地球化学重要图表

合集下载

4微量元素地球化学2

4微量元素地球化学2

河南理工大学-机械与动力学院
1100
5.微量元素的示踪意义
Post-Archean Australian
shales normalize. The
average values of four
middle Proterozoic
shales from the Mt. Isa
Group, seven Silurian
2288
5.微量元素的示踪意义
按照Wilson旋回,将构造环境分为: 1、大陆裂谷 2、大洋扩张中脊 3、板块消减带(岛弧和弧后盆地) 4、板块内部(大陆板块内部和大洋板块内部洋岛)
按板块碰撞作用分类: 1、碰撞前;2、同碰撞;3、晚碰撞;4、碰撞后
按大陆边缘性质分类:
1、活动大陆边缘
2、被动大陆边缘
??
河南理工大学-机械与动力学院
3344
5.微量元素的示踪意义
应用高场强元素和Th对玄武岩的形成构造环境进行判别
河南理工大学-机械与动力学院
3355
5.微量元素的示踪意义
Hugh R. Rollinson.1993. Using Geochemical Data:
河南理工E大va学l-u机a械tio与n动, 力Pr学e院sentation, Interpretation.
河南理工大学-机械与动力学院
2255
5.微量元素的示踪意义
2.2进行岩石分类
Zr/Ti acts as a proxy for Si
碧玄岩 副长石岩
Nb/Y acts as a
proxy for
河南理工大学-机械与动力学院
total alkalis.
2266
5.微量元素的示踪意义

第四章 地球化学热力学和地球化学动力学

第四章  地球化学热力学和地球化学动力学
② 一定化学成分的矿物共生组合, 随其形成条件 而改变。
以橄榄石热液变质为例(假设温度、压力基本 保持不变,只考虑热液中CO2浓度的变化)。
从图上可见:随着热液中 CO2分压(浓度)的增大(A- B), 纯橄榄岩将逐步转变成菱 镁铁矿+蛇纹石、滑石、石英。 图上每个圆点所代表的矿物组 合都反映着热液变质的一定阶 段。也就是在相应的外界条件 下,受变质的橄榄岩所处的平 衡状态;
3.吉布斯自由能的定义和计算方法: 定义公式: ΔG = ΔH -T ΔS 自由能是体系中能转化为有用功的能量
任意态反应自由能:
ΔGR.T.P =ΔG0R.T +∫1PΔVR.PdP + RT lnK
反应达到平衡时有:
ΔGR.T.P = 0
温压变化的反应自由能:
ΔG0R.T = -∫1PΔVR.PdP - RT lnK 设反应前后体积不变,ΔV=0,得:
4.3 自然过程的方向和相图的编制
1. 地球化学热力学稳定场:
在地球化学体系的热力学环境中,每种矿物 或矿物组合都有一定的热力学稳定范围(T、 P、C、pH、Eh等)这个范围就称地球化学热 力学稳定场。为了要求得稳定场,需要进行 地球化学热力学稳定场计算。
指导思想:地质现象(翻译) 地球化学的语言。 方法要点:
(△G)T,P <0 (温度与压力固定的体系)
(3)熵值的增大和能的减少这两个准则是等效的 能的减少 平衡态和可逆过程; 熵值的增大 平衡态和不可逆过程.
(4) 多数地球化学过程是在恒温、恒压条件下进 行的,为此自由能的减少(△G)是最常用的判断 准则。 在恒温、恒压条件下, 地球化学过程向着自由能减 少的方向进行。
Eh = Eh0 - 0.059/n pH 这就是反应的Eh与pH关系式 (式中n是参加反应 电子数)。(由热力学可知:Eh0 = △G0/ nF, △G0: 标准反应自由能的变化值)

地球化学图制作步骤

地球化学图制作步骤
2、投影:Mapgis6.7→使用服务→投影变换(图 2-1)打开 Mapgis 投影变换系统。
图 2-1 打开用户文件投影变换(图 2-2 红色箭头所指图标)
图 2-2 打开文件(上述所存文本文件),设置投影参数(以黑龙江省 22 度带为例, 投影数据坐标为大地坐标): 用户投影参数设置如图 2-3,结果投影参数设置如图 2-4,椭球参数都选择 1: 北京五四/克拉索夫斯基[1940 年]椭球。
12
广西浦北
图 9-7
图 9-8 图 9-9
13
广西浦北
保存裁剪框区文件。将裁剪框区文件从工程文件删除即可进行工程裁剪。 工程裁剪:为各元素重新新建文件夹,以保存裁剪后文件。步骤:其它→工
程裁剪→选择裁剪后文件的存放目录(图 9-10)→选择要裁剪的文件(图 9-11 左侧蓝色部分)→添加→选择全部(图 9-11)→裁剪类型选内裁、裁剪方式选拓 扑裁剪(图 9-12)→参数应用→装入裁剪框→开始裁剪→退出,关闭工程。
>25%~≤75%
浅红(高背景区) 红(高值区)
X 0+0.5S0~ X 0+1.5S0
X X 0+1.5S0~ 0+2.5S0
>75%~≤95% >95%~≤98.5%
深红(强高值区)
> X 0+2.5S0
>98.5%
设置完色阶可将存设置,以备以后再用时就不用再重复设置色阶了,单击存
设置...并将原色阶文件覆盖即可保存。之后单击确定,地球化学图就出来了,见 图 7-10。
等量线值 lgµg/g (或 ng/g)
… 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
图 7-8

地球化学 第四讲 同位素地球化学

地球化学 第四讲 同位素地球化学
Geochemistry
College of geological science & engineering, Shandong university of science & technology
问题:如何用δ求解αA-B=RA/RB αA-B=RA/RB=(δA+1)/(δB+1) 4、同位素富集系数:
College of geological science & engineering, Shandong university of science & technology
第四部分
同位素地球化学
Geochemistry
College of geological science & engineering, Shandong university of science & technology
一 、稳定同位素分馏
同位素分馏效应:由于不同的同位素在质量上存在差别,这些差
别使其在物理和化学性质上存在微小的差异,从而使同位素在其共 存相之间分配发生变化。(相对质量差大的易察觉) 引起分馏效应的原因: ① 物理分馏:也称质量分馏, 同位素之间因质量差异而引起的与
质量有关的性质的不同 (如比重、熔点),这样在蒸发、凝聚、升华、
同位素地球化学是研究地壳和地球中核素的形成、丰度及其在 地质作用中分馏和衰变规律的科学。
同位素地球化学
Geochemistry
College of geological science & engineering, Shandong university of science & technology
二.同位素组成及分馏表示方法(稳定同位素): 1、同位素比例(R):用重同位素与轻同位素比值表示, 例如R(18O/16O)=2.0×10-3.(原子数)

地球化学ppt课件

地球化学ppt课件
19
水环境地球化学研究
2024/1/25
水体化学组成与性质
研究水体中各种溶解物质、胶体物质和悬浮物质的含量、分布和 变化规律,揭示水体的化学性质。
水体中污染物的迁移转化
分析水体中污染物的来源,研究其在水体中的迁移、转化和归宿, 为水污染防治提供依据。
水环境地球化学过程
探讨水体中化学物质的循环、转化和相互作用过程,以及这些过程 对水环境的影响。
可燃冰资源勘查
利用地球化学方法分析可燃冰赋存层位的岩石、 土壤等介质中的气体组成和同位素特征,揭示可 燃冰的成因和分布规律。
2024/1/25
16
环境资源评价中地球化学方法
1 2
环境质量评价
通过分析土壤、水、大气等环境介质中的元素和 化合物含量,评价环境质量状况及其对人类健康 的影响。
污染来源与迁移转化研究
灾害体地球化学特征分析
分析滑坡、泥石流等灾害体的物质组成、化学成分等地球化学特征 。
灾害预测和防治
结合地质环境地球化学评价和灾害体地球化学特征分析,进行滑坡 、泥石流等地质灾害的预测和防治。
26
人类活动对环境影响评价中地值 调查
调查评价区域的环境地球化学背景值 ,为环境影响评价提供依据。
研究地球化学异常的成因 机制,包括地震孕育过程 中的物理化学变化、地下 流体运移等。
异常时空演化规律
分析地球化学异常在时间 和空间上的演化规律,为 地震预测预报提供依据。
24
火山活动监测和预警中地球化学方法
火山气体监测
通过监测火山释放的气体 成分和含量变化,判断火 山活动的状态和趋势。
2024/1/25
2024/1/25
数据获取和处理
地球化学数据获取困难,处理和分析方法复杂,需要进一步提高 数据质量和处理效率。

地球化学课件

地球化学课件

2) 原子(离子)结合时的几何关系
化学键性相同时,是否发生类质同象取决于 原子 (离子)结合时的几何关系-半径,配位数等。同价类质 同象发育程度主要取决于离子半径差,差值增大, 类质同象臵换范围减小; r1和r2分别代表较大离子和较小离子的半径,当: (r1-r2)/r2<10~15%, 形成完全类质同象,端元组分 间无限混溶; (r1-r2)/r2=10到20~40%, 高温下完全类质同象,低 温时形成不完全类质同象,固溶体发生分解; (r1-r2)/r2>25~40%, 高温下只能形成不完全类质同 象,低温下不能形成类质同象;
1.戈尔德斯密特类质同象法则 戈尔德斯密特(1937)在研究岩浆结晶过程中元素 在矿物间分配的基础上,总结出元素发生类质同 象臵换的规律; 1)小离子优先法则:两种离子电价相同,半径相似, 小半径离子优先进入矿物晶格,集中于早结晶矿 物中,大半径离子集中于晚结晶矿物中。 Mg2+、Fe2+、Mn2+和 Ca2+离子半径分别为0.078nm, 0.083nm,0.091nm,0.099nm,因此Mg2+、Fe2+ 集中在早期结晶橄榄石等矿物中, Mn2+和Ca2+集 中在晚期晶出的辉石,角闪石, 斜长石和黑云母 等矿物中;
同样Ca2+和Hg2+,二者半径相近 (rCa2+=1.05A, rHg2+=1.12A),电荷也相同, 但因二者电负性相差较大(Ca1.0,Hg1.9), 也不能相互臵换。硅酸盐造岩矿物中不易 发现Cu和Hg等元素,反之赋存Cu和Hg等元 素的硫化物中也不易发现Na、Ca等元素;
键性接近是类质同象置换的首要条件。
当两种元素数量差异很大时一种元素以分散量进入另一元素晶格主导和伴生元素地球化学参数相近伴生元素隐藏在主导元素晶格中称为内潜同晶内潜同晶置换可以使许多地球化学行为相同或相地球化学行为相同或相近的元素依次进入晶格形成内潜同晶链近的元素

最新地球化学,第一章1知识讲解精品课件


一、基本概念
丰度的表示方法(fāngfǎ) 重量丰度W
W
a

M
X
•W0
常量 (chángliàng)
元素 (wt%)
微量元素
ppm
(g/t, ,10-6)
痕量(hén liànɡ)元素 ppb
(μg/t,ng/g,10-9)
原子丰度
(原子%)
Wi
相对丰度R(宇宙丰度单位,CAU. )
Ri
绝对含量单位
T

kg
千克
g

mg
毫克
μg
微克
相对含量单位

百分之

千分之
ppm、μg/g、g/t ppb、μg/kg、ng/g
百万分之 十亿分之
×10-2 ×10-3
×10-6 ×10-9
ng
纳克
ppt、pg/g
万亿分之
×10-12
pg
皮克
1g/t=1μg/g=10-4%=10-6=1ppm
第十页,共46页。
化及硫同位素国际标准),帮助了解地球的成因和组成 防治自然灾害
第三十一页,共46页。
美国亚利桑那Barringer(or Meteor)陨石坑,直径约1.2km 由一个直径约40m的撞击(zhuàngjī)物撞击(zhuàngjī)而成。 撞击(zhuàngjī)物残余称为Canyon Diablo铁陨石(国际S同位素标准)
2 丰度 元素
关键词:(yuán
sù )
自然 (zìrán)体
含量
平均含量
一种化学元素在某个自然体中
丰度的表示方法(fāngfǎ) 的重量占这个自然体的全部化

地球化学课件

10~100 0 1~0 3 20
1~5 0 06 1~10 400~1500
06 2400~4000
0 0002 0 05 2~5 O5
12~15 0 02
0 005~0 02 02
有害 60
5~50 4000 200
3000
3
500 200 250~500 20
10000
致死 1300 100~300
环境地球化学 页14页
第*页*
元素形态 Ag1+ Al3+
AsIII或V B硼酸盐 Ba2+水溶性
Bi3+ Br Ca2+
Cd2+ Cl1 Co2+ CrV1铬酸盐 Cu2+ F1 FeII或III Ca3+ 环Hg境II地球化学 页I11 5页
人体所摄取的微量元素mg/d
不足 70
0 015
正常 0 06~0 08
第*页*
第二节:人体中元素的分布
❖ 毒性元素
对生物有毒性而无生物功能的元素; 该类元素又可分为两类: 毒性元素 :Cd Ge Sb Te Hg Pb Ga In As Sn Li;这些毒性
元素是指它们对生物体无有益作用;而只有毒性; 潜在毒性和放射性元素:Be Tl Th U Po Ra Sr Ba;
❖ 匮乏性疾病与环境 由于区域自然环境恶劣;经济 文化落后所造成 ;主要表现为三个特
点: 由于人们所处的生活条件恶劣 营养不足所造成的营养不良性 疾病 ; 由于医疗 交通落后 人口拥挤 卫生条件差所造成的传染性疾病 ; 由于区域生态环境中有不利健康的因子存在;造成特定环境的 特有的地方病;即原生性地方病 ;
由Si Ni As Zn F Fe Ti等组成; ❖ 肌肉中的元素

11_Sr、Nd、Pb同位素地球化学


在锶同位素地层学研究的样品选择上, 应充分考虑其原始组分的抗蚀变能力。 对碳酸盐样品而言,在海水中沉淀(化学 或生物化学作用)的、其原始组分为低镁 方解石的各种组分是进行锶同位素地层 学研究的良好材料。
锶同位素地层学研究中,使用的样品包 括有孔虫碳酸盐、微化石碳酸盐、白垩 和块状碳酸盐软泥、重晶石、非生物海 相碳酸盐胶结物等。
第十一章
锶、钕、铅及锇 同位素地球化学
Sr、Nd、Pb及Os同位素在研究成岩、成 矿作用以及地球演化等过程中意义重大。 这些元素的同位素在研究岩浆岩、变质 岩以及陨石等地外物质,以及地幔地球 化学方面取得了有意义的成果。值得指 出的是,近些年来, Sr、Nd、Pb,特别 是Sr同位素在沉积岩研究中也取得了巨 大的进展。
• 上述特征反映了地下水中不同类型水的 贡献。
四、锶同位素与古季风研究
• 我国学者将Sr同位素引入黄土-古土壤序
列的研究中,并发现锶同位素体系中 Rb/Sr和87Sr/86Sr的比值与黄土地层中的 磁化率有着很好的对应关系,与年均降 水量也有着很好的线性相关关系,因此 他们认为Rb/Sr和87Sr/86Sr比值可以作为 古气候即古夏季风的替代性指标。
比的地壳基底岩石局部熔融所致。大量 的复式岩体都具有这一特征,如著名的 美国西部的加里福尼亚岩基。
3、地球锶同位素演化
地球岩石体系的锶同位素组成主要取决 于岩石的Rb/Sr比及岩石在该条件下经历 的时间。首先确定的是地壳和地幔两大 体系。
• Faure等对起源于上地幔、未被地壳锶混
染的玄武岩和辉长岩的初始锶同位素统 计作图,发现从老到新,它们构成一条 缓慢的增长曲线。
岛弧是俯冲带的一个组成部分,该区火 山岩和深成岩的同位素组成及年龄都具 有随海沟距离而呈规则变化的趋势。 岛弧火山岩的锶同位素组成以地幔来源 为主,并有洋壳玄武岩和海水的影响。 熔融前锶同位素组成的不均一和富铷物 质的优先熔融,可使岩浆中的87Sr/86Sr值 比母源物质高。

地球化学ppt课件

即碳酸钙的氧同位素组成是温度的函数。温度升高时,相对 较轻的16O由于有较高的活性,易于迁移,在同位素交换反应 中将优先被吸收进生物壳体内,致使18O含量相对减少,δ180 值随温度的上升而下降。
最适用于有孔虫同位素分析的关系式: t=16.9-4.4(δs-δw)+0.10(δs-δw)2 式中,δs:壳体中氧同位素值,δw:水体的氧同位素值
环境地球化学 第21页
+ 冰期与间冰期对碳酸盐溶解作用的影响不同,也会引起 海水中CO2总含量的变化。 经计算,末次冰期极盛期的CO2含量稍高于间冰期, 两者的比值为1.15±0.5。
这样,由海水表温、盐度、冰川体积等因素变化引 起的大气CO2浓度变化仅占实际变化的5%。因此,如果 当时不存在其它海水化学性质的变化,则大气CO2含量将 保持近于恒定。
环境地球化学 第4页
4氧同位素应用
(l)查明地质时期海水古温度的变化趋势
通过生物氧同位素研究法确定了自晚白垩纪(约7000 万年前)以来全球气候有逐渐变冷的趋势。
Emiliani(1954)根据底栖有孔虫δ180值逐渐递增的 趋势,确定了自白垩纪以来,全球大洋深水平均温度曾从 13oC逐渐下降到目前的2oC左右。
由于在任何时候、任何地区,底栖有孔虫氧同位素温 度始终低于浮游有孔虫的氧同位素温度,表明大洋的底层 水系由高纬地区的表层水下沉扩散而来,所以,从新生代 底层水的这种变冷趋势可以推出高纬地区的表层水以致大 气圈也存在着逐渐变冷的趋势。
环境地球化学 第5页

北 半 球
极 冰 盖
南极海冰 大量形成
冰形
盖成
环境地球化学 第24页
热带东太平洋V19-30柱状样15万年来浮游有孔虫N.dutertrei与底栖有孔虫 U.sentioncosa碳同位素组分的差值(Δδ13C) 变化图
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

地球化学重要图表
1、太阳系元素丰度对数对应其原子序数作出曲线图
1. H和He是丰度最高的两种元素。

这两种元素的原子几乎占了太阳中全部原子数目的98%。

2. 原子序数较低的范围内,元素丰度随原子序数增大呈指数递减,而在原子序数较大的范围内(Z>45)各元素丰度值很相近。

3. 原子序数为偶数的元素其丰度大大高于相邻原子序数为奇数的元素。

具有偶数质子数(A)或偶数中子数(N)的核素丰度总是高于具有奇数A或N的核素。

这一规律称为奥多-哈根斯法则,亦即奇偶规律。

4. Li、Be和B具有很低的丰度,属于强亏损的元素,而O和Fe呈现明显的峰,它们是过剩元素。

5.质量数为4的倍数(即α粒子质量的倍数)的核素或同位素具有较高丰度。

例如,4He(Z=2,N=2)、16O(Z=8,N=8)、40Ca(Z=20,N=20)和140Ce(Z=58,N=82)等都具有较高的丰度。

通过对上述规律的分析,人们认识到在元素丰度与原子结构及元素形成的整个过程有着一定的关系:
1. 与元素的原子结构有关。

具有最稳定原子核的元素一般分布最广。

2. 与元素形成的整个过程有关。

H和He丰度占主导地位和Li、Be和B等元素的亏损适于元素的起源和形成的整个过程等方面来分析。

例如,根据恒星合成元素的假说,在恒星高温条件下(n×106),可以发生原子(H原子核)参加的热核反应,最初时刻H的“燃烧”产生He,另外在热核反应过程中Li、Be和B迅速转变为He的同位素42He,为此在太阳系中Li、Be和B等元素丰度偏低的原因可能是恒星热核反应过程中被消耗掉了。

2、金属元素电负性与亲和性的关系
3、氧硫元素的性质对比
在地球系统中,氧的克拉克值为46%,硫的克拉克值为0.05%,它们都是阴离子中分布最广的两种元素。

硫比氧是同族元素,硫的半径较大,电负性较小,形成离子键化合物的能力减小,而形成共价键化合物的能力增大。

4、格尔施密特的地球元素化学分类
5、氧化还原电位对元素迁移的影响(铁离子的Eh-Ph图解)
6、元素在水中的存在形式
7、风化作用的类型
8、元素的迁移能力。

相关文档
最新文档