稠油乳化降粘技术的关键
稠油乳化降粘技术的关键PPT课件

可用的氧化剂(主剂)为:NaIO4和30%H2O2 可提供H+ (助剂)为: NaH2O4 和CH3COOH
第32页/共33页
感谢您的观看!
第33页/共33页
μ——乳状液粘度,mPa·s μ0——分散介质粘度,mPa·s Φ——乳状液中分散相所占体积百分数,% k ——常数:
• Φ≤ 0.74时,k为 7.0, • 当φ>0.74时,k为 8.0;
第19页/共33页
Richardson公式
0ek
启 (1)乳状液粘度取决于分散介质粘度。 示
(2)乳状液粘度取决于分散相所占体积分数。
环
抽油机负荷大、耗电量 多,机械事故多
节 影响地面输送 输送困难、麻烦
第13页/共33页
第2节 稠油的升温降粘法
稠 105
油
塔河TK1055 胜利陈庄13-15 辽河齐40 塔河TK1244
粘度,mPa.s
粘
104
温 103
曲
线
102
30 40 50 60 70 80 90 100
温度,℃
结论 稠油的粘度受温度影响影响很大
稠油物性参数
油田 辽河
克拉 玛依 胜利
大港
区块 杜 84 杜 1-7-5 杜 84 九区 凤城全区 单家寺 草桥 孤岛 羊三木 枣园枣北
油层 杜家台油层 大凌河油层 兴隆台油层 齐古组 齐古组 Ng Ng Ng 明、馆 下第三纪孔一段
埋深 1122-1500 950-1090 650-750 160-230 150-500 1100-1200 820-960 1200-1400 1220-1430 1736-2036
第29页/共33页
稠油乳化降粘技术_刘国然

第2卷第1期特 种 油 气 藏1995年稠油乳化降粘技术刘国然 编译(辽河石油勘探局钻采工艺研究院 辽宁 盘锦 124010)前 言世界上的稠油资源非常丰富,储量和产量都占很大比例。
为了开发稠油资源,世界各产油国和地区都在致力于研究稠油的开采和集输问题。
为了降低稠油的粘度,增加流动性,提高产量,一般采用热采法、稀释法、乳化降粘法等。
其中乳化降粘技术具有方法简单、经济、所需能量少等优点。
化学降粘法及机理1. 化学剂的分类化学降粘剂分为降凝剂(或叫流动改进剂)和乳化剂(表面活性剂)。
前者能大大降低含蜡原油的粘度、胶凝强度和凝点,而使原油流动性得到改善,后者使高粘原油形成低粘度的水包油(O/W)型乳化液,而使稠油粘度大大降低。
表面活性剂是一种化合物,其分子中有亲水原子团和疏水原子团,由于其少量的存在可使表面性质有显著变化。
根据实用性质,表面活性剂又可分为洗净剂、乳化剂和湿润剂等。
表面活性剂通常分为阴离子系、阳离子系、两性离子系及非离子系四大类。
2. 乳化降粘机理稠油乳化降粘就是使一定浓度的表面活性剂水溶液,在一定温度下与井下稠油充分混合,使高粘原油以粗油滴系分散于活性水中,形成低粘度的水包油(O/W)型乳状液。
这种乳状液降低了原油在井筒和管线中的运动阻力。
原油中加入亲水表面活性剂后,因亲水基表面活性很强,而替代油水界面上的疏水自然乳化剂而形成定向的吸附层,吸附层将强烈地改变着分子间相互作用和表面传递过程,致使原油粘度显著下降。
实践证明,原油粘度越高使用表面活性剂降粘效果越好。
稠油乳化降粘开采和集输机理也可从两方面来理解:一是表面活性剂溶液与稠油接触能使油水界面张力下降,所以在一定温度下经过搅拌,油便呈颗粒状分散在表面活性剂水溶液中,形成极粗的水包油型乳状液。
活性剂分子吸附于油珠周围,形成定向的单分子保护膜,防止了油珠重新聚合,可见乳状液流动能使液流对管壁的摩擦压力减弱(图1)。
二是由于表面活性剂水溶液的湿润作用,使液流流动阻力显著减少,即在管壁上吸附了一层表面活性剂水溶液的水膜,从而使原油和管壁之间的摩擦变成表面活性剂水溶液与管壁的摩擦,达到流动阻力显著下降的目的(图2)。
稠油降粘技术

稠油降粘技术目前常用的稠油(包括特稠油和超稠油)降粘方法(包括掺稀油降粘、加热降粘、稠油改质降粘、乳化降粘、微生物降粘技术等五种)的降粘原理及其优缺点。
掺稀油降粘存在着稀油短缺及稠油与稀油间价格上的差异等不利因素;加热降粘则要消耗大量的热能,存在着较高的能量损耗和经济损失;改质降粘要求较为苛刻的反应条件,同时使用范围较窄;乳化降粘使用范围相对较宽(包括油层开采、井筒降粘、管道输送等领域),同时工艺简单,成本较低,易于实现。
分析认为,采用化学降粘方法进行稠油降粘具有一定的优势,建议优先考虑。
一、掺稀降粘掺稀降粘采油工艺是通过油管或油套环空向油井底部注入稀油,使稀油和地层产出的稠油充分混合,从而降低稠油粘度和稠油液柱压力及稠油流动阻力,增大井底生产压差,使油井恢复自喷或实现机械采油的条件。
掺稀油方式有空心抽油杆注入、单管柱注入、油管注入和套管注入4 种。
空心抽油杆注入: 稀油由空心抽油杆注入井下, 在泵筒内与地层稠油混合后由油管举升到地面(见图1) , 减小了流动阻力。
单管柱注入: 平行于油管下一条管柱, 将稀油注入到泵下与地层液混合, 经油管将混合液采出(见图2)。
图1空心杆注稀油降粘示意图图2油管注稀油降粘示意图套管注入: 稀油从油、套环形空间注入, 在泵下与地层稠油混合后经油管举升到地面(见图3)。
油管注入: 稀油从油管注入与地层液混合,经抽油泵上的带孔短节进入油、套环形空间被举升到地面(见图4)。
图3套管注稀油降粘示意图图4油管注稀油降粘示意图一般来说,稠油与轻油的混合温度越低,降粘效果越好。
混合温度应高于混合油的凝固点3—5℃,等于或低于混合油凝固点时,降粘效果反而变差。
确定合理的掺油比应根据油井的原油粘度、温度、含水、含砂等情况而定。
给稀油管输温度,是决定掺油量的重要因素。
辽河金马公司通过多年摸索发现,当管输温度保持在50摄氏度左右时,稀油黏度降至最低,能够充分带动井内稠油举升至地面。
为此,他们在偏远井站的稀油干线上增装了5座加热炉,保证了稀油入井温度在40摄氏度以上;同时对4座采油站的稀油干线进行了合并,减少了零散输送带来的热损失。
石油行业中的稠油降黏增效技术

石油行业中的稠油降黏增效技术摘要:稠油是石油工业中常见的一种类型,其特点是粘度高、凝点高、流动性低,使得开采这些油相对困难。
降黏增效是成功提取稠油的必要条件。
粘度降低技术可以降低稠油的粘度,便于提取稠油。
为了充分利用降低粘度的附加价值,有必要提供有针对性的技术手段,了解技术原则,深化实质性原则,全面提高厚油层的开采能力。
因此,本文首先讨论了稠油的概念,然后分析稠油开采中降黏增效技术的原则,最后分析稠油开采中降黏增效的物理化学技术。
关键词:稠油开采;降黏增效;工艺技术;分析研究前言稠油是指在层状条件下粘度大于50 MPa /秒的稠油,或在罐壳温度下粘度介于1000 MPa/秒至10000 MPa /秒之间的空气中释放的原油。
世界石油丰富,储量比传统原油多得多。
但是,含油胶和沥青含量高导致粘度高,流动性低。
为了解决稠油开采和运输问题,降黏增效,提高稠油的流动性至关重要。
一、稠油降黏增效原理分析顾名思义,稠油是高粘度、高密度的油,通常在国外称为稠油。
与稀油相比叫它稠油,稠油难流通,稀油像水一样流动。
稠油粘度极高,甚至高达几百万mpas。
从科学角度来看,很难从地下开采,因为太粘稠了。
在20℃环境温度下,地下粘度大于50 %,密度大于0.92的原油通常称为稠油。
在开采和运输过程中,经常使用热油循环、油层燃烧和蒸汽喷射等方法来增加热量和降低粘度,或混合稀有石油、进行模拟和添加活性制剂来降低粘度。
与普通油罐不同,稠油不是液体而是胶状的,这使得稠油开采非常困难。
此外稠油芯是分散沥青束相,分散介质是轻油的分馏和胶的一部分。
因此,为了降低粘度、提高效率和完成采油工作,有必要采取有针对性的办法降低稠油的粘度。
目前最常用的技术是在π-π作用和氢键作用下,通过橡胶沥青与胶分子有机融合。
稠油的高粘度是由于沥青和胶质的相互作用。
因此,分散介质中束中心的组成过程正在逐步演变。
使用这些力减少沥青和胶质之间的力可以降黏增效,提高稠油产量。
稠油油田原油降粘技术探讨

稠油油田原油降粘技术探讨摘要:针对我国的油田开采行业的高速发展,稠油油田现场开发原油降粘技术的创新,对我国的油田开发的意义重大,但是现阶段的我国的稠油油田原油开发的过程中存在一些不足与缺陷,通过全面的分析稠油油田原油开发过程中,提出了通过稠油化学技术降粘技术,并且根据不同稠油油田原油的粘度不同,采取不同的化学降粘对的药剂以达到最佳的降粘效果,其中主要有水溶性的乳化降粘技术和油溶性稠油化学降粘剂的降粘技术,通过深入的研究稠油原油的化学降粘技术,为我国化学的原油降粘技术发展提供经验,更为我国稠油油田原油开发的提供有力的手段。
关键词:稠油原油原油降粘化学技术近年来,我国的常规石油开发技术的已经日渐成熟,加上石油管道集输技术,极大的促进我国的是石油行业的发展,但是油田若是想要加大生产量,就必须采取非常规的原油开采,尤其是对油田稠油的开采,由于稠油中含有大量的沥青质以及胶质物质,使得稠油原油的粘度非常,不适合常规的石油开采,进而加大了稠油油田的开采难度,为了能降低稠油开采的难度以及节约石油开发成本,通过化学试剂实现有效降低稠油原油的粘度,进而实现稠油原油的常规方式开采,实现稠油油田原油大量开采。
一、稠油原油化学降粘技术开发的理论基础1.稠油原油降粘原理稠油原油中的胶质以及沥青质分子物质中具有羟基、羧基、氨基以及羰基等有机化合物,导致胶质分子与沥青质分子间发生剧烈的氢键作用,沥青质分子中的芳杂稠环平面互相堆积使得极性基团间的氢键产生的沥青质粒子,而胶质分子则是相反是通过及受到氢键的固定产生沥青质粒子的包覆层,这两中粒子的氢键可以相互连接,进而导致原油的高粘度增高。
可将稠油的高粘度主要与胶质粒子和沥青质粒子的相互作用有关,或者是与稠油原油中胶质粒子和沥青质粒所形成的高聚化合物有关的,除此之外在稠油中的胶质粒子、沥青质粒子和杂原子、有机金属原子结合形成化合物,导致稠油粘度过高、流动性差,这些高聚化合物或者是混合物的分子量较大、密度高,虽然含量很低但是严重影响了稠油原油的粘度,导致稠油原油开采困难。
稠油的类乳化复合降粘作用机理

1 乳化降粘机理
表面活性剂水溶液与稠油形成的 OPW 乳状液 的粘度, 主要取决于分散介质( 即水外相) 的粘度, 内 相的体积分数也有相当大的影响。根据不同实验方 法得到的描述乳状液粘度的经验公式很多, 其中较 常用的有 3 个[1~ 4] 。
1. 1 Einstein 公式 当分散相( 油内相) 的体积分数 < 小于 0. 02 时,
1. 3 Richardson 公式
水包油乳状液的粘度也可用 Richardson 指数公 式来表示:
G= G0 exp ( k<)
( 3)
式中 k 称为 Richardson 常数。由于实验的条件性很 强, 不同研究者研究不同体系得出的 k 值有很大的 差别( 表 1) 。但无论 k 取何值, 式( 3) 均说明随着内 相体积分数的增加, 乳状液粘度呈指数增加趋势。
3 12
油田 化学
2002 年
1. 2 Hatschek 公式
对较浓的乳状液, Hatschek 公式比较合适:
G= G0P[ 1- ( h<) 1P3 ]
( 2)
式中 h 为一校正系数, 称为体积因素, 一般随内相浓 度的增加而降低, 对乳滴分布不均的 OPW 乳状液, h 多取 1. 3 左右。这说明 G 与 G0 成正比, 且随 < 变 化很大, 比如 <= 0. 1 时, GPG0 = 2; <= 0. 5 时, GPG0 = 7. 5; <= 0. 85 时, GPG0= 29. 5。< 愈大, GPG0 的增加幅 度愈大。
稠油降粘工艺技术概述

稠油降粘工艺技术概述摘要:矿场常用的稠油降粘技术主要包括:加热降粘技术、掺稀降粘技术、乳化降粘技术、油溶性降粘剂。
文章概述了目前常用的稠油降粘工艺技术的研究方向和主要存在的问题。
对稠油降粘技术有了一个准确的总结,在此基础之上指出了今后降粘技术研究方向。
关键词:稠油降粘技术原理复合降粘稠油一般是指油层温度下脱气原油的粘度超过100mPa?s以上,密度大于0.92g/cm3的原油。
对石油来说,固态烃、沥青质和胶质的含量及组成是决定其流变性的主要因素。
因此降低稠油粘度,改善稠油流动性,是解决稠油开采、集输和炼制问题的关键。
目前,国内外稠油输送过程中常用的降粘方法有:加热降粘技术、掺稀降粘技术、乳化降粘技术、油溶性降粘剂等。
一、加热降粘技术1. 降粘机理稠油加热输送方法主要是通过加热的方法提高稠油的流动温度,以降低稠油粘度,从而减少管路摩阻损失的一种稠油输送方法。
稠油中胶质与沥青质分子的结构特点及相互作用,使稠油体系形成了一定程度的Π键和氢键,随着温度的升高,体系获得足够的能量时,Π键和氢键被破坏,使得稠油粘度大幅度降低。
2. 存在问题用加热降粘技术输送稠油是传统的输送方法,在许多国家和地区都得到了广泛应用,委内瑞拉从I955开始采用这种技术。
但最大缺点是当管线温度降至环境温度时,常发生凝管事故,且其能耗高,输量1%以上的原油被烧掉和损耗,经济损失大。
因此,应逐渐减少或取代加热降粘输送。
电伴热法在印尼苏门答腊的扎姆鲁得油田已成功应用多年,国内多用于干线解堵、管道附件和油气集输管线。
二、掺稀降粘技术1. 降粘机理利用有机溶剂相似相溶的原理,在稠油进入管道前,将一些低粘液态碳氢化合物作为稀释剂,与稠油混合在一起,降低稠油的输送粘度,从而以混合物的形式进行输送。
通常掺入的稀释剂为轻质油,主要包括天然气凝析液、原油的馏分油、石脑油等。
向稠油中掺入稀油得到混合物的粘度与稀油的掺入量之间成指数关系。
稀释剂的注入量主要取决于稠油稀释剂的相容性。
稠油降粘

NDJ-5S数显式旋转粘度计
仪器使用原则: 高粘度的液体选用小的转子和慢的转速;低粘度的 液体选用大的转子和快的转速。
使用注意事项:
当估计不出被测液体的大致粘度时,应假定为较高 的粘度,试用由小到大的转子和由慢到快的转速。
向磨擦碰撞,从而将电磁能转换为热能使稠油温度升高,有利于 稠油粘度下降。
(a)稠油中极性分子受到交流电场作用产生转向极化,造成分子转
(b)稠油分子在交变电场作用下进行周期性排列组合,稠油分子键 被破坏,稠油粘度进一步降低。
2.9 微波加热降粘技术
机理:
(a)热作用。不同的组分介质损耗不同,微波加热造成热的不均匀
2.3 水热催化裂解降粘技术
水热催化裂解降粘技术是利用稠油与水蒸汽间发生 的水热裂解反应,在催化剂的作用下,使高碳数的稠 油发生部分裂解而成为பைடு நூலகம்质油,不可逆地降低了稠油 粘度。
机理: (a)稠油水热裂解中最重要的反应步骤是稠油中有机硫化物硫键在 金属离子的催化下裂解,使稠 油中的沥青质含量降低,稠油分
3.3 油溶性降粘剂的室内评选
由于降粘剂对原油有专属性,在使用前必须做室内
筛选,选出较高降粘效率的试剂!
温度选择依据:根据采油井口稠油温度。 降粘剂选择依据:降粘率⊿μ=(μ-μ0)/μ0×100% 降粘率越高,降粘效果越好! 浓度选择依据:相同降粘率的情况下,用量越小越好!
NDJ-I指针式旋转粘度计
2.7 磁处理降粘技术
机理:
(a)磁化作用产生诱导磁距, 抑制蜡晶形成和聚结, 使蜡晶 以小 颗粒形式存在于稠油中。 (b) 磁化作用破坏了原油各烃类分子间的作用力使分子间的聚合力 减弱 ,其中胶质和沥青质 以分散相而不是缔结相溶解在原油中, 使原油粘度降低 ,流动性增强 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(1)若Φ=0.70,则k=7.0 μ=0.55mPa· S× 2.7187.0× 0.7=73 mPa· S (2)若Φ=0.80,则k=8.0 μ=0.55mPa· S× 2.7188.0× 0.80=3.3×102 mPa· S
3、稠油乳化降粘技术的关键 两 (1)必须形成水包油乳状液 个 关 键 (2)产出液必须有一定含水率 适应条件 油井产出液含水率大于10%
采油技术手册,第八分册,P3~7
一、稠油简介
3、稠油为什么粘度大?
主要是因为稠油中胶质沥青质含量高造成的。 沥青质
一般把石油中不溶于非极性 的小分子正构烷烃而溶于苯 的物质称为沥青质,它是石 油中分子量最大、极性最强 的非烃组分。
胶 质
胶质是石油中分子量及极性 均仅次于沥青质的大分子非 烃化合物,具有很大的多分 散性.与沥青质和芳香烃之 间并没有截然的界限。
杂原子
胶质沥青质单元片结构示意 图
单元薄片
环烷环及烷基链
芳香盘
似晶缔合 体微粒
胶束
超分子
沥青质似晶缔合体结构示意图
单元薄片
似晶缔合 体微粒
胶束
侧链束
胶束
微粒
超分子
胶质沥青状组分超分子结构模型
从稠油粘度与胶质沥青质含量的相关曲线可以看出:胶质沥青 质含量越高,原油粘度越大( Fuel, 87(13-14), 2008, 30653070 )
μd 稠油稀释后的粘度 μv稠油的粘度 μl 稀油的粘度
X 稀油与稠油的质量比
公式表明:稀油的粘度越低,稀油与稠油的质量比越大, 稠油稀释后的粘度越低。
第4节、稠油乳化降粘机理
1、Richardson公式
0e
k
μ——乳状液粘度,mPa· s μ0——分散介质粘度,mPa· s Φ——乳状液中分散相所占体积百分数,%
稠油流动时,相对移动液层间的内摩擦力为:
1、油质分子间
2、胶质分子间
3、沥青质分散相间
4、油质分子和胶质分子间 5、油质分子和沥青质分散相间 6、胶质分子与沥青质分散相间
4、稠油粘度大对开发有何影响?
影 响 三 个 环 节 影响油层采收率 影响井筒举升 影响地面输送 剥离难、易指进 抽油机负荷大、耗电量 多,机械事故多 输送困难、麻烦
第 6 章 稠 油 降 粘
主要内容
稠油简介
稠油的升温降粘法
稠油稀释降粘法
稠油的乳化降粘法 稠油的氧化降粘法 稠油的催化水热裂解降粘法
一、稠油简介
1、什么是稠油?
稠油是指在油层温度下脱气原油的粘度超过 100mPa•s的原油。
三 个 要 素
油层温度 脱气原油 粘度界限 温度和溶解 气如何影响 原油粘度?
为什么强调“脱气”原油?
油层中有溶解气,可以降低原油粘度。
稠油井井下取样非常困难,取样时往往会损失溶
解气,而将油样恢复到相似状态困难、成本高。
一、稠油简介
2、稠油的特点
二 个 特 点 粘度高 粘度从100mPa•s到几十万mPa•s
密度大 相对密度可超过1.0以上
稠油物性参数
油田 辽河 区块 杜 84 杜 1-7-5 杜 84 克拉 玛依 胜利 九区 凤城全区 单家寺 草桥 孤岛 大港 羊三木 枣园枣北 油层 杜家台油层 大凌河油层 兴隆台油层 齐古组 齐古组 Ng Ng Ng 明、馆 下第三纪孔一段 埋深 1122-1500 950-1090 650-750 160-230 150-500 1100-1200 820-960 1200-1400 1220-1430 1736-2036 密度 0.93 0.98 1.003 0.924-0.950 0.9377-0.9619 0.98-0.99 0.9671-1.061 0.95-0.99 0.95-0.96 0.9250 粘度(50℃、脱气) 320 30000-40000 2963(100℃) 2300-15000(23℃) 50000-170000(30℃) 8984-55880 10163-47223 250-5700 289-1073 2262
3220
1450
煤油的加入可使稀释后的稠油粘度大幅降低
由于稀油的加入增加了胶质、沥青质分散体之间的距离,减少了 它们相互间的作用力,从而破坏了稠油的结构。
经验公式:
lg(lg d ) x lg(lg l ) (1 x)lg(lg v )
经验公式:
lg(lg d ) x lg(lg l ) (1 x)lg(lg v )
牛顿粘度:稠油固有的粘度
Andrade公式:
ae
b/T
二、升温降粘法: 注蒸汽 电加热法
第3节 稠油的稀释降粘法
稠油与煤油质量比 粘度/mPa· s 稠油与煤油质量比 粘度/mPa· s
100:0
62400
ห้องสมุดไป่ตู้
100:15
6670
100:5
100:10
28300
12400
100:20
100:30
3、稠油为什么粘度大?
主要是因为稠油中胶质沥青质含量高造成的。 沥青质
一般把石油中不溶于非极性 的小分子正构烷烃而溶于苯 的物质称为沥青质,它是石 油中分子量最大、极性最强 的非烃组分。
沥青质的结构层次 单元薄片 似晶缔合体微粒 胶束 超分子
单元薄片 似晶缔合 体微粒
环烷环
烷基链
胶束
超分子
稠环芳 香环
4、稠油乳化降粘剂 主要成分是表面活性剂
C9H19 O CH2 CH2 O
第2节 稠油的升温降粘法
稠 油 粘 温 曲 线
10
5
塔河TK1055 胜利陈庄13-15 辽河齐40 塔河TK1244
粘度,mPa.s
10
4
10
3
10
2
30
40
50
60
70
80
90
100
结论 稠油的粘度受温度影响影响很大
温度,℃
一、稠油粘度来源:
稠油的粘温曲线表明:稠油存在结构,稠油的粘 度像聚合物溶液的粘度一样有结构粘度和牛顿粘 度组成。 结构粘度:结构的存在而产生的
k ——常数:
• Φ ≤ 0.74时,k为 7.0, • 当φ >0.74时,k为 8.0;
Richardson公式
0e
k
启 (1)乳状液粘度取决于分散介质粘度。 示
(2)乳状液粘度取决于分散相所占体积分数。
练习: 50℃时稠油的粘度为2000mPa· S,水的粘度为 有何启示
0.55mPa· S。在表面活性剂的作用,将稠油乳化成水包油乳 状液,求分散相质量分数分别为0.7和0.8时所形成乳状液的 粘度。