回归分析理论

回归分析理论
回归分析理论

回归分析

第一节回归分析的意义

一、什么是回归分析

回归分析是根据一个已知变量来预测另一个变量平均值的统计方法。

回归与相关之间既存在着密不可分的关系,也有本质的区别。从关系看,若两变量无相关时(即r=0),则不存在预测的问题;若两变量存在关系,那么相关程度愈高,误差愈小,预测的准确性越高。当变量完全相关时(即r=1),意味着不存在误差,其预测将会完全准确的。从区别看,一是相关表示两个变量双方向的相互关系,回归只表示一个变量随另一个变量变化的单方向关系。二是回归中有因变量和自变量的区分,相关并不表明事物的因果关系,对所有的研究变量平等看待,不作因变量、自变量的区分

二、回归分析的内容

通过回归分析主要解决以下几个问题:

(1)确定几个变量之间的数学关系式。

(2)对所确定的数学关系式的可信程度进行各种统计检验,并区分出对某一特定变量影响较为显著的变量和影响不显著的变量。

(3)利用所确定的数学关系式,根据一个或几个变量的值来预测或控制另一个特定变量的取值,并给出这种预测或控制的精确度。

回归分析内容:

(一)建立回归方程

(二)检验方程的有效性

(三)利用方程进行预测

(四)进行因素分析

第二节一元线性回归方程的建立

一、一元线性回归意义

一元线性回归是指只有一个自变量的线性回归(linear regression),对具有线性关系的两个变量,回归的目的首先是找出因变量(一般记为Y)关于自变量(一般记为X)的定量关系。

如例11-1:10位大一学生平均每周所花的学习时间及他们期末考试成绩。观察数据我们可以发现两者之间呈正相关,不过更直接的方法是绘制散点图,即分别用两列变量做横、纵轴,描点。若它们的分布在一条带状区域,就预示着两列变量之间有相关,如图11-1所示。若没有随机误差的影响,这些点将落在一条直线上,这条直线称回归线(regression line),它是描述因变量Y关于自变量X关系的最合理的直线。

图11-1 两列变量的关系图

二、一元线性回归方程

Y a bX =+

因回归表示两个变量单方向的推算关系,所以既可以用X 去预测Y ,也可以用Y 去预测X 。因此,回归方程有两个。

以X 为自变量预测因变量Y 时,方程为 XY XY a X b Y +=?

以Y 为自变量预测因变量X 时,方程为 XY XY a Y b X +=?

三、b 和a 的求解原则和方法 (一)最小二乘法

建立一个线性回归方程实际上就是确定一条直线,也就是求公式中的两个常数——截距

a 和回归系数

b ,而研究这样一条直线的常用方法是最小二乘法,这种方法需要我们找到这

样一条直线,使所有的点到直线的垂直距离的平方和最小,也称最小平方法或最小二乘估计。

就XY XY a X b Y +=?方程而方,对平面上任何一条直线我们都可以用数量(Y

Y ?-)去刻划点(X ,Y )到这条直线的远近。其中, Y 是实际观测值,Y ?是估计值。由于(

)

0?=-∑Y Y ,

所以当我们用Y ?去估计Y 时,要使其估计的误差平方和()

2?∑-Y Y 尽可能小。当()2?∑-Y Y 最

小时,方程YX YX a X b Y +=?

所表示的直线就是最优拟合直线。所以求最优拟合方程的问题

就可以归结为根据实际观测值求出

YX YX a X b Y +=?方程中的两个常数a 和b ,使()2?∑-Y Y 的值最小。

根据数学分析中的极值原理,当()

2

?

∑-Y Y 最小时,YX YX a X b Y +=?

中的常数a 和b 可

以由下列公式求出

XX XY

L L X X Y Y X X b =-∑--∑=

2

)

())(( X b Y a -=

某一点的误差为

)?()(?Y Y Y Y Y Y ---=- ①

回归线之斜率1b 为对边比邻边,即有

X X Y Y b --=

? ② )(?X X b Y Y -=- ③

将③代入①,有

)()(?X X b Y Y Y Y ---=-

将误差平方,则有

()

[]22

)

()(?

X X b Y Y Y Y ---=- ④

各个点误差的平方和为

()[]22)()()?(∑

∑---=-X X b Y Y Y Y ⑤

又 ∵ X a

Y b -=

2 ⑥

将⑥代入⑤,有

2

2)()()?(∑∑?????????? ??----=-X X X a Y Y Y Y Y

2

)

(bX a Y --∑=

由2

2

)()?

(bY a Y Y Y --∑=-∑分别求a ,b 的偏导数,并令它们等于0,则有

[][

]

)(0

)(2

2

=?--∑?=?--∑?b bX a Y a

bX a Y

根据偏导数特性,有

0)(20)(2=--∑-=--∑-X bX a Y bX a Y

整理后,则有

0)(0)(2=--∑=--∑bX aX XY bX a Y

X b Y a X

b Y a X b a Y bX a Y -=∑-∑=∑=∑-∑-∑=--∑00)(

将X b Y a -=代入0)(2

=--∑bX aX XY ,得

[]

)(0

)(222=∑∑-∑-∑∑-∑=∑-∑+∑-∑=---∑n X

X X b n Y X XY X b X X b Y X XY bX X X b Y XY

2

22)())((/)(/X X Y Y X X n

X X n Y X XY b -∑--∑=

∑-∑∑∑-∑=

所以,回归系数b 和截距a 的计算公式分别为

n X

b Y X b Y a X X Y Y X X b YX YX ∑-∑=

-=-∑--∑=

2

)())((

同理,a bY X +=?方程中求a ,b 的公式为

n Y

b X Y b X a Y Y Y Y X X b XY XY ∑-∑=

-=-∑--∑=

2

)())((

(二)回归系数的其他计算法

1.定义式

2

)())((X X Y Y X X b YX -∑--∑=

2

)())((Y Y Y Y X X b XY

-∑--∑=

2.计算式

n Y Y n Y X XY b n X X n Y X XY b XY YX /)(//)(/2222∑-∑∑∑-∑=

∑-∑∑∑-∑=

∵2

)())((X X Y Y X X b YX -∑--∑= )2()(22X X X X Y X Y X Y X XY --∑?+-?-∑=

)2()

(22X X X X Y X Y X Y X XY --∑?+-?-∑=

2

22∑∑∑∑∑∑∑∑∑∑∑???

?

??+-∑?+-

-∑=

N X N X X X N Y

N X N

Y X

N

X Y

XY

()()N X N X X N Y X N Y X XY 22222∑∑∑∑∑∑+-∑+-∑= ()22N X X N Y X XY ∑∑∑-∑-

∑=

2)())((X X Y Y X X b YX -∑--∑=()n X X n Y X XY 22∑∑∑-∑-∑= 同理,有

2)())((Y Y Y Y X X b XY

-∑--∑=()n Y Y n Y X XY 22∑∑∑-∑-∑=

根据例11-1的数据可以计算有关的统计量如下,求其回归系数和截距。

290=∑X ,97142

=∑X ,29=X ,42.11=X S

760=∑Y ,591522

=∑Y ,76=Y ,80.11=Y S ,∑=23011XY

=-?-=10290971410760290230112

YX b 74.01304971=

54.542974.076=?-=YX a

所以,以学习时间预测考试成绩的回归方程为 54.5474.0?

+=X Y

若某人的学习时间为35小时,其考试成绩则为

44.8054.543574.0?=+?=Y

3.相关系数法

X Y

YX S S r

b = Y X

XY S S

r b =

∵ 2

)())((X X Y Y X X b YX -∑--∑=

()()()()()()

∑∑-?-∑?

-∑-?--∑=

2

2

2

2

Y Y X X X X Y Y Y Y X X

()()

2

2

X X Y Y r

-∑-=∑

X Y S S r

=

2

)()

)((X X Y Y X X b YX

-∑--∑=X Y S S r

= 同理,

()2)()(Y Y Y Y X X b XY

-∑--∑=Y X S S r

= 如例11-1,已知42.11=X S ,80.11=Y S ,72.0=r ,用相关系数法计算回归系

数如下。

74.042.1180

.1172.0=?

=YX b

4.均数和标准差计算法

2

2Y XY X

YX nS Y

X n XY b nS Y

X n XY b -∑=

-∑=

其中,

()

n

n X X S 2

22∑-∑=

。若1)(222

-∑-∑=

n X X S ,则有

22

)1()1(Y XY X

YX S n Y X n XY b S n Y X n XY b --∑=

--∑=

如例11-1,已知29=X ,29=X ,42.11=X S ,76=Y ,80.11=Y S ,∑=23011

XY ,用均数和标准差计算如下。

74.0164.1304971

42.1110762910230112

==???-=

YX b

三、解释和计算相关与回归的有关问题 (一)测定系数

解释相关系数是否显著时,必须谨记的是随着样本容量的增大,达到显著性的相关系数会越来越小对于相关系数,我们不仅要问是否显著,还要问有多大。为了回答这一问题,测定系数是一个非常重要的概念。测定系数是相关系数的平方,用于说明一个变量由另一个变量解释的程度。所以,即使相关系数是显著的,但如果测定系数不大,那么预测的作用也不大。假设相关系数为0.2,其回归的贡献仅为0.04,因此用X 来预测Y 是不恰当的。

(二)两列变量的一致性问题 计算相关的时候,必须谨慎对待数据的一致性。一致性是指两列变量对应的点必须均匀地落在回归线的附近。边缘点和聚集点对相关系数有很大的影响,会掩盖变量之间的真正关系。

第三节 一元线性回归方程的检验

回归方程在一定程度上揭示了特定变量之间的相关关系,并找出了代表这一关系比较合适的数学模型。但方程的效果如何,只有在两变量具有显著的线性相关关系时,所建立的回归方程才是有效的。

一、方程效果的检验

以XY XY a X b Y +=?

来说:

根据方差分析的原理,在回归的方差分析中总变异被分解为自变量的变异和误差的变异。其分析过程也是从总平方和的分解到自由度的分解,再到均方,最后是进行自变量对误差影响程度进行比较。

回归平方和的大小反映着自变量X 的重要程度,而误差平方和大小则反映了实验误差及其他因素对实验结果的影响。因变量Y 的平方和为

()

2

∑-=Y Y SS t

∵ ()(

)

Y Y Y Y Y Y -+-=-?

?

∴ ()()()[]2

2

??∑∑-+-=-=Y Y Y

Y Y Y SS t

()()()()2

2

???2?∑∑∑-+--+-=Y Y Y Y Y Y Y

Y

又∵ ()()0??=--∑Y Y Y Y

∴ ()()2

2

??∑∑-+-=Y Y Y

Y SS t

R

e SS SS +=

即:总平方和 = 误差平方和 + 回归平方和 回归平方和的公式推导如下。

(

)2

?∑-=Y Y

SS R

∵ bX a Y +=?,X b a Y +=

(

)2

?∑-=Y Y

SS R

()

∑--+=2

X b a bX a

()

()

2

22∑∑-=-=X X b X b bX

()???? ??-=∑∑N X X b 2

22

直线回归方程效果的好坏取决于回归平方和与误差平方和(剩余平方和)的大小,它反映着回归效应与误差效应的大小,当回归效应等于或接近误差效应时,比值等于1或接近1,说明回归效应不显著;随着回归效应影响的增加,F 值逐渐增大,当F 值达到一定的临界水平时,我们就可以做出回归效应显著的决策。换句话说,方程效果的好坏取决于回归平方和在总平方和中所占的比例,即

t R

SS SS

比例愈大说明回归效果越好,自变量X 与因变量Y 之间的线性关系越显著;反之则越差。

以例11-1的回归方程为例,检验其方程效果。

54.5474.0?+=X Y

1)建立假设

0H :方程效果不显著,即自变量X 与因变量Y 之间没有显著的线性关系。 a H :方程效果显著,即自变量X 与因变量Y 之间存在着显著的线性关系。

2)方差分析 ① 求平方和

290=∑X ,97142

=∑X ,29=X ,42.11=X S

760=∑Y ,591522

=∑Y ,76=Y ,80.11=Y S ,∑=23011XY

07

.71413045476.010*********.01392

107605915222

2=?=???? ??-?==-=R t SS SS

93.67707.7141392=-=e SS

② 求均方

07.714107

.714==

R MS 74

.8421093

.677=-=R MS ③ 求回归率

43.874.8407

.714==

F

3)比较与决策

当分子自由度为1,分母自由度为8时,()32

.505.08,1=F 。因为,

43.8=F >()32.505.08,1=F ,p <0.05,效果显著。所以接受研究假设,拒绝虚无假设,

说明自变量X 与因变量Y 之间存在显著的线性关系。

4)列方差分析表摘要

表11-3 回归方程的方差分析表

变异来源 SS df MS F 回归 714.07 1 714.07 8.43

*

剩余 总计

677.93 1392

8 9

84.74

二、回归系数的检验

(一)回归系数检验的基本思想

从总体中抽取样本计算的样本回归系数与总体回归系数之间存在着抽样误差,即对于样本的回归系数b 来说,即使抽自一个回归系数0=β的总体,因抽样误差的影响,样本回归系数b 也有可能不为0。若b 在以0=β为中心的抽样分布上出现误差的概率较大(即

p >0.05),则b 与0=β之间无显著差异,其差异主要是抽样误差,可忽略不计,说明b 是

来自0=β总体。这时即使计算的b 值较大也不能认为X 与Y 之间存在线性关系。相反,若b 在以0=β的抽样分布上出现误差的概率较小(即p <0.05=,则b 与0=β之间存在显著差异,说明b 并非来自0=β的总体。这时即使计算出的b 值较小,也应承认X 与Y 存在着线性关系。回归系数的检验采用t 检验法,其公式为

b b SE b SE b t 0

-=-=

β

(二)回归系数的标准误 1.定义式

在方程a bX Y +=?中,当回归线上与所有自变量(X )相对应的各个因变量Y 的残

值(即Y

Y ?-)都呈正态分布,且残值的方差齐性时,可以直接用殖值(Y Y ?-)的估计误差及自变量X 的离差平方和表示回归系数的标准误,即有

()

∑-=

2

X X SE SE YX

b YX

()

2

?2

--=

∑n Y Y SE YX

()

()()∑∑---=

2

2

2?X X n Y Y SE YX b

又∵

()

e

SS n Y Y =--∑2

?

2

()

()∑∑∑-=

-=

n

X X SS X X SS SE e

e

b YX 2

22

同理,在方程a bY X +=?有

()()()∑∑---=

2

2

2?Y Y n X

X SE X Y b ()

∑-=

2

Y Y MS E

2.相关法

212

--=

n r S S SE X Y b YX 同理,对a bY X +=?方程,有

212--=n r S S SE Y

X

b YX

如例11-1:其回归方程为

54.5474.0?+=X Y

1)建立假设

0H :0==βb ,a H :0=≠βb

2)计算统计量

① 求样本回归系数的标准误

残值法:

21.0130467

.5910290971474.842

==-=

YX b SE

相关法:

25.021072.0142.1180.112

=--?=Y X

b SE

② 求t 值

Y X

b SE b t =

52.321.074.0==

96.225.074

.0==

t

4)比较与决策

当8210=-=df 时,()31.2205.08=t ,52.3=t (或96.2=t )>()31

.2205.08=t ,

p <0.05,关系显著。拒绝虚无假设,接受研究假设,表明两个变量之间存在显著的线性关

系。

第四节 预测

一、预测的意义

建立回归方程的最终目的是利用方程从已知事实推测相应的未知事实,即进行预测(forecast )。预测是将已知变量值作为自变量代入相应的回归方程而推算出另一个变量的估计值及置信区间统计方法。

二、预测的标准误 (一)定义式

2-=

N SS SE e

YX

(二)相关法

当样本容量很大时,且()1/-n n 接近于1时,又已知两个样本的相关系数和标准差,可用下式计算预测的标准误,即

21r S SE Y YX -= 注意此公式的条件限制,∞→n ,()1/-n n ≈1。例如:

三、预测的置信区间

就a bX Y

+=?而言,其预测区间为 YX SE Y Y 96.1?±= 或YX SE Y Y 58.2?±=

如例11-1,其预测的标准误和置信区间为 19.872.0180.112

=-=YX SE 49.96~39.6419.896.144.80=?±=Y

学习时间为35小时的学生,其测验成绩有95%的可能落在49.96~39.64分之间。这个置信区间较大,一是因为样本容量较小,二是因为预测的标准误较大。

回归分析方法

第八章 回归分析方法 当人们对研究对象的内在特性和各因素间的关系有比较充分的认识时,一般用机理分析方法建立数学模型。如果由于客观事物内部规律的复杂性及人们认识程度的限制,无法分析实际对象内在的因果关系,建立合乎机理规律的数学模型,那么通常的办法是搜集大量数据,基于对数据的统计分析去建立模型。本章讨论其中用途非常广泛的一类模型——统计回归模型。回归模型常用来解决预测、控制、生产工艺优化等问题。 变量之间的关系可以分为两类:一类叫确定性关系,也叫函数关系,其特征是:一个变量随着其它变量的确定而确定。另一类关系叫相关关系,变量之间的关系很难用一种精确的方法表示出来。例如,通常人的年龄越大血压越高,但人的年龄和血压之间没有确定的数量关系,人的年龄和血压之间的关系就是相关关系。回归分析就是处理变量之间的相关关系的一种数学方法。其解决问题的大致方法、步骤如下: (1)收集一组包含因变量和自变量的数据; (2)选定因变量和自变量之间的模型,即一个数学式子,利用数据按照最小二乘准则计算模型中的系数; (3)利用统计分析方法对不同的模型进行比较,找出与数据拟合得最好的模型; (4)判断得到的模型是否适合于这组数据; (5)利用模型对因变量作出预测或解释。 应用统计分析特别是多元统计分析方法一般都要处理大量数据,工作量非常大,所以在计算机普及以前,这些方法大都是停留在理论研究上。运用一般计算语言编程也要占用大量时间,而对于经济管理及社会学等对高级编程语言了解不深的人来说要应用这些统计方法更是不可能。MATLAB 等软件的开发和普及大大减少了对计算机编程的要求,使数据分析方法的广泛应用成为可能。MATLAB 统计工具箱几乎包括了数理统计方面主要的概念、理论、方法和算法。运用MATLAB 统计工具箱,我们可以十分方便地在计算机上进行计算,从而进一步加深理解,同时,其强大的图形功能使得概念、过程和结果可以直观地展现在我们面前。本章内容通常先介绍有关回归分析的数学原理,主要说明建模过程中要做的工作及理由,如模型的假设检验、参数估计等,为了把主要精力集中在应用上,我们略去详细而繁杂的理论。在此基础上再介绍在建模过程中如何有效地使用MATLAB 软件。没有学过这部分数学知识的读者可以不深究其数学原理,只要知道回归分析的目的,按照相应方法通过软件显示的图形或计算所得结果表示什么意思,那么,仍然可以学到用回归模型解决实际问题的基本方法。包括:一元线性回归、多元线性回归、非线性回归、逐步回归等方法以及如何利用MATLAB 软件建立初步的数学模型,如何透过输出结果对模型进行分析和改进,回归模型的应用等。 8.1 一元线性回归分析 回归模型可分为线性回归模型和非线性回归模型。非线性回归模型是回归函数关于未知参数具有非线性结构的回归模型。某些非线性回归模型可以化为线性回归模型处理;如果知道函数形式只是要确定其中的参数则是拟合问题,可以使用MATLAB 软件的curvefit 命令或nlinfit 命令拟合得到参数的估计并进行统计分析。本节主要考察线性回归模型。 8.1.1 一元线性回归模型的建立及其MATLAB 实现 其中01ββ,是待定系数,对于不同的,x y 是相互独立的随机变量。 假设对于x 的n 个值i x ,得到 y 的n 个相应的值i y ,确定01ββ,的方法是根据最小二乘准则,要使 取最小值。利用极值必要条件令 01 0,0Q Q ββ??==??,求01ββ,的估计值01??ββ,,从而得到回归直线01 ??y x ββ=+。只不过这个过程可以由软件通过直线拟合完成,而无须进行繁杂的运算。

资料分析的方法

资料分析的方法 一、社会科学的研究步骤 在每一个环节都需要理论的指导。其中,在检验研究假设结束之后,需要与现有的文献对话,再次发现新问题,开始新一轮的研究过程。在这个环节之中,资料分析作为重要一环,对于社会科学的研究极为重要。 二、资料分析的方式分类 教育研究包含多样化的研究方法及分类。一般情况下,按照认识论基础,研究方法可以分为定量研究、定性研究和混合研究。 也有部分学者按照研究目的、手段等对研究方法进行分类。比如别敦荣和彭阳红将研究方法分为:理论思辨、经验总结、历史研究、调查研究、比较研究、数学分析、质的研究和个案研究; 在国内,根据刘良华对研究方法的分类大体上有三个基本类型:实证研究(量化的、质化的)、思辨研究(又称理论研究)、实践研究(常以教育对策、教育反思、教育改革形式显现)。实证研究是基于“事实”的方式进行论证并有规范的研究设计和研究报告。 陈向明指出,“研究方法”一般包含三个层面:第一,方法论,即指导研究的思想体系,其中包括基本的理论假定、原则、研究逻辑和思路等;第二,研究方法或方式,即贯穿于研究全过程的程序与操作方式;第三,具体的技术和技巧,即在研究的某一阶段使用的具体工具、手段和技巧等。 文中所采取的分类是按照陈向明定义中的第三个层面为标准进行的分类。在实际的研究过程中大多数时候是以一种研究方法为主,其他为辅,交叉使用的。以下内容是介绍每一种具体的方式。 那么资料搜集上来了?该如何分析呢? 三、具体的资料分析方式 1思辨分析 (1)历史研究方法 历史研究法是运用历史资料,按照历史发展的顺序对过去事件进行研究的方法。亦称纵向研究法,是比较研究法的一种形式。在政治学领域中,它着重对以往的政治制度、政治思想、政治文化等的研究。 历史研究的目的在于解决政治制度的现状及其演变趋向。但不是断章取义地分析政治制度的现状,而是系统地研究它们以往的发展及其变迁的原因。历史研究法主要是研究政治制度的发展历史,从各种事件的关系中找到因果线索,演绎出造成制度现状的原因,推测该制度未来的变化。

模态分析中的几个基本概念模态分析中的几个基本概念分析

模态分析中的几个基本概念 物体按照某一阶固有频率振动时,物体上各个点偏离平衡位置的位移是满足一定的比例关系的,可以用一个向量表示,这个就称之为模态。模态这个概念一般是在振动领域所用,你可以初步的理解为振动状态,我们都知道每个物体都具有自己的固有频率,在外力的激励作用下,物体会表现出不同的振动特性。一阶模态是外力的激励频率与物体固有频率相等的时候出现的,此时物体的振动形态叫做一阶振型或主振型;二阶模态是外力的激励频率是物体固有频率的两倍时候出现,此时的振动外形叫做二阶振型,以依次类推。一般来讲,外界激励的频率非常复杂,物体在这种复杂的外界激励下的振动反应是各阶振型的复合。模态是结构的固有振动特性,每一个模态具有特定的固有频率、阻尼比和模态振型。这些模态参数可以由计算或试验分析取得,这样一个计算或试验分析过程称为模态分析。有限元中模态分析的本质是求矩阵的特征值问题,所以“阶数”就是指特征值的个数。将特征值从小到大排列就是阶次。实际的分析对象是无限维的,所以其模态具有无穷阶。但是对于运动起主导作用的只是前面的几阶模态,所以计算时根据需要计算前几阶的。一个物体有很多个固有振动频率(理论上无穷多个),按照从小到大顺序,第一个就叫第一阶固有频率,依次类推。所以模态的阶数就是对应的固有频率的阶数。振型是指体系的一种固有的特性。它与固有频率相对应,即为对应固有频率体系自身振动的形态。每一阶固有频率都对应一种振型。振型与体系实际的振动形态不一定相同。振型对应于频率而言,一个固有频率对应于一个振型。按照频率从低到高的排列,来说第一振型,第二振型等等。此处的振型就是指在该固有频率下结构的振动形态,频率越高则振动周期越小。在实验中,我们就是通过用一定的频率对结构进行激振,观测相应点的位移状况,当观测点的位移达到最大时,此时频率即为固有频率。实际结构的振动形态并不是一个规则的形状,而是各阶振型相叠加的结果。 固有频率也称为自然频率( natural frequency)。物体做自由振动时,其位移随时间按正弦或余弦规律变化,振动的频率与初始条件无关,而仅与系统的固有特性有关(如质量、形状、材质等),称为固有频率,其对应周期称为固有周期。 物体做自由振动时,其位移随时间按正弦规律变化,又称为简谐振动。简谐振动的振幅及初相位与振动的初始条件有关,振动的周期或频率与初始条件无关,而与系统的固有特性有关,称为固有频率或者固有周期。 物体的频率与它的硬度、质量、外形尺寸有关,当其发生形变时,弹力使其恢复。弹力主要与尺寸和硬度有关,质量影响其加速度。同样外形时,硬度高的频率高,质量大的频率低。一个系统的质量分布,内部的弹性以及其他的力学性质决定 模态扩展是为了是结果在后处理器中观察而设置的,原因如下: 求解器的输出内容主要是固有频率,固有频率被写到输出文件Jobname.OUT 及振型文件Jobnmae.MODE 中,输出内容中也可以包含缩减的振型和参与因子表,这取决于对分析选项和输出控制的设置,由于振型现在还没有被写到数据库或结果文件中,因此不能对结果进行后处理,要进行后处理,必须对模态进行扩展。在模态分析中,我们用“扩展”这个词指将振型写入结果文件。也就是说,扩展模态不仅适用于Reduced 模态提取方法得到的缩减振型,而且也适用与其他模态提取方法得到的完整振型。因此,如果想在后处理器中观察振型,必须先扩展模态。谱分析中的模态合并是因为激励谱是其实是由一系列的激励组合成的一个谱,里面的频率不会是只有一个,而不同的激励频率对于结构产生的结果是不一样的,对于结果的贡献也是不一样的,所以要选择模态组合法对模态进行组合,得到最终的响应结果。

资料分析基础知识

第二部分资料分析基础知识与解题技巧 一、基期、本期: 本期是指:我们把材料中给出的当年量,叫做本期(用符号A表示);公式:本期=基期+增长量=基期+基期×增长率=1+增长率)基期是指:我们把上一年或者上一个阶段的量叫做前期(用符号B表示); 公式:基期=本期-增长量=本期1+增长率 注意:和谁比较,谁就做基期。虽然这一对名词不会出现在所给材料和问题里,但理解这两个概念是解决好资料分析问题的关键。 例一:2013年1-3月,全国进出口总值为8593亿美元,比2012年同期增加590亿美元。 解析:其中8593亿美元就是本期量,8593-590=8003就是前期量。二、增长(减少)量、增长(减少)率: 增长量是指:本期与前期的差值就是增长量; 公式:增长量=基期量*增长率=本期量-基期量=本期量-本期量1+增长率 减少量=基期量-末期量 增长率是指:增长量与前期量的比值(用符号r表示)。 增长率=增长量/基期量=(本期量-基期量)/基期量=本期量/基期量-1 减少率=(基期量-末期量)÷基期量 注意:1、增长率、增长幅度(增幅)、增长速度(增速)这三个都是相对速度的说

法,都是增长量与前期量的比值,即:增长率=增长速度(增速)=增长幅度(增幅) 2、在一些“最值”比较题的题干表述中,经常出现“增加(长)最多”和“增加(长)最快”,我们需要注意,前者比较的是增长量,而后者则比较的是增长率。 例二:2013年1-3月,全国进出口总值为8593亿美元,比2012年同期增加590亿美元,同比增长6.7%。 辉煌人生解析:其中比2012年同期增加590亿美元是增长量,同比增长6.7%是增长率。 三、同比、环比: 同比: 指的是本期发展水平与历史同期的发展水平的变化情况,其基期对应的是历史同期。 环比:指的是本期发展水平与上个统计周期的发展水平的变化情况,其基期对应的是上个统计周期。 注意:以11月为例,跟去年11月相比叫同比,跟上个月10月相比叫环比 四、百分数、百分点: 百分数:是形容比例或者增长率等常用的数值形式,期本质是:分母为100的分数。 用“%”表示,一般通过数值相除得到,在资料分析题目中通常用在以下情况:

简述回归分析的概念与特点

简述回归分析的概念与特点 回归分析(regression analysis)是确定两种或两种以上变数间相互依赖的定量关系的一种统计分析方法。运用十分广泛,回归分析按照涉及的自变量的多少,可分为一元回归分析和多元回归分析;按照自变量和因变量之间的关系类型,可分为线性回归分析和非线性回归分析。如果在回归分析中,只包括一个自变量和一个因变量,且二者的关系可用一条直线近似表示,这种回归分析称为一元线性回归分析。如果回归分析中包括两个或两个以上的自变量,且因变量和自变量之间是线性关系,则称为多元线性回归分析。 方差齐性 线性关系 效应累加 变量无测量误差 变量服从多元正态分布 观察独立 模型完整(没有包含不该进入的变量、也没有漏掉应该进入的变量) 误差项独立且服从(0,1)正态分布。 现实数据常常不能完全符合上述假定。因此,统计学家研究出许多的回归模型来解决线性回归模型假定过程的约束。 研究一个或多个随机变量Y1 ,Y2 ,…,Yi与另一些变量X1、X2,…,Xk之间的关系的统计方法。又称多重回归分析。通常称Y1,Y2,…,Yi为因变量,X1、X2,…,Xk为自变量。回归分析是一类数学模型,特别当因变量和自变量为线性关系时,它是一种特殊的线性模型。最简单的情形是一个自变量和一个因变量,且它们大体上有线性关系,这叫一元线性回归,即模型为Y=a+bX+ε,这里X是自变量,Y是因变量,ε是随机误差,通常假定随机误差的均值为0,方差为σ^2(σ^2大于0)σ2与X的值无关。若进一步假定随机误差遵从正态分布,就叫做正态线性模型。一般的情形,差有k个自变量和一个因变量,因变量的值可以分解为两部分:一部分是由自变量的影响,即表示为自变量的函数,其中函数形式已知,但含一些未知参数;另一部分是由于其他未被考虑的因素和随机性的影响,即随机误差。当函数形式为未知参数的线性函数时,称线性回归分析模型;当函数形式为未知参数的非线性函数时,称为非线性回归分析模型。当自变量的个数大于1时称为多元回归,当因变量个数大于1时称为多重回归。 回归分析的主要内容为:①从一组数据出发确定某些变量之间的定量关系式,即建立数学模型并估计其中的未知参数。估计参数的常用方法是最小二乘法。②对这些关系式的可信程度进行检验。③在许多自变量共同影响着一个因变量的关系中,判断哪个(或哪些)自变量的影响是显著的,哪些自变量的影响是不显著的,将影响显著的自变量选入模型中,而剔除影响不显著的变量,通常用逐步回归、向前回归和向后回归等方法。④利用所求的关系式对某一生产过程进行预测或控制。回归分析的应用是非常广泛的,统计软件包使各种回归方法计算十分方便。

统计学原理-回归分析案例0204192330

美国各航空公司业绩的统计数据公布在《华尔街日报1998年鉴》(The Wall Street Journal Almanac 1998)上,有关航班正点到达的比率和每10万名乘客投诉的次数的数据如下: 航空公司名称航班正点率(%)投诉率(次/10万名乘客)西南(Southwest)航空公司81.8 0.21 大陆(Continental) 航空公司76.6 0.58 西北(Northwest)航空公司76.6 0.85 美国(US Airways)航空公司75.7 0.68 联合(United)航空公司73.8 0.74 美洲(American)航空公司72.2 0.93 德尔塔(Delta)航空公司71.2 0.72 70.8 1.22 美国西部(America West)航空公 司 环球(TWA)航空公司68.5 1.25 a. 画出这些数据的散点图 b. 根据再(a)中作出的散点图,表明二变量之间存在什么关系? c. 求出描述投诉率是如何依赖航班按时到达正点率的估计的回归方程 d. 对估计的回归方程的斜率作出解释 e. 如何航班按时到达的正点率是80%,估计每10万名乘客投诉的次数是多少?

1)作散点图: 2)根据散点图可知,航班正点率和投诉率成负直线相关关系。 3)作简单直线回归分析: SUMMARY OUTPUT 回归统计 Multiple R0.882607 R Square0.778996 Adjusted R Square0.747424 标准误差0.160818 观测值9 方差分析  df SS MS F Significance F 回归分析10.6381190.63811924.673610.001624残差70.1810370.025862 总计80.819156  Coefficient s标准误差t Stat P-value Lower 95%Upper 95%下限95.0%上限95.0% Intercept 6.017832 1.05226 5.7189610.000721 3.5296358.506029 3.5296358.506029 X Variable 1-0.070410.014176-4.967250.001624-0.10393-0.03689-0.10393-0.03689 4)y = -0.0704x + 6.0178

曲式分析基本概念

乐思:即音乐的思想材料,构成音乐语言的素材,规模可大可小,小至音调和动机,其次是乐节、乐句、乐段等,大至完整的主题。主题:鲜明的形象性,一定的完成性 动机:最小规模的乐思,是音乐结构中的最小单位,是乐节的再划分部分,典型的动机包含一个节拍重音,即相当于一小节。音调:区别不同音乐形象的乐思,与动机着眼点不同 音型:旋律、结构、和声进行的乐思,与动机着眼点不同 乐思陈述的类型:呈示性、展开性、过渡性、收束性、导入性 音乐曲式的功能:三个主要功能(陈述、对比、再现)和三个辅助功能(引子、连接、结束)主题的陈述的特点:主题的统一、调性的统一、结构的统一 乐段:是构成独立段落的最小的结构。 乐段的特征:1、建立在单一主题上的、最小的完整曲式2、乐段的组成部分是乐句3、这些乐句之间具有问答呼应的关系,乐句数量不一定4、主调音乐风格的乐段,和声和旋律的完满终止时乐段结束时的典型标志5、大多数乐段的陈述时呈示型的6、乐段可以作为独立乐曲的曲式,也可以是较大型作品的一部分 乐段的类型:单乐段、平行复乐段、三重乐段、四重乐段、乐段聚集 单乐段:是包含一个乐段的结构。划分依据:1、依据和声:开放性乐段、收拢性乐段、转调乐段。2、依据主题材料及乐思发展的状况。3、依据乐段拥有乐句数量:二乐句乐段、三乐句乐段、四乐句乐段、多乐句乐段、单乐句数段。4、依据结构的模式:方整性乐段、非方整性乐段(基数节,前后两句乐节数量不等) 两乐句乐段:平行结构和对比结构。平行结构是指两乐句开头的主题材料基本相同,而落音或终止式不同。平行两乐句乐段常见的平行情况有:两乐句开头相同、第二乐句为第一乐句的模进或移调、第二乐句是第一乐句主题旋律的反向等。对比结构是指两乐句开头的主题材料基本不同,但仍保持着一定的呼应关系 平行复乐段:(三个条件缺一不可)1、两个大乐句开头的主题材料相同或相似2、大乐句的内部能够划分小乐句3、大乐句末尾的终止式不同,形成呼应。 单二部曲式:单二部曲式由两个部分组成,通常第一部分为乐段,第二部分为乐段或规模相当于乐段的段落。图式:ab由于发展主题的不同方式,二部曲式可以分为两种基本类型:单主题二部曲式、对比主题二部曲式(ab之间的区别可达到对比的程度) 单二部曲式因第二部分是否再现第一部分的主题因素,又可分为:有再现部的单二部曲式(第二部分在收束时再现第一部分的一个乐句,整个第二部分由相当于一个乐句的规模的中部和是乐句的再现部组成)、没有再现的单二部曲式 有再现的单二部曲式与单三部曲式的区别: 1、中部和再现部能分开单独成乐段的篇幅相当的、中部可能会做更大幅度的展开的是单三;中部与再现部合并的是单二。 2、再现部规模不同 单三的中部的类型:1单主题的中部:第一部分主题移到从属调或将第一部分主题材料进行分裂展开2对比主题的中部:与第一部分形成对比的另一个呈示部的乐段3合成性的中部:中部有两个或两个以上的部分联合形成 回旋曲式:基本主题(称为“主部”或“迭句”)出现三次以上,中间插入互不相同的段落(称为“插部”)。图式:abaca……. 17世纪~18世纪上半叶:单主题回旋曲式(古回旋曲式)——各个插部通常取材于主部主题,与逐步形成不大的对比 18世纪后半叶以后的世态风俗性回旋曲:对比主题回旋曲式(古典回旋曲式)——各个插部都和主部形成对比、与古回旋曲式完全不同

回归分析方法及其应用中的例子

3.1.2 虚拟变量的应用 例3.1.2.1:为研究美国住房面积的需求,选用3120户家庭为建模样本,回归模型为: 123log log P Y βββ++logQ= 其中:Q ——3120个样本家庭的年住房面积(平方英尺) 横截面数据 P ——家庭所在地的住房单位价格 Y ——家庭收入 经计算:0.247log 0.96log P Y -+logy=4.17 2 0.371R = ()() () 上式中2β=0.247-的价格弹性系数,3β=0.96的收入弹性系数,均符合经济学的常识,即价格上升,住房需求下降,收入上升,住房需求也上升。 但白人家庭与黑人家庭对住房的需求量是不一样的,引进虚拟变量D : 01i D ?=?? 黑人家庭 白人家庭或其他家庭 模型为:112233log log log log D P D P Y D Y βαβαβα+++++logQ= 例3.1.2.2:某省农业生产资料购买力和农民货币收入数据如下:(单位:十亿元) ①根据上述数据建立一元线性回归方程:

? 1.01610.09357y x =+ 20.8821R = 0.2531y S = 67.3266F = ②带虚拟变量的回归模型,因1979年中国农村政策发生重大变化,引入虚拟变量来反映农村政策的变化。 01i D ?=?? 19791979i i <≥年 年 建立回归方程为: ?0.98550.06920.4945y x D =++ ()() () 20.9498R = 0.1751y S = 75.6895F = 虽然上述两个模型都可通过显着性水平检验,但可明显看出带虚拟变量的回归模型其方差解释系数更高,回归的估计误差(y S )更小,说明模型的拟合程度更高,代表性更好。 3.5.4 岭回归的举例说明 企业为用户提供的服务多种多样,那么在这些服务中哪些因素更为重要,各因素之间的重要性差异到底有多大,这些都是满意度研究需要首先解决的问题。国际上比较流行并被实践所验证,比较科学的方法就是利用回归分析确定客户对不同服务因素的需求程度,具体方法如下: 假设某电信运营商的服务界面包括了A1……Am 共M 个界面,那么各界面对总体服务满意度A 的影响可以通过以A 为因变量,以A1……Am 为自变量的回归分析,得出不同界面服务对总体A 的影响系数,从而确定各服务界面对A 的影响大小。 同样,A1服务界面可能会有A11……A1n 共N 个因素的影响,那么利用上述方法也可以计算出A11……A1n 对A1的不同影响系数,由此确定A1界面中的重要因素。 通过两个层次的分析,我们不仅得出各大服务界面对客户总体满意度影响的大小以及不同服务界面上各因素的影响程度,同时也可综合得出某一界面某一因素对总体满意度的影响大小,由此再结合用户满意度评价、与竞争对手的比较等因素来确定每个界面细分因素在以后工作改进中的轻重缓急、重要性差异等,从而起到事半功倍的作用。 例 3.5.4:对某地移动通信公司的服务满意度研究中,利用回归方法分析各服务界面对总体满意度的影响。 a. 直接进入法 显然,这种方法计算的结果中,C 界面不能通过显着性检验,直接利用分析结果是错误

多元线性回归模型原理

多元线性回归模型原理 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT

研究在线性关系相关性条件下,两个或者两个以上自变量对一个因变量,为多元线性回归分析,表现这一数量关系的数学公式,称为多元线性回归模型。多元线性回归模型是一元线性回归模型的扩展,其基本原理与一元线性回归模型类似,只是在计算上为复杂需借助计算机来完成。 计算公式如下: 设随机y 与一般变量12,, k x x x 的线性回归模型为: 其中01,,k βββ是1k +个未知参数,0β称为回归常数,1, k ββ称为回归系数;y 称为被解释变量;12,, k x x x 是k 个可以精确可控制的一般变量,称为解释变 量。 当1p =时,上式即为一元线性回归模型,2k ≥时,上式就叫做多元形多元回归模型。ε是随机误差,与一元线性回归一样,通常假设 同样,多元线性总体回归方程为01122k k y x x x ββββ=++++ 系数1β表示在其他自变量不变的情况下,自变量1x 变动到一个单位时引起的因变量y 的平均单位。其他回归系数的含义相似,从集合意义上来说,多元回归是多维空间上的一个平面。 多元线性样本回归方程为:01122?????k k y x x x ββββ=++++ 多元线性回归方程中回归系数的估计同样可以采用最小二乘法。由残差平方 和:?()0SSE y y ∑=-= 根据微积分中求极小值得原理,可知残差平方和SSE 存在极小值。欲使SSE 达到最小,SSE 对01,,k βββ的偏导数必须为零。

将SSE 对01,,k βββ求偏导数,并令其等于零,加以整理后可得到1k +各方程式:?2()0i SSE y y β?=--=?∑ 通过求解这一方程组便可分别得到01,,k βββ的估计值0?β,1?β,···?k β回归系数的估计值,当自变量个数较多时,计算十分复杂,必须依靠计算机独立完成。现在,利用SPSS ,只要将数据输入,并指定因变量和相应的自变量,立刻就能得到结果。 对多元线性回归,也需要测定方程的拟合程度、检验回归方程和回归系数的显着性。 测定多元线性回归的拟合度程度,与一元线性回归中的判定系数类似,使用多重判定系数,其中定义为: 式中,SSR 为回归平方和,SSE 为残差平方和,SST 为总离差平方和。 同一元线性回归相类似,201R ≤≤,2R 越接近1,回归平面拟合程度越高,反之,2R 越接近0,拟合程度越低。2R 的平方根成为负相关系数()R ,也成为多重相关系数。它表示因变量y 与所有自变量全体之间线性相关程度,实际反映的是样本数据与预测数据间的相关程度。判定系数2R 的大小受到自变量x 的个数k 的影响。在实际回归分析中可以看到,随着自变量x 个数的增加,回归平方和()SSR 增大,是2R 增大。由于增加自变量个数引起的2R 增大与你和好坏无关,因此在自变量个数k 不同的回归方程之间比较拟合程度时,2R 不是一个合适的指标,必须加以修正或调整。 调整方法为:把残差平方和与总离差平方和纸币的分子分母分别除以各自的自由度,变成均方差之比,以剔除自变量个数对拟合优度的影响。调整的2R 为: 由上时可以看出,2 R 考虑的是平均的残差平方和,而不是残差平方和,因此,一般在线性回归分析中,2R 越大越好。 从F 统计量看也可以反映出回归方程的拟合程度。将F 统计量的公式与2R 的公式作一结合转换,可得: 可见,如果回归方程的拟合度高,F 统计量就越显着;F 统计量两月显着,回归方程的拟合优度也越高。

第三章回归分析原理

第三章 回归分析原理 3·1、一元线性回归数学模型 按理说,在研究某一经济现象时,应该尽量考虑到与其有关各种有影响的因素或变量。但作为理论的科学研究来说,创造性地简化是其的基本要求,从西方经济学的基本理论中,我们可以看到在一般的理论分析中,至多只包含二、三个 变量的数量关系的分析或模型。 这里所讨论的一元线性回归数学模型,是数学模型的最简单形式。当然要注意的是,这里模型讨论是在真正回归意义上来进行的,也可称之为概率意义上的线性模型。 在非确定性意义上,或概率意义上讨论问题,首先要注意一个最基本的概念或思路问题,这就是总体和样本的概念。 我们的信念是任何事物在总体上总是存在客观规律的,虽然我们无论如何也不可能观察或得到总体,严格说来,总体是无限的。而另一方面,我们只可能观察或得到的是样本,显然样本肯定是总体的一部分,但又是有限的。 实际上概率论和数理统计的基本思想和目的,就是希望通过样本所反映出来的信息来揭示总体的规律性,这种想法或思路显然存在重大的问题。但另一方面,我们也必须承认,为了寻找总体的规律或客观规律,只能通过样本来进行,因为我们只可能得到样本。 在前面我们已经知道,用回归的方法和思路处理非确定性问题或散点图,实际上存在一些问题,亦即只有在某些情况下,回归的方法才是有效的。因此,在建立真正回归意义上建立其有效方法时,必须作出相应的假设条件。 基本假设条件: (1)假设概率函数)|(i i X Y P 或随机变量i Y 的分布对于所有i X 值,具有相同的方差2σ ,且2σ 是一个常数,亦即)(i Y Var =)(i Var μ=2σ。 (2)假设i Y 的期望值)(i Y E 位于同一条直线上,即其回归直线为 )(i Y E =i X βα+ 等价于 0)(=i E μ 这个假设是最核心的假设,它实际上表明)(i Y E 与i X 之间是确定性的关系。 (3)假设随机变量i Y 是完全独立的,亦即。j i u u Cov Y Y Cov j i j i ≠==,0),(),(

资料分析精选100题 (1)

卧龙光线资料分析 一、增长率问题 资料分析最基本的,最离不开的就是增长率问题,这类问题有考察计算能力,有考察计算技巧,也会设置陷阱让你去踩,其实考察的都是基本功。也许你觉得这种题型并不难,但是千万不要忘了,简单题是给你节约时间去做复杂问题的,一分钟一题的资料分析,很多人时间不够用,就是因为没能从送分的题目中攒出时间。 增长率问题在真题中往往就通过下面四种方法来考察,一份真题中至少出现其中的两题,希望你们能踏踏实实地把这几个技巧牢记。 1、名义增速与实际增速 近年来,越来越多的经济学统计都在用实际增速来统计,实际增速又称之为“扣除价格因素的增速”,而名义增速则是用两年的绝对数值计算得出。比如在13和14年的国民经济与社会发展统计公报中,14年国民生产总值为636463亿元,增速为7.4%,而13年国民生产总值为568845亿元。其中7.4%就是实际增速,用636463除以568845计算出来的11.9%的增速就是名义增速。将这两者关联的是价格指数,公式表示为: 名义发展速度/实际发展速度=价格指数 写通俗了就是:(名义增速-1)/(实际增速-1)=价格增速-1 2、当月增速与累计增速 近年来的资料分析题考了一个全新的概念,即累计增速。如果已知某年1-5月的产值累计量为x,增速为a,1-4月的累计量为y,增速为b,我们可以得到: 今年5月产值为x-y 去年5月产值为x/(1+a) –y/(1+b) 5月产值的增速为(x-y)/( x/(1+a) –y/(1+b))-1 前三者都是需要计算的,而目前考的最多的知识点常常是比较,若5月产值的增速为c,则a一定介于b和c之间。 3、年均增长率(量)的问题 《中国统计年鉴》(2013)内所列的平均增长速度,除固定资产投资用“累计法”计算外,其余均用“水平法”计算。从某年到某年平均增长速度的年份,均不包括基期年在内。如建国四十三年以来的平均增长速度是以1949年为基期计算的,则写为1950-1992年平均增长速度,其余类推。 所以这类题目考的就是概念,比如问你2005-2009年的年均增长量,其实05年的增长量要用05-04年增长量来算,因此这个年均增长量应该是09-04年的增长量除以(9-4),切记带一个“增”字一定要用到上一年数据,带年份跨度的增长率计算同样也是这样。而这类题型通常以增长率不变,算下期数据的方式来考察考生。 题目中如果给出了2005年和2010年的数据,如保持年均增长率不变,十二五期末(2015年)的值就是2010年数据的平方除以2005年。 适用情形:这里的2010年正好是2005年和2015年的中间年份。 4、增长量计算技巧 很多资料分析第一题会给出当年数据及增长率,让你算增量。 如果我们把增长率写成1 a 的形式,增量=今年的值× 1 a+1 。

回归分析方法

回归分析方法Newly compiled on November 23, 2020

第八章回归分析方法 当人们对研究对象的内在特性和各因素间的关系有比较充分的认识时,一般用机理分析方法建立数学模型。如果由于客观事物内部规律的复杂性及人们认识程度的限制,无法分析实际对象内在的因果关系,建立合乎机理规律的数学模型,那么通常的办法是搜集大量数据,基于对数据的统计分析去建立模型。本章讨论其中用途非常广泛的一类模型——统计回归模型。回归模型常用来解决预测、控制、生产工艺优化等问题。 变量之间的关系可以分为两类:一类叫确定性关系,也叫函数关系,其特征是:一个变量随着其它变量的确定而确定。另一类关系叫相关关系,变量之间的关系很难用一种精确的方法表示出来。例如,通常人的年龄越大血压越高,但人的年龄和血压之间没有确定的数量关系,人的年龄和血压之间的关系就是相关关系。回归分析就是处理变量之间的相关关系的一种数学方法。其解决问题的大致方法、步骤如下: (1)收集一组包含因变量和自变量的数据; (2)选定因变量和自变量之间的模型,即一个数学式子,利用数据按照最小二乘准则计算模型中的系数; (3)利用统计分析方法对不同的模型进行比较,找出与数据拟合得最好的模型; (4)判断得到的模型是否适合于这组数据; (5)利用模型对因变量作出预测或解释。 应用统计分析特别是多元统计分析方法一般都要处理大量数据,工作量非常大,所以在计算机普及以前,这些方法大都是停留在理论研究上。运用一般计算语言编程也要

占用大量时间,而对于经济管理及社会学等对高级编程语言了解不深的人来说要应用这些统计方法更是不可能。MATLAB 等软件的开发和普及大大减少了对计算机编程的要求,使数据分析方法的广泛应用成为可能。MATLAB 统计工具箱几乎包括了数理统计方面主要的概念、理论、方法和算法。运用MATLAB 统计工具箱,我们可以十分方便地在计算机上进行计算,从而进一步加深理解,同时,其强大的图形功能使得概念、过程和结果可以直观地展现在我们面前。本章内容通常先介绍有关回归分析的数学原理,主要说明建模过程中要做的工作及理由,如模型的假设检验、参数估计等,为了把主要精力集中在应用上,我们略去详细而繁杂的理论。在此基础上再介绍在建模过程中如何有效地使用MATLAB 软件。没有学过这部分数学知识的读者可以不深究其数学原理,只要知道回归分析的目的,按照相应方法通过软件显示的图形或计算所得结果表示什么意思,那么,仍然可以学到用回归模型解决实际问题的基本方法。包括:一元线性回归、多元线性回归、非线性回归、逐步回归等方法以及如何利用MATLAB 软件建立初步的数学模型,如何透过输出结果对模型进行分析和改进,回归模型的应用等。 8.1 一元线性回归分析 回归模型可分为线性回归模型和非线性回归模型。非线性回归模型是回归函数关于未知参数具有非线性结构的回归模型。某些非线性回归模型可以化为线性回归模型处理;如果知道函数形式只是要确定其中的参数则是拟合问题,可以使用MATLAB 软件的curvefit 命令或nlinfit 命令拟合得到参数的估计并进行统计分析。本节主要考察线性回归模型。 一元线性回归模型的建立及其MATLAB 实现 其中01ββ,是待定系数,对于不同的,x y 是相互独立的随机变量。

因子分析的基本概念和步骤

因子分析的基本概念和步骤 一、因子分析的意义 在研究实际问题时往往希望尽可能多地收集相关变量,以期望能对问题有比较全面、完整的把握和认识。例如,对高等学校科研状况的评价研究,可能会搜集诸如投入科研活动的人数、立项课题数、项目经费、经费支出、结项课题数、发表论文数、发表专著数、获得奖励数等多项指标;再例如,学生综合评价研究中,可能会搜集诸如基础课成绩、专业基础课成绩、专业课成绩、体育等各类课程的成绩以及累计获得各项奖学金的次数等。虽然收集这些数据需要投入许多精力,虽然它们能够较为全面精确地描述事物,但在实际数据建模时,这些变量未必能真正发挥预期的作用,“投入”和“产出”并非呈合理的正比,反而会给统计分析带来很多问题,可以表现在: 计算量的问题 由于收集的变量较多,如果这些变量都参与数据建模,无疑会增加分析过程中的计算工作量。虽然,现在的计算技术已得到了迅猛发展,但高维变量和海量数据仍是不容忽视的。 变量间的相关性问题 收集到的诸多变量之间通常都会存在或多或少的相关性。例如,高校科研状况评价中的立项课题数与项目经费、经费支出等之间会存在较高的相关性;学生综合评价研究中的专业基础课成绩与专业课成绩、获奖学金次数等之间也会存在较高的相关性。而变量之间信息的高度重叠和高度相关会给统计方法的应用带来许多障碍。例如,多元线性回归分析中,如果众多解释变量之间存在较强的相关性,即存在高度的多重共线性,那么会给回归方程的参数估计带来许多麻烦,致使回归方程参数不准确甚至模型不可用等。类似的问题还有很多。 为了解决这些问题,最简单和最直接的解决方案是削减变量的个数,但这必然又会导致信息丢失和信息不完整等问题的产生。为此,人们希望探索一种更为有效的解决方法,它既能大大减少参与数据建模的变量个数,同时也不会造成信息的大量丢失。因子分析正式这样一种能够有效降低变量维数,并已得到广泛应用的分析方法。 因子分析的概念起源于20世纪初Karl Pearson和Charles Spearmen等人关于智力测验的统计分析。目前,因子分析已成功应用于心理学、医学、气象、地址、经济学等领域,并因此促进了理论的不断丰富和完善。 因子分析以最少的信息丢失为前提,将众多的原有变量综合成较少几个综合指标,名为因子。通常,因子有以下几个特点: ↓因子个数远远少于原有变量的个数 原有变量综合成少数几个因子之后,因子将可以替代原有变量参与数据建模,这将大大减少分析过程中的计算工作量。 ↓因子能够反映原有变量的绝大部分信息 因子并不是原有变量的简单取舍,而是原有变量重组后的结果,因此不会造成原有变量信息的大量丢失,并能够代表原有变量的绝大部分信息。 ↓因子之间的线性关系并不显著 由原有变量重组出来的因子之间的线性关系较弱,因子参与数据建模能够有效地解决变量多重共线性等给分析应用带来的诸多问题。 ↓因子具有命名解释性 通常,因子分析产生的因子能够通过各种方式最终获得命名解释性。因子的命名解

资料分析一些重要的统计学概念

资料分析一些重要的统计学概念 1、“番”与“倍”N番= 2n 倍(一番是二,二番是四,三番就是八) 1980年国民生产总值为2500亿元,到2010年要达到国民生产总值翻三番的目标,即2500×2^3=20000亿元。 2、“百分数”与“百分点” 当两个百分数比较时,如果是用“和”或“差”表示的,称为百分点,我国国内生产总值中,第一产业占的比重由1992年的20.8%下降到1993年的18.2%,相当于:国内生产总值中,第一产业占的比重,1993年比1992年下降3.6个百分点,但不能说下降3.6% 3、成数相当于十分之几 4、倍数某地最低生活保障为300元,人均收入为最低生活保障的4.6倍。则人均收入为300×4.6 =1380元。 5、百分数 完成数占总量的百分之几=完成数÷总量×100% 比去年增长百分之几=增长量÷去年量×100% 6、增长率 增长率=增长量÷基期量×100% 某校去年招生人数2000人,今年招生人数为2400人,则增长率为400÷2000×100%=25% 增长率相关速算方法总结 1、两年混合增长率: 00年销售额为100,01年增长了5%,02年增长了10%,则02年比00年增长了多少? 如果第二年(月、季、期)与第三年(月、季、期)增长率分别为r1与r2,那么第三年(月、季、期)相对于第一年(月、季、期)的增长率为: r1+r2+r1×r2 2、增长率化除为乘: 如果第二年(月、季、期)的值为A1增长率为r,则第一年(月、季、期)的值A0:A0=A/(1+r)≈A1×(1-r) A=A0*(1+R) 假设A国经济增长率维持在2.45%的水平上,要想GDP明年达到200亿美元的水平,则今年至少需要达到约多少亿美元?() A.184 B.191 C.195 D.197 200/1+2.45%≈200×(1-2.45%)=200-4.9=195.1 所以:02年比00年增长= 5%+10%+5%*10%=0.155 8、基期和现期 和2006年相比较,2007年的某量发生某种变化 2006年的量在比较中用来做基准量,2006年是基期,2007年则为现期,即现在时期。需要明确的是基期和现期的量做对比后得到的“变化率”属于“现期”,“和2006年相比较,2007年的某量增长了50%”,这里的“增长了50%”是属于2007 年的,而不是属于2006年的。 9、年平均增长率(复合增长率) n年数据的年均增长率:【(本期/前n年)^(1/(n-1) )-1】×100% 1、本期/前N年:本年年末/前N年年末,其中,前N年年末是指不包括本年的倒数第N年年末,比如,计算2005年底4年资产增长率,计算期间应该是2005、2004、2003、2002四年,但前4

四大波谱基本概念以及解析

四大谱图基本原理及图谱解析 一.质谱 1.基本原理: 用来测量质谱的仪器称为质谱仪,可以分成三个部分:离子化器、质量分析器与侦测器。其基本原理是使试样中的成分在离子化器中发生电离,生成不同荷质比的带正电荷离子,经加速电场的作用,形成离子束,进入质量分析器。在质量分析器中,再利用电场或磁场使不同质荷比的离子在空间上或时间上分离,或是透过过滤的方式,将它们分别聚焦到侦测器而得到质谱图,从而获得质量与浓度(或分压)相关的图谱。 在质谱计的离子源中有机化合物的分子被离子化。丢失一个电子形成带一个正电荷的奇电子离子(M+·)叫分子离子。它还会发生一些化学键的断裂生成各种 碎片离子。带正电荷离子的运动轨迹:经整理可写成: 式中:m/e为质荷比是离子质量与所带电荷数之比;近年来常用m/z表示质荷比;z表示带一个至多个电荷。由于大多数离子只带一个电荷,故m/z就可以看作离子的质量数。 质谱的基本公式表明: (1)当磁场强度(H)和加速电压(V)一定时,离子的质荷比与其在磁场中运动半径的平方成正比(m/z ∝r2m),质荷比(m/z)越大的离子在磁场中运动的轨道半径(rm)也越大。这就是磁场的重要作用,即对不同质荷比离子的色散作用。 (2)当加速电压(V)一定以及离子运动的轨道半径(即收集器的位置)一定时,离子的质荷比(m/z)与磁场强度的平方成正比(m/z∝H2)改变H即所谓的磁场扫描,磁场由小到大改变,则由小质荷比到大质荷比的离子依次通过收集狭缝,分别被收集、检出和记录下来。

(3)若磁场强度(H)和离子的轨道半径(rm)一定时,离子的质荷比(m/z)与加速电压(V)成反比(m/z∝1/V),表明加速电压越高,仪器所能测量的质量范围越小。就测量的质量范围而言,希望质量范围大一些,这就必须降低加速电压。从提高灵敏度和分辨率来讲,需要提高加速电压。这是一对矛盾,解决的办法是在质量范围够用的情况下尽量提高加速电压,高分辨质谱计加速电压为8kV,中分辨为4~3kV。 2.解析方法: 质谱的表示方法有质谱图和质谱表两种,最常用的为质谱图。质谱图的横座标是离子的质荷比(m/z)。当离子所带的电荷z=l时,质荷比就是离子的质量质谱的纵坐标表示相对强度或相对丰度。以质谱图中最强峰的强度为100%,称为基峰。 质谱中的分子离子(M+·)和碎片离子(A+)都是由天然丰度最大的轻同位素组成的。比分子离子(M+·)或碎片离子(A+)峰高1~3质量数处可观察到一些小峰,它们来自重同位素的贡献,称为同位素峰。由于各种元素同位素的天然丰度不同,它们同位素峰的强度也不相同,同位素峰的强度不仅与重同位素天然丰度有关,还与分子所含元素的数目有关。所以,由质谱确定相对分子质量、分子式比其他方法准确度高,测定速度快、样品量少。分子离子峰的质荷比(m/z)就是该化合物的相对分子质量,再根据同位素峰的相对强度就可以确定分子式。 3.实例解析:

相关文档
最新文档