★★★主成分回归分析原理与步骤
主成分分析法的步骤和原理[技巧]
![主成分分析法的步骤和原理[技巧]](https://img.taocdn.com/s3/m/b03d7b9baef8941ea76e0598.png)
主成分分析法的步骤和原理[技巧](一)主成分分析法的基本思想主成分分析(Principal Component Analysis)是利用降维的思想,将多个变量转化为少数几个综合变量(即主成分),其中每个主成分都是原始变量的线性组合,各主成分之间互不相关,从而这些主成分能够反映始变量的绝大部分信息,[2]且所含的信息互不重叠。
采用这种方法可以克服单一的财务指标不能真实反映公司的财务情况的缺点,引进多方面的财务指标,但又将复杂因素归结为几个主成分,使得复杂问题得以简化,同时得到更为科学、准确的财务信息。
(二)主成分分析法代数模型假设用p个变量来描述研究对象,分别用X,X…X来表示,这p个变量12p t构成的p维随机向量为X=(X,X…X)。
设随机向量X的均值为μ,协方差矩12p阵为Σ。
假设 X 是以 n 个标量随机变量组成的列向量,并且μk 是其第k个元素的期望值,即,μk= E(xk),协方差矩阵然后被定义为:Σ=E{(X-E[X])(X-E[X])}=(如图对X进行线性变化,考虑原始变量的线性组合:Z1=μ11X1+μ12X2+…μ1pXpZ2=μ21X1+μ22X2+…μ2pXp…… …… ……Zp=μp1X1+μp2X2+…μppXp主成分是不相关的线性组合Z,Z……Z,并且Z是X1,X2…Xp的线性组12p1 合中方差最大者,Z是与Z不相关的线性组合中方差最大者,…,Zp是与Z,211Z ……Z都不相关的线性组合中方差最大者。
2p-1(三)主成分分析法基本步骤第一步:设估计样本数为n,选取的财务指标数为p,则由估计样本的原始数据可得矩阵X=(x),其中x表示第i家上市公司的第j项财务指标数据。
ijm×pij 第二步:为了消除各项财务指标之间在量纲化和数量级上的差别,对指标数据进行标准化,得到标准化矩阵(系统自动生成)。
第三步:根据标准化数据矩阵建立协方差矩阵R,是反映标准化后的数据之间相关关系密切程度的统计指标,值越大,说明有必要对数据进行主成分分析。
主成分回归分析方法

Varian ce Toleran Inflatio ce n . 0
-4.71489 1.30082 0.06091 0.02050 0.03563 0.01531 0.04924 0.02866
0.65229 1.53305 0.82477 1.21245 0.55760 1.79340
Collinearity Diagnostics Numbe r 1 2 3 4 Eigenval ue 3.99037 0.00501 0.00329 0.00132
核心结果:
Parameter Estimates
Variab le Label Interce Interce pt pt x1 x2 x3 x1 x2 x3
Paramet D er F Estimate
1 1 1 1
Standa rd Error
t Val Pr > | ue t| -3.62 0.002 3 2.97 0.009 0 2.33 0.033 4 1.72 0.105 1
0.447445 0.828133
Parameter Estimates Variabl e Label Interce pt z1 z2 Interce pt Paramet D er F Estimate 1 1 1 Standa Standardize rd t Valu Pr > | d Error e t| Estimate 43.78 <.000 1 6.52 <.000 1 -0.07 0.941 9 0 0.84500 -0.00960
具体步骤: 1、用主成分分析法计算出主成分表达式和主成分 得分变量(将贡献小的主成分舍去),即求得 Z=WX。 2、用回归分析法将因变量对主成分得分变量进行 回归,得到因变量关于主成分得分变量的回归模型, 即求得y=AZ。 3、将主成分的表达式代回到回归模型中,即可得 到标准化自变量与因变量的回归模型,即得到 y=AZ=A(WX)=BX 4、将标准化自变量转换为原始自变量,即可得到 原始自变量与因变量的回归模型。
(完整版)主成分分析法的原理应用及计算步骤...doc

zm
lm1x1
lm 2x2
lmpxp
系数lij的确定原 :
①zi与zj(i≠j;i,j=1,2,⋯,m)相互无关;
②z1是x1,x2,⋯,xP的一切 性 合中方差最大者,z2是与z1不相关的x1,x2,⋯,xP的所有 性 合中方差最大者;zm是与z1,z2,⋯⋯,zm-1都不相关的x1,x2,⋯xP, 的所有 性 合中方差最大者。
标准化后的变量的协方差矩阵就是原变量的相关系数矩阵 。 也就是说, 在标准化前后变量的相关系数矩阵不变化。
根据以上论述,为消除量纲的影响,将变量标准化后再计算其协方差矩阵,就是直接计算原变量的相关系数矩阵,所以主成分分析的实际常用计算步骤是:☆计算相关系数矩阵
☆求出相关系数矩阵的特征值i及相应的正交化单位特征向量ai
与原 量Xj之 的相互
关 程度:
( ,
xi
)
(
, 1,2,
L
, ;
1,2,
L
, )
P Zk
kakii
p k
m
三、主成分分析法的计算步骤
主成分分析的具体步 如下:
(1) 算 方差矩
算 品数据的 方差矩 :Σ=(sij)pp,其中
1
n
i,j=1,2,⋯,p
sij
( xki
xi)( xkj
xj)
n
1k 1
解特征方程
I
R 0
,常用雅可比法(Jacobi)求出特征 ,并使其按大
小 序排列1
2
p
0;
p
1,2, L , p)
2
e ( i
分 求出 于特征
i
的特征向量
(完整版)主成分分析法的步骤和原理

(一)主成分分析法的基本思想主成分分析(Principal Component Analysis )是利用降维的思想,将多个变量转化为少数几个综合变量(即主成分),其中每个主成分都是原始变量的线性组合,各主成分之间互不相关,从而这些主成分能够反映始变量的绝大部分信息,且所含的信息互不重叠。
[2]采用这种方法可以克服单一的财务指标不能真实反映公司的财务情况的缺点,引进多方面的财务指标,但又将复杂因素归结为几个主成分,使得复杂问题得以简化,同时得到更为科学、准确的财务信息。
(二)主成分分析法代数模型假设用p 个变量来描述研究对象,分别用X 1,X 2…X p 来表示,这p 个变量构成的p 维随机向量为X=(X 1,X 2…X p )t 。
设随机向量X 的均值为μ,协方差矩阵为Σ。
对X 进行线性变化,考虑原始变量的线性组合: Z 1=μ11X 1+μ12X 2+…μ1p X pZ 2=μ21X 1+μ22X 2+…μ2p X p…… …… ……Z p =μp1X 1+μp2X 2+…μpp X p主成分是不相关的线性组合Z 1,Z 2……Z p ,并且Z 1是X 1,X 2…X p 的线性组合中方差最大者,Z 2是与Z 1不相关的线性组合中方差最大者,…,Z p 是与Z 1,Z 2 ……Z p-1都不相关的线性组合中方差最大者。
(三)主成分分析法基本步骤第一步:设估计样本数为n ,选取的财务指标数为p ,则由估计样本的原始数据可得矩阵X=(x ij )m ×p ,其中x ij 表示第i 家上市公司的第j 项财务指标数据。
第二步:为了消除各项财务指标之间在量纲化和数量级上的差别,对指标数据进行标准化,得到标准化矩阵(系统自动生成)。
第三步:根据标准化数据矩阵建立协方差矩阵R ,是反映标准化后的数据之间相关关系密切程度的统计指标,值越大,说明有必要对数据进行主成分分析。
其中,R ij (i ,j=1,2,…,p )为原始变量X i 与X j 的相关系数。
主成分分析法的原理和步骤

主成分分析法的原理和步骤主成分分析(Principal Component Analysis,简称PCA)是一种常用的多元统计分析方法,它通过线性变换将高维数据转换为低维数据,从而实现降维和数据可视化。
PCA的基本思想是通过选取少数几个主成分,将原始变量的方差最大化,以便保留大部分的样本信息。
下面我将详细介绍PCA的原理和步骤。
一、主成分分析的原理主成分分析的核心原理是将n维的数据通过线性变换转换为k维数据(k<n),这k维数据是原始数据最具有代表性的几个维度。
主成分是原始数据在新坐标系中的方向,其方向与样本散布区域最大的方向一致,而且不同主成分之间互不相关。
也就是说,新的坐标系是通过原始数据的协方差矩阵的特征值分解得到的。
具体来说,假设我们有一个m个样本、维度为n的数据集X,其中每个样本为一个n维向量,可以表示为X=\left ( x_{1},x_{2},...,x_{m} \right )。
我们的目标是找到一组正交的基变量(即主成分)U=\left ( u_{1},u_{2},...,u_{n} \right ),使得原始数据集在这组基变量上的投影方差最大。
通过对协方差矩阵的特征值分解,可以得到主成分对应的特征向量,也就是新的基变量。
二、主成分分析的步骤主成分分析的具体步骤如下:1. 标准化数据:对于每一维度的数据,将其减去均值,然后除以标准差,从而使得数据具有零均值和单位方差。
标准化数据是为了消除不同维度上的量纲差异,确保各维度对结果的影响是相等的。
2. 计算协方差矩阵:对标准化后的数据集X,计算其协方差矩阵C。
协方差矩阵的元素c_{ij}表示第i维度与第j维度之间的协方差,可以用以下公式表示:\[c_{ij}=\frac{\sum_{k=1}^{m}\left ( x_{ik}-\bar{X_{i}} \right )\left( x_{jk}-\bar{X_{j}} \right )}{m-1}\]其中,\bar{X_{i}}表示第i维度的平均值。
主成分分析法的原理应用及计算步骤

一、概述在处理信息时,当两个变量之间有一定相关关系时,可以解释为这两个变量反映此课题的信息有一定的重叠,例如,高校科研状况评价中的立项课题数与项目经费、经费支出等之间会存在较高的相关性;学生综合评价研究中的专业基础课成绩与专业课成绩、获奖学金次数等之间也会存在较高的相关性。
而变量之间信息的高度重叠和高度相关会给统计方法的应用带来许多障碍。
为了解决这些问题,最简单和最直接的解决方案是削减变量的个数,但这必然又会导致信息丢失和信息不完整等问题的产生。
为此,人们希望探索一种更为有效的解决方法,它既能大大减少参与数据建模的变量个数,同时也不会造成信息的大量丢失。
主成分分析正式这样一种能够有效降低变量维数,并已得到广泛应用的分析方法。
主成分分析以最少的信息丢失为前提,将众多的原有变量综合成较少几个综合指标,通常综合指标(主成分)有以下几个特点:主成分个数远远少于原有变量的个数原有变量综合成少数几个因子之后,因子将可以替代原有变量参与数据建模,这将大大减少分析过程中的计算工作量。
主成分能够反映原有变量的绝大部分信息因子并不是原有变量的简单取舍,而是原有变量重组后的结果,因此不会造成原有变量信息的大量丢失,并能够代表原有变量的绝大部分信息。
主成分之间应该互不相关通过主成分分析得出的新的综合指标(主成分)之间互不相关,因子参与数据建模能够有效地解决变量信息重叠、多重共线性等给分析应用带来的诸多问题。
主成分具有命名解释性总之,主成分分析法是研究如何以最少的信息丢失将众多原有变量浓缩成少数几个因子,如何使因子具有一定的命名解释性的多元统计分析方法。
二、基本原理主成分分析是数学上对数据降维的一种方法。
其基本思想是设法将原来众多的具有一定相关性的指标X1,X2,…,XP(比如p个指标),重新组合成一组较少个数的互不相关的综合指标Fm来代替原来指标。
那么综合指标应该如何去提取,使其既能最大程度的反映原变量Xp所代表的信息,又能保证新指标之间保持相互无关(信息不重叠)。
主成份分析的分析和步骤

主成分分析的概念与步骤1. 主成分分析基本思想主成分分析是数学上对数据降维的一种方法。
其基本思想是设法将原来众多的具有一定相关性的指标(比如p 个指标),重新组合成一组新的互不相关的综合指标来代替原来指标。
通常数学上的处理就是将原来p 个指标作线性组合,作为新的综合指标。
但是这种线性组合,如果不加限制,则可以有很多,应该如何去选取呢?在所有的线性组合中所选取的F 1应该是方差最大的,故称F 1为第一主成分。
如果第一主成分不足以代表原来p 个指标的信息,再考虑选取F 2即选第二个线性组合。
为了有效地反映原有信息,F 1已有的信息就不需要再出现在F 2中,用数学语言表达就是要求Cov(F 1,F 2)=0。
称F 2为第二主成分,依此类推可以构造出第三、第四、…、第p 个主成分。
2. 主成分分析的数学模型设有n 个样品(多元观测值),每个样品观测p 项指标(变量):X 1,X 2,…,X p ,得到原始数据资料阵:其中X i = (x 1i ,x 2i ,…,x ni )',i = 1,2,…,p 。
用数据矩阵X 的p 个列向量(即p 个指标向量)X 1,X 2,…,X p 作线性组合,得综合指标向量:简写成:F i = a 1i X 1 + a 2i X 2 +…+a pi X p i = 1,2,…,p 为了加以限制,对组合系数a i ' = (a 1i ,a 2i ,…,a pi )作如下要求:即:a i 为单位向量:a i 'a i = 1,且由下列原则决定:),...,,(.....................21212222111211p np n n p p X X X x x x x x x x x x X =⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡=11112121212122221122...............p p p p p p p pp pF a X a X a X F a X a X a X F a X a X a X =+++⎧⎪=+++⎪⎨⎪⎪=+++⎩p i a a a pi i i ,...,2,1,1...22221==+++1) F i 与F j (i ≠j , i , j = 1, …, p )互不相关,即Cov(F i ,F j ) = 0,并有Var(F i )=a i 'Σa i ,其中Σ为X 的协方差阵2) F 1是X 1,X 2,…,X p 的一切线性组合(系数满足上述要求)中方差最大的,即 ,其中c = (c 1,c 2,…,c p )'F 2是与F 1不相关的X 1,X 2,…,X p 一切线性组合中方差最大的,…,F p 是与F 1,F 2,…,F p-1都不相关的X 1,X 2,…,X p 的一切线性组合中方差最大的。
主成分回归标准值

主成分回归标准值主成分回归是一种统计学方法,它通过使用主成分分析(PCA)来减少数据的维度,并使用最小二乘法进行回归分析。
这种方法有助于在存在大量相关变量的情况下,找到影响目标变量的主要因素,并减少多重共线性的影响。
以下是主成分回归标准值的详细介绍。
一、主成分回归的基本原理主成分回归的核心思想是通过降维技术,将多个相关的自变量转化为少数几个互不相关的主成分,并利用这些主成分进行回归分析。
这个过程可以分为两个步骤:首先使用主成分分析(PCA)对数据进行降维,然后利用最小二乘法对降维后的数据进行回归分析。
二、主成分回归的标准值在主成分回归中,标准值是指每个自变量对目标变量的影响程度。
这些标准值可以通过计算每个自变量与目标变量之间的相关系数来确定。
相关系数的绝对值越大,说明该自变量对目标变量的影响程度越大。
在具体操作中,首先需要对数据进行标准化处理,即将每个自变量的均值和标准差调整为0和1。
然后,利用皮尔逊相关系数计算出每个自变量与目标变量之间的相关系数。
最后,根据相关系数的绝对值大小,可以对自变量进行排序,得到每个自变量对目标变量的影响程度。
三、主成分回归的优势与局限性主成分回归的优势在于它可以有效地减少数据的维度,并找到影响目标变量的主要因素。
此外,这种方法还可以减少多重共线性的影响,提高模型的预测精度。
然而,主成分回归也存在一些局限性。
例如,它只能考虑变量之间的线性关系,而无法处理非线性关系。
此外,这种方法还可能忽略一些对目标变量影响较小的因素,导致模型过于简化。
四、主成分回归的应用场景主成分回归在很多领域都有广泛的应用,例如经济学、社会学、生物医学等。
例如,在经济学中,可以使用主成分回归来分析房价与各种属性之间的关系;在社会学中,可以使用主成分回归来研究不同因素对人民生活水平的影响;在生物医学中,可以使用主成分回归来分析基因表达数据,找到影响疾病发生的关键基因。
五、总结总之,主成分回归是一种有效的统计学方法,它可以减少数据的维度,找到影响目标变量的主要因素,并提高模型的预测精度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
主成分回归分析
logistic回归分析法是一种应用最大似然法估计回归系数的回归方法,它不要求变量服从协方差矩阵相等和残差项服从正态分布,因而得到广泛的应用。
logistic回归要求模型的解释变量之间不能具有线性的函数关系,然而,在很多研究中,各变量常常不是独立存在的,而是存在一定程度的线性依存关系,这一现象称作多重共线性(multi-collinearity)。
多重共线性关系常增大估计参数的标准误,从而降低模型的稳定性,有时还可出现与实际情况相悖的结果。
因此,为了合理地估计和解释一个回归模型,需要对变量之间的多重共线性进行处理。
主成分logistic回归是解决logistic回归分析中的共线性问题的常用方法之一,它通过主成分变换,将高度相关的变量的信息综合成相关性低的主成分,然后以主成分代替原变量参与回归。
原理与步骤
1、原始数据标准化
2、计算相关系数矩阵
3、求相关矩阵R的特征根、特征向量和方差贡献率,确定主
成分。
4、建立主成分特征函数
5、使用主成分代替原始变量进行多元回归。