八年级数学下册2.3不等式的解集教案(新版)北师大版 (2)
新北师大版八年级下册数学第二章不等式教案

第二章 一元一次不等式与一元一次不等式组第1节 不等关系教学目标1、感受生活中存在着大量的不等关系,了解不等式的意义,初步体会不等式是刻画量与量之间关系的一种重要模型。
2、经历由具体实例建立不等式模型的过程,进一步发展符号意识。
3、会用不等号表示简单的不等关系,能用实际生活背景和数学背景解释简单不等式的意义。
教学重点:用不等关系解决实际问题. 教学难点:正确理解题意列出不等式. 教学过程:1个课时教学内容一、回顾不等号的用法及其名称 1、不等号:<、>、≤、≥、≠、2、各种说法:大于、小于、不大于、不小于、不超过、不低于……二、用不等号表示下列各种说法(1)a 是正数 (2)b 是非负数 (3)m 是非正数 (4)a 与b 的和小于5 (5)y 的一半不小于3 (6)x 的4倍不大于-8三、做一做,P37(1)、(2)四、议一议:P38 一般地,用符号“<”(或“≤”),“>”(或“≥”)连接的式子叫做不等式。
五、思考:如图,用两根长度均为l cm 的绳子,分别围成一个正方形和圆. (1)如果要使正方形的面积不大于25cm 2, 那么绳长l 应满足怎样的关系式? (2)如果要使圆的面积不小于100cm 2,那么绳长l 应满足怎样的关系式? (3)当l=8时,正方形和圆的面积哪个大?l=12呢? (4)你能得到什么猜想?改变l 的取值,再试一试。
解:(1)因为绳长l 为正方形的周长,所以正方形的边长为4l ,得面积为(4l )2,要使正方形的面积不大于25 cm 2,就是(4l )2≤25. 即162l ≤25.(2)因为圆的周长为l ,所以圆的半径为 R=π2l .要使圆的面积不小于100 cm 2,就是π·(π2l )2≥100 即π42l ≥100(3)当l=8时,正方形的面积为1682=4(cm 2). 圆的面积为π482≈5.1(cm 2).∵4<5.1 ,∴此时圆的面积大.当l=12时,正方形的面积为16122=9(cm 2)。
北师大版数学八年级下册2.3《不等式的解集》教学设计

北师大版数学八年级下册2.3《不等式的解集》教学设计一. 教材分析《不等式的解集》是北师大版数学八年级下册第2.3节的内容。
这一节主要介绍了不等式的解集的概念,包括一元一次不等式和一元二次不等式的解集。
学生将学习如何求解不等式,如何表示不等式的解集,以及如何理解不等式解集的性质。
这一节的内容是整个初中数学不等式部分的基础,对于学生掌握数学知识体系至关重要。
二. 学情分析学生在学习本节内容之前,已经学习了不等式的基本概念和性质,包括一元一次不等式的解法。
他们已经掌握了基本的代数运算,能够进行简单的方程求解。
但是,对于一元二次不等式的解法和不等式解集的表示,他们可能还比较陌生。
因此,在教学过程中,需要逐步引导学生理解新知识,通过实例让学生直观地感受不等式解集的概念。
三. 教学目标1.理解不等式解集的概念,掌握求解一元一次不等式和一元二次不等式解集的方法。
2.能够用集合的形式表示不等式的解集,并理解解集的性质。
3.培养学生的逻辑思维能力和解决问题的能力。
四. 教学重难点1.教学重点:不等式解集的概念,求解不等式解集的方法。
2.教学难点:一元二次不等式解集的求解和不等式解集的性质。
五. 教学方法1.采用问题驱动的教学方法,引导学生通过解决实际问题,理解和掌握不等式解集的概念和方法。
2.使用多媒体教学辅助工具,通过图示和动画,直观地展示不等式解集的特点,帮助学生形象地理解知识。
3.采用小组合作学习的方式,让学生在讨论和交流中,共同解决问题,提高学生的合作能力和沟通能力。
六. 教学准备1.准备相关的教学PPT,包括不等式解集的图示和实例。
2.准备一些实际问题,用于引导学生理解和应用不等式解集的知识。
3.准备一些练习题,用于巩固学生的学习成果。
七. 教学过程1.导入(5分钟)通过一个实际问题,引导学生思考如何表示不等式的解集。
例如,给出不等式2x-3>1,让学生思考如何表示这个不等式的解集。
2.呈现(10分钟)通过PPT展示不等式解集的图示和实例,让学生直观地感受不等式解集的概念。
北师大版八年级数学(下)教案:2.3不等式的解集

课题:2.3不等式的解集课型:新授课年级:八年级教学目标:1. 理解不等式的解、不等式的解集、解不等式这些概念的含义,会在数轴上表示不等式的解集.2. 培养学生从现实生活中发现并提出简单的数学问题的能力,经历建立图形与数量的对应关系,能在数轴上表示不等式的解集,渗透数形结合的数学思想.3. 从实际问题抽象出数学模型,让学生认识数学与人类生活的密切联系,通过观察、归纳、类比、推断而获得不等式的解集与数轴上的点之间的关系,探索求不等式的解集的过程,体验数学活动充满着探索与创造.教学重点与难点:重点:理解不等式的解、利用数轴表示不等式的解集.难点:不等式解集的意义和不等式解集在数轴上的表示.课前准备:多媒体课件、实物投影.教学过程:一、知识回顾,垫平道路1.不等式的基本性质1:,不等式的基本性质2:,不等式的基本性质3: .2.将不等式化成“x>a”或“x<a”的形式:(1)x-5≤-1;(2)5x+3<3x-1.5.3.当x取下列数值时,不等式x+3<6是否成立?-4,3.5,4,-2.5,3,0,2,9;【引导语预设】上节课我们用类推的方法,仿照等式的基本性质推导出了不等式的基本性质,能不能按此方法推导出不等式的解和解不等式呢?本节课我们就来试一试.设计意图:通过对已有知识的回顾和思考,学生既感自然又倍添新奇,有跃跃欲试的心情;由易到难,引出课题,展示学习目标,培养学生养成回顾已学知识的习惯,并在回顾的过程中学会思考和质疑,通过质疑,自然地引出我们要研究和解决的问题.三、自主交流,合作探究合作探究一:现实生活中的不等式燃放某种礼花弹时,为了确保安全,人在点燃引火线后要在燃放前转移到10 m 以外的安全区域,已知引火线的燃烧速度为以0.02 m /s ,人离开的速度为4 m /s ,那么引火线的长度应满足什么条件?处理方式:学生分别独立作答,分小组进行讨论,小组之间交流,教师巡视、指导学生,待学生完成后,让学生说出自己的答案,并解说解题过程.解:设导火线的长度为x cm ,人转移到安全区域需要的时间最少为410,导火线的燃烧时间为0.02100x⨯.依题意,得 10002.0⨯x >410 . 即252>x .由不等式的基本性质2得x >5.设计意图:首先通过图片展示正确的燃放烟花的方法,对学生进行一次安全教育.继而让学生在解决问题的过程中先找出几个符合题意的解,然后发现问题,这样既复习了不等式,又给新课做好了铺垫.合作探究二:想一想(1)x =4,5,6,7.2能使不等式x >5成立吗? (2)你还能找出一些使不等式x >5成立的x 的值吗?(3)你能否根据方程的解来类推出不等式的解的概念吗?不等式的解唯一吗? (4)判断一个数是不是不等式的解,方法是什么? (5)我们应该把不等式的所有解组合在一起称为什么? (6)什么是解不等式?处理方式:预设引导语:“字母可以表示任何数,但对于满足x >5中的字母x ,它能够取任意数吗?如果不能,它能取哪些数呢?”启发学生动脑思考、小组合作动手验证,并从中初步体会不等式解、不等式解集的意义及不等式的解与方程解的不同之处.不等式的解与不等式的解集的区别与联系:小试身手: 1.判断正误:(1)不等式x -1>0有无数个解; (2)x =2是不等式2x <6的一个解; (3)x =1不是不等式x -2>0的解;(4)因为x <3使不等式x -5<0成立,所以该不等式的解集为x <3.2.在0、-4、3、-3、-5、4、-10中,_____________是方程x +4=0的解,_____________是不等式x +4≥0的解,______________是不等式x +4<0的解.设计意图:以问题串的形式引导学生发现,不等式的解有许多个,他们组成一个集合,称为不等式的解集,这样既符合认知规律,又能找到最佳切入点,使学生产生探索的欲望,从而引出不等式的解集并加以巩固,学生易于接受和理解.合作探究三:议一议【师】既然不等式的解集在通常情形下有很多个符合条件的解,那么我们能否用一种直观的方法把不等式的解集表示出来呢?请同学们相互交流,发表自己的见解.(1)请你用自己的方式将不等式x >5的解集和不等式x -5≤-1的解集分别表示在数轴上,并与同伴交流.(2)小组讨论归纳如何把不等式的解集在数轴上表示出来呢?请举例说明. 处理方式:学生小组讨论,相互交流,发表自己的见解.教师适当点拨引导. 预设学生作答:【生1】不等式x >5的解集可以用数轴上表示5的点的右边部分来表示(图1),在数轴上表示5的点的位置上画空心圆圈,表示5不在这个解集内.图1【生2】不等式x -5≤-1的解集x ≤4可以用数轴上表示4的点及其左边部分来表示形特定不等式的联区不等式的解满足一个不等式未知数某值 满足一个不等式未知数所值 个全如 :x =是 2x -3<的 一个如 是 2x -3<的 解某个解定是解集中的一解集一定包括了某个x <5(图2),在数轴上表示4的点的位置上画实心圆点,表示4在这个解集内.图2【生3】将不等式的解集表示在数轴上时,要注意:(1)指示线的方向:“>”向右,“<”向左.(2)有“=”用实心圆点,没有“=”用空心圆圈.【方法提炼】引导学生总结出在数轴上表示不等式解集的要点:小于向左画,大于向右画;无等号画空心圆圈,有等号画实心圆点.设计意图:通过引导学生回忆实数与数轴上的点的对应关系,知道不等式的解集也可以用数轴表示,同时,引导学生体验用数轴表示不等式的解集具有直观的优越性,以增强学生数形结合的意识.四、实际应用,升华新知1.例题解析根据不等式的基本性质求不等式的解集,并把解集在数轴上表示出来.(1)x-2≥-4;(2)2x≤8 ;(3)-2x-2>-10.处理方式:学生分别独立作答,分小组进行讨论,小组之间交流,教师巡视、指导学生;待学生完成后,让学生投影自己的答案,并解说解题过程.出现与答案不符者,不能急于否定或肯定,要利用认知冲突,进一步发展学生的思维能力.解:(1)根据不等式的基本性质1,两边都加上2,得x≥-2在数轴上表示为:如图3图3(2)根据不等式的基本性质2,两边都除以2,得x≤4在数轴上表示为:如图4图4(3)根据不等式的基本性质1,两边都加上2,得-2x>-8根据不等式的基本性质3,两边都除以-2,得x<4在数轴上表示为:如图5图5设计意图:通过例题的解析让学生理解不等式的解与不等式的解集,揭示不等式的解集与数轴上表示数的范围的一种对应关系,从而进一步加深学生对不等式解集的理解,以使学生进一步领会到数形结合的方法具有形象、直观、易于说明问题的优点.2.学以致用将下列不等式的解集分别表示在数轴上:(1) x >4 ; (2) x <-1 ; (3) x ≥-2 ; (4) x ≤6 .处理方式:学生独立作答,教师巡视、指导学生;待学生完成后,让学生投影自己的答案,并解说解题过程.设计意图:进一步通过习题的练习,让学生积极参与交流探索,最后老师作进一步诱导,能及时发现学生在分析问题、解决问题中的不同见解,以及思维的误区,及时进行纠正、指导.把学生在课堂上学习的热情激发出来,使得人人参与交流,给每个学生展示自己的平台.五、归纳小结,升华认知【师】通过今天的课程,你学到了哪些知识?掌握了哪些方法?明白了哪些道理? ……处理方式:学生畅所欲言,相互进行补充,用自己的语言进行归纳总结.教师补充升华,多媒体呈现.设计意图:让学生梳理所学知识点,以形成完整知识结构,培养了归纳概括能力和语言表达能力.另外有针对性的对本节课的重点加以强调,加深学生对本节课知识的掌握.激发学生主动参与的意识,调动学生的学习兴趣,为每一位学生都提供了在数学学习活动中获得成功的体验和充分展示自己的机会.六、达标测试,反馈矫正 A 层:1.(2013•湘西)若x >y ,则下列式子错误的是( )A .x ﹣3>y ﹣3B .﹣3x >﹣3yC .x +3>y +3D .33y x >.2.下列说法中,正确的有 ( )A .4是不等式x +3>6的解B .x +3<6的解是x <2C .3是不等式x +3≤6的解D .x >4是不等式x +3≥6的解的一部分 3. (2013•孝感)使不等式x ﹣1≥2与3x ﹣7<8同时成立的x 的整数值是( ) A .3,4 B .4,5 C .3,4,5 D .不存在 4.写出下列各图所表示的不等式的解集:(1); (2)。
最新BS北师大版 八年级数学 下册第二学期春 教学设计 教案 第二章 一元一次不等式与不等式组

2.1 不等关系1.了解不等式的概念;2.会用不等式表示简单问题的数量关系.(重点,难点)一、情境导入有一群猴子,一天结伴去摘桃子.分桃子时,如果每只猴子分3个,那么还剩下59个;如果每只猴子分5个,那么最后一只猴子分得的桃子不够5个.你知道有几只猴子,几个桃子吗?二、合作探究探究点一:不等式的概念下列各式中:①-3<0;②4x +3y >0;③x =3;④x 2+xy +y 2;⑤x ≠5;⑥x +2>y +3.不等式的个数有( )A .5个B .4个C .3个D .1个解析:③是等式;④是代数式,没有不等关系,所以不是不等式.不等式有①②⑤⑥,共4个.故选B.方法总结:本题考查不等式的判别,一般用不等号表示不等关系的式子是不等式.解答此类题的关键是要识别常见不等号:>,<,≤,≥,≠.如果式子中没有这些不等号,就不是不等式.探究点二:列不等式【类型一】 用不等式表示数量关系根据下列数量关系,列出不等式: (1)x 与2的和是负数;(2)m 与1的相反数的和是非负数; (3)a 与-2的差不大于它的3倍;(4)a ,b 两数的平方和不小于他们的积的两倍.解析:(1)负数即小于0;(2)非负数即大于或等于0;(3)不大于就是小于或等于;(4)不小于就是大于或等于.解:(1)x +2<0; (2)m -1≥0; (3)a +2≤3a ; (4)a 2+b 2≥2ab .方法总结:在列不等式时要善于将文字与相应的数学符号相对应,如负数――→对应<0等,列出相应的不等式.【类型二】 实际问题中的不等式亮亮准备用自己节省的零花钱买一台学生平板电脑.他现在已存有55元,计划从现在起以后每个月节省20元.若此学生平板电脑至少需要350元,则可以用于计算所需要的月数x 的不等式是( )A .20x -55≥350B .20x +55≥350C .20x -55≤350D .20x +55≤350解析:此题中的不等关系:现在已存有55元,计划从现在起以后每个月节省20元.若此学生平板电脑至少需要350元.列出不等式20x +55≥350.故选B.方法总结:用不等式表示数量关系时,要找准题中表示不等关系的两个量,并用代数式表示;正确理解题中的关键词,如负数、非负数、正数、大于、不大于、小于、不小于、不足、不超过、至少、至多等的含义.三、板书设计 1.不等式的概念 2.列不等式(1)找准题目中不等关系的两个量,并且用代数式表示; (2)正确理解题目中的关键词语的确切含义;(3)用与题意符合的不等号将表示不等关系的两个量的代数式连接起来; (4)要正确理解常见不等式基本语言的含义.本节课通过实际问题引入不等式,并用不等式表示数量关系.要注意常用的关键词的含义:负数、非负数、正数、大于、不大于、小于、不小于、不足、不超过,这些关键词中如果含有“不”“非”等文字,一般应包括“=”,这也是学生容易出错的地方.2.2 不等式的基本性质1.理解并掌握不等式的基本性质;(重点)2.能够运用不等式的基本性质解决问题.(难点)一、情境导入小刚的爸爸今年32岁,小刚今年9岁,小刚说:“再过24年,我就比爸爸年龄大了”.小刚的说法对吗?为什么?二、合作探究探究点一:不等式的基本性质【类型一】 根据不等式的基本性质判断大小已知a <b ,用不等号填空: (1)a +3________b +3; (2)-a 4________-b 4;(3)3-a ________3-b .解析:(1)两边都加3,a +3<b +3,(2)两边都除以-4,-a 4>-b4,(3)两边都乘-1,-a >-b ,两边都加3,3-a >3-b .故答案为:<,>,>.方法总结:不等式的基本性质是不等式变形的重要依据,关键要注意不等号的方向.性质1和性质2类似于等式的性质,但性质3中,当不等式两边乘或除以同一个负数时,不等号的方向要改变.【类型二】 判断变形是否正确已知a>b,则下列不等式中,错误的是()A.3a>3b B.-a3<-b3C.4a-3>4b-3 D.(c-1)2a>(c-1)2b解析:A.在不等式a>b的两边同时乘以3,不等式仍成立,即3a>3b,故本选项正确;B.在不等式a>b的两边同时除以-3,不等号方向改变,即-a3<-b3,故本选项正确;C.在不等式a>b的两边同时先乘以4、再减去3,不等式号方向不变,即4a-3>4b-3,故本选项正确;D.当c-1=0,即c=1时,该不等式不成立,故本选项错误;故选D.方法总结:“0”是很特殊的一个数,因此,解答不等式的问题时,应密切关注“0”存在与否,以防掉进“0”的陷阱.不等式的基本性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变;(2)不等式两边乘(或除以)同一个正数,不等号的方向不变;(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.探究点二:不等式性质的运用【类型一】把不等式化成“x>a”或“x<a”的形式把下列不等式化成“x>a”或“x<a”的形式.(1)2x-2<0;(2)3x-9<6x;(3)12x-2>32x-5.解析:根据不等式的基本性质,把含未知数的项放到不等式的左边,常数项放到不等式的右边,然后把系数化为1.解:(1)根据不等式的基本性质1,两边都加上2得2x<2.根据不等式的基本性质2,两边都除以2得x<1,(2)根据不等式的基本性质1,两边都加上9-6x得-3x<9.根据不等式的基本性质3,两边都除以-3得x>-3;(3)根据不等式的基本性质1,两边都加上2-32x得-x>-3.根据不等式的基本性质3,两边都除以-1得x<3.方法总结:运用不等式的基本性质进行变形,把不等式化成“x>a”或“x<a”的形式时,可以先在不等式两边同时加上一个适当的代数式,使含未知数的项在不等式的左边,常数项在不等式的右边(也可通过移项实现).然后把未知数的系数化为1,要注意的是:如果两边都乘(或除以)同一个正数,不等号方向不变;如果两边都乘(或除以)同一个负数,不等号方向改变.【类型二】根据不等式的变形确定字母的取值范围如果不等式(a+1)x<a+1可变形为x>1,那么a必须满足________.解析:根据不等式的基本性质可判断a+1为负数,即a+1<0,可得a<-1.方法总结:只有当不等式的两边都乘(或除以)一个负数时,不等号的方向才改变.三、板书设计1.不等式的基本性质性质1:不等式的两边都加上(或减去)同一个整式,不等号的方向不变;性质2:不等式的两边都乘(或除以)同一个正数,不等号的方向不变;性质3:不等式的两边都乘(或除以)同一个负数,不等号方向改变.2.把不等式化成“x>a”或“x<a”的形式“移项”依据:不等式的基本性质1;“将未知数系数化为1”的依据:不等式的基本性质2、3.本节课学习不等式的基本性质,在学习过程中,可与等式的基本性质进行类比,在运用性质进行变形时,要注意不等号的方向是否发生改变;课堂教学时,鼓励学生大胆质疑,通过练习中易出现的错误,引导学生归纳总结,提升学生的自主探究能力.2.3 不等式的解集1.理解并掌握不等式解和解集的概念;2.学会用数轴表示不等式的解集.(重点,难点)一、情境导入东东和小明、小红三人在公园里玩跷跷板,东东体重最重,坐在跷跷板的一端,小明坐在另一端,这时东东的一端着地,当体重比东东轻4公斤的小红和小明坐在一端时,东东被翘起离地.同学们,你们能算出小红的体重大约是多少吗?二、合作探究探究点一:不等式的解和解集下列说法中,错误的是()A.不等式x<3有两个正整数解B.-2是不等式2x-1<0的一个解C.不等式-3x>9的解集是x>-3D.不等式x<10的整数解有无数个解析:A.不等式x<3有两个正整数解1,2,故A正确;B.-2是不等式2x-1<0的一个解,故B正确;C.不等式-3x>9的解集是x<-3,故C正确;D.不等式x<10的整数解有无数个,故D正确;故选C.方法总结:判断某个数值是否是不等式的解,就是用这个数值代替不等式中的未知数,看不等式是否成立.若不等式成立,则该数是不等式的一个解;若不成立,该数值就不是不等式的解.探究点二:用数轴表示不等式的解集【类型一】在数轴上表示不等式的解集不等式3x+5≥2的解集在数轴上表示正确的是()A. B.C. D.解析:解3x+5≥2,得x≥-1,故选B.方法总结:注意在表示解集时大于等于,小于等于要用实心圆点表示;大于、小于要用空心圆点表示.【类型二】根据数轴求不等式的解关于x的不等式x-3<3+a2的解集在数轴上表示如图所示,则a的值是()A.-3 B.-12 C.3 D.12解析:化简不等式,得x<9+a2.由数轴上不等式的解集,得9+a=12,解得a=3,故选C.方法总结:本题考查了在数轴上表示不等式的解集,利用不等式的解集得关于a的方程是解题关键.三、板书设计1.不等式的解和解集2.用数轴表示不等式的解集本节课学习不等式的解和解集,利用数轴表示不等式的解,让学生体会到数形结合的思想的应用,能够直观的理解不等式的解和解集的概念,为接下来的学习打下基础.在课堂教学中,要始终以学生为主体,以引导的方式鼓励学生自己探究未知,提高学生的自我学习能力.2.4一元一次不等式第1课时一元一次不等式的解法1.理解一元一次不等式、不等式的解集、解不等式等概念;2.掌握一元一次不等式的解法.(重点,难点)一、情境导入1.什么叫一元一次方程?2.解一元一次方程的一般步骤是什么?要注意什么?3.如果把一元一次方程中的等号改为不等号,怎样求解?二、合作探究探究点一:一元一次不等式的概念【类型一】一元一次不等式的识别下列不等式中,是一元一次不等式的是()A.5x-2>0 B.-3<2+1xC.6x-3y≤-2 D.y2+1>2解析:选项A是一元一次不等式,选项B中含未知数的项不是整式,选项C中含有两个未知数,选项D中未知数的次数是2,故选项B,C,D都不是一元一次不等式,所以选A.方法总结:如果一个不等式是一元一次不等式,必须满足三个条件:①含有一个未知数,②未知数的最高次数为1,③不等号的两边都是整式.【类型二】根据一元一次不等式的概念求值已知-13x2a-1+5>0是关于x的一元一次不等式,则a的值是________.解析:由-13x2a-1+5>0是关于x的一元一次不等式得2a-1=1,计算即可求出a的值,故a=1.方法总结:利用一元一次不等式的概念列出相应的方程求解即可.注意:如果未知数的系数中有字母,要检验此系数可不可能为零.探究点二:一元一次不等式的解法【类型一】一元一次不等式的解或解集下列说法:①x=0是2x-1<0的一个解;②x=-3不是3x-2>0的解;③-2x +1<0的解集是x>2.其中正确的个数是()A.0个B.1个C.2个D.3个解析:①x=0时,2x-1<0成立,所以x=0是2x-1<0的一个解;②x=-3时,3x -2>0不成立,所以x=-3不是3x-2>0的解;③-2x+1<0的解集是x>12,所以不正确.故选C.方法总结:判断一个数是不是不等式的解,只要把这个数代入不等式,看是否成立.判断一个不等式的解集是否正确,可把这个不等式化为“x>a”或“x<a”的形式,再进行比较即可.【类型二】解一元一次不等式解下列一元一次不等式,并在数轴上表示:(1)2(x+12)-1≤-x+9;(2)x-32-1>x-53.解析:按照解一元一次不等式的基本步骤求解:去分母、去括号、移项、合并同类项、两边都除以未知数的系数.解:(1)去括号,得2x+1-1≤-x+9,移项、合并同类项,得3x≤9,两边都除以3,得x≤3;(2)去分母,得3(x -3)-6>2(x -5), 去括号,得3x -9-6>2x -10, 移项,得3x -2x >-10+9+6, 合并同类项,得x >5.方法总结:解一元一次不等式的基本步骤:去分母、去括号、移项、合并同类项、两边都除以未知数的系数,这些基本步骤与解一元一次方程是一样的,但一元一次不等式两边都除以未知数的系数时,一定要注意这个数是正数还是负数,如果是正数,不等号方向不变;如果是负数,不等号的方向改变.【类型三】 根据不等式的解集求待定系数已知不等式x +8>4x +m (m 是常数)的解集是x <3,求m 的值. 解析:先解不等式x +8>4x +m ,再列方程求解. 解:因为x +8>4x +m ,所以x -4x >m -8,-3x >m -8,x <-13(m -8).因为其解集为x <3,所以-13(m -8)=3.解得m =-1.方法总结:已知解集求字母系数的值,通常是先解含有字母的不等式,再利用解集唯一性列方程求字母的值.解题过程体现了方程思想.三、板书设计1.一元一次不等式的概念2.解一元一次不等式的基本步骤: (1)去分母; (2)去括号; (3)移项;(4)合并同类项;(5)两边都除以未知数的系数.本节课通过类比一元一次方程的解法得到一元一次不等式的解法,让学生感受到解一元一次不等式与解一元一次方程只是在两边都除以未知数的系数这一步时有所不同.如果这个系数是正数,不等号的方向不变;如果这个系数是负数,不等号的方向改变.这也是这节课学生容易出错的地方.教学时要大胆放手,不要怕学生出错,通过学生犯的错误引起学生注意,理解产生错误的原因,以便在以后的学习中避免出错.第2课时 一元一次不等式的应用1.会在实际问题中寻找数量关系列一元一次不等式并求解; 2.能够列一元一次不等式解决实际问题.(重点,难点)一、情境导入如果你要分别购买40元、80元、140元、160元的商品,应该去哪家商店更优惠? 二、合作探究探究点:一元一次不等式的应用 【类型一】 商品销售问题某商品的进价是120元,标价为180元,但销量较小.为了促销,商场决定打折销售,为了保证利润率不低于20%,那么最多可以打几折出售此商品?解析:由题意可知,利润率为20%时,获得的利润为120×20%=24元;若打x 折该商品获得的利润=该商品的标价×x 10-进价,即该商品获得的利润=180×x10-120,列出不等式,解得x 的值即可.解:设可以打x 折出售此商品,由题意得:180×x10-120≥120×20%,解得x ≥8.答:最多可以打8折出售此商品.方法总结:商品销售问题的基本关系是:售价-进价=利润.读懂题意列出不等式求解是解题关键.【类型二】竞赛积分问题某次知识竞赛共有25道题,答对一道得4分,答错或不答都扣2分.小明得分要超过80分,他至少要答对多少道题?解析:设小明答对x道题,则答错或不答的题目为(25-x)道,根据得分要超过80分,列出不等关系求解即可.解:设小明答对x道题,则他答错或不答的题目为(25-x)道.根据他的得分要超过80分,得:4x-2(25-x)>80,解得x>2123.因为x应是整数而且不能超过25,所以小明至少要答对22道题.答:小明至少要答对22道题.方法总结:竞赛积分问题的基本关系是:得分-扣分=最后得分.本题涉及到不等式的整数解,取整数解时要注意关键词如“至多”“至少”等.【类型三】安全问题采石场爆破时,点燃导火线后工人要在爆破前转移到400米外的安全区域.导火线燃烧速度是每秒1厘米,工人转移的速度是每秒5米,导火线至少要多少米?解析:根据时间列不等式,导火线燃烧时间>工人要在爆破前转移到400米外的安全区域时间.解:设导火线的长度需要x米,1厘米/秒=0.01米/秒,由题意得x0.01>4005,解得x>0.8.答:导火线至少要0.8米.【类型四】分段计费问题小明家每月水费都不少于15元,自来水公司的收费标准如下:若每户每月用水不超过5立方米,则每立方米收费1.8元;若每户每月用水超过5立方米,则超出部分每立方米收费2元,小明家每月用水量至少是多少?解析:当每月用水5立方米时,花费5×1.8=9元,则可知小明家每月用水超过5立方米.设每月用水x立方米,则超出(x-5)立方米,根据题意超出部分每立方米收费2元,列一元一次不等式求解即可.解:设小明家每月用水x立方米.∵5×1.8=9<15,∴小明家每月用水超过5立方米.则超出(x-5)立方米,按每立方米2元收费,列出不等式为5×1.8+(x-5)×2≥15,解不等式得x≥8.答:小明家每月用水量至少是8立方米.方法总结:分段计费问题中的费用一般包括两个部分:基本部分的费用和超出部分的费用.根据费用之间的关系建立不等式求解即可.【类型五】调配问题有10名菜农,每人可种甲种蔬菜3亩或乙种蔬菜2亩,已知甲种蔬菜每亩可收入0.5万元,乙种蔬菜每亩可收入0.8万元,要使总收入不低于15.6万元,则最多只能安排多少人种甲种蔬菜?解析:设安排x人种甲种蔬菜,则种乙种蔬菜为(10-x)人.甲种蔬菜有3x亩,乙种蔬菜有2(10-x)亩.再列出不等式求解即可.解:设安排x人种甲种蔬菜,则种乙种蔬菜为(10-x)人.根据题意得0.5×3x+0.8×2(10-x)≥15.6,解得x≤4.答:最多只能安排4人种甲种蔬菜.方法总结:调配问题中,各项工作的人数之和等于总人数.【类型六】方案决策问题为了保护环境,某企业决定购买10台污水处理设备.现有A、B两种型号的设备,其中每台的价格、月处理污水量及年消耗费如下表.经预算,该企业购买设备的资金不高于105万元.(1)请你设计该企业有几种购买方案;(2)若企业每月产生的污水量为2040吨,为了节约资金,应选择哪种购买方案.解析:(1)设购买污水处理设备A型x台,则B型为(10-x)台,列出不等式求解即可,x 的值取整数;(2)如图表列出不等式求解,再根据x的值选出最佳方案.解:(1)设购买污水处理设备A型x台,则B型为(10-x)台.12x+10(10-x)≤105,解得x≤2.5,∵x取非负整数,∴x可取0,1,2,有三种购买方案:购A型0台,B型10台;A型1台,B型9台;A型2台,B型8台;(2)240x+200(10-x)≥2040,解得x≥1,∴x为1或2.当x=1时,购买资金为12×1+10×9=102(万元);当x=2时,购买资金为12×2+10×8=104(万元).答:为了节约资金,应选购A型1台,B型9台.方法总结:此题将现实生活中的事件与数学思想联系起来,属于最优化问题,在确定最优方案时,应把几种情况进行比较.三、板书设计应用一元一次不等式解决实际问题的步骤: 实际问题――→找出不等关系设未知数列不等式―→解不等式―→结合实际问题确定答案本节课通过实例引入,激发学生的学习兴趣,让学生积极参与,讲练结合,引导学生找不等关系列不等式.在教学过程中,可通过类比列一元一次方程解决实际问题的方法来学习,让学生认识到列方程与列不等式的区别与联系.2.5一元一次不等式与一次函数第1课时一元一次不等式与一次函数的关系1.学会使用图象法解一元一次不等式;(重点)2.理解并掌握一元一次不等式与一次函数之间的关系,能够运用其解决问题.(重点,难点)一、情境导入小华准备将平时的零用钱储存起来,他已经存有300元,现在起每月存50元.小华的同学小丽以前没有存过零用钱,在听说小华存零用钱后,表示从现在起每月存70元,争取超过小华.根据以上信息,你能帮助小丽计算出她需要多久才能超过小华吗?二、合作探究探究点一:通过函数图象确定一元一次不等式的解集如图,函数y =2x 和y =-23x +4的图象相交于点A .(1)求点A 的坐标;(2)根据图象,直接写出不等式2x ≥-23x +4的解集.解析:(1)联立两直线解析式,解方程组即可得到点A 的坐标;(2)根据图形,找出点A 右边部分的x 的取值范围即可.解:(1)由⎩⎪⎨⎪⎧y =2x ,y =-23x +4,解得⎩⎪⎨⎪⎧x =32,y =3.∴点A 的坐标为(32,3); (2)由图象得不等式2x ≥-23x +4的解集为x ≥32.方法总结:通过联立两直线解析式求交点坐标的方法,求出交点坐标.求一次函数与一元一次不等式关键在于准确识图,确定出两函数图象的对应函数值的大小.探究点二:一元一次不等式与一次函数的关系【类型一】 根据一次函数的值求一元一次不等式的解集那么关于x 解析:由表格得到函数的增减性后,再得出y =-1时,对应的x 的值即可.当x =1时,y =-1,根据表可以知道函数值y 随x 的增大而减小,∴不等式kx +b ≥-1的解集是x ≤1.故答案为x ≤1.方法总结:此题考查了一次函数与一元一次不等式,认真体会一次函数与一元一次方程及一元一次不等式之间的内在联系.理解一次函数的增减性是解决本题的关键.【类型二】 根据一次函数图象求不等式的解集如图,函数y =kx +b (k ≠0)的图象经过点B (2,0),与函数y =2x 的图象交于点A ,则不等式0<kx +b <2x 的解集为( )A.x>0B.0<x<1C.1<x<2D.x>2解析:先利用正比例函数解析式确定A点坐标,然后观察函数图象得到,当1<x<2时,直线y=2x都在直线y=kx+b的上方,于是可得到不等式0<kx+b<2x的解集.把A(x,2)代入y=2x得2x=2,解得x=1,则A点坐标为(1,2),∴当x>1时,2x>kx+b.∵函数y=kx+b(k≠0)的图象经过点B(2,0),即不等式0<kx+b<2x的解集为1<x<2.故选C.方法总结:本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=ax+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在y轴上(或下)方部分所有的点的横坐标所构成的集合.三、板书设计1.通过函数图象确定一元一次不等式的解集2.一元一次不等式与一次函数的关系本课时主要是掌握运用一次函数的图象解一元一次不等式,在教学过程中采用讲练结合的方法,让学生充分参与到教学活动中,主动、自主的学习.第2课时一元一次不等式与一次函数的综合应用2.能够运用一元一次不等式与一次函数解决实际问题.(重点)一、情境导入甲乙两家商店用同样的价格出售同样的商品.并且又各自推出不同的优惠方案.甲推出的方案:凡在本店购买商品超过300元,即可享受会员9折优惠;乙推出的方案:凡在本店购买商品超过400元,即可获赠80元代金券.你能分析出这两种方法哪种更优惠吗?今天我们就将学习用不等式解决这些问题.二、合作探究探究点:一元一次不等式与一次函数关系的实际应用【类型一】数形结合问题某通讯公司推出了①②两种收费方式,收费y1,y2(元)与通讯时间x(分钟)之间的函数关系如图所示,若使用资费①更加划算,通讯时间x(分钟)的取值范围是________.解析:首先将已知点的坐标代入一次函数的解析式求得k值,然后确定两函数图象的交点坐标,从而确定x的取值范围:由题设可得不等式kx+30<15x.∵y1=kx+30经过点(500,80),∴k=110,∴y1=110x+30,y2=15x,解得:x=300,y=60.∴两直线的交点坐标为(300,60),∴当x>300时不等式kx+30<15x中x成立,故答案为x>300.方法总结:本题考查的是用一次函数解决实际问题,此类题是近年中考中的热点问题.注意利用一次函数求最值时,关键是应用一次函数的性质;即由函数y随x的变化,结合自变量的取值范围确定最值.【类型二】方案讨论问题某学校计划购买若干台电脑,现在从两家商场了解到同一型号的电脑每台报价均为6000元,并且多买都有一定的优惠.甲商场的优惠条件是:第一台按原报价收款,其余每台优惠25%;乙商场的优惠条件是:每台优惠20%.如果你是校长,你该怎么考虑,如何选择?解析:购买电脑的总费用等于电脑的台数乘以每台的单价,学校选择哪家商场购买更优惠就是比较y的大小.当y甲>y乙时,学校选择乙商场购买更优惠;当y甲=y乙时,学校选择甲、乙两商场购买一样优惠;当y甲<y乙时,学校选择甲商场购买更优惠.解:在甲商场购买花费y甲=6000+(x-1)×6000×(1-25%)=4500x+1500(x>1的整数);在乙商场购买花费y乙=x·6000×(1-20%)=4800x(x>1的整数);当y甲>y乙时,学校选择乙商场购买更优惠,即4500x+1500>4800x,解得x<5;当y甲=y乙时,学校选择甲、乙两商场购买一样优惠,即4500x+1500=4800x,解得x=5;当y甲<y乙时,学校选择甲商场购买更优惠,即4500x+1500<4800x,解得x>5.所以当购买少于5台电脑时,学校选择乙商场购买更优惠;当购买5台电脑时,学校选择甲、乙两商场购买一样优惠;当购买多于5台电脑时,学校选择甲商场购买更优惠.方法总结:根据实际问题用一次函数表示两个变量之间的关系,再通过比较两个函数的函数值得到对应的自变量的取值范围,从而解决实际问题.【类型三】最值问题为响应市政府“创建国家森林城市”的号召,某小区计划购进A、B两种树苗共17棵,已知A种树苗每棵80元,B种树苗每棵60元.(1)若购进A、B两种树苗刚好用去1220元,问购进A、B两种树苗各多少棵?(2)若购买B种树苗的数量少于A种树苗的数量,请你给出一种费用最省的方案,并求出该方案所需费用.解析:(1)根据题设条件,求出等量关系,列一元一次方程即可求解;(2)根据题设中的不等关系列出相应的不等式,通过求解不等式确定最值,求最值时要注意自变量的取值范围.解:设购进A种树苗x棵,则购进B种树苗(17-x)棵,(1)根据题意得80x+60(17-x)=1220,解得x=10,所以17-x=17-10=7,答:购进A种树苗10棵,B种树苗7棵;(2)由题意得17-x<x,解得x>172,所需费用为80x+60(17-x)=20x+1020(元),费用最省需x取最小整数9,此时17-x=17-9=8,此时所需费用为20×9+1020=1200(元).答:购买9棵A种树苗,8棵B种树苗的费用最省,此方案所需费用1200元.三、板书设计一元一次不等式与一次函数关系的实际应用分类讨论思想、数形结合思想本课时结合生活中的实例组织学生进行探索,在探索的过程中渗透分类讨论的思想方法,培养学生分析、解决问题的能力,从新课到练习都充分调动了学生的思考能力,为后面的学习打下基础.2.6一元一次不等式组第1课时一元一次不等式组的解法。
北师大版数学八年级下册2.3不等式的解集教学设计

-设计不同层次的练习题,从简单的数值替换到字母表达式的转换,逐步引导学生掌握一元一次不等式的解法。
2.针对难点内容的教学设想:
-对于抽象不等式的问题,采用问题驱动的教学方法,鼓励学生先将实际问题转化为数学语言,然后引导学生识别关键信息,建立不等式模型。
-对于解集的表示,通过小组讨论和合作学习,让学生在互动中探索如何在数轴上准确地表示解集,以及如何处理区间端点的包含与排除问题。
-针对不等式组等复杂问题,设计案例分析和综合练习,逐步引导学生学会分析多个不等式之间的关系,并运用逻辑推理和数学技巧解决问题。
为了有效突破重难点,教学设想还包括以下策略:
-利用信息技术,如多媒体课件和数学软件,为学生提供直观的学习工具,帮助他们在视觉和操作层面上更好地理解不等式的解集。
-实施差异化教学,根据学生的学习能力提供不同难度的任务,确保每位学生都能在原有基础上得到提升。
-创设情境教学,将数学问题融入到真实的生活情境中,让学生在实际操作中体验数学建模的过程,提高问题解决的能力。
-强化反馈机制,通过课堂提问、小组互评和课后反思,及时了解学生的学习情况,调整教学策略,确保教学目标的达成。
2.讨论过程:学生通过小组合作,共同探讨问题的解决方法,鼓励学生提出不同的观点和思路。
3.汇报展示:各小组汇报自己的解题过程和结果,其他小组进行评价,教师给予点评和指导。
(四)课堂练习
课堂练习是巩固新知、提高解题能力的重要环节。我将设计以下练习:
1.基础练习:针对一元一次不等式的解法,设计一些基础题目,让学生独立完成。
3.情感态度:强调数学在实际生活中的应用,培养学生的实用主义精神。
北师大版数学八年级下册第二章第一节不等关系教学设计

-结合数形结合的教学方法,让学生通过观察数轴、图像等,直观地理解不等式的解集。
2.教学过程:
(1)导入:以实际情境引入,如比较两个物体的长度、重量等,让学生认识到生活中存在的不等关系。
(2)新课导入:通过实例,引导学生发现不等式的定义和性质,并尝试用数学符号表达不等关系。
在课堂尾声,我将引导学生对本节课的知识进行总结归纳,包括:
1.不用。
2.不等式的解法:梳理求解一元一次不等式的步骤,强调数轴在解题过程中的重要性。
3.课堂收获:让学生分享在本节课中学到的知识和解题方法,以及自己的感悟。
五、作业布置
为了巩固学生对不等式知识的掌握,提高学生的解题能力,我将在课后布置以下作业:
4.能够运用数轴表示不等式的解集,理解解集的概念,并能够通过观察数轴直观地判断不等式的解集。
(二)过程与方法
1.通过实例引入,让学生观察、思考、总结,培养学生从具体问题中发现数学规律的能力。
2.采用问题驱动法,引导学生通过自主探究、合作交流的方式,理解和掌握不等式的性质和解法。
3.利用数形结合的方法,培养学生将数学问题与图形结合起来的思维习惯,增强学生的直观想象力和逻辑思维能力。
二、学情分析
北师大版数学八年级下册第二章第一节不等关系的内容,对学生来说是一个承上启下的重要部分。在此之前,学生已经掌握了方程和方程组的解法,对于数学中的等量关系有了一定的理解。然而,不等关系作为一种新的数学概念,对学生而言既有挑战性也充满新鲜感。
在这个阶段,学生正处于形象思维向抽象思维过渡的关键时期,他们对数学符号的理解和使用能力有限,对不等式的理解可能还停留在表面层次。因此,教学中需要关注以下几点:
2021年北师大版数学八年级下册2.3《不等式的解集》教案
2021年北师大版数学八年级下册2.3《不等式的解集》教案一. 教材分析《不等式的解集》是北师大版数学八年级下册第二章第三节的内容。
在此之前,学生已经学习了不等式的概念和性质,为本节内容的学习奠定了基础。
本节内容主要介绍了不等式的解集及其表示方法,旨在让学生理解不等式的解集的意义,掌握求解不等式解集的方法,并能够用集合或数轴表示不等式的解集。
二. 学情分析八年级的学生已经具备一定的不等式知识基础,对于不等式的概念和性质已有初步了解。
但学生在求解不等式解集和表示解集方面还存在一定的困难,因此,在教学过程中,需要关注学生的认知差异,针对性地进行指导。
三. 教学目标1.理解不等式解集的概念,掌握求解不等式解集的方法。
2.能够用集合或数轴表示不等式的解集。
3.提高学生分析问题、解决问题的能力。
四. 教学重难点1.重点:不等式解集的概念、求解方法及表示方法。
2.难点:不等式解集的求解和表示。
五. 教学方法采用问题驱动法、案例分析法、合作学习法等多种教学方法,引导学生主动探究、积极参与,提高学生分析问题、解决问题的能力。
六. 教学准备1.教学课件:制作涵盖不等式解集概念、求解方法、表示方法的课件。
2.教学素材:准备一些典型的不等式题目,用于引导学生求解和解集表示。
3.数轴工具:准备数轴工具,方便学生直观地表示不等式的解集。
七. 教学过程1.导入(5分钟)利用一个实际问题引入不等式解集的概念,如:“某班有男生和女生共50人,男生人数是女生的2倍,求该班男生和女生各有多少人?”引导学生思考并解答这个问题,从而引出不等式解集的概念。
2.呈现(10分钟)呈现不等式解集的定义,并通过示例让学生了解不等式解集的意义。
同时,介绍求解不等式解集的基本方法,如:因式分解法、图像法等。
3.操练(10分钟)让学生分组练习求解一些简单的不等式,如:ax > b(a、b为已知数),并引导学生用集合或数轴表示解集。
教师巡回指导,解答学生疑问。
北师大版八年级下册数学《2.3 不等式的解集》教学设计
北师大版八年级下册数学《2.3 不等式的解集》教学设计一. 教材分析北师大版八年级下册数学《2.3 不等式的解集》这一节主要介绍了不等式的解集的概念以及求解不等式的解集的方法。
教材通过具体的例子让学生理解不等式的解集是什么,并通过图示和数轴帮助学生更好地理解不等式的解集。
教材还介绍了不等式解集的表示方法,包括集合表示法和区间表示法。
此外,教材还提到了不等式解集的性质,如传递性、互补性等。
二. 学情分析学生在学习这一节之前,已经学习了不等式的基本概念和性质,对不等式有一定的了解。
但是,学生可能对不等式解集的概念和表示方法比较陌生,需要通过具体的例子和图示来帮助理解。
此外,学生可能对求解不等式解集的方法不太熟悉,需要通过练习和讲解来掌握。
三. 教学目标1.了解不等式解集的概念和表示方法。
2.学会求解不等式的解集的方法。
3.能够运用不等式解集的概念和求解方法解决实际问题。
四. 教学重难点1.不等式解集的概念和表示方法。
2.求解不等式解集的方法。
五. 教学方法采用讲解法、举例法、讨论法、练习法等多种教学方法,通过具体的例子和图示帮助学生理解不等式解集的概念和表示方法,通过讲解和练习让学生掌握求解不等式解集的方法。
六. 教学准备1.教材和教辅资料。
2.PPT或者黑板。
3.练习题。
七. 教学过程1.导入(5分钟)通过一个具体的例子引出不等式解集的概念,让学生思考和讨论这个例子中的不等式解集是什么,如何表示。
2.呈现(10分钟)讲解不等式解集的概念和表示方法,通过图示和数轴帮助学生理解。
同时,给出不等式解集的性质,如传递性、互补性等。
3.操练(10分钟)让学生练习求解一些简单的不等式解集,给予讲解和指导。
4.巩固(10分钟)通过一些练习题让学生巩固不等式解集的概念和求解方法。
5.拓展(10分钟)让学生思考和讨论如何将不等式解集的概念和求解方法应用到实际问题中,给出一些例子进行讲解。
6.小结(5分钟)对本节课的主要内容进行小结,强调不等式解集的概念和表示方法,以及求解不等式解集的方法。
北师大版八年级数学下册2.3不等式的解集公开课优质教案 (4)
《不等式的解集》教学目的1、使学生正确理解不等式的解,不等式的解集,解不等式的概念,掌握在数轴上表示不等式的解的集合的方法.2、培养学生观察、分析、比较的能力,并初步掌握对比的思想方法.3、在本节课的教学过程中,渗透数形结合的思想,并使学生初步学会运用数形结合的观点去分析问题、解决问题.教学重难点重点:不等式的解集的概念及在数轴上表示不等式的解集的方法. 难点:不等式的解集的概念.教学过程一、快速反应:你能举出不等式2x+4>0的三个解吗?这个不等式的解有多少个?它的解集是什么?有多少个解集?1-=x 是不等式( )的解.A .2+x <0B .43-x >0C .12+x <0D .25+-x >0将不等式的解集3≤x 表示在数轴上.二、自主学习:某市自来水公司按如下标准收取水费,若每户每月用水不超过5m 3则每立方米收费1.5元;若每户每月用水超过5m 3,,则超出部分每立方米收费2元.小颖家某月的水费不少于15元,那么她家这个月的用水量至少是多少? 答案:设小颖家这个月的用水量是xm 3,由于15>1.5×5,所以即:155.2215)5(255.1≥-≥-+⨯x x(1)你能找出几个使不等式155.22≥-x 成立的x 的值吗?(2)963,,=x 能使不等式155.22≥-x 成立吗?答案:(1)可以找出许多使不等式155.22≥-x 成立的x 的值,比如:取10=x ,则5.175.2102=-⨯>15不等式成立,取2.10=x 则9.175.22.102=-⨯>15不等式成立,取12=x ,则,5.215.2122=-⨯>15不等式成立,等等.(2)当3=x 时,5.35.232=-⨯<15不等式不成立.当6=x 时,5.95.262=-⨯<15不等式不成立.当9=x ,5.155.292=-⨯>15不等式成立.判断下列说法是否正确:(1)2=x 是不等式3+x <4的解;(2)2=x 是不等式x 3<7的解集;(3)不等式x 3<7的解是2=x ;(4)3=x 是不等式93≥x 的解.答案:(1)不正确; (2)不正确; (3)不正确; (4)正确. 在数轴上表示出下列不等式的解集:(1)x >﹣1; (2)1-≥x ;(3)x <﹣1; (4)1-≤x答案:(1)数轴上实心与空心的区别在于:空心点表示解集不包括这一点,实心点表示解集包括这一点.(2)数轴上表示不等式的解集遵循“大于向右走,小于向左走”这一原则.求不等式3+x <6的正整数解.答案:在不等式3x<6的两边都减去3,得:+6-x<33-+3∴x<3而满足x<3的正整数有1,2,所以不等式的正整数解为1,2.。
八年级下册北师大版2.3不等式的解集教学设计
在教学过程中,教师要关注学生的个体差异,充分调动学生的积极性,引导学生主动参与课堂,培养学生的自主学习能力和思维能力。同时,注重情感态度与价值观的培养,使学生在学习数学的过程中,形成良好的学习态度和价值观。
二、学情分析
(四)课堂练习
在学生理解和掌握了不等式的解法之后,我会安排一些课堂练习。这些练习题将包括基础题、提高题和应用题,旨在巩固学生对不等式解集的理解和应用能力。我会让学生独立完成练习,并在必要时提供个别指导。
在练习过程中,我会特别注意学生的解题思路和方法,鼓励他们展示解题过程,并在完成后进行讲解和讨论。通过这样的方式,学生能够及时发现并改正错误,进一步加深对知识的理解。
5.能够运用不等式组解决更复杂的问题,理解不等式组解集的求解方法。
(二)过程与方法
1.通过实例引入,发现不等式的概念,培养学生观察问题和发现问题的能力。
2.通过自主探究、小组讨论,引导学生总结不等式的性质和解法,培养学生分析问题和解决问题的能力。
3.通过典型例题的分析和讲解,让学生掌握解题思路和方法,提高学生的逻辑思维能力和解题技巧。
针对这些情况,教师在教学过程中应关注以下几点:一是加强学生对不等式性质的理解,通过典型例题和练习,让学生熟练掌握不等式的符号变化;二是引导学生通过图形、数轴等方式直观感受不等式解集,提高学生对解集表示方法的掌握;三是结合实际问题,培养学生将问题转化为数学模型的能力,增强学生的应用意识。同时,关注学生个体差异,给予每个学生个性化的指导和鼓励,提升他们在数学学习中的自信心和兴趣。
\(3(x-2) > 2x+4\)
\(5 - \frac{2}{3}(x+1) < 3x\)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
不等式的解集
1.理解并掌握不等式解和解集的概念;
2.学会用数轴表示不等式的解集.(重点,难点)
一、情境导入
东东和小明、小红三人在公园里玩跷跷板,东东体重最重,坐在跷跷板的一端,小明坐在另一端,这时东东的一端着地,当体重比东东轻4公斤的小红和小明坐在一端时,东东被翘起离地.同学们,你们能算出小红的体重大约是多少吗?
二、合作探究
探究点一:不等式的解和解集
下列说法中,错误的是( )
A.不等式x<3有两个正整数解
B.-2是不等式2x-1<0的一个解
C.不等式-3x>9的解集是x>-3
D.不等式x<10的整数解有无数个
解析:A.不等式x<3有两个正整数解1,2,故A 正确;B.-2是不等式2x-1<0的一个解,故B 正确;C.不等式-3x>9的解集是x<-3,故C正确;D.不等式x<10的整数解有无数个,故D正确;故选C. 方法总结:判断某个数值是否是不等式的解,就是用这个数值代替不等式中的未知数,看不等式是否成立.若不等式成立,则该数是不等式的一个解;若不成立,该数值就不是不等式的解.
变式训练:见《学练优》本课时练习“课后巩固提升”第2题
探究点二:用数轴表示不等式的解集
【类型一】在数轴上表示不等式的解集
不等式3x+5≥2的解集在数轴上表示正确的是( )
A. B.
C. D.
解析:解3x+5≥2,得x≥-1,故选B.
方法总结:注意在表示解集时大于等于,小于等于要用实心圆点表示;大于、小于要用空心圆点表示.变式训练:见《学练优》本课时练习“课堂达标训练”第4题
【类型二】根据数轴求不等式的解
关于x的不等式x-3<
3+a
2
的解集在数轴上表示如图所示,则a的值是( )
A.-3 B.-12 C.3 D.12
解析:化简不等式,得x<
9+a
2
.由数轴上不等式的
解集,得9+a=12,解得a=3,故选C.
方法总结:本题考查了在数轴上表示不等式的解集,利用不等式的解集得关于a的方程是解题关键.变式训练:见《学练优》本课时练习“课后巩固提升”第3题
三、板书设计
1.不等式的解和解集
2.用数轴表示不等式的解集
本节课学习不等式的解和解集,利用数轴表示不等式的解,让学生体会到数形结合的思想的应用,能够直观的理解不等式的解和解集的概念,为接下来的学习打下基础.在课堂教学中,要始终以学生为主体,以引导的方式鼓励学生自己探究未知,提高学生的自我学习能力.。