八年级数学下册 第18章 平形四边形 18.2.3 正方形习题课件 (新版)新人教版
人教版八年级下册第十八章:18.2.3正方形

第十八章平行四边形§18.2.3 正方形(一)教学目标:1.理解正方形的概念,通过由一般到特殊的研究方法,分析平行四边形、矩形、菱形、正方形的概念及性质之间的区别与联系.并形成文本信息与图形信息相互转化的能力.2.在观察、操作、推理、归纳等探索明正方形的性质定理过程中,发展合情推理能力,进一步培养自己的说理习惯与能力3.培养学生勇于探索、团结协作交流的精神.激发学生学习的积极性与主动性.教学重、难点:重点:理解正方形的定义和性质.难点:正方形的性质及其应用.教学工具:直尺,三角板,PPT课件,几何画板,A4纸等教学过程:一、正方形的定义师:同学们,上节课我们学习了特殊的平行四边形矩形和菱形,在现实生活中有没有其它的特殊的平行四边形呢?生:有,正方形。
师:对,小学我们已经学习了正方形。
什么是正方形呢?学生回答正方形的定义:四条边相等,四个角都是直角的四边形是正方形.二、情境引入,实践探究探究一:矩形与正方形的关系师:在现实生活中存在很多正方形,也有很多正方形的实际应用。
比如折纸,大家还记得小时候折的青蛙、飞机吗?折它们的第一步常常是把矩形纸折成什么图形?生:折成正方形。
师:你能将我们的A4纸折成正方形吗?生:能。
(学生折纸,并叫一个学生示范)学生在动手中对正方形产生感性认识,并感知正方形与矩形的关系.师:为什么这样折出的是正方形?你能说出理由吗?生:因为折了一个等腰直角三角形,它们的两条直角(邻边)边相等。
教师用几何画板动态演示矩形变成正方形学生探究并得出结论:结论1:正方形是一组邻边相等的矩形. 即正方形是特殊的矩形.设计意图:从学生的生活实际出发,创设情境,提出问题,激发学生强烈的好奇心和求知欲.学生经历了将实际问题抽象为数学问题的建模过程.探究二:菱形与正方形的关系师:同学们,生活中除了矩形可以变成正方形外,还可由其它图形能变成正方形吗?你能举出生活中的实例吗?生:菱形,如菱形衣架、伸缩门等。
最新人教版八年级数学下册《第十八章 平行四边形 正方形》精品教学课件

1
1
01 探究
现在,你对正方形有哪些新的认识? 正方形的四条边都相等,四个角都是直角, 它既是矩形又是菱形,正方形
菱形
01 知识回顾
怎样判定一个平行四边形是正方形? 怎样判定一个矩形是正方形? 怎样判定一个菱形是正方形?
矩形
平行四边形
菱形
正方形
01 知识回顾
正方形是特殊的平行四边形, 也是特殊的矩形、菱形.所以它具有这些图形的所有性质.
四条边相等. 四个角是直角. 对角线相等并且互相垂直平分,每一条对角线平分一组对角.
正方形是轴对称图形,有四条对称轴.
01 知识回顾
例题:求证:正方形的两条对角线把这个正方形分
成四个全等的等腰直角三角形.
A
D
证明:∵四边形ABCD是正方形, ∴AC=BD, AC⊥BD, AO=CO=BO=DO, ∴△ABO、△BCO、△CDO、△DAO 都是等腰直角三角形, 并且 △ABO ≌△BCO≌△CDO≌△DAO.
O
B
C
02
练一练
LEARNING OBJECTIVES
02 练一练
1.如图,正方形ABCD中,对角线AC,
BD相交于点O,则图中的等腰三角形有( C )
A 、4个 C、8个
B、6个 D、10个
02 练一练
2.如图,在正方形ABCD的外侧,作等边三角形ADE,
连接BE,则∠AEB的度数为__1__5_°.
02 练一练
3.已知:如图,△ABC中,∠C=90°,CD平分∠ACB,DE⊥BC于E, DF⊥AC于F. 求证:四边形CFDE是正方形.
证明:∵∠C=90°,DE⊥BC于E, DF⊥AC于F
∴四边形CEDF有三个直角, 它是矩形
2021年人教版八年级数学下册第十八章《正方形》精品课件

∵四边形ABCD是正方形 ∴OA=OB ,
∠1=∠2=∠3=45° 又∵MN∥AB ∴∠OMN=∠1=∠3=∠ONM=45° ∴OM=ON ∴OA-OM=OB-ON 即AM=BN
下面大家自己完成证明
练习1.
已知:正方形ABCD对角线AC、BD相 交于点O,且AB=acm,如图(2)。
求:AC的长及正方形的面积S。
下面的证明请大家完成
练习.如图(5),在AB上取一点C,以 AC、BC为正方形的一边在同一侧作正 方形AEDC和BCFG连结AF、BD延长 BD交AF于H。 求证:(1) △ACF≌△DCB
(2) BH⊥AF
证明:
例4.如图(6),△ABC的外面作正方形ABDE和ACFG,连 结BG、CE,交点为N。 求证:∠CEA=∠ABG
分别是AB 、BC 、CD 、DA的中点,试判断四
边形EFGH是正方形吗?为什么?
H
A
D
E
G
B
C
F
定义:有一组邻边相等并且有一个角是直角的平行四边形 叫做正方形。
例2.如图(3),正方形ABCD中,AC、BD相交于O, MN∥AB且MN分别交OA、OB于M、N, 求证:BM=CN。
分析:要证明BM=CN,大家观察
• 10、人的志向通常和他们的能力成正比例。2021/2/42021/2/42021/2/42/4/2021 9:15:29 PM • 11、夫学须志也,才须学也,非学无以广才,非志无以成学。2021/2/42021/2/42021/2/4Feb-214-Feb-21 • 12、越是无能的人,越喜欢挑剔别人的错儿。2021/2/42021/2/42021/2/4Thursday, February 04, 2021 • 13、志不立,天下无可成之事。2021/2/42021/2/42021/2/42021/2/42/4/2021
18.2.3正方形 正方形的判定(教学课件)-人教版数学八年级下册

探究点
正方形的判定
归纳总结:
(1)四条边相等、四个角都是直角的四边形是正方形 从四边形出发
(2)对角线互相垂直平分且相等的四边形是正方形 (1)有一组邻边相等并且有一个角是直角的平行四边 从平行四边形 形是正方形 出发 (2)对角线互相垂直且相等的平行四边形是正方形 从矩形出发 对角线互相垂直的矩形是正方形 从菱形出发 对角线相等的菱形是正方形
A
D
∴AB=BC=CD=DA,∠A=∠C,∠B=∠D.
又∠A=90°,
ቤተ መጻሕፍቲ ባይዱ
B
C
∴易得∠A=∠B=∠C=∠D=90°.
∴四边形ABCD是正方形.
归纳总结:有一个角是直角的菱形是正方形
探究点
正方形的判定
在上面的证明过程中,是分别从矩形、菱形出 发,添加边或角的条件后得到正方形,那么还有没 有通过添加边、角、对角线的条件可以得到其他 判定正方形的方法呢? 大家想一想.
课堂总结
知识结构
四边形
平行四边形
正 矩形 方 菱形
形
课堂总结
知识结构
课堂总结
1. 教材P62习题18.2第13题.
课后作业
1. 如图,E,F,M,N 分别是正方形ABCD四条边上的
点,且AE=BF=CM=DN,试判断四边形EFMN是什么
图形,并证明你的结论. 【选自教材P62,习题18.2第13题】
把能活动的菱形木框的一个角变为直角(如图),
能否得到正方形?
探究点
正方形的判定
2. 有一个角是直角的菱形是正方形
正方形
可以看到,这个变化过程中只要改变菱形的一 个角,就能得到正方形.
下面我们进行证明:
探究点
18.2.3平行四边形习题课

综合运用 发展能力
练习如图,AD平分∠BAC,DE∥AC交AB于点E, DF∥AB交AC于点F.求证:四边形AEDF是菱形.
例2 如图,顺次连接正方形ABCD各边的中点,得 到四边形EFGH.求证:四边形EFGH也是正方形. A
H
D
E
G
B
F
C
应用新知 解决问题
习题课
回顾:平行四边形,矩形与菱形有哪些性质?
边: 对边平行且相等
平行四边形 角: 对角相等,邻角互补 对角线: 对角线互相平分组卷网 具有平行四边形所有性质
矩形
边: 对边平行且相等
角: 四个角是直角 对角线: 对角线相等且互相平分
菱形的性质
具有平行四边形一切性质 菱形的性质
边: 四条边相等
对角相等,邻角互补 角: 对角线: 互相垂直平分 分别平分两组对角
A O B
F
E
D
C
10、已知:如图,□ ABCD的对角线AC的 垂直平分线与边AD,BC分别交于E,F. 求证:四边形AFCE是菱形 A E 证明:
D
O ∵EF垂直平分AC B C F ∴AO=CO, ∠AOE=90° ∴OE=OF ∴∠FOC=∠AOE=90° ∵四边形ABCD是平行四边形 又∵AO=CO ∴四边形AFCE是平 ∴ AD∥BC ∴AE∥FC 行四边形 ∴∠AEO=∠CFO 又∵EF⊥AC ∴△AEO≌△CFO ∴四边形AFCE是菱形
变式 如图,E,F,G,H分别是各边上的点,且 AE=BF=CG=DH.四边形EFGH是正方形吗?为什么?
A
H
D G
E
B F C
边 正方形对边平行 四边相等 角 正方形的四个角都是直角
A
人教版八年级数学 下册 第十八章 18.2.3 正方形 课时练(包含答案)

第十八章平行四边形18.2.3 正方形一、选择题1、正方形具有而矩形不一定具有的特征是( )A.四个角都是直角B.对角线互相平分C.对角线互相垂直D.对角线相等2、四边形ABCD的对角线AC = BD,且AC⊥BD,分别过A、B、C、D作对角线的平行线,则所构成的四边形是().A. 平行四边形B. 矩形C. 菱形D. 正方形3、下列命题中是假命题的是()A.一组对边平行且相等的四边形是平行四边形B.一组对边相等且有一个角是直角的四边形是矩形C.一组邻边相等的平行四边形是菱形D.一组邻边相等的矩形是正方形4、如图,在一个由4×4个小正方形组成的正方形网格中,阴影部分面积与正方形ABCD的面积比是( )A.3:4B.5:8C.9:16D.1:25、如图,正方形ABCD的边长为4,点E在对角线BD上,且∠BAE=22.5°,EF∠AB,垂足为F,则EF的长为()A.1B.C. D.二、填空题6、如图,ABCD是正方形,E是CF上一点,若DBEF是菱形,则∠EBC=________.第6题图第7题图7、如图,已知正方形ABCD的边长为10,点P是对角线BD上的一个动点,M、N分别是BC、CD边上的中点,则PM+PN的最小值是___________.8、如图,边长为a的正方形ABCD和边长为b的正方形BEFG排放在一起,O1和O2分别是两个正方形的中心,则阴影部分的面积为,线段O1O2的长为.9、正方形边长为a,若以此正方形的对角线为一边作正方形,则所作正方形的对角线长为.10、如图,在Rt△ABC中,△C=90°,DE垂直平分AC,DF△BC,当△ABC满足条件AC=BC时,四边形DECF是正方形.(要求:①不再添加任何辅助线,②只需填一个符合要求的条件)三、解答题11、如图,E是正方形ABCD外一点,AE=AD,∠ADE=75°,求∠AEB的度数。
12、如右图,在△ABC中,AB=AC,D是BC的中点,DE⊥AB,DF⊥AC,垂足分别为E、F.(1)求证:DE=DF.(2)只添加一个条件,使四边形EDFA是正方形,•请你至少写出两种不同的添加方法.(不另外添加辅助线,无需证明)13、已知:如图,△ABC中,△ABC=90°,BD是△ABC的平分线,DE△AB于点E,DF△BC于点F.求证:四边形DEBF是正方形.14、如图,在Rt△ABC中,∠ACB=90°,过点C的直线MN∥AB,D为AB边上一点,过点D作DE⊥BC,交直线MN于E,垂足为F,连接CD、BE.(1)求证:CE=AD;(2)当D在AB中点时,四边形BECD是什么特殊四边形?说明你的理由;(3)若D 为AB 中点,则当∠A 的大小满足什么条件时,四边形BECD 是正方形?请说明你的理由.15、如右图,要把边长为1的正方形ABCD 的四个角(阴影部分)剪掉,得一四边形A 1B 1C 1D 1,试问怎样剪,才能使剩下的图形仍为正方形,且剩下图形的面积为原正方形面积的59,请说明理由.16、如图,正方形ABCO 的边OA 、OC 在坐标轴上,点B 坐标为(8,8),将正方形ABCO绕点C 逆时针旋转角度α(0°<α<90°),得到正方形CDEF ,ED 交线段AB 于点G ,ED 的延长线交线段OA 于点H ,连CH 、CG .(1)求证:∠CBG∠∠CDG ;(2)求∠HCG 的度数;判断线段HG 、OH 、BG 的数量关系,并说明理由; (3)连结BD 、DA 、AE 、EB 得到四边形AEBD ,在旋转过程中,四边形AEBD 能否为矩形?如果能,请求出点H 的坐标;如果不能,请说明理由.参考答案:一、1、C 2、D 3、B 4、B 5、C 二、6、7、10、 8、1ab 49、2a10、考点: 正方形的判定. 专题: 计算题;开放型.分析:由已知可得四边形的四个角都为直角,因此再有四边相等即是正方形添加条件.此题可从四边形DECF 是正方形推出.解答:解:设AC=BC ,即△ABC 为等腰直角三角形,△△C=90°,DE 垂直平分AC ,DF △BC , △△C=△CED=△EDF=△DFC=90°, DF=AC=CE ,DE=BC=CF ,11A1A 图3-21△DF=CE=DE=CF,△四边形DECF是正方形,故答案为:AC=BC.点评:此题考查的知识点是正方形的判定,解题的关键是可从四边形DECF是正方形推出△ABC满足的条件.三、11、∵△ADE中,AE=AD,∠ADE=75°,∴∠AED=75°(等边对等角)∴∠EAD=180°-75°×2=30°又∵四边形ABCD是正方形,∴∠BAD=90°,AB=AD,∴△ABE中,AB=AE,∠BAE=120°∴∠AEB=°°°12、(1)提示:证△DEB≌△DFC,(2)∠A=900167,四边形AFDE是平行四边形等(方法很多)13、考点:正方形的判定.专题:证明题.分析:由DE△AB,DF△BC,△ABC=90°,先证明四边形DEBF是矩形,再由BD是△ABC 的平分线,DE△AB于点E,DF△BC于点F得出DE=DF判定四边形DEBF是正方形.解答:解:△DE△AB,DF△BC,△△DEB=△DFB=90°,又△△ABC=90°,△四边形BEDF为矩形,△BD是△ABC的平分线,且DE△AB,DF△BC,△DE=DF,△矩形BEDF为正方形.点评:本题考查正方形的判定、角平分线的性质和矩形的判定.要注意判定一个四边形是正方形,必须先证明这个四边形为矩形或菱形.14、(1)证明:∵DE⊥BC,∴∠DFB=90°,∵∠ACB=90°,∴∠ACB=∠DFB,∴AC∥DE,∵MN∥AB,即CE∥AD,∴四边形ADEC是平行四边形,∴CE=AD;(2)解:四边形BECD是菱形,理由是:∵D为AB中点,∴AD=BD,∵CE=AD,∴BD=CE,∵BD∥CE,∴四边形BECD是平行四边形,∵∠ACB=90°,D为AB中点,∴CD=BD,∴▱四边形BECD是菱形;(3)当∠A=45°时,四边形BECD是正方形,理由是:解:∵∠ACB=90°,∠A=45°,∴∠ABC=∠A=45°,∴AC=BC,∵D为BA中点,∴CD⊥AB,∴∠CDB=90°,∵四边形BECD是菱形,∴菱形BECD是正方形,即当∠A=45°时,四边形BECD是正方形.15、提示:AA1 = BB1 = CC1 = DD1 =13(或=23).16、(1)∠正方形ABCO绕点C旋转得到正方形CDEF,∠CD=CB,∠CDG=∠CBG=90°.在Rt∠CDG和Rt∠CBG中,,∠∠CDG∠∠CBG(HL)1 (180 2120-)30=(2)解:∠∠CDG∠∠CBG,∠∠DCG=∠BCG,DG=BG.在Rt∠CHO和Rt∠CHD中,∠ ,∠∠CHO∠∠CHD(HL),∠∠OCH=∠DCH,OH=DH,∠∠HCG=∠HCD+∠GCD= ∠OCD+ ∠DCB= ∠OCB=45°,∠HG=HD+DG=HO+BG(3)解:四边形AEBD可为矩形.如图,连接BD、DA、AE、EB,四边形AEBD若为矩形,则需先为平行四边形,即要对角线互相平分,合适的点只有G为AB 中点的时候.∠DG=BG,∠DG=AG=EG=BG,即平行四边形AEBD对角线相等,则其为矩形,∠当G点为AB中点时,四边形AEBD为矩形.∠四边形DAEB为矩形,∠AG=EG=BG=DG.∠AB=6,∠AG=BG=3.设H点的坐标为(x,0),则HO=x∠OH=DH,BG=DG,∠HD=x,DG=3.在Rt∠HGA中,∠HG=x+3,GA=3,HA=6﹣x,∠(x+3)2=32+(6﹣x)2,解得x=2.∠H点的坐标为(2,0).。
正方形及其性质八年级人教版数学下册习题课件
线CG于点G,连接GF,求证: 解:设CD=BC=x,则CM=x-3,CN=x-2,
的面积. 把△ADN绕点A顺时针旋转90°得到△ABE.
(2)若BM=3,DN=2,求正方形ABCD的边长.
解:设CD=BC=x,则CM=x-3,CN=x-2, ∵△AEM≌△ANM,∴EM=MN. ∵BE=DN,∴MN=EM=BM+BE=BM+DN=5. ∵∠C=90°,∴MN2=CM2+CN2. 即52=(x-3)2+(x-2)2,解得x=6或-1(舍去), ∴正方形ABCD的边长为6.
证明:∵把△ ADN 绕点 A 顺时针旋转 90°得到△ ABE,∴△ADN≌△ABE, ∴∠DAN=∠BAE,DN=BE,AN=AE.
由题易知 E 在 CB 的延长线上. ∵∠DAB=90°,∠MAN=45°, ∴∠MAE=∠BAE+∠BAM=∠DAN+∠BAM=45°. ∴∠MAE=∠MAN. 又∵MA=MA,AN=AE, ∴△AEM≌△ANM.
3.【中考·天津】如图,四边形OBCD是正方形,O,D两 点的坐标分别是(0,0),(0,6),点C在第一象限,则 点C的坐标是( D ) A.(6,3) B.(3,6) C.(0,6) D.(6,6)
4.【中考·北京】把图①中的菱形沿对角线分成四个全等的直角 三角形,将这四个直角三角形分别拼成如图②、图③所示的 正方形,则图①中菱形的面积为___1_2____.
∵正方形 ABCD 的边长为 4, ∴AD=AB=4,∠DAB=90°. ∵点 E 在 AB 上且 BE=1,∴AE=3. ∴DE= AD2+AE2= 42+32=5. ∴DE+BE=5+1=6,即△ BFE 周长的最小值为 6. 【答案】B
最新人教版数学八年级下册第十八章《平行四边形-数学活:平行四边形中的翻折变换》优质教学课件
∴∠ABC=90°.
∴∠3=90°-60°=30°,
∴∠1=∠2=∠3=30°
在图中,你能找出所有30°的角吗?60°的角呢?还有其他度数的角吗?
G
还有120 ° 和150 °的角
利用折纸得到60°、30°、15°的角
【综合与实践】在线上教学中,教师和学生都学习到了新知识,掌握了许多新技能.例如教材八年级下册的数学活动--折纸,就引起了许多同学的兴趣.在经历图形变换的过程中,进一步发展了同学们的空间观念,积累了数学活动经验.实践发现:对折矩形纸片ABCD,使AD与BC重合,得到折痕EF,把纸片展平;再一次折叠纸片,使点A落在EF上的点N处,并使折痕经过点B,得到折痕BM,把纸片展平,连接AN,如图①.
八年级 下册
第18章 平行四边形
——数学活动:平行四边形中的翻折变换
学习目标: 1.能折出60°,30°,15°的角,学会应用。 2.通过折叠活动,加深对轴对称、全等三角形、特 殊的三角形、四边形等知识的认识; 3.经历折叠、观察、推理、交流、反思等数学活动 过程,积累数学活动经验.学习重点: 折纸做60°,30°,15°的角,学会应用.
D
6.矩形ABCD中,点E在边AB上,将矩形ABCD沿直线DE折叠,点A恰好落在边BC上的点F处,若AD=10,CD=6,则BE=____。
人教初中数学八下 18.2.3 正方形课件2 【经典初中数学课件汇编】
ab3 (3
b )(3 2a
2a)
解:
15 2 2 (a0,b0)
(1)原式= 13 7145 3 2 15 2(2)原式=
13 ab3 b 2a
3
2a
1 7155 2 14 2
ab3 2a2a b
1 15 5 222
ab22a•2a
5 3 4
2ab a
a 0,b 0
2ab 0
原式 2ab a
例1 计算:
(1) 100 00.1(2) 3 2 23
解:原式 1000 0 1 100 10
原式 3 2 23
1 1
18
(默2)
二次根式乘除运算的一般步骤: 1.运用法则,化归为根号内的实数运算; 2.完成根号内相乘,相除(约分)等运算; 3.化简二次根式.
19
例根1号计外算的:系数与系数相乘,积为结果的系数
对折两次,能完全重合
四边相等
对角线垂直且平分
菱形
四、归纳总结
一个角是直角
一组邻边相等
对角线互相垂直相等
一组邻边相等
一个角是直角
五、巩固新知
判断对错:
(1)如果一个菱形的两条对角线相等,那么它 一定是正方形. 对
(2)如果一个矩形的两条对角线互相垂直,那 么它一定是正方形. 对
(3)两条对角线互相垂直平分且相等的四边 形,一定是正方形. 对
204339
20(233)2
2 018 360
21
分析
二次根式的乘法:根式和根式按公 式相乘。
manbmn a(ba≥0,b≥0)
根号外的系数与系数相乘,积为结果的系数。
22
计算: 24 32 (默3)
八年级数学下册18.2.3正方形练习1(新版)新人教版【含答案】
正方形一、选择题1. 如图,在正方形 ABCD 的外侧,作等边三角形 ADE ,AC ,BE 订交于点 F ,则∠ BFC 的度数为()A.45°B.55°C.60°D.75°2. (西安师大附中联考)如图,在正方形 ABCD 中,对角线 AC , BD 订交于点 O ,则图中的等腰三角形有()A.4 个B.6 个C.8 个D.10 个3.如图,将一边长为 12 的正方形纸片的极点 A 折叠至边上的点 ,使 = 5,折痕为ABCDDCEDEPQ ,则 PQ 的长为 ( )A.12B.13C.14D.15二、填空题4.正方形的定义:有一组邻边 ______并且有一个角是 ______的平行四边形叫做正方形,因此正方形既是一个特其他有一组邻边相等的______, 又是一个特其他有一个角是直角的______.5.正方形的判断:(1)_ ___________________________________ 的平行四边形是正方形;(2)____________________________________ 的矩形是正方形;(3)____________________________________ 的菱形是正方形;16.若正方形的边长为a,则其对角线长为______,若正方形ACEF的边是正方形ABCD的对角线,则正方形 ACEF与正方形 ABCD的面积之比等于______.7.在正方形ABCD中,E为 BC上一点, EF⊥ AC,EG⊥ BD,垂足分别为F、G,若是AB52cm ,那么 EF+ EG的长为______.8.(易错题)如图,在正方形 ABCD中,点 F 为 CD上一点, BF 与 AC交于点 E,若∠ CBF=20°,则∠ AED等于 __________°.9. 如图,正方形ABCD的对角线长为8 2 , E 为 AB 上一点,若EF⊥AC于点 F, EG⊥ BD于点 G,则EF+EG=_________.10.(山东实验中学期中)如图,正方形ABCD的边长为 2,点 E 为边 BC的中点,点 P 在对角线BD上搬动,则PE+PC的最小值是 __________.三、解答题11. 以下列图,把正方形ABCD绕着点 A 按顺时针方向旋转获取正方形AEFG,边 FG与 BC交于点H. 试问线段HG与线段 HB相等吗?请先观察猜想,尔后再证明你的猜想.12.如图所示,已知点 A′, B′, C′, D′分别是正方形 ABCD 四条边上的点,并且AA′=BB′=CC′=DD′,求证:四边形A′B′C′D′是正方形.213.(西安中学二模)以下列图,在平行四边形ABCD中,对角线 AC,BD交于点 O,E 是 BD延长线上的点,且ACE是等边三角形 .(1)求证:四边形 ABCD是菱形;(2)若∠ AED=2∠EAD,求证:四边形 ABCD是正方形 .14.已知:如图, E 是正方形 ABCD对角线 AC上一点,且A E= AB, EF⊥ AC,交 BC于 F.求证:BF=EC.15.如图,P为正方形ABCD的对角线上任一点,PE⊥ AB于 E,PF⊥ BC于 F,判断 DP与 EF的关系,并证明.3参照答案1. C剖析由已知得AB=AE,∠ BAE=150°,∴∠ ABF=15°,∴∠ BFC=∠ ABF+∠BAF=15°+45°=60°.2. C 剖析:在正方形ABCD中, AB=BC=CD=DA,OA=OB=OC=OD,因此等腰三角形有△ABC,△ADC,△ ABD,△ CBD, OAB,OBC,△ OCD,△ ODA.3. B.4.相等、直角、矩形、菱形.5. (1) 有一组邻边相等,并且有一个角是直角;(2)有一组邻边相等.(3)有一个角是直角.6. 2 a,2∶1.7. 5cm.8.65 剖析在正方形 ABCD中,∠ DCE=∠BCE=45°, CB=CD.在△ CDE和△ CBE中,CD CB ,DCE BCE ,CE CE,∴△ CDE≌△ CBE.∴∠ CDE=∠CBF=20°.∵∠ AED是△ DCE的外角,∴ ∠ AED=∠CDE+∠DCE=65°.9. 4 2剖析设AC与BD订交于点O,由正方形的性质得△BEG是等腰直角三角形,故EG=BG.又∵ EF⊥ AC, EG⊥ BD, AC⊥ BD,∴四边形EGOF为矩形,∴ EF=OG,1 1∴ EF+EG=BG+OG=BO=BD=× 8 2 = 4 22 210. 5 剖析∵ BD是正方形 ABCD的对角线,作点 C 关于 DB的对称点 C′,则点 C′和点 A 重合,连接 AE交 DB于 P′,连接 CP′,则此时 P′E+P′C的值最小,∴ P′E+P′C=AE.在 Rt △ ABE中, AB=2, BE=1,由勾股定理得AE AB2BE 2 5 .11.解:HG=HB.证明:以下列图,连接AH.4∵四边形ABCD, AEFG都是正方形,∴∠ B=∠G=90°, AG=AB.又∵ AH=AH,∴Rt AGH≌ Rt ABH(HL),∴ HG=HB.12.证明:如图 .∵四边形ABCD为正方形,∴BC=CD=DA=AB,∠ A=∠ B=∠C=∠D=90°.又∵ AA′=BB′=CC′=DD′,∴D′A=A′B=B′C=C′D.∴AA′D′≌△ BB′A′≌△ CC′B′≌△ DD′C′(SAS).∴D′A′=A′B′=B′C′=C′D′,∠2=∠ 3.∴四边形A′B′C′D′为菱形.∵∠ 1+∠2=90°,∴∠ 1+∠3=90°.∴∠ D′A′B′=180° -( ∠1+∠3)=90°.∴四边形A′B′C′D′为正方形.13.证明:( 1)因为四边形 ABCD是平行四边形,因此 AO=CO,因为△ ACE是等边三角形,因此AE=CE.因此 AC⊥EO,即 AC⊥ BD,因此平行四边形ABCD是菱形 .5(2)因为△ ACE是等边三角形,因此∠ AEC=∠ EAC=60°,1因为 OA=OC,因此∠ AED=∠AEC=30°,因为∠ AED=2∠ EAD,因此∠ EAD=15°,因此∠DAC=∠ ADB=∠ EAD+∠AED=45°,由( 1)知四边形ABCD是菱形,因此∠ BAC=∠DAC=45°,因此∠ BAD=90°,因此四边形ABCD是正方形 .14.提示:连接AF.15.DP=EF,提示:连接BP.6。