辽宁省实验中学分校2020~2021学年上学期高一期中考试数学试卷及答案
2020-2021学年辽宁省朝阳第一高级中学高一上学期期中数学试卷(含解析)

2020-2021学年辽宁省朝阳第一高级中学高一上学期期中数学试卷一、单选题(本大题共8小题,共40.0分)1.已知集合A={0,1,2,3,4,5},B={2,3,4,6},则A∩B的真子集可以是()A. {1,2}B. {2,3,4}C. {2,4,6}D. {4}2.函数y=√x−3的定义域是()A. {x|x>0}B. {x|x>3}C. {x|x≥0}D. {x|x≥3}3.若直线l:y=−x2+m与曲线C:y=12√|4−x2|有且仅有三个交点,则m的取值范围是()A. (√2−1,√2+1)B. (1,√2)C. (1,√2+1)D. (2,√2+1)4.下列四组函数中表示相等函数的是()A. f(x)=√x2与g(x)=xB. f(x)=√x+1⋅√x−1与g(x)=√x2−1C. f(x)=lnx2与g(x)=2lnxD. f(x)=log a a x(a>0,a≠1)与g(x)=√x335.下列说法不正确的是()A. 通过调查获取数据时,无论采用什么抽样方法,关键是要有效避免抽样过程中的人为错误B. 通过试验获取数据时需要严格控制好试验环境C. 通过观察获取数据时,由于自然现象会随着时间的变化而变化,一般不能用抽样的方法获取数据D. 通过查询获取数据时,可以直接采用“拿来主义”即可6.已知函数y=a1−x(a>0,a≠1)的图象恒过定点A,若点A在直线mx+ny−1=0(m>0,n>0)上,则1m +4n的最小值为()A. 8B. 9C. 4D. 67.已知定义在R上的函数f(x)满足f(−x)=−f(x),且f(−1)=2,当x≥0时,f(x)=ax2−3x,则函数g(x)=f(x)−x+3的零点的集合为()A. {1,3}B. {−3,−1,1,3}C. {2−√7,1,3}D. {−2−√7,1,3}8. 已知奇函数f(x),当x <0时,又函数,若在y 轴的右侧,满足f 1(x)的图象在f 2(x)图象上方的整数x 不超过三个,则a 的取值范围是( )A. B.C.D.二、多选题(本大题共4小题,共20.0分) 9.若函数f(x)={(2b −1)x +b −2(x >0)−x 2+(2−b)x −1(x ≤0)在R 上为单调增函数,则实数b 的值可以为( )A. 1B. 32C. 2D. 310. 已知正方体ABCD −A 1B 1C 1D 1的棱长为1,P 是空间中任意一点,下列正确命题有( )A. 若P 为棱CC 1中点,则异面直线AP 与CD 所成角的正切值为√52B. 若P 在线段A 1B 上运动,则AP +PD 1的最小值为√6+√22C. 若P 在半圆弧CD ⏜上运动,当三棱锥P −ABC 体积最大时,三棱锥P −ABC 外接球的表面积为2πD. 若过点P 的平面a 与正方体每条棱所成角相等,则a 截此正方体所得截面面积的最大值为3√3411. 若函数f(x)同时满足:①对于定义域内的任意x ,恒有f(x)+f(−x)=0,②对于定义域上的任意x 1,x 2,当x 1<x 2时,恒有x 2f(x 2)−x 1f(x 2)>x 2f(x 1)−x 1f(x 1);则称函数f(x)具有性质P.下列函数中具有性质P 的是( )A. y =ln(√1+x 2+x)B. y =tanxC. y ={x 2,x ≥0−x 2,x <0D. y =−1x12.狄利克雷是德国著名数学家,函数D(x)={1,x为有理数0,x为无理数,被称为狄利克雷函数,下面给出关于狄利克雷函数D(x)的结论中正确的是()A. 若x是无理数,则D(D(x))=0B. 函数D(x)的值域是[0,1]C. D(−x)=D(x)D. 若T≠0且T为有理数,则D(x+T)=D(x)对任意的x∈R恒成立E. 存在不同的三个点A(x1,D(x1)),B(x2,D(x2)),C(x1,D(x3)),使得△ABC为等边三角形三、单空题(本大题共3小题,共15.0分)13.“α=2kπ+π3(k∈Z)”是“tanα=√3”的______条件.(填“充分不必要”,“必要不充分”,“充要”,“既不充分也不必要”)14.我国古代数学名著《张邱健算经》有“分钱问题”如下:“今有人与钱,初一人与三钱,次一人与四钱,次一人与五钱,以次与之,转多一钱,与讫,还数聚与均分之,人得一百钱,问人几何?”则分钱问题中的人数为______ .15.下列几个命题:①函数与表示的是同一个函数;②若函数的定义域为,则函数的定义域为;③若函数的值域是,则函数的值域为;④若函数是偶函数,则函数的减区间为;⑤函数既不是奇函数,也不是偶函数.其中正确的命题有________ 个.四、多空题(本大题共1小题,共5.0分)16.函数f(x)=√1−x⋅lnx的定义域为(1),最大值为(2).五、解答题(本大题共6小题,共70.0分)17.已知集合A={x|2≤2x≤8},B={x|log4x>12}.(1)求(∁R B)∪A;(2)已知集合C={x|1<x<a},若A∩C=C,求实数a的取值范围.18.解不等式:−x2−√2⋅x+4≤0.19.已知函数.(1)求证:是奇函数;(2)求证:;(3)若,,求,的值.20.某学校有长度为14米的旧墙一面,现准备利用这面旧墙建造平面图形为矩形,面积为126m2的活动室,工程条件是:①建1m新墙的费用为a元;②修1m旧墙的费用是a4元;③拆去1m旧墙所得的材料,建1m新墙的费用为a2元,经过讨论有两种方案:(1)问如何利用旧墙的一段x米(x<14)为矩形厂房的一面边长;(2)矩形活动室的一面墙的边长x≥14,利用旧墙,即x为多少时建墙的费用最省?(1)(2)两种方案,哪种方案最好?21.已知函数f(x)=2√3sinx⋅cosx+2cos2x−1.(Ⅰ)求函数f(x)的单调递增区间;(Ⅱ)若关于x的方程f(x)=m在区间[π12,π2]上有两个不同的实数根,求实数m的取值范围.22.(1)判断函数f(x)=x2+1与g(x)=x2−xx−1的奇偶性;(2)已知函数f(x)为奇函数,且当x>0时,f(x)=2x+3,求f(−4).【答案与解析】1.答案:D解析:此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键,属于基础题.由A与B,求出两集合的交集,确定出交集的真子集即可.解:∵A={0,1,2,3,4,5},B={2,3,4,6},∴A∩B={2,3,4},则A∩B的真子集可以是{4},故选:D.2.答案:D解析:解:要使函数有意义,x应满足:x−3≥0,即x≥3,故函数y=√x−3的定义域是{x|x≥3}故选:D.要使函数有意义,只要使得根式有意义即可,本题主要考查函数定义域的求法,解题的关键:使函数解析式有意义的自变量的范围.3.答案:B解析:解:由题意作图象如下,y=1√|4−x2|2的图象由椭圆的一上部分与双曲线的上部分构成,故直线l:。
2020-2021学年辽宁省辽南协作体高一上学期期中数学试卷(含解析)

2020-2021学年辽宁省辽南协作体高一上学期期中数学试卷一、单选题(本大题共8小题,共40.0分)1. 对于定义域和值域均为[0,1]的函数f(x),定义f 1(x)=f(x),f 2(x)=f(f 1(x)),…,f n (x)=f(f n−1(x)),n =1,2,3,….满足f n (x)=x 的点x ∈[0,1]称为f 的n 阶周期点.设f(x)={2x,0≤x ≤122−2x,12<x ≤1,则f 的n 阶周期点的个数是( ) A. 2nB. 2(2n −1)C. 2nD. 2n 2 2. 在下列句子的空缺处依次填入成语,最恰当的一组是( )小组内乌兹别克、沙特这些曾经的“苦主”,再加上澳大利亚接近35℃的温度,给亚洲杯国足占据八强乃至高位置的 蒙上了阴影。
劳累了一天,凌晨时分拖着疲惫的身体回到家里,窗外大雪纷飞,屋内却很温暖, ,带来了无限幸福。
公款支撑的演出市场多年异样繁荣,“中”字头演出团体业务接踵而来,而一些无依无靠的演艺公司在市场竞争中几无 。
A. 一隅之地 一席之地 立锥之地B. 一席之地 一隅之地 立锥之地C. 立锥之地 一席之地 一隅之地D. 一席之地 立锥之地 一隅之地3. 命题“∀x ∈R ,均有x 2+sinx +1<0”的否定为( )A. ∀∈R ,均有x 2+sinx +1≥0B. ∃x ∈R ,使得x 2+sinx +1<0C. ∃x ∈R ,使得x 2+sinx +1≥0D. ∀x ∈R ,均有x 2+sinx +1>0 4. 设函数f(x)的定义域为D ,如果对任意x 1∈D ,都存在唯一的x 2∈D ,使得f(x 1)+f(x 2)=m(m 为常数)成立,那么称函数f(x)在D 上具有性质Ψm .现有函数:①f(x)=3x ;②f(x)=3x ;③f(x)=log 3x ;④f(x)=tanx .其中,在其定义域上具有性质Ψm 的函数的序号是( )A. ①③B. ①④C. ②③D. ②④5.“”是“”的()A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分又不必要条件6.拟定从甲地到乙地通话m分钟的电话费由f(m)=1.06(0.5⋅{m}+1)(元)决定,其中m>0,{m}是大于或等于m的最小整数,(如:{3}=3,{3.8}=4,{3.1}=4),则从甲地到乙地通话时间为5.5分钟的电话费为()A. 3.71元B. 3.97元C. 4.24元D. 4.77元7.已知集合,,则∪是:()A. B. C. D.8.二次函数y=x2−4x+3在区间(1,4]上的值域是()A. [−1,+∞)B. (0,3]C. [−1,3]D. (−1,3]二、多选题(本大题共4小题,共20.0分)9.已知全集U={0,1,2,3,4},集合M={2,3,4},N={0,1,4},则下列判断正确的是()A. M∪N={0,1,2,3,4}B. (∁U M)∩N={0,1}C. ∁U N={1,2,3}D. M∩N={0,4}10.已知定义在R上的函数f(x)的图象连续不断,若存在常数λ(λ∈R),使得f(x+λ)+λf(x)=0对任意的实数x恒成立,则称f(x)是回旋函数.给出下列四个命题中,正确的命题是()A. 函数f(x)=a(其中a为常数)为回旋函数的充要条件是λ=−1B. 若函数f(x)=a x(a>1)为回旋函数,则λ>1C. 函数f(x)=cosπx不是回旋函数D. 若f(x)是λ=2的回旋函数,则f(x)在[0,2020]上至少有1010个零点11.下列命题中,正确的有()A. 若a>b>0,则ac2>bc2B. 若a<b<0,则a2>ab>b2C. 若a>b>0且c>0,则b+ca+c >baD. 若a<b<0且c<0,则ca2<cb212.设函数f(x)是定义在实数集R上周期为2的偶函数,当0≤x≤1时,f(x)=1−√1−x2.若直线y=x+a与函数y=f(x)的图象在[0,2]内恰有两个不同的公共点,则实数a的值可为()A. −14B. 0 C. −12D. 1−√2三、单空题(本大题共3小题,共15.0分)13.若关于x的不等式a≤34x2−3x+4≤b的解集恰好是[a,b],则a+b=______ .14.二次函数f(x)满足f(x)−f(x−1)=2x−2且f(0)=1.则函数y=f(x)−3的零点是______ .15.直线ax−by+2=0(a>0,b>0)与圆C:x2+y2+2x−2y=0交于两点A,B,当|AB|最大时,1a +4b的最小值为______.四、多空题(本大题共1小题,共5.0分)16.已知函数f(x)=x3−4x,g(x)=sinωx(ω>0).若∀x∈[−a,a],都有f(x)g(x)≤0,则a的最大值为(1);此时ω=(2).五、解答题(本大题共6小题,共70.0分)17.已知函数f(x)=x2+3|x−a|(a∈R).(Ⅰ)若f(x)在[−1,1]上的最大值和最小值分别记为M(a),m(a),求M(a)−m(a);(Ⅱ)设b∈R,若|f(x)+b|≤3对x∈[−1,1]恒成立,求3a+b的取值范围.18.在数列{a n}中,a1=1,a n+1=1−14a n ,b n=12a n−1 ,其中n∈N∗.(1)求证:数列{b n}为等差数列;(2)设c n=b n+1·(13) b n,数列{c n}的前n项和为T n,求T n;(3)证明:1√b√b ⋯√b≤2√n−1(n∈N∗).19.某商场在春节期间,对顾客实行购物优惠活动,规定一次购物付款总额:①如果不超过200元,则不给予优惠;②如果超过200元但不超过500元,则按标价给予9折优惠(即按标价的90%出售);③如果超过500元,其500元内的按第(2)条给予优惠,超过500元的部分给予7折优惠.(Ⅰ)请写出购物金额(x元)与实付金额(y元)的函数关系式;(Ⅱ)若某人两次去购物,分别付款168元和423元,假设他一次性购买上述的商品,则应付款是多少?20. 已知集合A ={x|x−3x−7<0},B ={x|x 2−12x +20<0},C ={x|5−a <x <a},(1)求A ∪B ,(∁R A)∩B ;(2)若C ⊆(A ∪B),求实数a 的取值范围.21. (本小题满分14分)已知是定义在[−1,1]上的奇函数,当,且时有. (1)判断函数的单调性,并给予证明;(2)若对所有恒成立,求实数m 的取值范围.22. 已知函数f(x)={−x 2+x +1,x ≤1log 4x+1x−1,x >1, (1)求f(−2)的值;(2)若函数g(x)=f(x)−12,求函数g(x)的零点.【答案与解析】1.答案:C解析:解:当x∈[0,12]时,f1(x)=2x=x,解得x=0当x∈(12,1]时,f1(x)=2−2x=x,解得x=23∴f的1阶周期点的个数是2当x∈[0,14]时,f1(x)=2x,f2(x)=4x=x解得x=0当x∈(14,12]时,f1(x)=2x,f2(x)=2−4x=x解得x=25当x∈(12,34]时,f1(x)=2−2x,f2(x)=−2+4x=x解得x=23当x∈(34,1]时,f1(x)=2−2x,f2(x)=4−4x=x解得x=45∴f的2阶周期点的个数是22,当x∈[0,18],f1(x)=2x,f2(x)=4x,f3(x)=8x=x,x=0当x∈(18,14],f1(x)=2x,f2(x)=4x,f3(x)=2−8x=x,x=29当x∈(14,38],f1(x)=2x,f2(x)=2−4x,f3(x)=2−2(2−4x)=x,x=27…依此类推∴f的n阶周期点的个数是2n故选C.本题考查的知识点是归纳推理,方法是根据已知条件和递推关系,先求出f的1阶周期点的个数,2阶周期点的个数,然后总结归纳其中的规律,f的n阶周期点的个数.归纳推理的一般步骤是:(1)通过观察个别情况发现某些相同性质;(2)从已知的相同性质中推出一个明确表达的一般性命题(猜想),属于中档题.2.答案:B解析:成语的正确使用,要从成语的意思、感情色彩、修饰对象、使用范围等角度考虑,同时结合语境从词语与语境的语意关系、搭配关系等方面筛选.。
2020-2021学年辽宁省沈阳市高一上学期期末数学试卷 (解析版)

2020-2021学年辽宁省沈阳市高一(上)期末数学试卷一、选择题(共8小题).1.已知全集U={1,2,3,4,5,6,7},集合A={2,4,6,7},B={1,3,4,6},则A∩∁U B=()A.{2,7}B.{4,6}C.{2,5,7}D.{2,4,5,6,7} 2.某单位共有500名职工,其中不到35岁的有125人,35﹣49岁的有a人,50岁及以上的有b人,现用分层抽样的方法,从中抽出100名职工了解他们的健康情况.如果已知35﹣49岁的职工抽取了56人,则50岁及以上的职工抽取的人数为()A.19B.95C.220D.2803.设x∈R,则“x<1”是“2x<1”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件4.2020年12月4日,中国科学技术大学宣布该校潘建伟等人成功构建76个光子的量子计算原型机“九章”.据介绍,将这台量子原型机命名为“九章”,是为了纪念中国古代的数学专著《九章算术》.在该书的《方程》一章中有如下一题:“今有上禾二秉,中禾三秉,下禾四秉,实皆不满斗.上取中,中取下,下取上,各一秉,而实满斗.问上中下禾实一秉各几何?”其译文如下:“今有上等稻禾2束,中等稻禾3束,下等稻禾4束,各等稻禾总数都不足1斗.如果将2束上等稻禾加上1束中等稻禾,或者将3束中等稻禾加上1束下等稻禾,或者将4束下等稻禾加上1束上等稻禾,则刚好都满1斗.问每束上、中、下等的稻禾各多少斗?”现请你求出题中的1束上等稻禾是多少斗?()A.B.C.D.5.在△ABC中,,.若点D满足,则=()A.B.C.D.6.设a=50.6,b=()﹣0.7,c=log0.60.7,则a,b,c的大小关系为()A.a<b<c B.b<a<c C.c<b<a D.c<a<b7.已知实数a>0,b>0,且2a+b=2ab,则a+2b的最小值为()A.B.C.D.8.已知函数f(x)=+x(其中e为自然对数的底数,e=2.71828…),若实数m满足f(m)=﹣1,则f(﹣m)=()A.4B.3C.2D.1二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求,全部选对的得5分,有选错的得0分,部分选对的得3分.9.下列命题中错误的是()A.若a>b,则<B.若a>b,则>C.若a>b,c<d,则a﹣d>b﹣cD.若b>a>0,m>0,则>10.在某次高中学科竞赛中,5000名考生的参赛成绩统计如图所示,60分以下视为不及格,若同一组中的数据用该组区间中点值为代表,则下列说法中正确的是()A.考生成绩在[70,80)的人数最多B.考生成绩在[80,90)对应的频率为0.015C.不及格的考生人数为1000D.考生成绩的平均分约为70.511.已知函数f(x)=|()x﹣1|﹣b有两个零点,分别为x1,x2(x1<x2),则下列结论正确的是()A.﹣1<x1<0B.0<x2<2C.()+()=2D.0<b<112.若关于x的方程=的解集中只含有一个元素,则满足条件的实数k可以为()A.﹣B.﹣1C.1D.三、填空题:本题共4小题,每小题5分,共20分.13.计算lg8+lg25﹣lg2的结果是.14.设A,B,C为三个随机事件,若A与B互斥,B与C对立,且P(A)=,P(C)=,则P(A+B)=.15.已知函数f(x)=则不等式x+f(x﹣1)≤2的解集是.16.给定函数y=f(x),设集合A={x|y=f(x)},B={y|y=f(x)}.若对于∀x∈A,∃y∈B,使得x+y=0成立,则称函数f(x)具有性质P.给出下列三个函数:①;②;③y=lgx.其中,具有性质P的函数的序号是.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(10分)设A,B,C,D为平面直角坐标系中的四点,且A(2,﹣2),B(4,1),C(1,3).(1)若=,求D点的坐标及||;(2)设向量=,=,若k﹣与+3平行,求实数k的值.18.(12分)已知全集U=R,集合A={x|x2﹣4x<0},B={x|m≤x≤3m﹣2}.(1)当m=2时,求∁U(A∩B);(2)如果A∪B=A,求实数m的取值范围.19.(12分)中学阶段是学生身体发育重要的阶段,长时间熬夜学习严重影响学生的身体健康.某校为了解甲、乙两个班的学生每周熬夜学习的总时长(单位:小时),从这两个班中各随机抽取6名同学进行调查,将他们最近一周熬夜学习的总时长作为样本数据,如表所示.如果学生一周熬夜学习的总时长超过21小时,则称为“过度熬夜”.甲班91113202431乙班111218202225(1)分别计算出甲、乙两班样本的平均值;(2)为了解学生过度热夜的原因,从甲、乙两班符合“过度熬夜”的样本数据中,抽取2个数据,求抽到的数据来自于同一个班级的概率;(3)从甲班的样本数据中有放回地抽取2个数据,求恰有1个数据为“过度熬夜”的概率.20.(12分)已知函数f(x)=x2+2ax+1(a∈R).(1)求f(x)在区间[1,3]上的最小值g(a);(2)设函数h(x)=,用定义证明:h(x)在(0,1)上是减函数.21.(12分)近来,国内多个城市纷纷加码布局“夜经济”,以满足不同层次的多元消费,并拉动就业、带动创业,进而提升区域经济发展活力.某夜市的一位工艺品售卖者,通过对每天销售情况的调查发现:该工艺品在过去的一个月内(以30天计),每件的销售价格P(x)(单位:元)与时间x(单位:天)的函数关系近似满足P(x)=10+(k 为常数,且k>0),日销售量Q(x)(单位:件)与时间x(单位:天)的部分数据如表所示:x1015202530 Q(x)5055605550已知第10天的日销售收入为505元.(1)求k的值;(2)给出以下四个函数模型:①Q(x)=ax+b;②Q(x)=a|x﹣m|+b;③Q(x)=a•b x;④Q(xr)=a•log b x.请你根据表中的数据,从中选择你认为最合适的一种函数模型来描述日销售量Q(x)与时间x的变化关系,并求出该函数的解析式;(3)设该工艺品的日销售收入为f(x)(单位:元),求f(x)的最小值.22.(12分)已知函数f(x)=ln(e x+1)+kx是偶函数(其中e为自然对数的底数,e=2.71828…).(1)求k的值;(2)若方程f(x)=x+b在区间[﹣1,0]上有实数根,求实数b的取值范围.参考答案一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集U={1,2,3,4,5,6,7},集合A={2,4,6,7},B={1,3,4,6},则A∩∁U B=()A.{2,7}B.{4,6}C.{2,5,7}D.{2,4,5,6,7}解:∵U={1,2,3,4,5,6,7},A={2,4,6,7},B={1,3,4,6},∴∁U B={2,5,7},A∩∁U B={2,7}.故选:A.2.某单位共有500名职工,其中不到35岁的有125人,35﹣49岁的有a人,50岁及以上的有b人,现用分层抽样的方法,从中抽出100名职工了解他们的健康情况.如果已知35﹣49岁的职工抽取了56人,则50岁及以上的职工抽取的人数为()A.19B.95C.220D.280解:计算抽样比例为,所以不到35岁的应抽取125×=25(人),所以50岁及以上的应抽取100﹣25﹣56=19(人).故选:A.3.设x∈R,则“x<1”是“2x<1”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解:由2x<1,解得x<0,由x<0,可得x<1,反之不成立.∴“x<1”是“2x<1”的必要不充分条件.故选:B.4.2020年12月4日,中国科学技术大学宣布该校潘建伟等人成功构建76个光子的量子计算原型机“九章”.据介绍,将这台量子原型机命名为“九章”,是为了纪念中国古代的数学专著《九章算术》.在该书的《方程》一章中有如下一题:“今有上禾二秉,中禾三秉,下禾四秉,实皆不满斗.上取中,中取下,下取上,各一秉,而实满斗.问上中下禾实一秉各几何?”其译文如下:“今有上等稻禾2束,中等稻禾3束,下等稻禾4束,各等稻禾总数都不足1斗.如果将2束上等稻禾加上1束中等稻禾,或者将3束中等稻禾加上1束下等稻禾,或者将4束下等稻禾加上1束上等稻禾,则刚好都满1斗.问每束上、中、下等的稻禾各多少斗?”现请你求出题中的1束上等稻禾是多少斗?()A.B.C.D.解:设上等稻禾x斗/束,中等稻禾y斗/束,下等稻禾z斗/束,由已知得:,解得:,故一束上等稻禾是斗.故选:D.5.在△ABC中,,.若点D满足,则=()A.B.C.D.解:在△ABC中,,;如图;∴=﹣=﹣,又,∴==(﹣);∴=+=+(﹣)=+;故选:C.6.设a=50.6,b=()﹣0.7,c=log0.60.7,则a,b,c的大小关系为()A.a<b<c B.b<a<c C.c<b<a D.c<a<b解:∵y=5x在R上递增,∴1=50<a=50.6<b=()﹣0.7=50.7,而c=log0.60.7<1,故c<a<b,故选:D.7.已知实数a>0,b>0,且2a+b=2ab,则a+2b的最小值为()A.B.C.D.解:∵a>0,b>0,且2a+b=2ab,∴=1,则a+2b=(a+2b)()==.当且仅当且=1,即a=b=时取等号.∴a+2b的最小值为.故选:B.8.已知函数f(x)=+x(其中e为自然对数的底数,e=2.71828…),若实数m满足f(m)=﹣1,则f(﹣m)=()A.4B.3C.2D.1解:根据题意,函数f(x)=+x,则f(﹣x)=+(﹣x)=﹣x,则f(x)+f(﹣x)=(+x)+(﹣x)=2,即有f(m)+f(﹣m)=2,若f(m)=﹣1,则f(﹣m)=3,故选:B.二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求,全部选对的得5分,有选错的得0分,部分选对的得3分.9.下列命题中错误的是()A.若a>b,则<B.若a>b,则>C.若a>b,c<d,则a﹣d>b﹣cD.若b>a>0,m>0,则>解:对于A:令a=0,b=﹣1,显然错误;对于B:若a>b,则>,故B正确;对于C:若a>b,c<d,则a>b,﹣c>﹣d,则a﹣c>b﹣d,故C错误;对于D:若b>a>0,m>0,则bm>am,则ab+bm>ab+am,则b(a+m)>a(b+m),则>,故D正确;故选:AC.10.在某次高中学科竞赛中,5000名考生的参赛成绩统计如图所示,60分以下视为不及格,若同一组中的数据用该组区间中点值为代表,则下列说法中正确的是()A.考生成绩在[70,80)的人数最多B.考生成绩在[80,90)对应的频率为0.015C.不及格的考生人数为1000D.考生成绩的平均分约为70.5解:由成绩统计图知,考生成绩在[70,80)内的小矩形图最高,所以频率最大,对应人数最多,A正确;考生成绩在[80,90)对应的频率为0.015×10=0.15,所以B错误;60分以下的人数为(0.010+0.015)×10×5000=1250(人),所以C错误;计算考生成绩的平均分为45×0.10+55×0.15+65×0.20+75×0.30+85×0.15+95×0.10=70.5,所以D正确.故选:AD.11.已知函数f(x)=|()x﹣1|﹣b有两个零点,分别为x1,x2(x1<x2),则下列结论正确的是()A.﹣1<x1<0B.0<x2<2C.()+()=2D.0<b<1解:函数f(x)=|()x﹣1|﹣b有两个零点,即有两个根,问题即转化为y=b与g(x)=的有两个不同交点.做出函数g(x)的图象如右:其函数解析式为:,由题意两交点横坐标分别为x1,x2(x1<x2),①若有两个交点,则0<b<1,D对;②当x<0时,令g(x)=1,得x=﹣1,故﹣1<x1<0,A对;③易知,整理得:,C对;④由③得,所以x2>0,B错.故选:ACD.12.若关于x的方程=的解集中只含有一个元素,则满足条件的实数k可以为()A.﹣B.﹣1C.1D.解:易知,当k=1时,方程只有一个根1,满足题意;当k≠1时,原方程可化为,即①方程只有一个非零实数根即可.对于方程①,显然x≠0,即x2﹣x+k﹣1=0只有一个非零实根,所以,解得.故选:CD.三、填空题:本题共4小题,每小题5分,共20分.13.计算lg8+lg25﹣lg2的结果是2.解:原式=3lg2+2lg5﹣lg2=2lg2+2lg5=2(lg2+lg5)=2.故答案为:2.14.设A,B,C为三个随机事件,若A与B互斥,B与C对立,且P(A)=,P(C)=,则P(A+B)=.解:∵随机事件A,B,C中,A与B互斥,B与C对立,且P(A)=,P(C)=,∴P(B)=1﹣P(C)=,∴P(A+B)=P(A)+P(B)=+=.故答案为:.15.已知函数f(x)=则不等式x+f(x﹣1)≤2的解集是{x|x≤1}.解:∵函数f(x)=,∴当x﹣1≥0即x≥1时,x+f(x﹣1)≤2⇒x+1+(x﹣1)≤2⇒x≤1,故x=1;当x﹣1<0即x<1时,x+f(x﹣1)≤2⇒x+1﹣(x﹣1)≤2⇒2≤2,故x<1;∴不等式x+f(x﹣1)≤2的解集是:{x|x≤1}.故答案为:{x|x≤1}.16.给定函数y=f(x),设集合A={x|y=f(x)},B={y|y=f(x)}.若对于∀x∈A,∃y∈B,使得x+y=0成立,则称函数f(x)具有性质P.给出下列三个函数:①;②;③y=lgx.其中,具有性质P的函数的序号是①③.解:对①,A=(﹣∞,0)∪(0,+∞),B=(﹣∞,0)∪(0,+∞),显然对于∀x∈A,∃y∈B,使得x+y=0成立,即具有性质P;对②,A=R,B=(0,+∞),当x>0时,不存在y∈B,使得x+y=0成立,即不具有性质P;对③,A=(0,+∞),B=R,显然对于∀x∈A,∃y∈B,使得x+y=0成立,即具有性质P;故答案为:①③.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(10分)设A,B,C,D为平面直角坐标系中的四点,且A(2,﹣2),B(4,1),C(1,3).(1)若=,求D点的坐标及||;(2)设向量=,=,若k﹣与+3平行,求实数k的值.解:(1)设D(x,y),则,且,,∴(2,3)=(x﹣1,y﹣3),∴,解得,∴D(3,6),,∴;(2),∴,,且与平行,∴9(2k+3)+7(3k﹣2)=0,解得.18.(12分)已知全集U=R,集合A={x|x2﹣4x<0},B={x|m≤x≤3m﹣2}.(1)当m=2时,求∁U(A∩B);(2)如果A∪B=A,求实数m的取值范围.解:(1)A={x|0<x<4},m=2时,B={x|2≤x≤4},∴A∩B={x|2≤x<4},且U=R,∴∁U(A∩B)={x|x<2或x≥4};(2)∵A∪B=A,∴B⊆A,①B=∅时,m>3m﹣2,解得m<1;②B≠∅时,,解得1≤m<2;综上,实数m的取值范围为(﹣∞,2).19.(12分)中学阶段是学生身体发育重要的阶段,长时间熬夜学习严重影响学生的身体健康.某校为了解甲、乙两个班的学生每周熬夜学习的总时长(单位:小时),从这两个班中各随机抽取6名同学进行调查,将他们最近一周熬夜学习的总时长作为样本数据,如表所示.如果学生一周熬夜学习的总时长超过21小时,则称为“过度熬夜”.甲班91113202431乙班111218202225(1)分别计算出甲、乙两班样本的平均值;(2)为了解学生过度热夜的原因,从甲、乙两班符合“过度熬夜”的样本数据中,抽取2个数据,求抽到的数据来自于同一个班级的概率;(3)从甲班的样本数据中有放回地抽取2个数据,求恰有1个数据为“过度熬夜”的概率.解:(1)甲班样本的平均值为:=(9+11+13+20+24+31)=18.乙班样本的平均成绩为:=(11+12+18+20+22+25)=18.(2)甲班符合“过度熬夜”的样本数据有2个,乙班符合“过度熬夜”的样本数据有2个,从甲、乙两班符合“过度熬夜”的样本数据中,抽取2个数据,基本事件总数n==6,抽到的数据来自于同一个班级包含的基本事件个数m==2,∴抽到的数据来自于同一个班级的概率p===.(3)甲班的6个样本数据中,为“过度熬夜”的数据有2个,从甲班的样本数据中有放回地抽取2个数据,基本事件总数n=6×6=36,恰有1个数据为“过度熬夜”包含的基本事件总数m==16,∴恰有1个数据为“过度熬夜”的概率P===.20.(12分)已知函数f(x)=x2+2ax+1(a∈R).(1)求f(x)在区间[1,3]上的最小值g(a);(2)设函数h(x)=,用定义证明:h(x)在(0,1)上是减函数.解:(1)因为f(x)=x2+2ax+1的对称轴x=﹣a,开口向上,当﹣a≤1即a≥﹣1时,g(a)=f(1)=2+2a,当﹣a≥3即a≤﹣3时,g(a)=f(3)=10+6a,当1<﹣a<3即﹣3<a<﹣1时,g(a)=f(﹣a)=1﹣a2,故g(a)=.(2)证明:h(x)==x++2a,设0<x1<x2<1,则h(x1)﹣h(x2)==(x1﹣x2)+=(x1﹣x2)()>0,∴h(x1)>h(x2),∴h(x)在(0,1)上是减函数.21.(12分)近来,国内多个城市纷纷加码布局“夜经济”,以满足不同层次的多元消费,并拉动就业、带动创业,进而提升区域经济发展活力.某夜市的一位工艺品售卖者,通过对每天销售情况的调查发现:该工艺品在过去的一个月内(以30天计),每件的销售价格P(x)(单位:元)与时间x(单位:天)的函数关系近似满足P(x)=10+(k 为常数,且k>0),日销售量Q(x)(单位:件)与时间x(单位:天)的部分数据如表所示:x1015202530 Q(x)5055605550已知第10天的日销售收入为505元.(1)求k的值;(2)给出以下四个函数模型:①Q(x)=ax+b;②Q(x)=a|x﹣m|+b;③Q(x)=a•b x;④Q(xr)=a•log b x.请你根据表中的数据,从中选择你认为最合适的一种函数模型来描述日销售量Q(x)与时间x的变化关系,并求出该函数的解析式;(3)设该工艺品的日销售收入为f(x)(单位:元),求f(x)的最小值.解:(1)由题意,Q(10)•P(10)=50(10+)=505,即k=1;(2)由表中数据可知,当时间变化时,日销售量有增有减,函数不单调,而①③④均为单调函数,故Q(x)=a|x﹣m|+b,则,解得a=1,m=10,b=50.故函数解析式为Q(x)=|x﹣10|+50;(3)由(2)可知,Q(x)=|x﹣10|+50=,则f(x)=P(x)•Q(x)=.当1≤x≤10时,f(x)=600﹣1+,该函数为单调减函数,f(x)min=f(10)=505;当10<x≤30时,f(x)=400+1+10x+,在(10,30]上为增函数,则f(x)>505.综上,该工艺品的日销售收入f(x)的最小值为505元.22.(12分)已知函数f(x)=ln(e x+1)+kx是偶函数(其中e为自然对数的底数,e=2.71828…).(1)求k的值;(2)若方程f(x)=x+b在区间[﹣1,0]上有实数根,求实数b的取值范围.解:(1)由f(x)是偶函数得:f(x)﹣f(﹣x)=ln(e x+1)+kx﹣ln(e﹣x+1)﹣(﹣kx)===(2k+1)x=0恒成立,故2k+1=0,即k=﹣.(2)由(1)知f(x)=ln(e x+1)x.由f(x)=x+b得b=ln(e x+1)﹣x,x∈[﹣1,0].令g(x)=ln(e x+1)﹣x=,x∈[﹣1,0].当x∈[﹣1,0]时,∈[2,1+e],故ln(1)∈[ln2,ln(1+e)].故b∈[ln2,ln(1+e)]时,方程f(x)=x+b在区间[﹣1,0]上有实数根.即b的取值范围是[ln2,ln(1+e)].。
2020-2021学年高一上学期数学期中考试卷含答案

选择题.本大题共10小题,每题5分,共50分.在每题给出的 四个选项中,只有一项为哪一项符合题目要求的.请把答案填涂在答题卡上.1.如图,阴影部分表示的集合是 ( )A 、B ∩[CU (A ∪C)] B 、(A ∪B)∪(B ∪C)C 、(A ∪C)∩( CUB)D 、[CU (A ∩C)]∪B 2.全集 U={1,2,3,4,5},A={1,5},B CUA,那么集合 B 的个数是〔 〕 A 、5 B. 6C. 7D. 83.假设函数)(x f 在区间(),a b 上是减函数,在区间(),b c 上也是减函数,那么函数)(x f在区间(),a c 上〔 〕[来源:Z|xx|]A 、必是减函数B 、必是增函数C 、是增函数或是减函数D 、无法确定增减性4.如果集合A={x|ax2+2x +1=0}中只有一个元素,那么a 的值是 〔 〕A 、0B 、0 或1C 、1D 、不能确定5.函数()11)(0--=x x f ( )A 、是奇函数B 、是偶函数C 、既是是奇函数,又是偶函数D 、既不是是奇函数,又不是偶函数 6.要得到y =3×(13)x 的图像,只需将函数y =(13)x 的图像( )A 、向左平移3个单位B 、向右平移3个单位C 、向左平移1个单位D 、向右平移1个单位7.有关方程345x x x+=的根的情况的四种说法中,正确的选项是〔 〕A 、只有一个有理数根B 、只有一个无理数根C 、共有两个实数根D 、没有实数根8.指数函数xx x x d y ,c y ,b y ,a y ====在同一坐标系内的图象如下图,那么a 、b 、c 、d 的大小顺序是〔 〕A 、c d a b <<<B 、c d b a <<<[来源:学科网]C 、d c a b <<<D 、d a c b <<<9.设)(x f 是奇函数,且在(0,+∞)内递增, 又0)3(=-f ,那么0)(<⋅x f x 的解集是( ) A 、{x|x<-3,或0<x<3} B 、{x|-3<x<0,或x>3} C 、{x|x<-3,或x>3} D 、{x|-3<x<0,或0<x<3}10.函数22,(1)(),()(,)(21)36,(1)x ax x f x f x a x a x ⎧-+≤=-∞+∞⎨--+>⎩若在上是增函数,那么实数a 的取值范围是〔 〕A 、1(,1]2B 、1(,)2+∞C 、[1,)+∞D 、[2.)+∞二.填空题.本大题共4小题,每题5分,计20分.请把答案填在答题卷的相应位置的横线上.11.计算:25.0log 10log 255+= ;214964-⎪⎭⎫ ⎝⎛+32827⎪⎭⎫ ⎝⎛= .12.函数f(x)=⎩⎨⎧4x -4,x≤1,x2-4x +3,x>1的图像和函数g(x)=log2x 的图像共有____个交点.13.0<a <1, 0<b <1,假设1)3(log <-x b a,那么x 的取值范围是 .14.集合M={a |65a ∈N ,且a ∈Z},用列举法表示集合 M= .三.解答题.本大题共6小题,计80分.解答应写出必要的文字说明,证明过程或演算步骤,请把答案写在答题卷的指定区域内.15.〔12分〕函数)(log )(3b ax x f +=的图象经过点A (2,1)、 B 〔5,2〕, 〔1〕求函数)(x f 的解析式及定义域;〔2〕求⎪⎪⎭⎫⎝⎛+÷213)14(f f 的值. [来源:学+科+网] 16.〔12分〕假设}06ax |x {B },06x 5x |x {A 2=-==+-=,且A B A = , 求由实数a 组成的集合M . 17 〔14分〕函数[]2()22,5,5f x x ax x =++∈-① 当1a =-时,求函数的最大值和最小值;② 求实数a 的取值范围,使()y f x =在区间[]5,5-上是单调函数18.(14分) 函数122)12()(+-+=x x a x f .(1) 是否存在实数a 使得f(x)为奇函数?假设存在,求出a 的值并证明;假设不存在,说明理由;w(2) 在(1)的条件下判断f(x)的单调性,并用定义加以证明. 版权所有:高考资源网(www.k s 5 )19.(14分)根据市场调查,某种新产品投放市场的30天内,每件销售价格P(元)与时间t(天)的关系如下图,日销售量Q(件)与时间t(天)之间的关系如表所示.(1) 根据图像,写出该产品每件销售价格P 与时间t 的函数解析式; (2) 在所给的直角坐标系中,根据表中提供的数据描出实数对(t ,Q)的对应点,并确定日销售量Q 与时间t 的一个函数解析式; (3) 在这30天内,哪一天的日销售金额最大? (日销售金额=每件产品销售价格×日销售量) 20.〔14分〕 函数2|1|(),04x m f x m x +-=>-,满足(2)2f =-,(1) 求实数m 的值;(2) 判断()y f x =在区间(,1]m -∞-上的单调性,并用单调性定义证明;(3) 假设关于x 的方程()f x kx =有三个不同实数解,求实数k 的取值范围.参考答案题 号 1234567[来源:学科网ZXXK]8910答 案 A CDBDDAADD11.2;258. 12.3 13.(3 , 4) 14.{1,2,3,4}-。
2020-2021学年初一(上)期中考试数学试卷(含答案)

2020-2021学年初一(上)期中考试数 学(考试时间90分钟 满分100分)18分)1.如图是加工零件尺寸的要求,现有下列直径尺寸的产品(单位:mm ),其中不合格的是( )A .Φ45.02B .Φ44.9C .44.98D .Φ45.012.下列运算中正确的是( )A .2(2)4-=- B .224-= C .3(3)27-=- D .236= 3.若37x =是关于x 的方程70x m +=的解,则m 的值为( ) A .3- B .13- C .3 D .134.若单项式12m a b -与212n a b 是同类项,则mn 的值是( ) A .3 B .6 C .8 D .95.下列各式中,是一元一次方程的是( )A .852020x y -=B .26x -C .212191y y =+D .582x x +=6.下列计算正确的是( )A .8(42)8482÷+=÷+÷B .1(1)(2)(1)(1)12-÷-⨯=-÷-= C .3311311636624433434⎛⎫⎛⎫⎛⎫-÷=-⨯=-⨯+-⨯=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ D .[](2)(2)40--+÷= 7.下列方程的解法,其中正确的个数是( ) ①14136x x ---=,去分母得2(1)46x x ---= ②24132x x ---=,去分母得2(2)3(4)1x x ---= ③2(1)3(2)5x x ---=,去括号得22635x x ---=④32x =-,系数化为1得32x =- A .3 B .2 C .1 D .08.2020年国庆档电影《我和我的家乡》上映13天票房收入达到21.94亿元,并连续10天拿下票房单日冠军.其中21.94亿元用科学记数法可表示为( )A .821.9410⨯元B .82.19410⨯元C .100.219410⨯元D .92.19410⨯元9.如图,四个有理数m ,n ,p ,q 在数轴上对应的点分别为M ,N ,P ,Q ,若0n q +=,则m ,n ,p ,q 四个有理数中,绝对值最小的一个是( )A .pB .qC .mD .n二、填空题(本题共有9小题,每小题3分,共27分)10.如果数轴上A 点表示3-,那么与点A 距离2个单位的点所表示的数是 .11.比较大小:78- 89-(填“>”“<”或“=”) 12.历史上,数学家欧拉最先把关于x 的多项式用记号()f x 来表示,把x 等于某数a 时的多项式的值用()f a 来表示,例如多项式2()25f x x x =+-,则(1)f -= .13.用四舍五入法将3.694精确到0.01,所得到的近似值为 .14.老师在黑板上书写了一个正确的演算过程,随后用手掌捂住了一个多项式,形式如()2222153x x x x --+=-+-,则所捂住的多项式为 .15.“☆”是新规定的某种运算符号,设a ☆b =ab a b +-,若2 ☆8n =-,则n = .16.“整体思想”是中学数学解题中一种重要的思想方法,它在多项式的化简与求值中应用极为广泛.如:已知2m n +=-,4mn =-,则2(3)3(2)mn m n mn ---的值为 .17.某校为学生购买名著《三国演义》100套、《西游记》80套,共用12 000元,《三国演义》每套比《西游记》每套多16元,求《三国演义》和《西游记》每套各多少元?设西游记每套x 元,可列方程为 .18.观察下列一组算式:2231881-==⨯,22531682-==⨯,22752483-==⨯,22973284-==⨯……根据你所发现的规律,猜想22201920178-=⨯ .三、按要求解答(第19小题8分,第20小题5分,第21小题10分,共23分)19.计算题(每小题4分,共8分) ①3511114662⎛⎫---- ⎪⎝⎭ ②[]31452(3)5211⎛⎫-⨯-÷-+ ⎪⎝⎭20.(本题5分)化简并求值:222212(2)()2x xy y xy x y ⎡⎤⎛⎫---+- ⎪⎢⎥⎝⎭⎣⎦,其中x 、y 的取值如图所示.21.解方程(每小题5分,共10分)①3(202)10y y --= ②243146x x --=-四、解答题(第22、23小题4分,第24小题5分,共13分)22.(本题4分)解一元一次方程的过程就是通过变形,把一元一次方程转化为x a =的形式.下面是解方程20.30.410.50.3x x -+-=的主要过程,请在如图的矩形框中选择与方程变形对应的依据,并将它前面的序号填入相应的括号中.解:原方程可化为4153x +-=( ) 去分母,得3(203)5(104)15x x --+=( )去括号,得609502015x x ---=( )移项,得605015920x x -=++( )合并同类项,得1044x =(合并同类项法则) 系数化为1,得 4.4x =(等式的基本性质2)23.(本题4分)阅读材料,回答问题.计算:121123031065⎛⎫⎛⎫-÷-+- ⎪ ⎪⎝⎭⎝⎭解:原式的倒数为211213106530⎛⎫⎛⎫-+-÷-⎪ ⎪⎝⎭⎝⎭ =2112(30)31065⎛⎫-+-⨯- ⎪⎝⎭=203512-+-+=10-故原式=110- 根据材料中的方法计算113224261437⎛⎫⎛⎫-÷-+- ⎪ ⎪⎝⎭⎝⎭. 24.(本题5分)在某地住房小区建设中,为了提高业主的宜居环境,某小区规划修建一个广场(平面图形如图所示). (1)用含m ,n 的代数式表示该广场的面积S ;(2)若m ,n 满足2(6)50m n -+-=,求出该广场的面积.五、解答题(第25、26小题6分,第27小题7分,共19分)25.(本题6分)列代数式或一元一次方程解应用题请根据图中提供的信息,回答下列问题:(1)一个水瓶与一个水杯分别是多少元?(2)甲、乙两家商场都销售该水瓶和水杯,为了迎接新年,两家商场都在搞促销活动,甲商场规定:这两种商品都打8折;乙商场规定:买一个水瓶赠送两个水杯,单独购买的水杯仍按原价销售.若某单位想在一家商场买5个水瓶和20个水杯,请问选择哪家商场更合算?请说明理由.26.(本题6分)下表中的字母都是按一定规律排列的.我们把某格中的字母的和所得多项式称为特征多项式,例如第1格的“特征多项式”为62x y +,第2格的“特征多项式”为94x y +,回答下列问题.(1)第3格的“特征多项式”为 ,第4格的“特征多项式”为 ,第n 格的“特征多项式”为 ;(n 为正整数)(2)求第6格的“特征多项式”与第5格的“特征多项式”的差.27.(本题7分)在数轴上,对于不重合的三点A,B,C,给出如下定义:若点C到点A的距离是点C到点B的距离的13倍,我们就把点C叫做【A,B】的理想点.例如:图中,点A表示的数为-1,点B表示的数为3.表示数0的点C到点A的距离是1,到点B的距离是3,那么点C是【A,B】的理想点;又如,表示数2的点D到点A的距离是3,到点B的距离是1,那么点D 就不是【A,B】的理想点,但点D是【B,A】的理想点.(1)当点A表示的数为-1,点B表示的数为7时,①若点C表示的数为1,则点C(填“是”或“不是”)【A,B】的理想点;②若点D是【B,A】的理想点,则点D表示的数是;(2)若A,B在数轴上表示的数分别为-2和4,现有一点C从点B出发,以每秒1个单位长度的速度向数轴负半轴方向运动,当点C到达点A时停止.请直接写出点C运动多少秒时,C,A,B中恰有一个点为其余两点的理想点?参考答案一、选择题(每小题2分,共18分)二、填空题(每小题3分,共27分)19.计算题(每小题4分,共8分)①原式=3511114662--+┈┈┈┈┈┈┈┈┈┈1分 =5131116642--++ =1224-+┈┈┈┈┈┈┈┈┈┈3分 =14┈┈┈┈┈┈┈┈┈┈4分 ②原式=14582211⎛⎫-⨯-÷ ⎪⎝⎭┈┈┈┈┈┈┈┈┈┈2分 =24--┈┈┈┈┈┈┈┈┈┈3分=6-┈┈┈┈┈┈┈┈┈┈4分20.解:原式=22221242x xy y xy x y ⎛⎫---+- ⎪⎝⎭┈┈┈┈┈┈┈┈┈┈1分 =22221242x xy y xy x y --+-+┈┈┈┈┈┈┈┈┈┈2分 =272x xy -┈┈┈┈┈┈┈┈┈┈3分 当2x =,1y =-时┈┈┈┈┈┈┈┈┈┈4分原式=2722(1)112-⨯⨯-=┈┈┈┈┈┈┈┈┈┈5分21.解方程(每小题5分,共10分)①3(202)10y y --=解:60610y y -+=┈┈┈┈┈┈┈┈┈┈2分61060y y +=+┈┈┈┈┈┈┈┈┈┈3分770y =┈┈┈┈┈┈┈┈┈┈4分10y =┈┈┈┈┈┈┈┈┈┈5分 ②243146x x --=- 解:3(2)122(43)x x -=--┈┈┈┈┈┈┈┈┈┈1分361286x x -=-+┈┈┈┈┈┈┈┈┈┈2分361286x x -=-+┈┈┈┈┈┈┈┈┈┈3分310x -=┈┈┈┈┈┈┈┈┈┈4分103x =-┈┈┈┈┈┈┈┈┈┈5分 四、解答题(第22、23小题4分,第24小题5分,共13分)22.③;②;④;①┈┈┈┈┈┈┈┈┈┈4分23.解:原式的倒数为132216143742⎛⎫⎛⎫-+-÷- ⎪ ⎪⎝⎭⎝⎭┈┈┈┈┈┈┈┈┈┈1分 1322(42)61437⎛⎫=-+-⨯- ⎪⎝⎭792812=-+-+14=-┈┈┈┈┈┈┈┈┈┈3分故原式=114-┈┈┈┈┈┈┈┈┈┈4分 24.解:(1)S 7220.52m n n m mn =⋅-⋅=┈┈┈┈┈┈┈┈┈┈2分 (2)由题意得6050m n -=⎧⎨-=⎩,解得65m n =⎧⎨=⎩┈┈┈┈┈┈┈┈┈┈3分当6m =,5n =时 S 7651052=⨯⨯=┈┈┈┈┈┈┈┈┈┈5分五、解答题(第25、26小题6分,第27小题7分,共19分)25.解:(1)设一个水瓶x 元,则一个水杯是(48)x -元┈┈┈┈┈┈┈┈┈┈1分34(48)152x x +-=┈┈┈┈┈┈┈┈┈┈2分40x =┈┈┈┈┈┈┈┈┈┈3分∴4848408x -=-=┈┈┈┈┈┈┈┈┈┈4分答:一个水瓶40元,一个水杯8元.(2)甲商场需付款:80%(540208)288⨯⨯+⨯=(元)┈┈┈┈┈┈┈┈┈┈5分 乙商场需付款:5408(2052)280⨯+⨯-⨯=(元)┈┈┈┈┈┈┈┈┈┈6分 ∴选择乙商场更划算.26.解:(1)126x y +;158x y +;3(1)2n x ny ++┈┈┈┈┈┈┈┈┈┈3分(2)(2112)(1810)x y x y +-+┈┈┈┈┈┈┈┈┈┈5分32x y =+┈┈┈┈┈┈┈┈┈┈6分27.(1)①是┈┈┈┈┈┈┈┈┈┈1分②5或11┈┈┈┈┈┈┈┈┈┈3分(2)设运动时间为t 秒,则BC t =,6AC t =-依题意,得C 是【A ,B 】的理想点时有16=3t t -,∴92t = C 是【B ,A 】的理想点时有1(6)3t t =-,∴32t = A 是【C ,B 】的理想点时有16=63t -⨯,∴4t =B 是【C ,A 】的理想点时有1=6=23t ⨯ 答:点C 运动92秒、32秒、4秒、2秒时,C ,A ,B 中恰有一个点为其余两点的理想点.┈┈┈┈┈┈┈┈┈┈7分。
2020-2021学年辽宁省朝阳市建平实验中学高一(下)期末数学试卷

2020-2021学年辽宁省朝阳市建平实验中学高一(下)期末数学试卷一.单项选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)sin18°cos12°+cos18°sin12°=()A.﹣B.﹣C.D.2.(5分)如图,在四边形ABCD中,AC与BD交于点O,若=()A.与B.与C.与D.与3.(5分)4张卡片上分别写有数字1,2,3,4,从这4张卡片中随机抽取2张,则取出的2张卡片上的数学之和为偶数的概率是()A.B.C.D.4.(5分)若cosα=,则cos2a=()A.B.C.﹣D.﹣5.(5分)若α满足=﹣2,则tanα等于()A.B.﹣C.±D.﹣6.(5分)如图是一组样本数据的频率分布直方图,则依据图形中的数据,可以估计总体的平均数与中位数之和是()A.25B.26C.25.5D.24.57.(5分)若tanα=,tanβ=,α,β∈(0,π)()A.B.C.D.8.(5分)已知向量=(2,﹣4),=(﹣1,3),则向量2+3与的夹角的余弦值为()A.B.C.D.二.多项选择题:本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部答对的得5分,部分选对的得3分,有选错的得0分.9.(5分)从装有红球、白球和黑球各2个的口袋内一次任取出2个球,则下列说法正确的是()A.事件“两球都不是白球”与事件“两球都为白球”互斥而非对立B.事件“两球恰有一白球”与事件“两球都为白球”互斥而非对立C.事件“两球至少有一个白球”与事件“两球都为白球”互斥而非对立D.事件“两球都为红球”与事件“两球都为白球”是对立事件10.(5分)已知6个样本数据a,0,1,2,3,5的平均数为1,则()A.a=﹣5B.这组数据的中位数是1C.从6个数中任取一个数,取到的数为正数的概率为D.每个数据都加上5后得到的新数据的方差是原来的方差的5倍11.(5分)已知sin(+α)=,下列结论正确的是()A.cos(+α)=B.cos(﹣α)=C.sin(+α)=D.cos(﹣α)=﹣12.(5分)设函数f(x)=cos(x+),则下列结论正确的是()A.f(x)的一个周期为﹣2πB.y=f(x)的图象关于直线x=对称C.f(x+π)的一个零点为x=D.f(x)在(,π)单调递减三.填空题:本大题共4小题,每小题5分,共20分.13.(5分)10名工人某天生产同一零件,生产的件数分别是9,10,14,15,16,17,18,那么数据的80%分位数是.14.(5分)计算:cos215°﹣sin215°=.15.(5分)已知,是不共线的平面向量,=3,=2+,=﹣,若B,C,D三点共线.16.(5分)已知甲、乙,丙3名射击运动员击中目标的概率分别为,,,且每名运动员是否击中目标互不影响,则三枪中至少有两枪命中的概率为.四、解答题:本大题共6小题,共70分.解答应写出必要的文字说明,证明过程及演算步骤. 17.(10分)据统计,目前全世界的人群中,15%属健康人群,而75%的人群处于疾病的前缘,即亚健康人群,针对年龄的情况进行统计,绘制频率分布直方图如图所示,30),[30,…,[60,70].(1)求频率分布直方图中a的值;(2)若该公司年龄在[30,40)的员工有140人,按照分层抽样的方法从年龄在[50,在上述抽取的员工中抽取2人进行慢性疾病检查,求这2人的年龄恰好都来自[5018.(12分)已知A,B,C的坐标分别为A(3,0),B(0,3),C(cos α,sin α),α∈(0,2π).(1)若=,求角α的值;(2)若•=0,求的值.19.(12分)甲、乙二人独立破译同一密码,甲破译出密码的概率为0.8,乙破译出密码的概率为0.7.记事件A:甲破译出密码(1)求甲、乙二人都破译出密码的概率;(2)求密码被破译的概率.20.(12分)已知α,β均为锐角,且cos(α+β),sinα=.(1)求sin2α的值;(2)求sin(β﹣α)的值.21.(12分)已知函数f(x)=A sin(ωx+φ),(A>0,ω>0,|φ|<)的部分图象如图所示.(Ⅰ)求f(x)的解析式.(Ⅱ)设函数,求g(x)的值域.22.(12分)在平面直角坐标系中,O为坐标原点,A、B、C三点满足=+.(Ⅰ)求证:A、B、C三点共线;(Ⅱ)求的值;(Ⅲ)已知A(1,cos x)、B(1+cos x,cos x),x∈[0,],f(x)=•﹣(2m+)|,求实数m的值.2020-2021学年辽宁省朝阳市建平实验中学高一(下)期末数学试卷参考答案与试题解析一.单项选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)sin18°cos12°+cos18°sin12°=()A.﹣B.﹣C.D.【解答】解:sin18°cos12°+cos18°sin12°=sin(18°+12°)=sin30°=,故选:D.2.(5分)如图,在四边形ABCD中,AC与BD交于点O,若=()A.与B.与C.与D.与【解答】解:∵=,∴四边形ABCD是平行四边形,∴AC,BD互相平分,∴=﹣,即与,故选:B.3.(5分)4张卡片上分别写有数字1,2,3,4,从这4张卡片中随机抽取2张,则取出的2张卡片上的数学之和为偶数的概率是()A.B.C.D.【解答】解:从1,2,8,4中随机取出两个不同的数的基本事件为:(1,5),3),4),8),4),4)共4个,其中和为偶数的有(1,3),8)共2个,由古典概型的概率公式可知,从1,8,3,4中随机取出两个不同的数.故选:B.4.(5分)若cosα=,则cos2a=()A.B.C.﹣D.﹣【解答】解:因为cosα=,所以cos8a=2cos2α﹣4=2×﹣1=﹣.故选:D.5.(5分)若α满足=﹣2,则tanα等于()A.B.﹣C.±D.﹣【解答】解:由=﹣5,可得tanα==﹣.故选:B.6.(5分)如图是一组样本数据的频率分布直方图,则依据图形中的数据,可以估计总体的平均数与中位数之和是()A.25B.26C.25.5D.24.5【解答】解:由频率分布直方图可知,第1组的频率为0.04×8=0.2,第7组的频率为0.1×4=0.5,第2组的频率为1﹣0.8﹣0.5=2.3,估计总体平均数为7.5×0.2+12.8×0.5+17.3×0.3=13,由题意可知,中位数在第6组内,设中位数为10+x,则0.1x=3.3,所以中位数为13,则估计总体的平均数与中位数之和是26.故选:B.7.(5分)若tanα=,tanβ=,α,β∈(0,π)()A.B.C.D.【解答】解:α,β∈(0,且tanα=,所以α,β∈(5,),故α+β∈(0,π),tan(α+β)=,所以.故选:A.8.(5分)已知向量=(2,﹣4),=(﹣1,3),则向量2+3与的夹角的余弦值为()A.B.C.D.【解答】解:根据题意,设向量2与+3,向量=(4,=(﹣1,则2=(6,+3,5),则有|7+3,|+4,(2)•()=4,故cosθ===,故选:D.二.多项选择题:本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部答对的得5分,部分选对的得3分,有选错的得0分.9.(5分)从装有红球、白球和黑球各2个的口袋内一次任取出2个球,则下列说法正确的是()A.事件“两球都不是白球”与事件“两球都为白球”互斥而非对立B.事件“两球恰有一白球”与事件“两球都为白球”互斥而非对立C.事件“两球至少有一个白球”与事件“两球都为白球”互斥而非对立D.事件“两球都为红球”与事件“两球都为白球”是对立事件【解答】解:根据题意,依次分析选项:对于A,事件“两球都不是白球”与事件“两球都为白球”不会同时发生,故两个事件互斥而非对立;对于B,事件“两球恰有一白球”与事件“两球都为白球”不会同时发生,故两个事件互斥而非对立;对于C,事件“两球至少有一个白球”与事件“两球都为白球”可能同时发生,两个事件不是互斥事件;对于D,事件“两球都为红球”与事件“两球都为白球”的和不是必然事件,D错误;故选:AB.10.(5分)已知6个样本数据a,0,1,2,3,5的平均数为1,则()A.a=﹣5B.这组数据的中位数是1C.从6个数中任取一个数,取到的数为正数的概率为D.每个数据都加上5后得到的新数据的方差是原来的方差的5倍【解答】解:A选项,由平均数为1,得,说法正确.B选项,中位数为.C选项,从6个数中任取一个数,说法正确.D选项,每个数据都加上5后得到的新数据的波动情况与原数据相同,说法错误.故选:AC.11.(5分)已知sin(+α)=,下列结论正确的是()A.cos(+α)=B.cos(﹣α)=C.sin(+α)=D.cos(﹣α)=﹣【解答】解:对于A,sin(,可得cos(,故错误;对于B,cos(﹣(+α)=;对于C,sin(+α)=﹣sin(,故错误;对于D,cos(﹣α)=﹣cos(,故正确.故选:BD.12.(5分)设函数f(x)=cos(x+),则下列结论正确的是()A.f(x)的一个周期为﹣2πB.y=f(x)的图象关于直线x=对称C.f(x+π)的一个零点为x=D.f(x)在(,π)单调递减【解答】解:A.函数的周期为2kπ,周期T=﹣2π,B.当x=时)=cos(+=cos3π=﹣6为最小值对称,C当x=时,f(+π+=6,故C正确,D.当<x<π时,<,此时函数f(x)不是单调函数,故选:ABC.三.填空题:本大题共4小题,每小题5分,共20分.13.(5分)10名工人某天生产同一零件,生产的件数分别是9,10,14,15,16,17,18,那么数据的80%分位数是17.【解答】解:因为80%×10=8,所以将样本数据从小到大排列,为.故答案为:17.14.(5分)计算:cos215°﹣sin215°=.【解答】解:由二倍角的余弦公式可得,cos215°﹣sin215°=cos30°=.故答案为:.15.(5分)已知,是不共线的平面向量,=3,=2+,=﹣,若B,C,D三点共线10.【解答】解:,,∵B,C,D三点共线,∴与共线,且,则,∴存在实数λ,使,即,∴,解得λ=10.故答案为:10.16.(5分)已知甲、乙,丙3名射击运动员击中目标的概率分别为,,,且每名运动员是否击中目标互不影响,则三枪中至少有两枪命中的概率为.【解答】解:设事件A表示“甲命中”,事件B表示“乙命中”,则P(A)=,P(B)=,∴他们3人分别向目标各发1枪,则三枪中至少命中两枪的概率为:P=P()+P()+P(ABC)=+=.故答案为:.四、解答题:本大题共6小题,共70分.解答应写出必要的文字说明,证明过程及演算步骤. 17.(10分)据统计,目前全世界的人群中,15%属健康人群,而75%的人群处于疾病的前缘,即亚健康人群,针对年龄的情况进行统计,绘制频率分布直方图如图所示,30),[30,…,[60,70].(1)求频率分布直方图中a的值;(2)若该公司年龄在[30,40)的员工有140人,按照分层抽样的方法从年龄在[50,在上述抽取的员工中抽取2人进行慢性疾病检查,求这2人的年龄恰好都来自[50【解答】解:(1)因为(0.01×2+8.015+0.03×a)×10=1,解得a=3.035;(2)若该公司年龄在[30,40)的员工有140人,又年龄在[30,40)的员工的频率为0.0353×10=0.35,则该公司一共有140÷8.35=400人,在[50,60)的员工有400×0.015×10=60人,在[60,70)的员工有400×0.01×10=40人,由分层抽样方法可得,在[50,则在[50,在[60,这5人的年龄恰好都来自[50,60)的概率为=.18.(12分)已知A,B,C的坐标分别为A(3,0),B(0,3),C(cos α,sin α),α∈(0,2π).(1)若=,求角α的值;(2)若•=0,求的值.【解答】解:(1)∵=(cosα﹣3,=(cosα.∴||==,||==,∵||=||,∴sinα=cosα,又 α∈(0,∴α=或;(2)由•=0,知:(cosα﹣7)cosα+(sinα﹣3)sinα=0.∴sinα+cosα=,∴2sinα•cosα=﹣,又 α∈(0,∴α∈(,)或α∈(.若α∈(,),则sinα﹣cosα==.联立,解得sinα=,tanα=.∴==;若α∈(,2π).联立,解得sinα=,tanα=.∴==.19.(12分)甲、乙二人独立破译同一密码,甲破译出密码的概率为0.8,乙破译出密码的概率为0.7.记事件A:甲破译出密码(1)求甲、乙二人都破译出密码的概率;(2)求密码被破译的概率.【解答】解:(1)由题意得P(A)=0.8,P(B)=6.7,B相互独立,∴甲、乙二人都破译出密码的概率为:P(AB)=P(A)P(B)=0.6×0.7=2.56.(2)“密码被破译”也就是“甲乙二人中至少有一人破译出密码”,可以表示为,且两两互斥,∴甲乙二人中至少有一人破译出密码的概率为:P()==0.2×5.7+0.4×0.3+3.8×0.3=0.94.20.(12分)已知α,β均为锐角,且cos(α+β),sinα=.(1)求sin2α的值;(2)求sin(β﹣α)的值.【解答】解:(1)由题意,α,β均为锐角,因为sinα=,所以,则sin2α==;(2)因为α,β均为锐角,又cos(α+β)=﹣,所以=,因为sinα=,则,所以sin(β﹣α)=sin[(α+β)﹣2α]=sin(α+β)cos2α﹣cos(α+β)sin2α=×﹣=.21.(12分)已知函数f(x)=A sin(ωx+φ),(A>0,ω>0,|φ|<)的部分图象如图所示.(Ⅰ)求f(x)的解析式.(Ⅱ)设函数,求g(x)的值域.【解答】解:(Ⅰ)由f(x)的图象得A=2,周期﹣),∴ω=2.根据五点法作图可得3•+φ=,∴f(x)=2sin(2x﹣).(Ⅱ)g(x)=f(x)+4sin2x=sin2x﹣cos2x+5•==2sin(2x﹣,∵x∈[4,],∴2x﹣,],sin(2x﹣,1],即可得到g(x)=7sin(2x﹣,2+7].22.(12分)在平面直角坐标系中,O为坐标原点,A、B、C三点满足=+.(Ⅰ)求证:A、B、C三点共线;(Ⅱ)求的值;(Ⅲ)已知A(1,cos x)、B(1+cos x,cos x),x∈[0,],f(x)=•﹣(2m+)|,求实数m的值.【解答】解:(Ⅰ)由已知,即,∴∥.又∵、,∴A,B.(3分)(Ⅱ)∵,∴=∴,∴.(6分)(Ⅲ)∵C为的定比分点,∴,∴∵,∴cos x∈[8当m<0时,当cos x=0时;(7分)当0≤m≤1时,当cos x=m时4,得(舍)(10分)当m>1时,当cos x=3时,得(11分)综上所述,为所求。
2020-2021学年辽宁省实验中学等五校联考高二年级上学期期末考试数学试卷

| m | | n | 14 11
77
由题可知,二面角 A − FB1 − A1 为锐二面角,
故二面角 A − FB1 − A1 的余弦值为 4 154 .··················12 分 77
19.解(1)当直线 l
与直线 l0
:
y
=
2x
平行时,不能构成 AOB
,此时 kBP
=
3 2−
高二年级数学科试卷第 3 页共 4 页
20.(12 分)
如图,在四棱锥 P − ABCD 中, PA ⊥ 平面 ABCD , AB//CD ,且 CD = 2 ,AB = 1,BC = 2 2 ,PA = 1, AB ⊥ BC , N 为 PD 的中点. (1)求证: AN // 平面 PBC ; (2)在直线 PD 上是否存在一点 M ,使得直线CM
A.展开式中所有项的系数和为 28
B.展开式中所有奇数项的二项式系数和为 128
C.展开式中二项式系数的最大项为第五项 D.展开式中含 x3 项的系数为 −448
12.设椭圆 x2 + y2 = 1的右焦点为 F,直线 y = m(0 m 3) 与椭圆交于 A,B 两点, 93
则下述结论正确的是( )
A.AF+BF 为定值
B.△ABF 的周长的取值范围是[6,12]
C.当 m = 2 时,△ABF 为直角三角形 D.当 m=1 时,△ABF 的面积为 6
三、填空题(本题共 4 小题,每小题 5 分,共 20 分)
13.已知 F 是抛物线 C:y2 = 8x 的焦点,M 是 C 上一点,FM 的延长线交 y 轴于点 N.若
AFB1
的法向量为
n
=
2020-2021学年广东省实验中学高一(下)期中数学试卷

2020-2021学年广东省实验中学高一(下)期中数学试卷试题数:22,总分:1501.(单选题,5分)设复数z满足z•(1+i)=2(i为虚数单位),则|z|=()A.1B. √2C.2D.32.(单选题,5分)已知向量a⃗=(3,4),b⃗⃗=(1−λ,2+λ),且a⃗⊥b⃗⃗,则λ=()A.-11B.-2C. 117D. −273.(单选题,5分)如图,平行四边形O'A'B'C'是水平放置的一个平面图形的直观图,其中O'A'=5,O'C'=2,∠A'O'C'=30°,则原图形的面积是()A.4B. 4√2C. 10√2D.64.(单选题,5分)如图,长方体ABCD-A1B1C1D1的棱所在直线与直线BA1为异面直线的条数是()A.4B.5C.6D.75.(单选题,5分)下列四个命题中正确的是()A.底面是多边形,其余各面是三角形的几何体是棱锥B.两两相交的三条直线必在同一平面内C.在空间中,四边相等的四边形是菱形D.不存在所有棱长都相等的正六棱锥6.(单选题,5分)已知P,Q是不同的点,l,m,n是不同的直线,α,β是不同的平面,则下列数学符号表示的不是基本事实(公理)的选项为()A.P∈l,Q∈l,P∈α,Q∈α⇒l⊂αB.P∈α,P∈β⇒存在唯一直线l,α∩β=l,且P∈lC.l || m,m || n⇒l || nD.m || n⇒确定一个平面γ且m⊂γ,n⊂γ7.(单选题,5分)已知三棱锥A-BCD中,CD=√2,BC=AC=BD=AD=1,则此几何体外接球的体积为()A.2πB. √2π3C. √2π6D.π⃗⃗⃗⃗⃗⃗•8.(单选题,5分)在△OAB中,OA=OB=2,AB=2√3,动点P位于直线OA上,当PA⃗⃗⃗⃗⃗⃗取得最小值时,∠PBA的正弦值为()PBA. 3√77B. 2√77C. √2114D. √2139.(多选题,5分)设z为复数,则下列命题中正确的是()A. |z|2=z•zB.z2=|z|2C.若|z|=1,则|z+i|的最小值为0D.若|z-1|=1,则0≤|z|≤210.(多选题,5分)如图,直角梯形ABCD中AB=2,CD=4,AD=2.则下列说法正确的是()A.以AD 所在直线为旋转轴,将此梯形旋转一周,所得旋转体的侧面积为 16√2πB.以CD 所在直线为旋转轴,将此梯形旋转一周,所得旋转体的体积为 32π3C.以AB 所在直线为旋转轴,将此梯形旋转一周,所得旋转体的全面积为 20π+4√2πD.以BC 所在直线为旋转轴,将此梯形旋转一周,所得旋转体的体积为 28√2π311.(多选题,5分)如图一个正四面体和一个正四棱锥的所有棱长都相等,将正四面体的一个面和正四棱锥的一个侧面紧贴重合在一起,得到一个新几何体.对于该几何体,则( )A.AF || CDB.2V 三棱锥F-ABC =V 四棱锥A-BCDEC.新几何体有7个面D.新几何体的六个顶点在同一个球面上12.(多选题,5分)在棱长为 3+√3 的正方体ABCD-A 1B 1C 1D 1中,球O 1同时与以B 为公共顶点的三个面相切,球O 2同时与以D 1为公共顶点的三个面相切,且两球相切于点E ,若球O 1,O 2的半径分别为r 1,r 2,则( )A.O 2,O 1,B ,D 1四点不共线B.r 1+r 2=3C.这两个球的体积之和的最小值是9πD.这两个球的表面积之和的最大值是18π13.(填空题,5分)设A={正方体},B={直平行六面体},C={正四棱柱},D={长方体},那么上述四个集合间正确的包含关系是___14.(填空题,5分)向量 a ⃗=(2,1) 在向量 b⃗⃗=(3,4) 方向上的投影向量的坐标为 ___ . 15.(填空题,5分)如图,在△ABC 中, BD ⃗⃗⃗⃗⃗⃗⃗=13BC ⃗⃗⃗⃗⃗⃗ ,点E 在线段AD 上移动(不含端点),若 AE ⃗⃗⃗⃗⃗⃗ =λ AB⃗⃗⃗⃗⃗⃗ +μ AC ⃗⃗⃗⃗⃗⃗ ,则 λμ =___ ,λ2-2μ的最小值是___ .16.(填空题,5分)正方体ABCD-A 1B 1C 1D 1为棱长为2,动点P ,Q分别在棱BC ,CC 1上,过点A ,P ,Q 的平面截该正方体所得的截面记为S ,设BP=x ,CQ=y ,其中x ,y∈[0,2],下列命题正确的是___ .(写出所有正确命题的编号)① 当x=0时,S 为矩形,其面积最大为4;② 当x=y=1时,S的面积为92;③ 当x=1,y∈(1,2)时,设S与棱C1D1的交点为R,则RD1=4−4y;④ 当y=2时,以B1为顶点,S为底面的棱锥的体积为定值83.17.(问答题,10分)已知向量a⃗与b⃗⃗的夹角θ=2π3,且|a⃗ |=3,| b⃗⃗ |=2.(1)求a⃗•b⃗⃗,| a⃗ + b⃗⃗ |;(2)求向量a⃗与a⃗ + b⃗⃗的夹角的余弦值.18.(问答题,12分)(1)在△ABC中,a=1,b=2,cosC= 14,求cosA.(2)在△ABC中,已知a= 5√2,c=10,A=30°,求角B;19.(问答题,12分)已知棱长为1的正方体AC1,H、I、J、K、E、F分别相应棱的中点如图所示.(1)求证:H、I、J、K、E、F六点共面;(2)求证:BE、DF、CC1三线共点;(3)求几何体B1BE-D1DF的体积.20.(问答题,12分)已知正方体ABCD-A1B1C1D1中,P、Q分别为对角线BD、CD1上的点,且CQQD1 = BPPD= 23.(1)求证:PQ || 平面A1D1DA;(2)若R是CD上的点,当CRCD的值为多少时,能使平面PQR || 平面B1C1CB?请给出证明.21.(问答题,12分)若函数f(x)= √3 sinx+2cos2x,△ABC的角A,B,C的对边分别为a,2b,c,且f(A)=3.取最大值时,判断△ABC的形状;(1)当b+ca(2)在△ABC中,D为BC边的中点,且AD= √13,AC=2,求BC的长.22.(问答题,12分)已知向量m⃗⃗⃗=(cos2x+2√3sinx,1),n⃗⃗=(2,−a).(1)当a=0时,令f(x)=m⃗⃗⃗•n⃗⃗,求f(x)的最值;)上有6个不等的实根,求a的取值范围;(2)若关于x方程m⃗⃗⃗•n⃗⃗=0在x∈(0,5π2,求a的值.(3)当m⃗⃗⃗•n⃗⃗≥0对x∈[x1,x2]恒成立时,x2-x1的最大值为5π32020-2021学年广东省实验中学高一(下)期中数学试卷参考答案与试题解析试题数:22,总分:1501.(单选题,5分)设复数z满足z•(1+i)=2(i为虚数单位),则|z|=()A.1B. √2C.2D.3【正确答案】:B【解析】:先对复数进行化简,然后结合复数的模长公式可求.【解答】:解:由题意得z= 21+i = 2(1−i)(1+i)(1−i)=1-i,则|z|= √2.故选:B.【点评】:本题主要考查了复数的四则运算及复数的几何意义,属于基础题.2.(单选题,5分)已知向量a⃗=(3,4),b⃗⃗=(1−λ,2+λ),且a⃗⊥b⃗⃗,则λ=()A.-11B.-2C. 117D. −27【正确答案】:A【解析】:利用向量垂直的性质列方程,能求出λ.【解答】:解:∵向量a⃗=(3,4),b⃗⃗=(1−λ,2+λ),且a⃗⊥b⃗⃗,∴ a⃗•b⃗⃗ =3(1-λ)+4(2+λ)=0,解得λ=-11.故选:A.【点评】:本题考查实数值的求法,考查向量垂直的性质等基础知识,考查运算求解能力等数学核心素养,是基础题.3.(单选题,5分)如图,平行四边形O'A'B'C'是水平放置的一个平面图形的直观图,其中O'A'=5,O'C'=2,∠A'O'C'=30°,则原图形的面积是()A.4B. 4√2C. 10√2D.6【正确答案】:C【解析】:求出直观图的面积,再根据原平面图形的面积与直观图的面积比为2 √2:1,计算即可.【解答】:解:平行四边形O'A'B'C'中,O'A'=5,O'C'=2,∠A'O'C'=30°,=5,所以平行四边形O′A′B′C′的面积为S′=O′A′•O′C′•sin30°=5×2× 12所以原平面图形的面积是S=2 √2S′=2 √2 ×5=10 √2.故选:C.【点评】:本题考查了平面图形的直观图与原图形的面积比为1:2 √2的应用问题,是基础题.4.(单选题,5分)如图,长方体ABCD-A1B1C1D1的棱所在直线与直线BA1为异面直线的条数是()A.4B.5C.6D.7【正确答案】:C【解析】:直接利用异面直线的定义对正方体的棱逐一判断,得到与直线BA1异面的直线,即可得到答案.【解答】:解:根据异面直线的定义可得,与直线BA1为异面直线的棱有:AD,B1C1,CD,C1D1,CC1,DD1,共6条.故选:C.【点评】:本题考查了异面直线的判断,涉及了正方体几何性质的应用,解题的关键是掌握异面直线的定义,属于基础题.5.(单选题,5分)下列四个命题中正确的是()A.底面是多边形,其余各面是三角形的几何体是棱锥B.两两相交的三条直线必在同一平面内C.在空间中,四边相等的四边形是菱形D.不存在所有棱长都相等的正六棱锥【正确答案】:D【解析】:直接利用几何图形的定义和性质判断A、B、C、D的结论.【解答】:解:对于A:底面是多边形,其余各面是三角形的几何体是棱锥与锥体的定义矛盾,故A错误;对于B:两两相交的三条直线且不相交于同一点的直线必在同一平面内,故B错误;对于C:在空间中,四边相等的四边形沿一条对角线折叠,构成四面体,故C错误;对于D:不存在所有棱长都相等的正六棱锥,由于六个等边三角形正好360°,构成一个周角,故正确;故选:D.【点评】:本题考查的知识要点:几何图形的定义和性质,主要考查学生对基础知识的理解,属于基础题.6.(单选题,5分)已知P,Q是不同的点,l,m,n是不同的直线,α,β是不同的平面,则下列数学符号表示的不是基本事实(公理)的选项为()A.P∈l,Q∈l,P∈α,Q∈α⇒l⊂αB.P∈α,P∈β⇒存在唯一直线l,α∩β=l,且P∈lC.l || m,m || n⇒l || nD.m || n⇒确定一个平面γ且m⊂γ,n⊂γ【正确答案】:D【解析】:公理是不能被证明但确实是正确的结论,是客观规律,依据公理的定义,依次求解.【解答】:解:由公理一可知:如果一条直线上的两点在一个平面内,那么这条直线在此平面内,故A选项为公理,由公理三可知:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线,故B选项是公理,由平行公理得:平行于同一条直线的两条直线互相平行,故C选项是公理,不同的两直线平行,确定一个平面,且两直线在平面内,为判定定理,非公理,故D选项错误.故选:D.【点评】:本题考查了对公理的判断,需要学生熟练掌握公理的定义,属于基础题.7.(单选题,5分)已知三棱锥A-BCD中,CD=√2,BC=AC=BD=AD=1,则此几何体外接球的体积为()A.2πB. √2π3C. √2π6D.π【正确答案】:B【解析】:由已知结合勾股定理证明AC⊥AD,BC⊥BD,取CD中点O,则O为该几何体外接球的球心,求出半径,代入球的体积公式求解.【解答】:解:如图,由CD=√2,BC=AC=BD=AD=1,可得AC2+AD2=CD2,BC2+BD2=CD2,则AC⊥AD,BC⊥BD,取CD中点O,则OA=OC=OD=OB,∴O为该几何体外接球的球心,则半径为12CD=√22.∴此几何体外接球的体积为43π × (√22)3= √2π3.故选:B .【点评】:本题考查多面体外接球表面积的求法,考查空间想象能力与思维能力,考查运算求解能力,是基础题.8.(单选题,5分)在△OAB 中,OA=OB=2, AB =2√3 ,动点P 位于直线OA 上,当 PA⃗⃗⃗⃗⃗⃗•PB ⃗⃗⃗⃗⃗⃗ 取得最小值时,∠PBA 的正弦值为( )A.3√77 B. 2√77C. √2114D. √213 【正确答案】:C【解析】:建立平面直角坐标系,写出坐标表示出 PA⃗⃗⃗⃗⃗⃗ • PB ⃗⃗⃗⃗⃗⃗ ,利用二次函数求出有最小值时P 的坐标,再利用向量的夹角公式即可求出.【解答】:解:建立如图平面直角坐标系,则A (- √3 ,0),B ( √3 ,0),O (0,1),设P (x ,y ), 直线AO 的方程为y= √33 x+1,∵ PA⃗⃗⃗⃗⃗⃗ • PB ⃗⃗⃗⃗⃗⃗ =(- √3 -x ,-y )•( √3 -x ,-y )=x 2+y 2-3 =x 2+ (√33x +1)2 -3= 43 x 2+ 2√33 x-2= 43 (x +√34)2 - 94 , ∴当x=- √34 时, PA ⃗⃗⃗⃗⃗⃗ • PB ⃗⃗⃗⃗⃗⃗ 有最小值,此时P (- √34 , 34), ∴ BP ⃗⃗⃗⃗⃗⃗ =(- 5√34 , 34), BA ⃗⃗⃗⃗⃗⃗ =(-2 √3 ,0), ∴cos∠PBA= BP ⃗⃗⃗⃗⃗⃗•BA ⃗⃗⃗⃗⃗⃗|BP ⃗⃗⃗⃗⃗⃗|•|BA ⃗⃗⃗⃗⃗⃗| = 1522√3•√8416 = 5√714 , ∵∠PBA∈(0,π),∴sin∠PBA= √1−2528 = √2114 .故选:C.【点评】:本题考查向量的数量积、夹角公式等知识,考查运算求解能力,属于中档题.9.(多选题,5分)设z为复数,则下列命题中正确的是()A. |z|2=z•zB.z2=|z|2C.若|z|=1,则|z+i|的最小值为0D.若|z-1|=1,则0≤|z|≤2【正确答案】:ACD【解析】:直接利用复数的运算,复数的模,共轭,圆的方程,圆与圆的位置关系的应用判断A、B、C、D的结论.【解答】:解:由于z为复数,设z=a+bi(a,b∈R),对于A:|z|2=a2+b2= z•z,故A正确;对于B:z2=(a+bi)2=a2+2abi-b2,|z|2=a2+b2,故B错误;对于C:由于a2+b2=1,所以|z+i|=√a2+(b+1)2∈[0,2],故C正确;对于D:若|z-1|=1,即(a-1)2+b2=1,所以0=1−1≤√(a−0)2+(b−0)2≤1+1=2,故D正确;故选:ACD.【点评】:本题考查的知识要点:复数的运算,复数的模,共轭,圆的方程,圆与圆的位置关系,主要考查学生的运算能力和数学思维能力,属于基础题.10.(多选题,5分)如图,直角梯形ABCD中AB=2,CD=4,AD=2.则下列说法正确的是()A.以AD所在直线为旋转轴,将此梯形旋转一周,所得旋转体的侧面积为16√2πB.以CD所在直线为旋转轴,将此梯形旋转一周,所得旋转体的体积为32π3C.以AB所在直线为旋转轴,将此梯形旋转一周,所得旋转体的全面积为20π+4√2πD.以BC所在直线为旋转轴,将此梯形旋转一周,所得旋转体的体积为28√2π3【正确答案】:CD【解析】:旋直接利用切割法的应用分别利用体积和表面积公式的应用的应用求出圆锥和圆台的体积和表面积.【解答】:解:直角梯形ABCD中AB=2,CD=4,AD=2.则对于A:S侧=π(2+4)×2√2=12√2π,故A错误;对于B:V= V圆柱−V圆锥=π•22•4−13×π•22•2 = 40π3,故B正确;对于C:以AB所在直线为旋转轴,将此梯形旋转一周,所得旋转体的全面积为相当于一个圆柱挖去一个圆锥,如图所示:构成的表面积为4π+2•π•2•4+π•2√2•2 == 20π+4√2π,故C正确;对于D:以BC所在直线为旋转轴,将此梯形旋转一周,相当于一个圆锥的体积和一个圆台的体积的和切去一个小圆锥的体积,如图所示:即:13•π•(2√2)2•2√2+13•[π•(√2)2+√π(√2)2•π•(2√2)2+π•(2√2)2]×√2−13•π•(√2)2•√2=28√2π3.故D正确;故选:CD.【点评】:本题考查的知识要点:旋转体的体积公式,切割法,圆锥和圆台的体积公式,主要考查学生的运算能力和数学思维能力,属于中档题.11.(多选题,5分)如图一个正四面体和一个正四棱锥的所有棱长都相等,将正四面体的一个面和正四棱锥的一个侧面紧贴重合在一起,得到一个新几何体.对于该几何体,则()A.AF || CDB.2V三棱锥F-ABC=V四棱锥A-BCDEC.新几何体有7个面D.新几何体的六个顶点在同一个球面上【正确答案】:AB【解析】:根据空间直线和平面位置关系分别进行判断即可.【解答】:解:取BC的中点G,DE的中点H,连接FG,AH,GH,则FG⊥BC,BC⊥GH,AH⊥DE,则BC⊥平面FGH,DE⊥平面AGH,∵BC || DE,∴平面FGH与平面AGH重合,即AHGF为平面四边形,∵AF=CD=GH,∴四边形AHGF为平行四边形,∴AF || CD,故A正确,由于BE || CD,∴BE || 平面ADCF,∵V四棱锥A-BCDE=2V四棱锥A-BCD=2V四棱锥B-ACD,V四棱锥B-ACD=V四棱锥B-ACF=V三棱锥F-ABC,∴2V三棱锥F-ABC=V四棱锥A-BCDE,故B正确,由于平面ACF与平面ACD重合,平面ABF与平面ABE重合,∴该几何体有5个面,故C错误,由于该几何体为斜三棱柱,故不存在外接球,故D错误,故选:AB.【点评】:本题主要考查与空间立体几何有个的命题的真假判断,涉及空间直线位置关系,空间体积的判断,涉及知识点较多,综合性较强,属于中档题.12.(多选题,5分)在棱长为3+√3的正方体ABCD-A1B1C1D1中,球O1同时与以B为公共顶点的三个面相切,球O2同时与以D1为公共顶点的三个面相切,且两球相切于点E,若球O1,O2的半径分别为r1,r2,则()A.O2,O1,B,D1四点不共线B.r1+r2=3C.这两个球的体积之和的最小值是9πD.这两个球的表面积之和的最大值是18π【正确答案】:BC【解析】:由球与正方体的对称性判断A;画出过正方体对角面的截面图,由对角线长度相等求得r1+r2判断B;写出两球的体积与表面积之和,利用基本不等式求最值判断C与D.【解答】:解:由对称性作过正方体对角面的截面图如下,可得O2,O1,B,D1四点共线,故A错误;由题意可得O1B=√3r1,O2D1=√3r2,则(√3+1)r1+(√3+1)r2=BD1= √3 ×(3+ √3),从而r1+r2=3,故B正确;这两个球的体积之和为:43π(r13+r23)= 43π(r1+r2)(r12−r1r2+r22),∵r1+r2=3,∴(r1+r2)(r12−r1r2+r22)=3(9-3r1r2)≥3[9-3× (r1+r22)2]= 274,即43π(r13+r23)≥9π,当且仅当r1=r2= 32时等号成立,故C正确;这两个球的表面积之和S=4π(r12+r22)≥4π• (r1+r2)22=18π,当且仅当r1=r2= 32时等号成立,故D错误故选:BC.【点评】:本题主要考查了正方体的结构及其特征,球的表面积及体积公式,考查了空间想象能力与计算能力,属于中档题.13.(填空题,5分)设A={正方体},B={直平行六面体},C={正四棱柱},D={长方体},那么上述四个集合间正确的包含关系是___【正确答案】:[1]A⊆C⊆D⊆B.【解析】:根据正方体、直平行六面体、正四棱柱、长方体的定义以及结构特征进行分析判断即可.【解答】:解:在这4种图象中,包含元素最多的是直平行六面体,其次是长方体,最小的是正方体,其次是正四棱柱,故A⊆C⊆D⊆B.故答案为:A⊆C⊆D⊆B.【点评】:本题考查了四棱柱的结构特征的理解和应用,同时考查了集合之间关系的判断及应用,属于基础题.14.(填空题,5分)向量a⃗=(2,1)在向量b⃗⃗=(3,4)方向上的投影向量的坐标为 ___ .【正确答案】:[1](65,85)【解析】:求出向量a⃗,b⃗⃗的数量积和向量b的模,再由向量a⃗在向量b⃗⃗方向上的投影为a⃗⃗•b⃗⃗|b⃗⃗|,设向量a⃗在向量b⃗⃗方向上的投影向量m⃗⃗⃗ =(x,y),x>0,y>0,由m⃗⃗⃗与b⃗⃗共线,可得y=4x3,又x2+y2=22,解得x,y的值,即可得解.【解答】:解:因为a⃗=(2,1),b⃗⃗=(3,4),则 a⃗⃗⃗⃗• b⃗⃗ =2×3+1×4=10,| b⃗⃗ |= √32+42 =5,则向量a⃗在向量b⃗⃗方向上的投影为a⃗⃗•b⃗⃗|b⃗⃗| = 105=2,设向量a⃗在向量b⃗⃗方向上的投影向量m⃗⃗⃗ =(x,y),x>0,y>0,由于m⃗⃗⃗与b⃗⃗共线,可得 x3=y4,即y= 4x3,又x2+y2=22,解得x= 65,y= 85,所以向量a⃗=(2,1)在向量b⃗⃗=(3,4)方向上的投影向量的坐标为(65,85).故答案为:( 65 , 85 ).【点评】:本题考查平面向量的数量积的坐标表示和向量的模的公式,考查向量的投影定义,考查运算能力,属于中档题.15.(填空题,5分)如图,在△ABC 中, BD ⃗⃗⃗⃗⃗⃗⃗=13BC ⃗⃗⃗⃗⃗⃗ ,点E 在线段AD 上移动(不含端点),若 AE ⃗⃗⃗⃗⃗⃗ =λ AB ⃗⃗⃗⃗⃗⃗ +μ AC ⃗⃗⃗⃗⃗⃗ ,则 λμ =___ ,λ2-2μ的最小值是___ .【正确答案】:[1]2; [2] −14【解析】:由已知结合向量的线性表示及共线定理可以 AB ⃗⃗⃗⃗⃗⃗ , AC⃗⃗⃗⃗⃗⃗ 表示 AE ⃗⃗⃗⃗⃗⃗ ,然后结合平面向量基本定理可求 λμ,结合二次函数的性质可求λ2-2μ的最小值.【解答】:解:因为 BD⃗⃗⃗⃗⃗⃗⃗=13BC ⃗⃗⃗⃗⃗⃗ , 所以 AD ⃗⃗⃗⃗⃗⃗−AB ⃗⃗⃗⃗⃗⃗ = 13 ( AC ⃗⃗⃗⃗⃗⃗−AB ⃗⃗⃗⃗⃗⃗ ),所以 AD ⃗⃗⃗⃗⃗⃗ = 13AC ⃗⃗⃗⃗⃗⃗+23AB ⃗⃗⃗⃗⃗⃗ , 因为E 在线段AD 上移动(不含端点), 所以 AE ⃗⃗⃗⃗⃗⃗ = xAD ⃗⃗⃗⃗⃗⃗ = x3AC ⃗⃗⃗⃗⃗⃗+2x3AB ⃗⃗⃗⃗⃗⃗ ,(0<x <1), 所以λ= 2x3 ,μ= x3 , λμ =2, λ2-2μ=4x 29−2x 3, 根据二次函数的性质知,当x= 34时取得最小值- 14. 故答案为:2,- 14 .【点评】:本题主要考查了向量的线性表示及平面向量基本定理,还考查了二次函数性质的应用,属于中档题.16.(填空题,5分)正方体ABCD-A 1B 1C 1D 1为棱长为2,动点P ,Q 分别在棱BC ,CC 1上,过点A ,P ,Q 的平面截该正方体所得的截面记为S ,设BP=x ,CQ=y ,其中x ,y∈[0,2],下列命题正确的是___ .(写出所有正确命题的编号) ① 当x=0时,S 为矩形,其面积最大为4; ② 当x=y=1时,S 的面积为 92 ;③ 当x=1,y∈(1,2)时,设S与棱C1D1的交点为R,则RD1=4−4y;④ 当y=2时,以B1为顶点,S为底面的棱锥的体积为定值83.【正确答案】:[1] ② ③ ④【解析】:由题意可知当x,y变化时,S为不同的图形,故可根据题意逐一判断即可.【解答】:解:当x=0时,点P与点B重合,∴AB⊥PQ,此时S为矩形,当点Q与点C1重合时,S的面积最大,S= 2×2√2 = 4√2.故① 错误;当x=1,y=1时,PQ为△BCC1的中位线,PQ || BC1,∵BC1 || AD1,∴AD1 || PQ,∴S为等腰梯形APQD1,过P作PE⊥AD1于E,PQ= √2,AD1=2 √2,∴ AE=√22,AP= √5,∴ PE=3√22,∴S梯形APQD1=12×3√2×3√22= 92,故② 正确;由图可设S与DD1交于点F,可得D1F || CC1,△C1QR∽△D1FR,C1RD1R =C1QFD1∵CQ=y,则C1Q=2-y,∴ RD1=4−4y,故③ 正确;当y=2时,以B1为定点,S为底面的棱锥为B1-APC1H,V B1−APC1H =2V P−B1C1H=2×13×12×2 × 2×2=83,故④ 正确;故答案为:② ③ ④ .【点评】:本题考查了立体几何的截面面积的相关知识点,以及棱锥体积公式.17.(问答题,10分)已知向量a⃗与b⃗⃗的夹角θ=2π3,且| a⃗ |=3,| b⃗⃗ |=2.(1)求a⃗•b⃗⃗,| a⃗ + b⃗⃗ |;(2)求向量a⃗与a⃗ + b⃗⃗的夹角的余弦值.【正确答案】:【解析】:(1)由已知结合向量数量积的定义及性质即可直接求解; (2)结合向量夹角公式即可直接求解.【解答】:解:(1) a ⃗•b ⃗⃗ =| a ⃗ || b ⃗⃗ |cos 2π3 =3× 2×(−12) =-3, | a ⃗+b ⃗⃗ |= √(a ⃗+b ⃗⃗)2= √a ⃗2+b ⃗⃗2+2a ⃗•b ⃗⃗ = √9+4−6 = √7 , (2)设向量 a ⃗ 与 a ⃗ + b ⃗⃗ 的夹角θ, 则cosθ= a ⃗⃗•(a ⃗⃗+b ⃗⃗)|a ⃗⃗||a ⃗⃗+b⃗⃗| = 3×√7 = 2√77 .【点评】:本题主要考查了向量数量的性质的综合应用,属于基础试题. 18.(问答题,12分)(1)在△ABC 中,a=1,b=2,cosC= 14,求cosA . (2)在△ABC 中,已知a= 5√2 ,c=10,A=30°,求角B ;【正确答案】:【解析】:(1)由已知结合余弦定理可求c ,然后结合余弦定理可求; (2)由正弦定理可求sinC ,进而求出C ,结合三角形内角和求出B .【解答】:解:(1)由余弦定理得c 2=a 2+b 2-2abcosC=1+4-2× 1×2×14 =4, 解得c=2, 再由余弦定理得cosA= b 2+c 2−a 22bc = 4+4−12×2×2 = 78 ;(2)由正弦定理得 asinA =csinC , 所以sinC= 10×125√2= √22 , 因为C 为三角形内角, 所以C=45°或C=135°, 当C=45°时,B=105°,C=135°时,B=15°.【点评】:本题主要考查了正弦定理,余弦定理在求解三角形中的应用,属于中档题.19.(问答题,12分)已知棱长为1的正方体AC1,H、I、J、K、E、F分别相应棱的中点如图所示.(1)求证:H、I、J、K、E、F六点共面;(2)求证:BE、DF、CC1三线共点;(3)求几何体B1BE-D1DF的体积.【正确答案】:【解析】:(1)连接C1D,AB1,推导出FJ || KH,设两线确定的平面为α,则点F,J,K,H∈α,在平面ADD1A1内延长JI交直线A1A于P点,推导出AP=DJ=12AA1,在平面ABB1A1内延长KH交直线A1A与Q点,推导出AQ=12AA1,由此能证明H、I、J、K、E、F 共面.(2)设BE∩DF=O,则O∈平面DC1,O∈平面BC1,由此能证明BE、DF、CC1三线共点;(3)由S△C1EF =18,S△CBD=12,求出V棱台C1EF−CBD=13(S△C1EF+S△CBD+√S△C1EF⋅S△CBD)⋅|CC1|=724,由此能求出几何体B1BE-D1DF的体积.【解答】:(1)证明:连接C1D,AB1,由已知FJ || C1D,KH || AB1,又C1D || AB1,∴FJ || KH,设两线确定的平面为α,即点F,J,K,H∈α,在平面ADD1A1内延长JI交直线A1A于P点,由△API与△DJI全等,可得AP=DJ=12AA1,在平面ABB1A1内延长KH交直线A1A与Q点,同理可得AQ=12AA1,∴P,Q重合,∴P∈α,∴I∈α同理可证E∈α,综上H、I、J、K、E、F共面.(2)证明:设BE∩DF=O,则O∈平面DC1,O∈平面BC1,∵平面DC1∩平面BC1=CC1,∴O∈CC1,∴BE、DF、CC1三线共点;(3)解:∵ S△C1EF =18,S△CBD=12,∴ V棱台C1EF−CBD =13(S△C1EF+S△CBD+√S△C1EF⋅S△CBD)⋅|CC1|=13×(18+12+14)=724,∴ V几何体B1BE−D1DF =12−724=524.【点评】:本题考查六点共面、三线共点的证明,考查几何体的体积的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力、推理论证能力等数学核心素养,是中档题.20.(问答题,12分)已知正方体ABCD-A1B1C1D1中,P、Q分别为对角线BD、CD1上的点,且CQQD1 = BPPD= 23.(1)求证:PQ || 平面A1D1DA;(2)若R是CD上的点,当CRCD的值为多少时,能使平面PQR ||平面B1C1CB?请给出证明.【正确答案】:【解析】:(1)连接CP,并延长与DA的延长线交于M点,由三角形的相似和线面平行的判定定理,即可得证;(2)当CRCD =25时,能使平面PQR || 平面B l C l BC.由平行线的判定和性质,以及线面平行和面面平行的判定定理,即可得到结论.【解答】:(1)证明:连接CP,并延长与DA的延长线交于M点,因为四边形ABCD为正方形,所以BC || AD,故△PBC∽△PDM,所以CPPM =BPPD=23,又因为CQQD1=BPPD=23,所以CQQD1=CPPM=23,所以PQ || MD1.又MD1⊂平面A1D1DA,PQ⊄平面A1D1DA,故PQ || 平面A1D1DA.(2)当CRCD =25时,能使平面PQR || 平面B l C l CB.证明:因为CRCD =25,即有CRRD=23,故CQQD1=CRRD=23,所以QR || DD1.又∵DD1 || CC1,∴QR || CC1,又CC1⊂平面B l C l CB,QR⊄平面B l C l CB,所以QR || 平面B l C l CB,由CRRD =23=BPPD,得PR || BC,BC⊂平面B l C l CB,PR⊄平面B l C l CB,所以PR || 平面B l C l CB,又PR∩RQ=R,所以平面PQR || 平面B l C l CB.【点评】:本题考查线面平行和面面平行的判定定理,以及平行线的性质和三角形相似的性质,考查转化思想和运算能力,属于中档题.21.(问答题,12分)若函数f(x)= √3 sinx+2cos2x2,△A BC的角A,B,C的对边分别为a,b,c,且f(A)=3.(1)当b+ca取最大值时,判断△ABC的形状;(2)在△ABC中,D为BC边的中点,且AD= √13,AC=2,求BC的长.【正确答案】:【解析】:利用三角恒等变换化简f(x),由f(A)=3,可求得A的大小,(1)利用正弦定理以及三角恒等变换可求得b+ca取最大值时B的大小,即可求解△ABC的形状;(2)取AB边的中点E,连接DE,在△ADE中,利用余弦定理可求解AE,从而可得AB,在△ABC中,利用余弦定理即可求解BC.【解答】:解:因为f(x)= √3 sinx+2cos2x2 = √3 sinx+cosx+1=2sin(x+ π6)+1,所以f(A)=2sin(A+ π6)+1=3,即sin(A+ π6)=1,因为0<A<π,所以π6<A+ π6<7π6,所以A+ π6= π2,A= π3.(1)由正弦定理可得b+ca = sinB+sinCsinA= sinB+sin(2π3−B)√32=2sin(B+ π6),因为0<B<2π3,所以π6<B+ π6<5π6,所以当B= π3时,b+ca取得最大值,此时C= π3,所以A=B=C,所以△ABC是等边三角形.(2)解:取AB边的中点E,连接DE,则DE || AC,且DE= 12 AC=1,∠AED= 2π3,在△ADE中,由余弦定理得AD2=AE2+DE2-2AE•DE•cos 2π3=13,解得AE=3,AB=6,在△ABC中,由余弦定理可得BC2=AB2+AC2-2AB•AC•cosA=36+4-2×6×2× 12=28,所以BC=2 √7.【点评】:本题主要考查三角恒等变换,正、余弦定理在解三角形中的应用,考查转化思想与运算求解能力,属于中档题.22.(问答题,12分)已知向量m⃗⃗⃗=(cos2x+2√3sinx,1),n⃗⃗=(2,−a).(1)当a=0时,令f(x)=m⃗⃗⃗•n⃗⃗,求f(x)的最值;(2)若关于x方程m⃗⃗⃗•n⃗⃗=0在x∈(0,5π2)上有6个不等的实根,求a的取值范围;(3)当m⃗⃗⃗•n⃗⃗≥0对x∈[x1,x2]恒成立时,x2-x1的最大值为5π3,求a的值.【正确答案】:【解析】:(1)利用向量的数量积以及两角和与差的三角函数,转化求解幂函数的最值即可.(2)由 m ⃗⃗⃗⋅n ⃗⃗=0 , −4sin 2x +4√3sinx +2−a =0 令t=sinx , ℎ(t )=−4t 2+4√3t +2−a 结合函数的零点,转化求解a 的范围即可.(3)通过 m ⃗⃗⃗⋅n ⃗⃗≥0 ,推出 √3−√5−a ≤2sinx ≤√3+√5−a ,然后分类讨论推出a 的范围,转化求解即可.【解答】:解:(1)∵a=0, f (x )=m ⃗⃗⃗⋅n ⃗⃗=2cos2x +4√3sinx =2(1−2sin 2x )+4√3sinx =−4(sinx −√32)2 +5, 又|sinx|≤1,∴当sinx=-1时, f (x )min =−2−4√3 ;当 sinx =√32 时,f (x )max =5. (2)由 m ⃗⃗⃗⋅n ⃗⃗=0 , −4sin 2x +4√3sinx +2−a =0令t=sinx , ℎ(t )=−4t 2+4√3t +2−a由题意,结合函数t=sinx 在 x ∈(0,5π2) 上的图像可知: ℎ(t )=−4t 2+4√3t +2−a 在t∈(0,1)上有两个零点,∴Δ>0,16×3+16(2-a )>0,并且h (1)=-4+4 √3 +2-a <0,h (0)=2-a <0,解得 4√3−2<a <5 ,(3)∵ m ⃗⃗⃗⋅n ⃗⃗≥0 ,即: 4sin 2x −2+a −4√3sinx ≤0 ,即 (2sinx −√3)2≤5−a ,则5-a≥0,得a≤5,得 √3−√5−a ≤2sinx ≤√3+√5−a ,∵对x∈[x 1,x 2]恒成立时,x 2-x 1的最大值为 5π3 ,∴当 √3+√5−a >2 时,不妨 2sin (π2−12×5π3)=−√3=√3−√5−a ,得 2√3=√5−a ,得a=-7,当 √3−√5−a <−2 时,不妨 2sin (3π2−12×5π3)=√3=√3+√5−2 ,得 √5−a =0 ,得a=5,此时√3−√5−a<−2不成立,舍去,综上a=-7.【点评】:本题考查向量的数量积的应用,两角和与差的三角函数,函数的最值的求法,考查分析问题解决问题的能力,是难题.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
矿产资源开发利用方案编写内容要求及审查大纲
矿产资源开发利用方案编写内容要求及《矿产资源开发利用方案》审查大纲一、概述
㈠矿区位置、隶属关系和企业性质。
如为改扩建矿山, 应说明矿山现状、
特点及存在的主要问题。
㈡编制依据
(1简述项目前期工作进展情况及与有关方面对项目的意向性协议情况。
(2 列出开发利用方案编制所依据的主要基础性资料的名称。
如经储量管理部门认定的矿区地质勘探报告、选矿试验报告、加工利用试验报告、工程地质初评资料、矿区水文资料和供水资料等。
对改、扩建矿山应有生产实际资料, 如矿山总平面现状图、矿床开拓系统图、采场现状图和主要采选设备清单等。
二、矿产品需求现状和预测
㈠该矿产在国内需求情况和市场供应情况
1、矿产品现状及加工利用趋向。
2、国内近、远期的需求量及主要销向预测。
㈡产品价格分析
1、国内矿产品价格现状。
2、矿产品价格稳定性及变化趋势。
三、矿产资源概况
㈠矿区总体概况
1、矿区总体规划情况。
2、矿区矿产资源概况。
3、该设计与矿区总体开发的关系。
㈡该设计项目的资源概况
1、矿床地质及构造特征。
2、矿床开采技术条件及水文地质条件。