料消耗远远超过企业的预算指标,造成企业生产成本增加。

湿式氧化法脱硫中副盐的生成是无法回避的,也就是说它是客观存在的,无论采用何种脱硫剂都不可能消除和避免副盐的产生。

然而国力通络合铁技术采用自主研发的高效脱硫剂,以及自我研发的独特工艺,大大减少了副盐的产生,副盐量基本可忽略不计,国力通现有业绩中无副盐累积需排放废液情况发生。

那么副盐到底是如何产生的呢,它的生成与哪些因素有关呢?我们首先从如下的脱硫反应化学方程式来加以分析:2.副反应产生的原因(1)原料气中二氧化碳是酸性气体,能与碳酸钠作用发生如下反应:Na2CO3+CO2+H2O=2NaHCO3在脱硫原始开车时,溶液中全部为Na2CO3,随着吸收CO2反应的进行,溶液中NaHCO3逐渐增加。

当吸收CO2的量与再生过程中解吸CO2的量平衡时,则液相中Na2CO3和NaHCO3的浓度维持不变。

一般常压脱硫中,若原料气中CO2量为8%~6%,溶液总碱度为0.4N(以Na2CO3计为21.2g/L)时,则Na2CO3在5~6g/L,NaHCO3在25g/L左右。

在加压脱硫过程中(如变脱)因操作压力较高,CO2浓度也较高,致使液相中Na2CO3大幅度下降,一般只占总碱度的5%~10%,而大部分为NaHCO3,影响硫化氢吸收。

与传统湿法氧化法相比,GLT络合铁技术硫容量高选择氧化性强,因此循环量比传统PDS要小得多,因此气液接触吸收CO2较少,且GLT络合铁系统温度一般维持在50℃左右,温度较高CO2溶解度小,工艺不受CO2影响,此部分碱耗较传统湿法脱硫技术低。

络合铁催化剂在焦炉煤气脱硫装置上的适用性研究

络合铁催化剂在焦炉煤气脱硫装置上的适用性研究

络合铁催化剂在焦炉煤气脱硫装置上的适用性研究摘要:络合铁脱硫液为弱碱性,小分子酸性焦油组分进入脱硫液能转化为盐,很难随硫磺带出系统,溶解性大的焦油组分容易在系统累积,对硫泡沫的形成及脱硫液发泡产生严重影响。

同时进入系统的氨水来自蒸氨塔,也夹带了溶解的焦油组分,部分焦油组分会进入到脱硫液中,当在现有焦炉煤气湿法氧化脱硫装置中采用络合铁催化剂时,脱硫液的各种组分及带入的煤焦油会对络合铁催化剂的脱硫性能影响如何?对络合铁催化剂下产生的硫磺浮选是否会有影响?因此,研究络合铁催化剂在焦炉煤气脱硫装置上的适用性为消除焦化脱硫废液奠定实验指导。

关键词:络合铁催化剂;焦炉煤气;脱硫装置;适用性1焦炉煤气湿法氧化脱硫工艺装置目前国内主要以湿法氧化法脱硫为主,焦炉煤气湿法氧化脱硫化氢根据催化剂的应用发展有多种,催化剂的不同,在净化度、副盐的产生、硫磺的浮选上均存在差异,但在工艺路线上基本类似。

国内众多焦化企业搭建了各种焦炉煤气脱硫装置,但脱硫装置主要分为两种:高塔再生工艺装置和喷射再生工艺装置。

高塔再生工艺与喷射再生工艺的最大区别为脱硫富液与空气的接触方式,高塔再生工艺是普通混合方式,喷射再生工艺是气液两相成泡沫流并流向下的高效混合方式,理论上喷射再生工艺氧化效果更好,但目前国内焦化企业中的煤气H2S含量高、氧化过程生成的S、生成的副盐容易积累在氧化喷射器中,导致喷射器堵塞,大型的再生槽也会造成气液接触不充分,导致脱硫富液的再生效率不高,从而导致脱硫效率不稳定。

相比之下,高塔再生工艺的空气由空气压缩机提供,氧气供应过程稳定,另外,再生塔里有一定的筛板装置,空气相对分布均匀,使得高塔再生工艺脱硫效率比喷射再生工艺更为稳定,所以目前国内应用的最多的装置为高塔再生工艺装置。

2络合铁脱硫技术的发展2.1LO-CAT法20世纪70年代,美国ChemiclCoandAirProduct公司推出LO-CAT法。

20世纪80年代,美国AIR公司研究出ARI-310催化剂。

络合铁法脱硫技术

络合铁法脱硫技术

络合铁法脱硫技术1.引言工业原料气和工业废气中的H2S能引起设备腐蚀和催化剂中毒,导致生产成本增加和产品质量下降;如不经处理排放到大气中,会带来严重的环境问题,直接威胁人类的生存与发展。

研究开发H2S的高效脱除技术已成为世界各国关注的热点。

2.1概述在各种脱H2S气体的方法中,采用络合铁液相氧化法的工业化装置越来越多。

20世纪60年代以来不断有专利发布,目前仍然是十分活跃的研究方向。

络合铁脱硫技术是一种以铁为催化剂的湿式氧化还原脱除硫化物的方法,它的特点是吸收剂无毒、能一步将H2S转变成元素S, H2S的脱除率可达99%以上。

络合铁脱硫技术适用于H2S浓度较低或H2S浓度较高但气体流量不大的场合,H2S含量过高或者操作压力大的情况下可采用醇胺法+络合铁液相氧化法进行脱硫。

在硫产量< 20 td时,该工艺的设备投资和操作费用具有明显优势,更重要的优点是该工艺在脱除硫化物过程中,几乎不受气源中CO2含量的影响而能达到非常高的净化度。

络合铁法处理H2S含量低的气体还有其它显著的优点:集脱硫与硫磺回收为一体,吸收与再生均可在常温下进行;H2S转化为硫氧化物的副反应少。

2.2应用范围络合铁脱硫工艺,可广泛应用于如下含硫气体的脱硫:(1)各种含硫化氢废气。

(2)炼厂气、天然气。

(3)胺法、低温甲醇洗、Selexol尾气和克劳斯尾气。

(4)煤气化装置及合成氨厂工艺气体。

2.3基本原理络合铁法脱硫的基本原理是,H2S在碱性溶液中被F£+的络合物Fe3+L n氧化成单质硫,而本身被H2S还原成Fe2+Ln ,然后用空气氧化再生,生成Fe3+Ln, 循环使用,其反应为:H:S+ 2 LZ 2 Fe2-L,t+扌乂斗2 H'2 F/T*十ll2O* 2 Fe3* U+ 2总反应是:厂 +図+ HjO i根据络合铁法的反应原理,由于配体的存在,不但增加了铁离子的溶解性,而且提高了铁离子的稳定性。

2.4模拟试验流程图模拟试验流程见附图。

络合铁脱硫技术介绍

络合铁脱硫技术介绍
液体在高分散,高湍动,强混合以及界面急
速更新的情况下与气体以极大的相对速度在弯 曲孔道中逆向接触,极大地强化了传质过程。
传质单元高度降低了1~3个数量级,使巨大的
塔器(二三十米以上的高度)降为高度只有 2~3米的超重力机。
13

超 重 力机
替代 的脱
硫 塔
14
超重力脱硫技术应用
15
-超重力气体脱硫技术应用
31
GLT超重力-络合铁脱硫技术优势
• 国力通开发的络合铁催化剂GLT-730 ,工作硫容量为国 内外同类产品的10到40倍,显著降低循环液量,设备尺 寸显著缩小,降低投资和操作成本;
• 采用超重力作为气液接触设备,动力消耗降低,延长催 化剂的使用寿命;
• GLT-730的选择性高达99%,而国内湿法脱硫催化剂的选 择性在82-85%,回收硫磺的纯度低,且大量生成了硫酸 盐,严重影响催化剂使用寿命;
(潜硫含量在80Kg/d-30t/d)
26
GLT-Process超重力-络合铁脱硫装置的化学原理
(a) 碱液吸收含硫原料气中的H2S到液相: KOH + H2S → KHS + H2O
(b) 铁离子与HS-离子反应生成单质硫: Fe3L + HS- → Fe2+L + S↓+ H+
(c) 再生中通入空气将Fe2+氧化成Fe3+,脱硫液再生: 4Fe2+L + O2 + 2 H2O → 4Fe3+L + 4OH-
• 炼油厂干气脱硫化氢; • 炼油一体化中合成气的脱硫化氢; • 循环加氢装置中氢气脱硫化氢; • 化肥厂/甲醇厂的水煤气和变换气脱硫化氢; • 油田伴生气脱硫化氢; • 海上石油平台的脱硫化氢; • 煤制化工和煤制油工艺中的脱硫等。 • 煤层气脱硫化氢; • 电厂烟道气脱硫; • 沼气、垃圾填埋场发酵气等生物气脱硫化氢。

关于PDS湿法脱硫工艺的分析与控制

关于PDS湿法脱硫工艺的分析与控制

关于PDS湿法脱硫工艺的分析与控制摘要:PDS湿法脱硫技术较为成熟的化学脱硫技术之一,在沼气和尾气处理中得到了广泛的应用,PDS脱硫技术的应用效果与包括扩散因素和反应因素在内的多种因素有关。

本文对PDS脱硫技术的工艺过程进行分析,并对相关因素的控制进行探讨,对提高该技术的脱硫效果具有重要意义。

关键词:PDS;湿法脱硫技术;工艺流程;影响因素;控制PDS是一种脱硫催化剂的商品名称,是酞菁钴磺酸盐金属有机化合物,我国中国东北师范大学从1977年开始就研究用它作催化剂加入到碱性溶液或氨水中用于气体脱硫,目前中国有几百家工厂使用这方法脱硫,包括沼气、煤气、焦炉气、合成氨厂半水煤气、炼厂气等气体的脱硫。

由于该脱硫技术不仅受到化学反应因素的影响,还受到扩散因素的影响,一旦这些条件控制不好,将会对脱硫系统的正常工作带来负面影响,因此有必要对这些影响因素及其控制方法进行探讨,提高PDS湿法脱硫技术水平。

1.反应机理PDS脱硫催化剂的主要成分是双核酞菁钴磺酸盐,其结构式如下:酞菁钴为蓝色,在酸碱性介质中不分解、热稳定性和水溶性好、无毒、对硫化物具有很强的催化活性。

这种高活性的产生根源在于它们分子结构的特殊性,即贯通于整个分子的大π电子共轭体系与中心金属的可变性能及酞菁环对中心金属离子不同价态的稳定作用相结合是构成这类化合物特殊催化性能的基础。

动力学研究发现PDS脱硫催化剂的催化机理模型如下:(1)当有双核酞菁钴类参与的液相催化吸收反应过程的活化能较低。

(2)氧在催化剂分子上配位结合,且从催化剂分子获取电子被活化成O2-,同时中心金属离子的价态发生相应的变化。

(3)双核金属酞菁类化合物的稳定构型以及O2与催化剂分子结合的最佳方位。

综上所述,双核酞菁钴类化合物催化下的H2S液相氧化反应过程为自由基反应,其中HS-和O2在催化剂分子上实现电子转移是自由基的引发过程。

由于HS·自由基和O2-在催化剂分子上的两个中心金属离子上协同产生,且O2-通过交换反应可以产生新的HSx·自由基,因而奠定了在所有目前已合成的金属酞菁类化合物中,唯有双核金属酞菁类化合物在催化氧化液相H2S反应中可能表现出极高的催化活性,其作用机理可分以下四步:(1)在碱性溶液中将溶解的氧吸附而活化。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

矿产资源开发利用方案编写内容要求及审查大纲
矿产资源开发利用方案编写内容要求及《矿产资源开发利用方案》审查大纲一、概述
㈠矿区位置、隶属关系和企业性质。

如为改扩建矿山, 应说明矿山现状、
特点及存在的主要问题。

㈡编制依据
(1简述项目前期工作进展情况及与有关方面对项目的意向性协议情况。

(2 列出开发利用方案编制所依据的主要基础性资料的名称。

如经储量管理部门认定的矿区地质勘探报告、选矿试验报告、加工利用试验报告、工程地质初评资料、矿区水文资料和供水资料等。

对改、扩建矿山应有生产实际资料, 如矿山总平面现状图、矿床开拓系统图、采场现状图和主要采选设备清单等。

二、矿产品需求现状和预测
㈠该矿产在国内需求情况和市场供应情况
1、矿产品现状及加工利用趋向。

2、国内近、远期的需求量及主要销向预测。

㈡产品价格分析
1、国内矿产品价格现状。

2、矿产品价格稳定性及变化趋势。

三、矿产资源概况
㈠矿区总体概况
1、矿区总体规划情况。

2、矿区矿产资源概况。

3、该设计与矿区总体开发的关系。

㈡该设计项目的资源概况
1、矿床地质及构造特征。

2、矿床开采技术条件及水文地质条件。

相关文档
最新文档