透明电极前沿
小研透明导电氧化物薄膜的分析

小研透明导电氧化物薄膜的分析1 引言透明导电氧化物(Transparent Conductive Oxide,TCO)薄膜既是金属氧化物又是半导体薄膜材料,也属于光学材料,具有禁带宽、可见光谱区学透射率高和电阻率低等共同光电特性。
透明导电氧化物薄膜最早出现在20 世纪初,1907 年Badeker[1]首次制备出CdO 透明导电薄膜,1950 年前后出现了SnO2 基和In2O3 基透明导电薄膜,ZnO 基透明导电薄膜兴起于20世纪80 年代。
目前透明导电氧化物薄膜主要包括In、Sb、Zn 和Cd 的氧化物及其复合多元氧化物薄膜材料。
即In2O3、SnO2、ZnO、CdO 及其掺杂体系In2O3:Sn(ITO)、In2O3:Mo(IMO)、SnO2:Sb(ATO)、SnO2:F(FTO)、ZnO:Al(AZO)、CdO:In 等。
这类透明导电薄膜都是通过半导体掺杂贡献载流子来降低其电阻率。
它们的基本特点包括:宽禁带值,一般超过3.0eV,因此也具有紫外截止特性;高的可见光透过率,不小于80%;较低的电阻率,低于10-3Ω·cm。
透明导电氧化物薄膜因其既透明又导电的优异性能而得到广泛的应用。
利用TCO 薄膜可见光透过率高的特性可用于平面液晶显示(LCD)、电致发光显示(ELD)、电致彩色显示(ECD)、太阳能电池透明电极等领域[2,3];利用TCO 薄膜对光波的选择性(对可见光的透射和对红外光的反射)可用作热反射镜,对寒冷地区的建筑玻璃窗起热屏蔽作用,节省能源消耗;利用TCO 薄膜透明表面发热器的功能可用于汽车、飞机等交通工具的玻璃窗上、防雾摄影机镜头、特殊用途眼镜和仪器视窗上形成防雾除霜玻璃[4]。
列出的是透明导电氧化物薄膜的基本特性。
这些材料属于n 型简并半导体,由施主如氧空位和掺杂金属离子等提供约1020cm-3 浓度的自由电子。
2 透明导电氧化物薄膜的制备方法透明导电氧化物薄膜的制备工艺种类繁多。
柔性透明导电薄膜的制备与性能研究

柔性透明导电薄膜的制备与性能研究柔性透明导电薄膜是一种具有很高应用潜力的新材料,广泛用于柔性电子、光电器件等领域。
本文将就柔性透明导电薄膜的制备方法以及性能研究展开探讨。
一、制备方法1. 溶液法制备溶液法制备柔性透明导电薄膜是一种常见的方法。
首先,将导电材料粉末与溶剂充分混合,得到均匀的导电材料溶液。
然后,通过旋涂、喷涂等方法将溶液涂覆在基底上,并经过烘干、退火等处理,最终制得柔性透明导电薄膜。
2. 蒸发法制备蒸发法制备柔性透明导电薄膜是一种常用的方法。
该方法通过控制蒸发温度和蒸发速率,使导电材料蒸发沉积在基底上,形成薄膜。
该方法具有成本低、易于控制薄膜厚度和均匀性等优点。
3. 等离子体增强化学气相沉积法制备等离子体增强化学气相沉积法是一种高效制备柔性透明导电薄膜的方法。
通过高能电子束或等离子体诱导化学反应,将导电材料气溶胶沉积在基底上,并经过后续处理得到柔性透明导电薄膜。
该方法具有较高的沉积速率和薄膜均匀性。
二、性能研究1. 透明度柔性透明导电薄膜的透明度是评价其性能的重要指标之一。
透明度高意味着薄膜能够有效透过光线,适用于透明电子器件等领域。
因此,在制备过程中,需要选择适当的导电材料和优化工艺,以提高薄膜的透明度。
2. 导电性能导电性能是评价柔性透明导电薄膜的关键指标之一。
导电薄膜要具有低电阻率、低片内电阻和稳定的导电性能。
常用的评价指标包括薄膜的电阻率、载流子迁移率等。
研究人员通过改变导电材料的配比、优化制备工艺等方式来提高薄膜的导电性能。
3. 机械强度由于柔性导电薄膜常应用于弯曲、拉伸等特殊环境中,因此其机械强度是一个重要的研究方向。
通过选择适当的基底材料、调整导电材料的厚度等,可以提高薄膜的机械强度,使其能够承受一定的拉伸和弯曲等应力。
4. 热稳定性柔性透明导电薄膜在加热过程中可能会发生结构变化,导致性能下降。
因此,研究薄膜的热稳定性是很重要的。
研究人员在制备过程中引入交联剂、增加退火工艺等方式,提高薄膜的热稳定性。
测迁移率的方法

测量方法(1)渡越时间(TOP)法适用于具有较好的光生载流子功能的材料的载流子迁移率的测量,可以测量有机材料的低迁移率。
在样品上加适当直流电压,选侧适当脉冲宽度的脉冲光,通过透明电极激励样品产生薄层的电子一空穴对。
空穴被拉到负电极方向,作薄层运动。
设薄层状况不变,则运动速度为μE。
如假定样品中只有有限的陷阱,且陷阱密度均匀,则电量损失与载流子寿命τ有关,此时下电极上将因载流子运动形成感应电流,且随时间增加。
在t 时刻有:若式中L 为样品厚度电场足够强,t≤τ,且渡越时间t0<τ。
则在t0 时刻,电压将产生明显变化,由实验可测得,又有式中L、V 和t0 皆为实验可测量的物理量,因此μ值可求。
(2)霍尔效应法主要适用于较大的无机半导体载流子迁移率的测量。
将一块通有电流I 的半导体薄片置于磁感应强度为B 的磁场中,则在垂直于电流和磁场的薄片两端产生一个正比于电流和磁感应强度的电势U,这称为霍尔效应。
由于空穴、电子电荷符号相反,霍尔效应可直接区分载流子的导电类型,测量到的电场可以表示为式中R 为霍尔系数,由霍尔效应可以计算得出电流密度、电场垂直漂移速度分量等,以求的R,进而确定μ。
3)电压衰减法通过监控电晕充电试样的表面电压衰减来测量载流子的迁移率。
充电试样存积的电荷从顶面向接地的底电极泄漏,最初向下流动的电荷具有良好的前沿,可以确定通过厚度为L 的样品的时间,进而可确定材料的μ值。
(4)辐射诱发导电率(SIC)法导电机理为空间电荷限制导电性材料。
在此方法中,研究样品上面一半经受连续的电子束激发辐照,产生稳态SIC,下面一半材料起着注入接触作用。
然后再把此空间电荷限制电流(SCLC)流向下方电极。
根据理论分析SCLC 电导电流与迁移率的关系为J=pμε1ε0V2/εDd3 (7) 测量电子束电流、辐照能量和施加电压函数的信号电流,即可推算出μ值。
(5)表面波传输法被测量的半导体薄膜放在有压电晶体产生的场表面波场范围内,则与场表面波相联系的电场耦合到半导体薄膜中并且驱动载流子沿着声表面波传输方向移动,设置在样品上两个分开的电极检测到声一电流或电压,表达式为Iae=μP/Lv.(8) 式中P 为声功率,L 为待测样品两极间距离,v 为表面声波速。
透明导电薄膜用Sb掺杂SnO2光电特性研究[设计+开题+综述]
![透明导电薄膜用Sb掺杂SnO2光电特性研究[设计+开题+综述]](https://img.taocdn.com/s3/m/d556f4366529647d2628521c.png)
开题报告电子信息科学与技术透明导电薄膜用Sb掺杂SnO2光电特性研究一、选题的背景与意义近年来,随着科技的进一步发展,太阳能电池,高分辨率,大尺寸平面显示器,节能红外反射膜等广泛应用,对透明导电膜的需求越来越大。
透明导电膜主要用于透明电极、屏幕显示、热反射镜、透明表面发热器、柔性发光器件、液晶显示器等领域。
这就要求透明导电膜不但要有好的导电性,还要有优良的可见光透光性。
根据材料的不同,透明导电膜可分为金属透明导电薄膜,氧化物透明导电膜、非氧化物透明导电薄膜及高分子透明导电薄膜。
当前,氧化物及其复合氧化物薄膜的研究十分引人关注。
本课题主要研究的是Sb掺杂SnO2(简称ATO)体系。
ATO主要成分的SnO2因其优良的光电性能而被广泛应用于透明导电、固态气体传感器及催化等领域。
在透明导电膜中,SnO2因其优异的光电性能已被广泛应用,二氧化锡膜是较早获得商业应用的透明导电材料之一,SnO2是透明n 型宽禁带半导体材料,其Eg=3.6 eV(300 K),纯SnO2的电阻率通常较高,其载流子浓度由氧空位决定,在SnO2中掺入少量的Sb离子能大幅度降低SnO2的电阻率并保持良好的透光性。
而随着电子工业以及相关高新技术产业的高速发展,具有半导体特性金属氧化物导电粉末尤其是超细粉末(如掺杂锑的氧化锡)由于其独特的稳定性和广泛的应用领域而得到迅速发展。
ATO(锑掺杂的二氧化锡)是一类新型浅色透明导电粉,它利用锑掺杂取代锡形成缺陷固融体时形成的氧空位或电子作为载流电子导电的。
ATO可做优良隔热粉、导电粉使用。
其良好隔热性能,被广泛的应用于涂料、化纤、高分子膜等领域。
此外作为导电材料,在分散性、耐活性、热塑性、耐磨性、安全性有着其他导电材料无法比拟的优势。
被应用于光电显示器件、透明电极、太阳能电池、液晶显示、催化等方面。
目前制备ATO粉末的方法有多种,主要包括固相法、溶胶-凝胶法、喷雾热解法、金属醇盐水解法、化学共沉淀法、水热法、网络聚合法等等。
《2024年ITO透明导电薄膜的湿法刻蚀及光电特性研究》范文

《ITO透明导电薄膜的湿法刻蚀及光电特性研究》篇一摘要:本文着重探讨了ITO(氧化铟锡)透明导电薄膜的湿法刻蚀技术及其对光电特性的影响。
通过实验研究,分析了刻蚀液组成、刻蚀时间、刻蚀温度等参数对ITO薄膜刻蚀效果的影响,并进一步探讨了刻蚀后薄膜的光电性能变化。
一、引言ITO透明导电薄膜因其优异的导电性和可见光透过性,在触摸屏、液晶显示、光电器件等领域有着广泛的应用。
然而,为了满足不同器件的特定需求,常需要对ITO薄膜进行精确的图形化加工。
湿法刻蚀技术因其操作简便、成本低廉等特点,成为ITO 薄膜加工的一种重要方法。
本文将详细研究ITO透明导电薄膜的湿法刻蚀工艺及其对光电特性的影响。
二、ITO透明导电薄膜概述ITO薄膜是一种以氧化铟(In2O3)为主要成分,掺杂锡(Sn)的透明导电材料。
其具有高导电性、高可见光透过率及良好的加工性能等特点,广泛应用于光电器件的制造中。
三、湿法刻蚀工艺研究1. 刻蚀液的选择与配制:选择合适的刻蚀液是湿法刻蚀的关键。
常用的刻蚀液包括酸性和碱性溶液。
本文通过实验,探讨了不同浓度和组成的刻蚀液对ITO薄膜刻蚀效果的影响。
2. 刻蚀参数的研究:实验研究了刻蚀时间、刻蚀温度等参数对ITO薄膜刻蚀效果的影响。
通过控制这些参数,可以实现对ITO薄膜的精确图形化加工。
3. 刻蚀工艺的优化:通过实验数据的分析,优化了刻蚀工艺流程,提高了刻蚀效率和刻蚀精度。
四、光电特性研究1. 光学特性:研究了湿法刻蚀后ITO薄膜的可见光透过率变化。
实验发现,合理的湿法刻蚀工艺能保持ITO薄膜的高可见光透过率。
2. 电学特性:通过测量薄膜的电阻率,研究了湿法刻蚀对ITO薄膜电导率的影响。
实验结果表明,适度的湿法刻蚀可以减小ITO薄膜的电阻,提高其导电性能。
3. 表面形貌分析:利用扫描电子显微镜(SEM)对湿法刻蚀后的ITO薄膜表面形貌进行了观察,分析了刻蚀过程中薄膜表面的变化。
五、结论本文通过实验研究,探讨了ITO透明导电薄膜的湿法刻蚀工艺及其对光电特性的影响。
透明胶带导电

透明胶带导电透明胶带导电是一种特殊的胶带,它具有导电性能,可以用于电子设备的制造和维修。
它通常由聚乙烯薄膜和铜箔组成,具有优异的导电性能和良好的透明度。
透明胶带导电可以在不影响产品外观的情况下,实现电路连接和信号传输。
透明胶带导电的制造过程需要经过多道工序。
首先是将铜箔剪切成所需尺寸,并清洗表面以去除污垢和氧化物。
然后将铜箔粘贴在聚乙烯薄膜上,并通过高温高压的方法使其牢固地粘合在一起。
最后,对胶带进行切割、卷绕、包装等处理,以便于使用。
透明胶带导电具有广泛的应用领域。
它可以用于手机、平板电脑、笔记本电脑、智能手表等消费电子产品中,用于连接各种元器件和芯片。
此外,它还可以用于汽车、航空航天等领域中的电子设备制造。
透明胶带导电相比传统的导电材料具有许多优点。
首先,它具有较好的透明度,可以使产品外观更加美观。
其次,由于其柔性和可塑性较强,可以适应不同形状和尺寸的元器件。
此外,它还具有良好的耐热性和耐腐蚀性能。
使用透明胶带导电需要注意一些问题。
首先,在使用前需要检查胶带表面是否干净,并且避免在潮湿或者油腻的环境中使用。
此外,需要注意胶带的尺寸和粘合力是否符合要求。
最后,在使用过程中如果发现胶带出现损坏或者老化等情况,应及时更换以确保电路连接的稳定性。
总之,透明胶带导电是一种重要的电子材料,在现代电子设备制造和维修中发挥着重要作用。
它具有优异的导电性能、良好的透明度和可塑性等特点,并且广泛应用于消费电子、汽车、航空航天等领域中。
在使用过程中需要注意一些问题,以确保其稳定性和可靠性。
《磁控溅射法低温制备ITO透明导电薄膜工艺研究》

《磁控溅射法低温制备ITO透明导电薄膜工艺研究》一、引言随着现代电子技术的飞速发展,透明导电薄膜在太阳能电池、触摸屏、液晶显示等领域得到了广泛应用。
ITO(氧化铟锡)因其高导电性、高可见光透过率等优点,成为了透明导电薄膜的首选材料。
而磁控溅射法作为一种制备ITO透明导电薄膜的常见方法,具有薄膜质量高、工艺控制灵活等优点。
本文旨在研究磁控溅射法在低温环境下制备ITO透明导电薄膜的工艺过程及其性能表现。
二、磁控溅射法的基本原理磁控溅射法是一种物理气相沉积技术,其基本原理是在真空环境下,利用高能粒子轰击靶材表面,使靶材中的原子或分子脱离表面,并沉积在基底上形成薄膜。
在磁控溅射过程中,磁场的作用使得等离子体在靶材表面形成环状运动,提高了等离子体的密度和利用率,从而提高了薄膜的制备效率和质量。
三、低温制备ITO透明导电薄膜的工艺研究1. 靶材选择与预处理选择纯度较高的ITO靶材,并进行预处理,如清洗、抛光等,以提高薄膜的质量。
同时,根据需要调整靶材的形状和尺寸,以满足不同的工艺需求。
2. 基底的选择与预处理选择合适的基底材料,如玻璃、石英等,并进行清洗、干燥等预处理,以提高基底与薄膜的结合力。
3. 磁控溅射工艺参数设置(1)溅射气体:选择氩气作为溅射气体,通过调整气体流量和压力来控制溅射速率和薄膜质量。
(2)溅射功率:根据实验需求调整溅射功率,以获得合适的薄膜厚度和导电性能。
(3)基底温度:在低温制备过程中,基底温度的控制尤为重要。
通过调整加热装置,将基底温度控制在合适的范围内,以保证薄膜的结晶性能和导电性能。
4. 薄膜制备过程及性能表征在磁控溅射过程中,通过实时监测薄膜的生长过程,观察薄膜的形貌、厚度等参数。
同时,利用X射线衍射、四探针测试等手段对薄膜的结晶性能、导电性能等进行评价。
根据实验结果,优化工艺参数,提高薄膜的性能。
四、实验结果与讨论1. 薄膜的形貌与结构分析通过SEM(扫描电子显微镜)观察薄膜的表面形貌,发现薄膜表面光滑、致密,无明显缺陷。
《ITO透明导电薄膜的湿法刻蚀及光电特性研究》范文

《ITO透明导电薄膜的湿法刻蚀及光电特性研究》篇一摘要:本文针对ITO(氧化铟锡)透明导电薄膜的湿法刻蚀技术进行了深入的研究,并探讨了其光电特性。
通过实验分析和理论计算,详细地介绍了刻蚀工艺的优化以及刻蚀前后薄膜的光电性能变化。
一、引言ITO作为一种重要的透明导电材料,因其优异的导电性和光学性能被广泛应用于太阳能电池、触摸屏等光电领域。
而薄膜的精确刻蚀是实现这些应用的关键步骤之一。
因此,对ITO透明导电薄膜的湿法刻蚀及光电特性的研究显得尤为重要。
二、ITO透明导电薄膜的湿法刻蚀1. 刻蚀原理:湿法刻蚀是利用化学溶液对ITO薄膜进行刻蚀的方法。
通过选择适当的化学溶液,使ITO薄膜在溶液中发生化学反应,从而实现薄膜的精确刻蚀。
2. 刻蚀工艺:(1)溶液选择:选择合适的刻蚀液是关键。
通常采用含有硝酸、盐酸等成分的混合溶液作为刻蚀液。
(2)温度控制:控制刻蚀液的温度,以获得最佳的刻蚀速率和刻蚀效果。
(3)时间控制:刻蚀时间的长短直接影响刻蚀的深度和精度,需通过实验确定最佳刻蚀时间。
三、光电特性研究1. 光学性能:ITO薄膜具有较高的光学透过率,对可见光波段的透光率可达80%《ITO透明导电薄膜的湿法刻蚀及光电特性研究》篇二摘要:本文着重探讨了ITO(氧化铟锡)透明导电薄膜的湿法刻蚀技术及其对光电特性的影响。
通过分析刻蚀过程中不同参数对薄膜性能的影响,以及刻蚀后薄膜的光电性能测试,为ITO薄膜在光电器件中的应用提供了理论依据和实践指导。
一、引言ITO(氧化铟锡)透明导电薄膜因其良好的导电性和光学透过性,在液晶显示、触摸屏、太阳能电池等领域得到了广泛应用。
而湿法刻蚀技术作为一种重要的薄膜加工方法,在ITO薄膜的制备和形状控制中发挥着重要作用。
因此,研究ITO透明导电薄膜的湿法刻蚀及其光电特性,对于提高光电器件的性能和优化其生产工艺具有重要意义。
二、ITO透明导电薄膜的湿法刻蚀技术2.1 刻蚀原理ITO透明导电薄膜的湿法刻蚀主要是利用化学反应将薄膜上的部分材料去除,以达到改变薄膜形状或尺寸的目的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
从液晶面板、触摸屏到电子纸、太阳能电池,ITO*曾被广泛用作透明电极材料。目前,替代ITO的新型透明电极材料正逐步走向实用化。其原因在于新材料具有可轻松弯曲、有助于降低成本以及光线透过率高等特点。新材料已开始应用于触摸屏,电子纸也成为继触摸屏之后的又一应用领域。在不远的将来,新材料的应用范围还有望向太阳能电池及液晶面板领域扩展。最近,已有厂商开始在部分用途中采用新材料来替代原来的ITO(图1、图2)。 普利司通采用导电性高分子材料替代ITO制作透明电极,并试制出了电子纸,于2009年6月进行了发布。“我们打算用印刷技术以极低成本来制造又薄又轻且弯曲时也不会破裂的电子纸。但采用现行的ITO材料,存在过度弯曲时容易破裂的危险”(普利司通)。现行ITO材料无法应用于印刷技术。因此,普利司通对能够用印刷技术成膜的、可弯曲的新型透明电极材料进行了各种尝试。“虽然目前在特性上还不够充分,但两年后有望达到实用水平。我们将尽快实现在产品中的应用”(普利司通)。
纷纷在触摸屏中采用新材料 尽管尚未正式发布,但已有厂商开始在产品上采用新材料作为透明电极。触摸屏就是其中之一。据TDK介绍,该公司使用涂布法成膜的ITO(以下称涂布型ITO)制成了ITO薄膜“FLECLEAR”,并且“已得到部分触摸屏产品的采用”(该公司)。
实际上,对ITO进行替换的行动今后在触摸屏领域有可能迅速推进。触摸屏大厂商日本写真印刷将采用在溶液中掺入微小Ag丝的透明导电性墨水(Ag丝墨)作为投影型静电容量式*触摸屏的透明电极材料。虽然应用于产品的具体时间尚未公布,但日本写真印刷正在为此与美国风险企业Cambrios Technologies共同开发Ag丝墨。
*投影型静电容量方式是触摸传感器使用的检测方式之一,被称作Projected Capacitive Type。已被iPhone等采用。通过在印刷线路板及透明薄膜上形成电极图案,对手指接近而产生的电极间的静电变化进行检测。此外,静电容量方式还有表面型(Surface Capacitive Type)。
决定采用新材料的日本写真印刷设定了多个目标。首先是以低成本制造可更忠实表现影像色调的、几乎无色的触摸屏。目前的触摸屏用ITO薄膜大多发黄,而采用新材料的话便可实现几乎无色的状态。在制造方法上,原来的ITO使用真空工艺,而Ag丝墨则能够用涂布法成膜。因此有望以低成本进行制造(图3)。 日本写真印刷的另一目标是实现能够粘贴在曲面上的三维触摸屏。现有ITO的抗弯曲性不足,而Ag丝墨则可轻松弯曲。
另外,阿尔卑斯电气打算在该公司的触摸屏上采用ZnO类透明电极来替代ITO,目前正在大力进行研发。ZnO可高效透射ITO难以透射的短波长光线,使屏幕更清晰。此外,阿尔卑斯与普利斯通及日本写真印刷一样,对ZnO类透明电极的柔软性及弯曲性出色这一点也寄予了厚望。
新型透明电极材料与原来的ITO相比,光线透过率等特性出色,可轻松弯曲,能够以更低成本进行制造。发挥这些特点的用途不仅仅是触摸屏及电子纸。在太阳能电池及液晶面板等领域也有可能获得良好效果。
其中,在太阳能电池领域,新型透明电极材料的采用今后有望顺利推进。太阳能电池有多种方式,利用ITO的是薄膜硅太阳能电池等。
太阳能电池“要求使用透射率高且方块电阻值低的透明电极”(产业技术综合研究所太阳能发电研究中心硅新材料小组研究员鲤田崇)。原因是便于提高太阳能电池的转换效率。透射率越高,到达太阳能电池光吸收层的光线量就越多。方块电阻值越低,就越能够高效利用由光电转换产生的电流。
但是要实现在液晶面板领域中的应用,新型透明电极材料也许还需等上很长一段时间。原因是要跨越的门槛较高。尤其是在大屏幕液晶电视等使用的52英寸及65英寸等液晶面板中,实现起来更非易事。 这是因为必须要满足大尺寸玻璃底板的要求。在液晶面板行业,使用第十代玻璃底板的大尺寸面板已于2009年内开始生产。当然,这些液晶面板所使用的ITO,其靶材也达到了第十代玻璃底板的要求,而且还在为提高液晶面板成品率而不断优化。在这种情况下,缺乏实际业绩的新材料短期内很难替代现有的ITO。对新材料而言,今后要做到的是,在证实通过印刷技术等能够大幅降低成本的基础上,建立面向大尺寸面板的大规模生产体制。在完成这些工作之后,新型透明电极材料替代ITO便指日可待了(图4)。
已实用化或正以实用化为目标进行开发的新材料主要有5种。除了前面提到的涂布型ITO、Ag丝墨及导电性高分子之外,还有ZnO及Ag丝。
这些材料具有的共同特点大致有四:①柔软及弯曲性出色,②色调好,③易降低成本,④形成透明电极的基材选择自由度高(表1)。
①中提到的柔软性及弯曲性越出色,就越能适用于具有曲面的立体形状以及自由弯曲的用途。可实现多次触摸也不易破裂的触摸屏,以及可弯曲的电子纸。而已有的ITO存在过度弯曲时存在发生破裂的危险。比如,“厚度约100μm的ITO薄膜,不会破裂的极限是曲率半径为6mm左右”(日本触摸屏研究所代表董事社长三谷雄二)。
而新材料不同,5种材料均显示出了超过已有ITO的柔软性及弯曲性。比如,Cambrios公司的Ag丝墨“即使在半径为4mm的圆棒上缠绕多少圈也不会发生破裂”(Cambrios销售代理商住友商事)。
色调好 ②中提到的色调好的特点是指接近无色。换句话说,就是光透射率因波长不同而引起的变化较少,透射光谱几乎为平坦状态。越是无色就越容易在显示屏上忠实再现颜色。
被触摸屏用得最多的要属以树脂为基材的ITO薄膜,其透射率在500n~550nm以下的波长区域时会下降,看上去显黄色或茶色。其原因在于,为了防止薄膜受热劣化,将ITO的成膜温度控制在了低达数十℃的水平。在数十℃的温度环境下进行ITO成膜时,ITO不会完全结晶化,而呈现非晶质状态。因为ITO的结晶化温度高达200℃左右。非晶化的ITO难以透射蓝色等短波长的光。结果就是看上去显黄色。
而5种新材料中除导电性高分子外,其他4种均为近无色状态。比如,ZnO与ITO相比,其在短波长区域的透射率较高(图5)。导电性高分子因材料各异而特性稍有不同,大多发淡蓝色。尽管如此,与ITO薄膜相比,导电性高分子的情况仍在不断改善,已在550nm以下波长区域实现较高光透射率。
目标是成本减至ITO的一半 ③中提及的与已有ITO相比,新材料易于降低成本的理由改变了制造方法及材料。5种新材料的制造方法大致可分为两种。一种是基于印刷技术的湿式工艺,另一种是以溅射为代表的干式工艺。
可用湿式工艺成膜的是涂布型ITO、Ag丝墨、导电性高分子及Ag丝。均可利用印刷技术轻松降低制造成本。比如,利用印刷技术制造Ag丝的大日本印刷表示,其“目标是将成本减至ITO薄膜的一半”。
利用干式工艺制造的是ZnO。ZnO在利用溅射这一点上与已有ITO相同。不过,由于可在常温下成膜,因此与在数十℃以上高温下成膜的ITO相比,可轻松降低制造成本。另外,从原料来看,ZnO所使用的Zn,其产量要高于ITO所使用的In,因此还可降低材料成本。“某制造装置厂商在推算后表示,可将成本降低至ITO的约一半”(日本高知工科大学综合研究所材料设计中心负责人山本哲也教授)注1)。
注1)不过,也有材料成本比ITO高的情况。比如TDK的涂布型ITO薄膜,其ITO的膜厚达到1μm,是普通ITO的25~50倍。因此材料成本会上升。
基材的选择性高 ④中提及的成膜基材的选择无限制的优点,可应用于在光学特性出色的特殊基材上成膜,可用于要求高画质的触摸屏及电子纸等。 TDK的涂型ITO被触摸屏产品采用就得益于这一优点(图6)。从已有ITO薄膜来看,其基材即薄膜的厚度为300μ~400μm以下,而TDK的塗布型ITO在厚达1~10cm的基材上也可形成。能够在较厚基材上形成ITO膜是因为可在常温下成膜注2)。在变更基材时,只需改换对ITO层和基材进行接合的粘合层材料即可。
注2)制造方法如下。首先在薄膜上涂布用有机粘合剂固定的ITO微粒子。然后再以卷到卷方式将薄膜上的ITO转印到基材上进行成膜。由于是在常温下进行成膜,所以基材与ITO膜之间不会产生很强的热应力,ITO不易发生破裂。因此还可在较厚基材上涂布。
前面提到的①~④是5种新材料都具有的共同特点。而在形成透明电极后的光透射率和方块电阻值方面,5种新材料间却存在着特性上的差异。 一般而言,光线透射率与方块电阻值存在此消彼长的关系。为了降低方块电阻而加厚导电膜的话,光线就会很难透过,透射率会随之下降。相反,为了提高光线透射率而减薄导电膜的话,方块电阻值就会上升。
5种新材料可实现与已有ITO同等或以上的高透射率及低方块电阻值。其中,透射率尤其高的是Ag丝墨(图7)。从Cambrios公司涂布有Ag丝墨的薄膜产品来看,方块电阻值为250Ω/□的品种,其全光线透射率高达91%以上。而普通ITO薄膜的话,在同等程度的方块电阻值下,其全光线透射率仅为88%左右。要想实现超过90%的透射率,就必须使用防反射膜等,成本会因此而上升。而Ag丝以外的其他新材料在250~300Ω/□时的透射率与已有ITO为同等程度。
5种新材料中方块电阻值最低的是Ag丝。从可视光区域的光透射率达到80%以上的产品来看,大日本印刷的品种可实现0.1Ω/□、富士胶片的品种可实现0.2Ω/□的极低方块电阻(图8)。这一方块电阻值水平相当于已有ITO薄膜的1/10以下注2)。Ag丝以外的其他新材料的方块电阻值几乎与已有ITO为同等程度。
注2)制造方法如下。首先在薄膜上涂布用有机粘合剂固定的ITO微粒子。然后以卷到卷方式将薄膜上的ITO转印到基材上进行成膜。由于是在常温下进行成膜,所以基材与ITO膜之间不会产生很强的热应力,ITO不易发生破裂。因此还可在较厚基材上涂布。