第4届小机灵杯四年级初赛解析
小机灵杯1-9届真题

第一届小机灵杯邀请赛 (2)第二届小机灵杯邀请赛 (4)第三届小机灵杯邀请赛 (6)第四届小机灵杯邀请赛 (7)第五届小机灵杯邀请赛复赛 (8)第六届小机灵杯邀请赛复赛 (10)第七届小机灵杯邀请赛复赛 (13)第八届小机灵杯邀请赛复赛 (15)第九届小机灵杯邀请赛复赛 (17)第一届小机灵杯邀请赛1、按规律填数:901 812 723 634 545 ( ) ( )2、在一个减法算式中,把被减数,减数,差这三个数相加,所得的和除以被减数(不等于0),商等于( ).3、右式中,不同的字母表示不同的数字,那么ABC表示的三位数是( ).4、如果2只白兔2天吃白菜2千克,照这样计算,那么8只白兔8天吃白菜( )千克.5、右面算式中的被除数是( )6、甲,乙两人今年的年龄和是33岁,4年后,甲比乙大3岁,问甲今年( )岁.7、把边长分别为10厘米,9厘米,8厘米和7厘米的4个正方形按照从大到小的顺序排成一行(如图)排成的图形的周长是( )厘米.8、有一堆围棋子,白子的个数是黑子个数的2倍,拿走96个白子后,黑子的个数是白子个数的2倍,原来黑子有( )个.9、有1张伍元币,4张贰元币,8张壹元币.要拿出8元钱可以有( )种不同的方法.10、亮亮和聪聪玩“石头、剪刀、布”的游戏,两人用同样多的石子做记录,输一次就给对方一颗石子,结果亮亮胜了3次,聪聪比原来多了9颗石子,他们共做了( )次游戏.11、任取自然数2,3,4,5,6,7中的三个数(不能重复)组成一个和,那么不相同的和共有( )个.12、新华小学的电表显示的用电量是61111,要使电表显示的用电量的五位数中有四个数码相同,学校至少再用( )度.13、黑、白两种颜色的珠子,一层黑,一层白,排成正三角形的形状(如图),当白珠子比黑珠子多10颗时,共用了( )颗白珠子.14、公园里有一排彩旗,按3面黄旗,2面红旗,4面绿旗的顺序排列,小明看到这排彩旗的尽头是一面绿旗,已知这排彩旗不超过200面,这排旗子最多有( )面.15、将写有数码的纸片倒过来看,0、1、8三个数字不变,6倒过来是9,9倒过来是6,而其余的数字倒过来则没有意义,某种游戏卡片是从001,002,003,004,……,998,999共有999张,那么,所有的卡片倒过来看,与原卡片数值保持不变的共有( )张.第二届小机灵杯邀请赛1.在右面竖式的各个方框中填上适当的数字,使竖式成立.2.推算是24,是28,那么是( )3.按下面的规律摆五角星,第82个五角星是( )色的.在这种颜色的五角星中,它是第( )个.★★★☆☆★☆★★★☆☆★☆★★4.学校有60人要参加“金孔雀”舞蹈比赛,比赛时要求每排人数即不能少于4人,也不能多于16人,问共有( )中排法.5.根据前面三个算式的启发,括号里面应当填上( )6.一个电影院的第一排有15个座位,以后每一排都比前一排多2个座位,最后一排有73个座位,这个电影院一共有( )个座位.7.下图中不含“★”的三角形比含“★”的三角形多( )个.8.把21分拆成两个自然数之和,且使这两个自然数的乘积最大,这个最大的乘积是().9.如图,在长方形ABCD 中,EFGH 是正方形.如果AF=11厘米,HC=14厘米,那么长方形ABCD 的周长是()厘米.10.将不大于12且互不相同八个自然数天使右图八个放个中,使九宫格图中的每一行,每一列以及对角线上的三个数的和都等于21.11.在一道减法算式里,被减数、减数与差的和是360,而差比减数的4倍还多20.被减数是 (),减数是(),差是().12.有两个完全一样的长方形,拼成两种长方形,一种长方形的周长是100厘米,另一种长方形的周长是140厘米,原来长方形的长是()厘米,宽是()厘米.13.某商场里面花布的米数是白布的3倍,如果每天卖20米白布和45米花布.()天以后,白布全部卖完,而花布还剩下180米,原来有花布()米.14.1996年爸爸的年龄是姐姐和妹妹年龄和的4倍,2004年爸爸的年龄是姐姐和妹妹年龄和的2倍,爸爸是()年出生的.15.书架上、下两层摆放着若干本书.如果从上层拿10本放到下层,则下层的本数是上层的2倍,如果从下层拿到10本放到上层,则上层的本数是下层的3倍,上层原来有图书()本,下层原来有图书()本.第三届小机灵杯邀请赛1、用简便方法计算下面的题目:100+99989796959465432-+-+-+-+-+-2、不同的余数有多少个?24?①余数共有()个;②不同的余数共有()个.3、用40米的铁丝围成一个长和宽不相等的而且是整米的长方形,一共有( )种不同的围法.4、时钟现在是整点,再过112小时,钟面上恰好是1点整.请你判断,现在是()整.5、把一张正方形的纸对折,再对折,这样连续几次,写出对折了4次时长方形的块数是()块.6、在下面一列数中,第12个数是:()123654789121110131415 ,,,,,7、右图中有()几个长方形8、小华和小强的体重是84千克,小华和小玲的体重是80千克,小强和小玲的体重是82千克小华比小玲重()千克.9、如图,在长方形ABCD 中,EFGH 是正方形.如果16AF =厘米,21HC =厘米,那么长方形ABCD 的周长是()厘米.10、从小到大的连续10个自然数,如果最小的数与最大的数之和是99,那么最小的数是().11、有四种不同面值的硬币如下图所示,假若你恰好有着四种硬币各一枚.一共能组成()种不同的钱数.请你用加法算式一个一个的列举出来.12、如下图,李明从A 走到B 再到C 再到D,走了38米.玛丽从B 到C 再到D 再到A,走了31米.这个长方形池ABCD 的周长是()米.第四届小机灵杯邀请赛1、699999+69999+6999+699+69=().2、一列数15791317 ,,,,,,从第二项起,后项减去它的前一项的差都相等,从左向右数起, 第()个数是197.3、观察下面三角形中的各数的规律,并按照这个规律求m 的值.m =().4、在一条直线上有四个点,,,A B C D ,点B 不在,,A C 之间,点D 是AC 的中点,从B 到D 的距离是20cm ,从B 到C 的距离是12cm ,从A 到B 的距离是多少?5、将一张正方形纸片对折成长方形后,在此长方形纸上画两条直线,然后沿着两条直线各剪一刀,最多能将这张正方形纸分成()块.6、一个长方形的长是40cm ,宽是25cm ,如果将此长方形剪两刀,得到3个或4个长方形,那么被剪两道后得到的那些长方形的周长之和最多是()cm .7、2个男孩和2个女孩参加歌咏比赛,他们一个接一个地唱,假定两女孩不能连着唱,必须隔开,能排成()种不同的顺序.8、假如20只兔子可换2只羊,9只羊可换3头猪,8头猪可换2头牛,那么用5头牛可换()只兔子.9、哥哥给了弟弟84分之后,弟弟反而比哥哥多36分,哥哥原来比弟弟多()分.10、用一只茶杯将水倒入一只空水瓶里,如果2杯水倒入这个水瓶里,这个水瓶的和水的重量是540克,如果5杯水倒入这个水瓶里,这个水瓶的和水的重量是600克,空水瓶的重量是( ). 11、在某一个月中,有三个星期日的日期刚好是偶数号,那么这一个月的8号是星期().12、小平和小丽到新华书店去买书,她们选中了同一本书,可是她们带的钱不够,小平差15元,小丽差2元,只好先合买一本,还多1元.每本书()元.13、一本字典共有199也,在这本字典的页码上,数字1共出现了()次.14、口袋里装有红、黄、蓝、绿4种颜色的球各5个.小华闭着眼睛从口袋里往外摸球,每次摸出1个球.他至少要摸出()个球才能保证摸出的球中每种颜色的球都有.15、10名乒乓球运动员分成三队,每队若干个队员进行单打比赛.规定同队的运动员彼此之间不用比赛,不同队的运动员两两比赛一场,那么比赛的总场数最少是( )场,最多是( )场.第五届小机灵杯邀请赛复赛1、199+298+397+496+595+20=().2、9937+4599+83=创( ).3、小明去同学家玩.走进了弄堂,但记不起门牌号码了.怎么办呢?他忽然想起,这个门牌号码挺有意思,曾经研究过一次.它是一个三位数,个位数字比百位数字大4,是位数字比个位也大 4.根据这点记忆,你能帮助小明找到同学家吗?如果想到了,就写在下面.门牌号码是().4、企鹅出版社出版了一套《天才智慧》丛书,出版社为这套丛书设计了一个漂亮的书盒,这套丛书连同书盒售价280元,书店允许顾客只买书而不买书盒.如果书价比书盒贵230元,那么书盒价为()元.5、波特有6只狗,如果他每次遛2只狗,那么狗的搭配情况总共有()种.6、请把图中①~⑨号小正方形的标号填入右图中九个小方格 中,使这九块小正方形刚好拼成中间的图形.7、一批图书,本数在50~60之间,平均分给9名同学,结果余下的书和每人分到的书的本数相同,那么这批图书共有多().8、园林工人在一条马路的一边栽树(包括端点),,每2棵树之间的距离是4米,一共栽树86棵,这条马路长()米.9、下图是用17根火柴棒摆成的,图中共有8个正方形.从图中至少拿掉()根火柴棒,才能将这8个正方形全部破坏(构不成正方形),请在图中表示出来.10、图10,线段10,8,3,a cm b cm c cm ===图形的周长是()cm .11、一位妇人,人到中年,很不愿提起自己的年龄,但她又不愿说谎.一天,有人问及她的年龄,她只好实话实说:“我4年后的年龄的6倍减去我3年前的年龄的6倍,就是我现在的年龄.”这位妇人今年( )岁.12、有5个袋子.A袋和B袋的重量之和是120千克,B袋和C袋的重量之和是135千克,C袋和D袋的重量之和是115千克,D袋和E袋重量之和是80千克,A袋、C袋、E袋子的重量之和是160千克.A袋的重量是( )千克,B袋的重量是( )千克,C袋的重量是( )千克,D袋的重量是( )千克,E袋的重量是( )千克.c g h k u,背面分别写着1,2,3,4,5,但是顺序不同.把13、有5张扑克牌,表面分别写着字母,,,,c k u,第二次出现了如下情况这些扑克牌随意散放,第一次出现了如下情况25k c g,那么字母u背面的数字是( ).2414、数一数下面图形共有( )个正方形.15、把27米长的一根绳子分成三段,使后一段比前一段多三米.那么这三段绳子分别长()米,( )米,( )米.第六届小机灵杯邀请赛复赛A 卷1、()()1+4+7+10++4047101337-+++++= .2、左式中,不同的符号表示不同的数字,那么○+△+◇=.3、下面的一列数是按一定的规律排列的,那么括号中的数是.1,4,10,22,46,(),190,4、在图中,从甲点出发沿逆时针方向绕五边形走,到乙点拐第一个弯,拐第101个弯在点.5、一本故事书的页码共用了192个数字,这本书一共有页.6、5位选手进行象棋比赛,每两个人之间都要进行比赛一盘,规定选手胜一盘得2分,平均一盘各得一分,输一盘不得分.已知比赛后,其中4位选手总共得16分,则第5位选手得了分.7、某年的三月份正好有4个星期二和星期五,那么这年的3月1日是星期.8、有十个连续自然数,前五个数的和为60,后五个数的和是?9、有一桶水,一只小鸭可饮用25天,如果和一只小鸡同饮,那么可以饮用20天,如果给一只小鸡饮用,可以饮用天?10、一个正方形队列,如果减少一横行和一竖行,要减少21人,问原正方形队列有人?11、如图所示的病房区共有五间单人病房,住着,,,A B C D 四位病人,根据不同的病情要求让A 与D 交换病房,C 与B 交换病房,每一次交换只能将一位病人搬入另一间无人的病房,那么需要完成交换,至少要为病人搬次家?54321DC B A D走廊走廊12、解放军某部赶往受灾地区志愿抗洪,原计划每辆汽车乘30人,还多3人任意分乘到各辆车上,但是由于有另外的紧急任务调走了一辆车,这时只好改为每辆汽车乘34人,还多5人任意分乘到各辆车上.原来准备辆车,共派出人去抗洪.1、()()6+8+10+12++368101214+34 -++++= .2、左式中,不同的符号表示不同的数字,那么○+△+◇=. 3、下面的一列数是按一定的规律排列的,那么括号中的数是. 1,3,7,15,31,(),127,4、把1到500号卡片依次发给甲、乙、丙、丁四个小朋友,1234567891011121314151617那么,119号卡片发给5、一本故事书共有185页,那么编这一本书的页码一共要个数字.6、右图共有个长方形.7、某月内有三个星期六是偶数,这个月的18日是星期.8、用3,4,5,6四个数字卡片排两位数乘两位数的竖式,乘积最大与乘积最小的两个积的差是?9、市里举行足球比赛,有15个区各派出1个代表队,每个队都要与其他各队比赛一场,这些比赛分别在15个区的区体育场进行,平均每个体育场要举行场比赛?10、用5张长2分米、宽1分米的长方形不干胶,贴在一块长5分米、宽2分米的木板上,将其盖住.你能设计出种不同方案.(通过旋转或翻转后形成相同图案的算一种)11、经纬小学有10名同学参加区数学比赛,平均分为90分,其中2名同学分别获得第一名和第二名,他们的得分都是整数,另外有五个人都得了92分,有3人都得了84分.获得第二名的同学得分.12、小军用一张正方形的纸片做剪纸练习,先把它从中间剪开得到两个长方形,再把其中一个长方形从中间剪开得到两个正方形,再把其中一个正方形从中间剪开得到两个长方形……那么这样剪了21次,一共剪成 长方形, 正方形.1、()()7+9+11+13++379111315+35 -++++= .2、左式中,不同的符号表示不同的数字,那么○+△+◇=. 3、下面的一列数是按一定的规律排列的,那么括号中的数是. 2,3,5,9,17,33,(),129,4、在图中,从A 点出发沿顺时针方向绕五角星走,到B 点拐第一个弯,拐第95个弯在点.5、小刚从一本书的54页阅读到67页,苏明从95页阅读到135页,小强从180页阅读到237页,他们总共阅读了页. 6、右图共有个长方形.7、希望小学的操场上有150名学生在跳绳和打球.其中女生54名,如果有63名学生在跳绳,有42名男生在打球,那么有名女生在跳绳.8、用2,3,4,5四个数字卡片排两位数乘两位数的竖式,乘积最大与乘积最小的两个积的和是?9、有15只甲A 足球队,进行双循环比赛(每两支队赛两场),共要举行场比赛?10、有很多张长2分米、宽1分米的长方形不干胶,和边长为1分米的正方形不干胶,用这些不干胶贴在一块长3分米、宽2分米的木板上,将其盖住.你能设计出种不同方案.(通过旋转或翻转后形成相同图案的算一种)11、继红小学有10名学生参加小机灵杯数学比赛,平均分为90分,平均分和每个同学的得分都是正整数,前9名的分数各不相同,其中一名同学得满分,第十名同学得分的最低分是分.12、小军用一张正方形的纸片做剪纸练习,先把它从中间剪开得到两个长方形,再把其中一个长方形从中间剪开得到两个正方形,再把其中一个正方形从中间剪开得到两个长方形……那么这样剪了36次,一共剪成长方形,正方形.第七届小机灵杯邀请赛复赛1、如果*a b a ba b =?-,例如4*3434313=?-=,那么13*8=2、用0~9十个数字填写下面的竖式,已经用了三个数字,剩下的七个数字,每个只能用一次,要使算式成立,减数是3、一个长方形队列,如果增加一横行和一竖行,就要增加13人,这个长方形的队列原来最少有人4、桌上有8张扑克牌,点数分别是2,3,5,6,7,8,9,10.甲、乙、丙三人各取两张牌,两张牌的点数分别是:甲是9,乙是15,丙是17,那么甲取出的两张点数是5、甲校原来比乙校多48人,为了方便就近入学甲校有若干人转入乙校,这是甲校反而比乙校少12人.甲校有人转入乙校6、将1,4,7,10,13,16,19,22,25这9个数分别填入下图中的9个圆圈中,使三条边上的四个数字和都想等,每条边上四个数字的和最大是7、如果三本书的价钱等于四本笔记本的价钱,而买四本书要比三本笔记本多花5角6分,那么买一本书和一本笔记本共需元8、下面两种那个途中,周长较大的是.(在横线上填写表示图名的字母)9、某三位数是7的倍数,且在400到500之间,它的百位数字与个位数字的和是9,那么这个三位数是10、下图中有10个编好号码的房间,你可以从小号码的房间周到相邻的大号码的房间,但是不能从大号码的房间走到小号码的房间,从1号房间走到10号房间共有种不同的走法11、有若干根长度相等的火柴棒,把这些火柴棒摆成如下面的图形,照这样摆下去,到第10行为止,一共用了根火柴棒12、在一块长5米,宽4米的长方形地上铺80块边长为5分米的小正方形地砖,现在把每相邻的两个小正方形的边界用细玻璃条隔开,并在长方形地的边界上用细金属条围上.如果嵌1米长的细玻璃条需3元,围1米长的细金属条需5元,那么共需元(接缝处长度忽略不计)第八届小机灵杯邀请赛复赛1、666666666666666+-锤=( )2、如果10987654320-+⨯÷+-+-⨯=,那么□=( ).3、观察表中各数的排列规律,A是( ).4、一个正方形,如果边长增加5厘米,这个正方形的周长增加( )厘米.5、两个正整数的和是18,其中一个数是另一个数的5倍.这两个数分别是( )和( ).6、如图,网格中的小正方形的面积都是1平方厘米,那么,阴影部分的面积是( )平方厘米.7、从1-10这10个正整数中,每次取出两个不同的数,使它们的和是4的倍数.共有( )种不同的取法.8、3只橘子的价格与4只苹果和1只梨的价格相同,4只梨的价格与6只橘子的价格相同.( )只苹果的价格与1只梨的价格相同.9、在6和26之间插入三个数,使它们每相邻的两个数的差相等,这些数的和是( ).10、64位同学都面向主席台,排成8行8列的方阵.小胖在方阵中,它的正左方有3位同学,正前方有2位同学.若整个方阵的同学向右转,则小胖的正左方有( )位同学,正前方有( )位同学.11、一个三位数除以37,商和余数相同,这个数最小是( ).12、在方框中添加适当的运算符号(不能添加括号),使算式成立.17□3□4□9□7□6□4=2013、用数字1,2,3,4组成各位数字都不相同的两位数,并按从小到大的顺序排列,第10个数比第7个数多( ).14、学生问数学老师的年龄.老师说:“由三个相同数字组成的三位数除以这三个数字的和,所得的结果就是我的年龄”,老师的年龄是( )岁.15、在图中的每个方格中各放1枚围棋(黑子或白子),有( )种放法.16、1881515188151518……共210个数字,其中1有( )个,8有( )个,5有( )个;这些数字的和是( ).17、王强、李刚是哥哥,小丽、小红是妹妹,四人的年龄和为90,哥哥都比妹妹大4岁,小红比王强小5岁.小红( )岁.18、给定三种重量的砝码5g,13g,19g,(每种砝码的数量足够的多),将它们组合凑成100g,(每种砝码至少用一个)有( )中不同的方法.19、有两个正整数,把这两个正整数相乘,再加上这两个正整数的和,结果正好等于34,这两个正整数中较大的数是( ).20、写出所有数字的和为13,积为24,这样的四位数的偶数是( ).第九届小机灵杯邀请赛复赛下面每题6分1、计算2102092082072062052047654321+-+-+-++-+-+-+= .2、如右图所示,从上往下,每个方框中的数都等于它下方两个方框中所填的数的和.最上层方框中两个数的和是.3、如右图所示,,,,,,,,,,a b c d e f g h i j 表示10个各不相同的数.表中的数为所在行与列对应字母的差,例如“6b h -=”.图中“九宫格”中就个数的和是.4、小胖比他的表姐小12岁,再过4年小胖的年龄是他表姐年龄的一般,他俩今年的年龄总和是岁.5、如下图所示,从A 点走到B 点,沿线段走最短路线,共有种不同的走法.6、五位打工者一天的辛苦劳动后共获得330元工资.由于工种不同,获得最高工资者比其他四位分别多的12,14,21和28元,获得最低工资者的工资是元.7、右边图形的周长是厘米.8、在数20468204682046820468中划去10个数字(不能改变原来数字的顺序),得到一个最小的十位数,这个最小的十位数是 .AB下面每题9分9、下边的乘法算式中,只知道一个数字“8”.请补全.那么这个算式的最小值是.⨯810、在1,2,3,4,5,6六个数中,选三个数,使它们的和能被3整除.那么,不同的选法共有种.11、有四袋糖,每袋糖的块数都不相同,任意三袋糖的块数总和都不少于60快.那么,这四袋糖的块数总和至少有块.12、3根火柴可以摆成一个小三角形.用很多根火柴摆成了如右图那样的一个大三角形.如果大三角形外沿的每条边都增加10根火柴,那么摆成这样形状的大三角形共需要根火柴. 下面每题12分13、一次测验中,小胖答错了6道题,小亚答错了7道题,小丁丁答对的题目的数量等于小胖和小亚答对题数量的总和,小丁丁大队了17道题,这次测验共有道题.+++=,小于2000的四位数中,数字和等于26的四位数共有14、1997的数字和是199726个.15、小刚在一个长方形中任取三条边相加,所得的和是78厘米,小亚在同一个长方形中任取三条边相加,所得的和是66厘米.这个长方形的周长是厘米.。
小机灵杯1-14届试题及详解

2003年2004年2005年2006年2007年2008年2009年2010年2,4593,2284,35,306,43157,328,169,6610,11 11,10 12,2660 13,60 14,792 15,116,49/4 17,G18,44 19,12 20,1536,72012年2013年第十一届小机灵杯五年级初赛试题1、5.5×6.6+6.6×7.7+7.7×8.8+8.8×9.92、五(1)班男生的平均身高是149cm,女生的平均身高是144cm,全班的平均身高是147cm。
那么,五(1)班的男生人数是女生人数的多少倍?3、甲、乙分别持有7张卡片,卡片上分别写有1、2、3、4、5、6、7七个数字。
如果两人各摸出一张卡片,那么两张卡片上数字和为8的可能性是多少?4、有一个圆形跑道,甲用40秒跑完一圈,乙跑的方向与甲相反,每15秒遇到甲一次。
乙跑完一圈需要几秒?5、50个各不相同的正整数,它们的和为2012,那么这些数里奇数最多有几个?6、把正整数排成下列数阵:1 2 5 10 …4 3 6 11 …9 8 7 12 …16 15 14 13 ………………第21行第21列的数是多少?7、有一叠卡片共200张,从上到下依次编号为1到200,从最上面的一张开始按如下次序进行操作:把最上面的第一张卡片拿掉,把下一张卡片放在这一叠卡片的最下面;再把最上面的第一张(原来的第三张)卡片拿掉,把下一张卡片放在这一叠卡片的最下面……依次重复这样做。
那么剩下的这张卡片是原来200张卡片里的第几张?8、某班有60人,其中42人会游泳,46人会骑车,50人会溜冰,55人会打乒乓球。
可以肯定至少有多少人四项运动都会?9、把既不是平方数也不是立方数的正整数(0除外)按从小到大的顺序排列,得到2,3,5,6,7,10,……,其中第1000个数是多少?10、如图所示,ABCD是梯形,三角形ADE的面积是1,三角形ABF的面积是9,三角形BCF的面积是27,那么三角形ACE的面积是多少?11、某学生漏看了写在两个三位数之间的乘号,将它们当成了一个六位数,而该六位数恰好是原来乘积的7倍,这两个三位数之和是多少?12、从1到900中选6个正整数,使这6个连续正整数的积的尾数恰好为4个0,有多少种选法?第十一届"小机灵"杯数学竞赛决赛五年级试题第一项,每题4分。
第十三届“小机灵杯”数学竞赛试题及答案

【解析】 12 12 (12 12) 6 , (12 12 12) 12 13 7.小明在计算时错把加法当做减法来计算,得到的结果是86,比正确的答案少186,原来加数中较大 的数是( )。 【解析】减法中的减数是 186 2 93 ,被减数是 93 86 179 ,所以加数中较大的是179 8.我们玩扑克牌时,当拿到2张大小相同的牌时(如2个5),我们会说拿到了“一对5”,当拿到了三 张大小相同的牌时(如3个K),我们就说拿到了“俘虏K”,当拿到了4张大小相同的牌时,我们就会 说拿到了“一个炸弹”。在一副扑克牌中,至少拿出( )张牌就能保证有“一个炸弹”。 【解析】最不利的情况:先取大小王、A到K各取3张,再取一张即可,至少 2 13 3 1 42 张 9.某咖啡店推出“喝咖啡半价”活动,规定,买一杯原价,买第二杯是半价,买第三杯只需3元,小周 这天喝了3杯咖啡,平均每杯19元,那么一杯咖啡的原价是( )元。 【解析】3杯咖啡共57元,前2杯54元,原价是 54 (1 0.5) 36 元
10.小王和小李两人都带了一些钱去买《哈利.波特》这本书。到书店一看,小王带的钱如果买2本确6 元,小李带的钱如果买2本缺31元。而两人带的钱合起来刚好能买3本。《哈利.波特》每本定价( )元。 【解析】两人的钱相加,买4本缺37元,恰好是3本的价格,所以1本37元 11. 19511952 19491951 差的末两位数是( )。 【解析】 1951 除以4余3, 31 除以4余3, 32 除以4余1,周期为2,所以 19511952 除以4余1, 1951 除以25余1,所以 19511952 除以25余1,所以 19511952 除以100余1,即 19511952 的末两位是01; 1949 除以4余1,所以 19491951 除以4余1, 1949 除以25余24, 241 除以25余24, 242 除以25余1,周期为2,所以 19491951 除以25余24,所以 19491951 除以100余49,即 19491951 的末两位是49;所以原式末两位是 101 49 52 12.小丽和小英都有一些连环画。如果小英给小丽7本连环画,小丽的了,连环画的本数就是小英的5 倍。如果小丽给小英9本连环画,小丽的本数就是小英的3倍。原来小英有( )本连环画,小丽有( )本连环画。 【解析】设小英有 x 本,小丽有 y 本 5( x 7) y 7 x 39 3( x 9) y 9 y 153 13. 一箱山楂有一百多粒,3粒3粒地数,多1粒;4粒4粒地数,多2粒,5粒5粒地数,多3粒;6粒6粒地数 ,多4粒。这箱山楂最多有( )粒。 【解析】一个一百多的数,除以3余1,除以4余2,除以5余3,除以6余4,所以这个数加上2就是3、4 、5、6的公倍数,这个数形如 60k 2 ,考虑到它是一百多,最大是178 14. 右图中,共有( )个长方形,这些长方形的面积和是( )。
上海小学数学杯赛

上海小学数学杯赛篇一:上海小学数学竞赛-四大杯[上海小学] 关于上海数学竞赛——“四大杯赛”全面解析1.走美杯:(“走进美妙的数学花园”的简称)思维竞赛以发现“数学之美、之用”为基本理念,难度最高;2.小机灵杯:思维竞赛难度居次,注重对学生的奥数能力的考查;3.中环杯:思维竞赛难度一般,但在综合性方面最为突出;4.希望杯:思维竞赛相对来说最为基础,是为鼓励和引导中小学生学好数学课程中的基础内容而设,再加以适当拓宽学生的知识面。
“走进美妙的数学花园”最有难度首先,“走美杯”在“资历”上其实是数学竞赛中的后起之秀。
这个杯赛注重对图形思维作考核,凭借新颖的考试形式以及最高的竞赛难度,在小学升学过程中能起到相应的作用。
这个杯赛是按照比例设奖的,分别为一等奖5%、二等奖10%、三等奖15%。
“走美杯”考生名次张榜公布,并且考完后迅速出成绩,在透明度和速度上还是有一定说服力的。
考前建议:考前1至2周内,学生需做好历年真题并深入分析,举一反三,这将直接决定孩子在考试中的表现。
尤其要注意三方面的加强:1.知识广度:比赛考察到的东西都是具有规律性的,找到相同题型规律解题,是可以事半功倍的;2.题目难度:学习与练习的难度非常重要,孩子只有在掌握难度题目之后,简单题才会变得更简单,因为只有站得高,才能看得远;3.吃透学通:题目不在多,在于精。
一道经典的题目,不一定很难,但必须要吃透,可以做到举一反三。
“走美杯”中小学生思维竞赛报名截止时间:每年12月底考试时间:第二年3月中上旬小机灵杯、中环杯:重视综合、适当难度“小机灵杯”和“中环杯”的难度分别位居第二及第三,适合小学三年级至五年级的学生报考。
“小机灵”竞赛全部为填空题,但难度较高,注重考察学生的思维能力。
“中环杯”竞赛设有填空题和动手动脑题,其中动手动脑题需要写全过程,每步都有相应的步骤分,最后一道“动手题”更是“中环杯”所独有的特色,难度略低于“小机灵”。
“中环杯”从考试形式和内容上来看都最为全面和严密,在综合性和代表性上可“称最”,其初赛的获奖率大致在25%,决赛一、二、三等奖的获奖率分别为:1%、2%、3%。
2015第十四届小机灵四年级初赛试题

第十四届“小机灵杯”数学竞赛初赛解析(四年级组)时间:60分钟 总分:120分(第1题~第5题,每题6分.)1.我们规定a b a a b b =⨯-⨯★,那么3243542019++++=★★★★ . 【答案】396【考点】定义新运算 【分析】原式()()()()33224433554420201919=⨯-⨯+⨯-⨯+⨯-⨯++⨯-⨯33224433554420201919=⨯-⨯+⨯-⨯+⨯-⨯++⨯-⨯202022=⨯-⨯ 4004=- 396=2.将一个等边三角形的三个角分别剪去,剩余部分是一个正六边形,剩余部分的面积是原来等边三角形面积的 .(得数用分数表示)【答案】23【考点】图形分割 【分析】如图所示,将剩余部分分割可得,剩余部分的面积是原来等边三角形面积的69,即23.3.小明去超市买牛奶.若买每盒6元的鲜奶,所带的钱正好用完;若买每盒9元的酸奶,钱也正好用完,但比鲜奶少买6盒.小明共带了 元. 【答案】108元【考点】列方程解应用题 【分析】设小明能买酸奶x 盒,则能买鲜奶()6x +盒; 由题意可列得方程:()669x x +=,解得12x =; 所以小明共带了912108⨯=元.4.用一根长1米的铁丝围成长和宽都是整数厘米的长方形,共有 种不同的围法.其中长方形面积的最大值是 平方厘米. 【答案】25种,625平方厘米 【考点】长方形的周长,最值问题 【分析】1米100=厘米,即为长方形的周长,因此长方形的长+宽100250=÷=厘米;不同围法有:504914824732525=+=+=+==+,共25种;由于长与宽的和一定,当它们的差越小时,它们的乘积也就是长方形的面积越大, 因此长方形面积的最大值是2525625⨯=平方厘米.5.用同样大小的正方形瓷砖铺正方形的地面,周围用白瓷砖,中间用黑瓷砖(如图1和图2的铺法).当正方形地面周围铺了80块白瓷砖是,黑瓷砖需要 块.【答案】361块 【考点】方阵问题 【分析】铺有80块白瓷砖的正方形地面上内部的黑瓷砖每行有()804419-÷=块;因此黑瓷砖需要1919361⨯=块.(第6题~第10题,每题8分.)6.在下列每个22⨯的方格中,4个数的排列存在着某种规律.根据这样的排列规律,可知 =◆ .【答案】5=◆【考点】找规律填数 【分析】观察发现:在表1中:()29163⨯=⨯⨯;在表2中:()38423⨯=⨯⨯;在表3中:()68443⨯=⨯⨯;所以在表4中,应该有()5623⨯=⨯⨯◆,求得5=◆.图2图1◆6258446824396127.学生们手中有1、2、3三种数字卡片,每种数卡都有很多张.老师请每位学生取出两张或三张数卡排成一个两位数或三位数,如果其中至少有三名学生排出的数是完全相同的,那么这些学生至少有 人. 【答案】73人 【考点】抽屉原理 【分析】学生可能排成的不同两位数有339⨯=个,可能排成的不同三位数有33327⨯⨯=个, 因此学生可能排成的不同的数一共有92736+=个;如果要保证其中至少有三名学生排出的数完全相同,那么这些学生至少有236173⨯+=人.8.已知2014+迎2015=+新2016=+年,且迎⨯新⨯年504=,那么迎⨯新+新⨯年=.【答案】128【考点】分解质因数 【分析】根据2014+迎2015=+新2016=+年可知:迎=新1+=年2+;由32504237=⨯⨯可得,只有504987=⨯⨯满足条件,即迎9=,新8=,年7=; 迎⨯新+新⨯年98877256128=⨯+⨯=+=.9.一个正方体的六个面上各自写着一些数,相对面上的两个数的和等于50.如果我们将右图的正方体先从左往右翻转97次,再从前往后翻转98次,这时这个正方体底面的数是,前面的数是 ,右面的数是 .(翻转一次表示翻转一个面)【答案】底面的数是37,前面的数是35,右面的数是11 【考点】周期问题 【分析】 根据题意,初始时左面的数是501337-=,后面的数是501535-=,底面的数是501139-=; 对于一个正方体来说如果连续朝同一个方向翻转4次就会回到初始方向;由于974241÷=,984242÷=, 所以原题中的操作可以简化为先从左往右翻转1次,再从前往后翻转2次; 先从左往右翻转1次后,正方体的六个面分别为:左面的数39,右面的数11,前面的数15,后面的数35,顶面的数37,底面的数13; 再从前往后翻转2次后,正方体的六个面分别为:左面的数39,右面的数11,前面的数35,后面的数15,顶面的数13,底面的数37; 所以按要求操作后,这个正方体底面的数是37,前面的数是35,右面的数是11.10.学校用一笔钱来买球,如果只买排球正好能买15个,如果只买篮球正好能买12个.现在用这些钱买来排球与篮球共14只,买来的排球与篮球相差 只. 【答案】6只【考点】鸡兔同笼 【分析】由于[]15,1260=,因此可以假设这笔钱是60,那么一只排球的价格是60154÷=,一只篮球的价格是60125÷=;现在用这些钱买来的14只球中篮球有()()60414544-⨯÷-=只,排球有14410-=只, 所以买来的排球与篮球相差1046-=只.(第11题~第15题,每题10分.)11.小明骑车,小明爸爸步行,他们分别从A 、B 两地相向而行,相遇后小明又经过了18分钟到达了B 地.已知小明骑车的速度是爸爸步行速度的4倍,小明爸爸从相遇地点步行到A 地还需要 分钟. 【答案】288分钟 【考点】行程问题 【分析】如图所示,当小明与爸爸相遇时,由于小明的速度是爸爸的4倍且二人运动时间相同, 因此小明的路程应该是爸爸的4倍(图中的4S 与S );而相遇后小明又经过18分钟前进了S 的路程才到达了B 地;因为小明的速度是爸爸的4倍,所以爸爸步行S 的路程需要18472⨯=分钟; 又因为爸爸从相遇地点步行到A 地还需要再走4S 的路程, 所以小明爸爸从相遇地点步行到A 地还需要724288⨯=分钟.12.如图所示,两个正方形的周长相差12厘米,面积相差69平方厘米,大、小两个正方形平方厘米, 平方厘米.小明爸爸【答案】169平方厘米,100平方厘米【考点】正方形的周长与面积,平方差公式 【分析】设大正方形的边长是a 厘米,小正方形的边长是b 厘米,由题意得: 22441269a b a b -=⎧⎨-=⎩,整理得()()369a b a b a b -=⎧⎪⎨+-=⎪⎩,即为323a b a b -=⎧⎨+=⎩; 解得1310a b =⎧⎨=⎩ ,所以大正方形面积是213169=平方厘米,小正方形面积是210100=平方厘米.13.甲、乙两人用同样多的钱去买同一种糖果,甲买的是铁盒装的,乙买的是纸盒装的.两人都尽可能多地购买,结果甲比乙少买了4盒且余下6元,而乙用完了所带的钱.如果甲用元原来3倍的钱去购买铁盒装的糖果,就会比乙多买31盒,而且仍余下6元.那么铁盒装的糖果售价为每盒 元,纸盒装的糖果售价为每盒 元. 【答案】12元,10元【考点】约数与倍数,列方程解应用题 【分析】甲用原有的钱去买铁盒余下6元,那么用3倍的钱去买铁盒理论上应余下6318⨯=元, 然而仍余下6元,说明18612-=元刚好又可买若干个铁盒,即铁盒的单价应为12的约数; 有根据余下6元可知铁盒的单价必定大于6元,所以铁盒的单价只能是每盒12元; 设乙买了x 盒纸盒,由甲两次所用的钱数关系可列得方程: ()()3124612316x x -+=++⎡⎤⎣⎦,解得21x =;所以两人原有的钱数为()122146210⨯-+=元,纸盒的单价是每盒2102110÷=元.14.如下图所示,将一个由3个小正方形组成的L 形放入右边的格子中,共有 种放法.(L 形可旋转)【答案】48种【考点】对应法计数 【分析】首先,右图中共有9个,每个田字格中L 形有4种放法,分别为:,共4936⨯=种;其次,还有一些L 形不包含于图中的某个田字格,例如下图中的L 形1号:观察发现这些L 形分别对应了图中方格外部的一个凹拐角,而这样的凹拐角共有12个(如图所示),因此不包含于图中的某个田字格的L 形也有12种; 综上所述,图中的L 形共有361248+=种放法.15.一棵生命力极强的树苗,第一周在树干上长出2条树枝(如图1),第二周在原先长出的每条树枝上又长出2条新的树枝(如图2),第三周又在第二周新长出的每条树枝上再长出2条新枝(如图3)这棵树苗按此规律生长,到第十周新的树枝长出来后,共有条树枝.【答案】2046条【考点】等比数列求和 【分析】第一周树上新长出12⨯条树枝,共有2条树枝;第二周树上新长出2222⨯=条树枝,共有222+条树枝;第三周树上新长出23222⨯=条树枝,共有23222++条树枝; 依次类推第十周树上新长出102条树枝,共有23102222++++条树枝; 因为2310112222222046++++=-=,所以第十周新的树枝长出来后共有2046条树枝.图3图2图1。
8四年级小机灵初赛冲刺第四讲学生版

四年级”小机灵”杯初赛冲刺讲义第四讲第一部分:趣味知识ABC1.首先使用符号“0”来表示零的国家或民族是()。
A、中国B、印度C、阿拉伯2.刘徽首先建立了可靠的理论来推算圆周率,他所算得的“徽率”是()。
A、3.1B、3.14C、3.14159263.祖冲之的代表作是()。
A、《考工记》B、《海岛算经》C、《缀术》4.以下哪种能源最为理想()。
A、太阳能B、石油C、煤炭5.为什么大队人马过桥时不能步伐一致?()。
A、噪声大B、伪装身份C、避免共振6.数学竞赛源于()。
A、前苏联B、中国C、匈牙利7.“任何一个不小于6的素数都能表示成两个不同的奇素数的和”说的是()。
A、黎曼假设B、哥德巴赫猜想C、陈氏定理8.“几何”一词的发明者是()。
A、刘徽B、祖冲之C、徐光启9.以下那组数属于“亲和数”()。
A、220和284B、22和28C、384和43210.以下哪个数不是完全数()。
A、6B、28C、32第二部分:思维挑战营1、200920082007200620052004200320025432+--++--+++--2、(2011第九届小机灵杯四年级初赛真题第3题)如图的竖式除法中,不同的字母表示不同的数字,竖式除法的商是(14285)。
A DB H E GG 9 9 9 9 9 9G B 9B H A 9A D E 9 E F C 9 C E D 9 D I 03、黑板上一共写了10040个数字,包括2006个1,2007个2,2008个3,2009个4,2010个5.每次操作都擦去其中4个不同的数字并写上一个第5种数字(例如擦去1、2、3、4各1个,写上1个5;或者擦去2、3、4、5各一个,写上一个1;……). 如果经过有限次操作后,黑板上恰好剩下了两个数字,那么这两个数字的乘积是 .4、( 2011年第十届小机灵杯四年级初赛试题第9题)60千克大米和20千克面粉工1760元;40千克大米和10千克面粉的价钱与20千克大米和40千克面粉的价钱相等。
第十二届“小机灵”杯初赛三年级详解
———————————————————————————————————————— 新舟同类型题目:
三年级超常班暑假班第五讲植树问题练习 6 小王要到大厦的 36 层去上班,一日因停电他步行上楼,他从一 层到六层用了 100 秒。如果用同样的速度走到 36 层,还需要_________秒。 ——————————————————————————————————————————— 解析:从一楼到七楼需要走 6 层,而从 1 楼走到 7 楼走了 6 层,则下楼时也走了 6 层,走每一层用的时 间 14 秒,则来回需要 2 6 14 168 秒。 ————————————————————————
三年级超常班秋季班第九讲例 5: 2 角和 5 角的硬币共 30 枚,总钱数是 102 角, 2 角硬币有( )枚, 5 角硬币有( )枚。 ———————————————————————————————————————————
解析: 我们可以用假设法来解这道题目, 如果假设 260 张都是二十元的人民币, 那么有 260 20 5200 元,而实际是 100 100 10000 元,少了 10000 5200 4800 元,说明有 50 元的,而每出现一张 50 元的,
———————————————————————————————————————— 新舟同类型题目: 三年级超常班秋季班第二讲趣味数字例 7 在 1-600 的自然数中, ( 1 )出现________次数字 4 ; ( 2 )含有数字 6 的数共有_______个。
———————————————————————————————————————————
考点:数字谜
———————————————————————————————————————— 新舟同类型题目:
四年级下册数学试题-思维训练专题:04应用题与平均数(学生版+教师版)全国通用
在献爱心活动中,四(1)班捐款260元,四(2)班捐款比四(1)班的2倍少70元,两个班级共捐款多少元?新华书店运来560本《白雪公主》,卖了8天后,还剩240本。
平均每天卖了多少本?小华的集邮册有16页,一共放了288枚邮票。
小青的集邮册平均每页放的邮票比小华少4张,一共放了168枚邮票。
小青的集邮册有多少页?光明小学组织585名师生去春游,每辆客车有45座,需要准备几辆客车才能保证人人有座?一筐梨连筐重40千克,卖掉一半后,连筐重22千克,筐重多少千克?小胖和小巧一起去买相同的圆珠笔。
小胖买了2盒,48支一盒,每盒46元;小巧买了3盒,32支一盒,每盒30元。
谁买的比较合算?某商场搞促销活动,原价每瓶52元的一种洗发水,现在只要买12瓶就可以送一瓶相同的洗发水。
照这样买法,实际每瓶洗发水售价多少元?小明家养了一些鸭子,要知有多少,细细想一想:“鸭子一半下了水,一半除以2正往水里走,剩下15只围着小明身边吃食物,一共有多少只?一根绳子剪去一段后,剩下的绳子是剪去的5倍,剪去的部分占这根绳子的几分之几?星期天,小胖一家约好去杭州一日游,车子在高速公路上飞快地行驶,只见一块块指路牌飞速掠过,小胖留意到其中两块牌子如下图:5:00时看到:8:00时看到:问:小胖一家几点可以到杭州?如下图是小兔们的家,它们的房间与花园组成一个长方形,长25米,宽12米。
乖乖兔的房间是正方形的,边长为6米;帅帅兔的房间是长方形的,长9米,宽5米。
乖乖兔房间的面积是多少?帅帅兔房间的周长是多少?谁的房间面积大,大多少?小兔家的花园面积有多大?给小兔家的花园装上篱笆,篱笆长多少米?50个学生参加期末考试,语文得100分的有15人,数学得100分的有24人,两门学科都得100分的有9人,两门学科都没得100分的有多少人?距杭州225千米距杭州90千米平均数应用题的基本特点是:把几个大小不等的数量,在总量不变的情况下,通过移多补少,使它们成为相等的几份,求其中的一份是多少.解答这类题需要紧抓“移多补少”的解题思路.解题时关键要确定“总数量”以及与“总数量”相对应的“总份数”,然后用总数量除以总份数求出平均数.另外,并需要熟练掌握以下三个主要数量关系式:总数量÷总份数=平均数总数量÷平均数=总份数平均数×总份数=总数量下图是小华五次数学测验成绩的统计图。
2014第12届小机灵杯五年级初赛解析
第十二届“小机灵杯”智力冲浪展示活动初赛试卷详解(五年级组)时间:80分钟总分:120分一、选择题(每题1分)1、世界数学最高奖是(C )。
它于1932年在第九届国际数学家大会上设立,于1936年首次颁奖,是数学家的最高荣誉奖。
A 、诺贝尔数学奖B 、拉马努金奖C 、菲尔兹奖2、他是古希腊最负盛名、最有影响的数学家之一。
他最著名的著作《几何原本》是欧洲数学的基础,被誉为“几何之父”。
在牛津大学自然历史博物馆还保留着他的石像,他是(A )。
A 、欧几里得B 、丢番图C 、毕达哥拉斯此题曾在ICS 五年级ICS 课件中小机灵杯智力故事中出现过3、对圆周率的研究最早发源于(A )。
A 、中国B 、罗马C 、希腊4、“=”号是由英国人(B )发明的。
A 、狄摩根B 、列科尔德C 、奥特雷德此题曾在ICS 五年级ICS 课件中小机灵杯智力故事中出现过5、古时候的原始人捕猎,捕到一只野兽对应一根手指。
等到10根手指用完,就在绳子上打一个结,这就是运用现在数学中的(C )。
A 、出入相补原理B 、等差数列求和C 、十进制计数法二、填空题(每题8分)。
6、已知:[(11.2 -1.2⨯) ÷4 +51.2⨯]0.1 =9.1,那么= 【考点】代数— — 解方程【分析】此题较容易,计算仔细即可。
【解析】(11.2 1.2)451.291-÷⨯+= (11.2 1.2)439.811.2 1.29.951.2 1.251.2 1.250.96-÷⨯=-÷=÷==÷= 7、分母是两位数、分子是1,且能化成有限小数的分数有个 。
【考点】数论— — 分数性质【分析】此题略有难度,需要考生掌握能化为有限小数的分数的性质。
【解析】一个最简分数,若能化为最简分数,那么它的分母只能含有质因子 2、5,而分母为两位数,分子是1 的分数显然是最简分数所以这些分数的分母分解质因数后应该形如25ab⨯1、当0b =时,a 可取4到6,共3种2、当1b =时,a 可取1到4,共4种3、当2b =时,a 可取0到1,共2种当3b ≥时,325599ab⨯≥>综上,共3429++=个。
第8届小机灵3年级初赛解析
第八届“小机灵杯”小学数学竞赛三年级初赛全方位解析1、666+666-666×666÷666 = ( )。
【考点】速算与巧算——抵消法【解析】原式=666+666-666×1=6662、如果10 – 9 + 8 ×□÷ 7 + 6 -5 + 4 – 3× 2 =0,那么□=( )。
【考点】速算与巧算——带符号搬家【解析】原式=8×□÷7+(10-9+6-5+4-3×2)=8×□÷7+0=0,即8×□÷7=0,也就是8×□=0。
所以□=03、观察表中各数的排列规律,A是( )。
【考点】找规律【解析】横向看:第一行依次加1=1×1第二行依次加4=2×2第三行依次加9=3×3第四行依次加16=4×4所以A=20+16=364 、一个正方形,如果边长增加5厘米,这个正方形的周长增加( )厘米。
【考点】巧求周长【解析】一条边增加了5厘米,则四条边一共增加了5×4=20(厘米)。
5 、两个正整数的和是18,其中一个数是另一个数的5倍.这两个数分别是( )和( )。
【考点】和差倍问题——小数=和÷(倍数+1)【解析】利用和倍公式:小数:18÷(5+1)=3,大数:3×5=156 、如图,网格中的小正方形的面积都是1平方厘米,那么,阴影部分的面积是( )平方厘米。
【考点】巧求面积【解析】方法1:如下图,图形被分为红色和紫色两部分,利用三角形面积公式:红色三角形的面积为:4×1÷2=2(平方厘米);紫色三角形的面积为:4×2÷2=4(平方厘米)。
总面积为:2+4=6(平方厘米)方法2:割补法,如下图,大直角三角形的面积为所在长方形的一半。
所以总面积为2×1÷2+5×2÷2=6(平方厘米)7、从1-10这10个正整数中,每次取出两个不同的数,使它们的和是4的倍数.共有( )种不同的取法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
+ (20 ⨯第十四届“小机灵杯”数学竞赛初赛解析(四年级组)时间: 60 分钟 总分:120 分(第1 题~ 第 5 题,每题 6 分.) 1.我们规定a ★b = a ⨯ a - b ⨯ b ,那么 3★2 + 4★3 + 5★4 + + 20★19 = .【答案】 396【考点】定义新运算 【分析】原式= (3⨯ 3 - 2 ⨯ 2) + (4 ⨯ 4 - 3⨯ 3) + (5 ⨯ 5 - 4 ⨯ 4) + 20 -19 ⨯19)= 3⨯ 3 - 2⨯ 2 + 4⨯ 4 - 3⨯ 3 + 5⨯ 5 - 4⨯ 4 + + 20⨯ 20 -19⨯19= 20 ⨯ 20 - 2 ⨯ 2 = 400 - 4 = 3962.将一个等边三角形的三个角分别剪去,剩余部分是一个正六边形,剩余部分的面积是原来等边三角形面积的 .(得数用分数表示)【答案】 23【考点】图形分割 【分析】6 如图所示,将剩余部分分割可得,剩余部分的面积是原来等边三角形面积的 9 2,即 .33.小明去超市买牛奶.若买每盒 6 元的鲜奶,所带的钱正好用完;若买每盒 9 元的酸奶,钱也正好用完,但比鲜奶少买 6 盒.小明共带了 元. 【答案】108 元【考点】列方程解应用题 【分析】设小明能买酸奶 x 盒,则能买鲜奶 ( x + 6) 盒; 由题意可列得方程: 6( x + 6) = 9x ,解得 x = 12 ;所以小明共带了 9 ⨯12 =108 元.4.用一根长1 米的铁丝围成长和宽都是整数厘米的长方形,共有 种不同的围法.其 中长方形面积的最大值是 平方厘米. 【答案】 25 种, 625 平方厘米 【考点】长方形的周长,最值问题 【分析】1 米 =100 厘米,即为长方形的周长, 因此长方形的长 + 宽 =100 ÷ 2 = 50 厘米;不同围法有: 50 = 49 +1 = 48 + 2 = 47 + 3 = = 25 + 25 ,共 25 种; 由于长与宽的和一定,当它们的差越小时,它们的乘积也就是长方形的面积越大, 因此长方形面积的最大值是 25⨯ 25 = 625 平方厘米.5.用同样大小的正方形瓷砖铺正方形的地面,周围用白瓷砖,中间用黑瓷砖(如图1 和图 2的铺法).当正方形地面周围铺了 80 块白瓷砖是,黑瓷砖需要 块.图1【答案】 361块 【考点】方阵问题 【分析】铺有 80 块白瓷砖的正方形地面上内部的黑瓷砖每行有(80 - 4) ÷ 4 = 19 块; 因此黑瓷砖需要19 ⨯19 = 361 块.(第 6 题 ~ 第10 题,每题 8 分.)6.在下列每个 2 ⨯ 2 的方格中, 4 个数的排列存在着某种规律.根据这样的排列规律,可知 ◆= .【答案】◆= 5 【考点】找规律填数【分析】观察发现:在表1 中:2 ⨯ 9 = (1⨯ 6)⨯ 3 ;在表 2 中:3⨯ 8 = (4 ⨯ 2)⨯ 3 ;在表 3 中:6 ⨯ 8 = (4 ⨯ 4)⨯ 3 ; 所以在表 4 中,应该有5 ⨯6 = (◆⨯2)⨯ 3 ,求得 ◆= 5 . 5 ◆ 2 66 4 4 83 4 2 82 1 6 91 2 7.学生们手中有1 、2 、3 三种数字卡片,每种数卡都有很多张.老师请每位学生取出两张或 三张数卡排成一个两位数或三位数,如果其中至少有三名学生排出的数是完全相同的,那 么这些学生至少有 人. 【答案】 73 人 【考点】抽屉原理 【分析】学生可能排成的不同两位数有 3⨯ 3 = 9 个,可能排成的不同三位数有 3⨯ 3⨯ 3 = 27 个, 因此学生可能排成的不同的数一共有 9 + 27 = 36 个; 如果要保证其中至少有三名学生排出的数完全相同,那么这些学生至少有 2⨯ 36 +1 = 73 人.8. 已知 2014 + 迎 = 2015 + 新 = 2016 + 年,且迎 ⨯ 新 ⨯ 年 = 504 , 那么迎⨯ 新 + 新 ⨯ 年= .【答案】128【考点】分解质因数 【分析】根据 2014 + 迎 = 2015 + 新 = 2016 + 年可知:迎 = 新 +1 = 年 +2 ;由 504 = 23 ⨯ 32 ⨯ 7 可得,只有504 = 9 ⨯8 ⨯7 满足条件,即迎 = 9 ,新 = 8 ,年 = 7 ; 迎⨯ 新 + 新⨯ 年 = 9⨯8 + 8⨯ 7 = 72 + 56 =128 .9.一个正方体的六个面上各自写着一些数,相对面上的两个数的和等于 50 .如果我们将右图 的正方体先从左往右翻转 97 次,再从前往后翻转 98 次,这时这个正方体底面的数是 ,前面的数是 ,右面的数是 .(翻转一次表示翻转一个面)【答案】底面的数是37 ,前面的数是 35 ,右面的数是11 【考点】周期问题 【分析】 根据题意,初始时左面的数是 50 -13 = 37 ,后面的数是 50 -15 = 35 ,底面的数是 50 -11 = 39 ; 对于一个正方体来说如果连续朝同一个方向翻转 4 次就会回到初始方向; 由于 97 ÷ 4 = 24 , 98 ÷ 4 = 24 ,所以原题中的操作可以简化为先从左往右翻转 1 次,再从前往后翻转 2 次; 先从左往右翻转1 次后,正方体的六个面分别为:左面的数39 ,右面的数11,前面的数15 ,后面的数 35 ,顶面的数 37 ,底面的数13 ; 再从前往后翻转 2 次后,正方体的六个面分别为:左面的数39 ,右面的数11,前面的数 35 ,后面的数15 ,顶面的数13 ,底面的数 37 ; 所以按要求操作后,这个正方体底面的数是37 ,前面的数是 35 ,右面的数是11.10.学校用一笔钱来买球,如果只买排球正好能买15 个,如果只买篮球正好能买12 个.现在 用这些钱买来排球与篮球共14 只,买来的排球与篮球相差 只. 【答案】 6 只【考点】鸡兔同笼 【分析】由于[15,12] = 60 ,因此可以假设这笔钱是 60 ,那么一只排球的价格是 60 ÷15 = 4 ,一只篮球的价格是 60 ÷12 = 5 ; 现在用这些钱买来的14 只球中篮球有(60 - 4 ⨯14) ÷ (5 - 4) = 4 只,排球有14 - 4 = 10 只, 所以买来的排球与篮球相差10 - 4 = 6 只.(第11题~ 第15 题,每题10 分.) 11.小明骑车,小明爸爸步行,他们分别从 A 、 B 两地相向而行,相遇后小明又经过了18 分 钟到达了 B 地.已知小明骑车的速度是爸爸步行速度的 倍,小4明爸爸从相遇地点步行到 A 地还需要 分钟. 【答案】 288 分钟 【考点】行程问题 【分析】小明小明爸爸如图所示,当小明与爸爸相遇时,由于小明的速度是爸爸的 4 倍且二人运动时间相同,因此小明的路程应该是爸爸的 4 倍(图中的 4S 与 S );而相遇后小明又经过18 分钟前进了 S 的路程才到达了 B 地; 因为小明的速度是爸爸的 4 倍,所以爸爸步行S 的路程需要18⨯ 4 = 72 分钟; 又因为爸爸从相遇地点步行到 A 地还需要再走 4S 的路程, 所以小明爸爸从相遇地点步行到 A 地还需要72 ⨯ 4 = 288分钟.12.如图所示,两个正方形的周长相差12 厘米,面积相差 69 平方厘米,大、小两个正方形 的面积分别是 平方厘米, 平方厘米.a2 2 【答案】169 平方厘米,100 平方厘米【考点】正方形的周长与面积,平方差公式 【分析】设大正方形的边长是 a 厘米,小正方形的边长是 b 厘米,由题意得:⎧4a - 4b = 12 ⎧⎪a - b = 3 ⎧a - b = 3 ⎨ - b = 69 ,整理得⎨(a + b )(a - b ) = 69,即为 ⎨a + b = 23 ; ⎩ ⎪⎩ ⎩⎧a = 13 解得 ⎨ ⎩b = 10 ,所以大正方形面积是132 = 169 平方厘米,小正方形面积是102 = 100 平方厘米.13.甲、乙两人用同样多的钱去买同一种糖果,甲买的是铁盒装的,乙买的是纸盒装的.两人都尽可能多地购买,结果甲比乙少买了 4 盒且余下6 元,而乙用完了所带的钱.如果甲用 元原来 3 倍的钱去购买铁盒装的糖果,就会比乙多买 31盒,而且仍余下 6 元.那么铁盒装的 糖果售价为每盒 元,纸盒装的糖果售价为每盒 元. 【答案】12 元,10 元【考点】约数与倍数,列方程解应用题 【分析】甲用原有的钱去买铁盒余下 6 元,那么用 3 倍的钱去买铁盒理论上应余下 6 ⨯ 3 = 18 元,然而仍余下6 元,说明18 - 6 = 12 元刚好又可买若干个铁盒,即铁盒的单价应为12 的约数; 有根据余下 6 元可知铁盒的单价必定大于 6 元,所以铁盒的单价只能是每盒12 元;设乙买了x 盒纸盒,由甲两次所用的钱数关系可列得方程: 3⎡⎣12( x - 4) + 6⎤⎦ = 12(x + 31) + 6 ,解得 x = 21; 所以两人原有的钱数为12 ⨯(21 - 4) + 6 = 210 元,纸盒的单价是每盒 210 ÷ 21 = 10 元.14.如下图所示,将一个由 3 个 小正方形组成的形放入右边的L 格子中,共有几种放法.( 图 形可旋转) L【答案】 48 种【考点】对应法计数 【分析】首先,右图中共有9,每个田字格中 L 形有 4 种放法,分别为:,共 4⨯ 9 = 36 种;+ 210+ 210 = 其次,还有一些 L 形不包含于图中的某个田字格,例如下图中的 L 形1 号:观察发现这些 L 形分别对应了图中方格外部的一个凹拐角,而这样的凹拐角共有12 个(如图所示),因此不包含于图中的某个田字格的 L 形也有12 种;综上所述,图中的 L 形共有36 +12 = 48 种放法.15.一棵生命力极强的树苗,第一周在树干上长出 2 条树枝(如图1 ),第二周在原先长出的每条树枝上又长出2 条新的树枝(如图2 2),第三周又在第二周新长出的每条树枝上再长 出 条新2 枝(如图 3)这棵树苗按此规律生长,到第十周新的树枝长出来后,共有条树枝.图1 图2 图3【答案】 2046 条【考点】等比数列求和 【分析】第一周树上新长出1⨯ 2 条树枝,共有 2 条树枝; 第二周树上新长出 2 ⨯ 2 = 22 条树枝,共有 2 + 22 条树枝; 第三周树上新长出 22 ⨯ 2 = 23 条树枝,共有 2 + 22 + 23 条树枝; 依次类推第十周树上新长出210 条树枝,共有2 + 22 + 23 +条树枝; 因为 2 + 22 + 23 + 211 - 2 = 2046 , 所以第十周新的树枝长出来后共有 2046 条树枝.。