(完整版)人教版高中数学必修一课后习题答案(参考书)
(红对勾)人教版高中数学高一必修一答案

人教版高中数学高一必修一答案目录•第一章线性方程与不等式•第二章函数基础•第三章函数的初等函数•第四章三角函数•第五章数列•第六章概率第一章线性方程与不等式1. 解答:(1)解:因为$$ \\begin{aligned} x+y&=-2\\\\ 2x-y&=1 \\end{aligned} $$(2)解得:$$ \\begin{aligned} x&=-\\frac{3}{5}\\\\ y&=-\\frac{7}{5} \\end{aligned} $$(3)所以方程的解为$x=-\\frac{3}{5}$,$y=-\\frac{7}{5}$。
(2)解:因为$$ \\begin{aligned} 2x+y&=-3\\\\ 3x-2y&=4 \\end{aligned} $$(3)解得:$$ \\begin{aligned} x&=-\\frac{11}{5}\\\\ y&=\\frac{7}{5} \\end{aligned} $$(4)所以方程的解为$x=-\\frac{11}{5}$,$y=\\frac{7}{5}$。
2. 解答:(1)解:根据题意,2x−3<4,移项得2x<7,再除以2得$x<\\frac{7}{2}$,所以不等式的解集为$x<\\frac{7}{2}$。
(2)解:根据题意,$3x+2\\leq 5$,移项得$3x\\leq 3$,再除以3得$x\\leq 1$,所以不等式的解集为$x\\leq 1$。
第二章函数基础1. 解答:(1)解:由题意,函数x(x)的定义域是$x\\geq -3$,根据函数的图象可得:当$x\\geq -3$时,x(x)的值为正;当x<−3时,x(x)的值为负。
(2)解:由题意,函数x(x)的定义域是$x\\leq 2$,根据函数的图象可得:当$x\\leq 2$时,x(x)的值为负;当x>2时,x(x)的值为正。
整理【人教A版】高中数学必修1-5教材课后习题答案全套完整WORD版

高一数学A参考答案整理人尼克高一数学A参考答案一、选择题二、填空题13. 14. 24/25 15.或16. -1三、解答题17.【解析】解:(1)∵sin2θ+cos2θ=1,∴cos2θ=925. 2分又<θ<π,∴cosθ=-35. 4分. 6分(2) 9分. 12分18.【解析】试题分析:因为,且A为锐角,所以,CosC=cos[π-(A+B)]=-cos(A+B)=sinAsinB-cosAcosB=所以C=135°。
19.【解析】试题分析:解:(1)周期为 3分(2) 5分所以g(x)为奇函数 6分20.解:(1)(2)振幅是,最小正周期为,单调递增区间是,递减区间是,其中。
21.解(1)T==π,由2kπ-≤2x+≤2kπ+,k∈Z知kπ-≤x≤kπ+(k∈Z).所以所求的单调递增区间为(k∈Z).(2)变换情况如下:y=sin 2x y=sin ――――――――――――――――――――――――――→y=sin+. 22.解(1)由图象易知函数f(x)的周期为T=4×=2π,A=1,所以ω=1.法一由图可知此函数的图象是由y=sin x的图象向左平移个单位得到的,故φ=,所以函数解析式为f(x)=sin.法二由图象知f(x)过点.则sin=0,∈-+φ=kπ,k∈Z.∈φ=kπ+,k∈Z,又∈φ∈,∈φ=,∈f(x)=sin.(2)方程f(x)=a在上有两个不同的实根等价于y=f(x)与y=a的图象在上有两个交点,在图中作y=a的图象,如图为函数f(x)=sin在上的图象,当x=0时,f(x)=,当x =时,f(x)=0,由图中可以看出有两个交点时,a∈∈(-1,0).高一数学龙虎参考答案一、选择题二、填空题13. 14. −1215. 16. 6三、解答题17.【解析】解:(1)∵sin2θ+cos2θ=1,∴cos2θ=925. 2分又<θ<π,∴cosθ=-35. 4分. 6分(2) 9分. 12分18.试题解析:(1)因为函数f(x)=asinx+cosx的图象经过点(π2,−1),所以f(π2)=−1 1分即asinπ2+cosπ2=−1,解得:a=−1 2分f(x)=cosx−sinx=√2cos(x+π4) 4分T=2π1=2π所以函数f(x)的最小正周期为. 5分因为函数y=cosx的单调递增区间为[−π+2kπ,2kπ],k∈Z所以−π+2kπ≤x+π4≤2kπ解得:−5π4+2kπ≤x≤2kπ−π46分所以函数f(x)的单调递增区间为[−5π4+2kπ,−π4+2kπ],k∈Z 7分(2)解法1:∵,∴.∴. 9分∴ . 12分解法2:∵,∴∴.∴. 9分两边平方得. 11分∴ . 12分19.【解析】解:(1) 2分4分最小正周期为, 6分(2)因为,所以 8分所以 10分所以,所以取值范围为. 12分20.解:化简4分(1)当时,取得最小值,此时即,故此时x的集合为{x|x=kπ−π12,k∈Z} 6分(2)当x∈[0,π2]时,所以2x−π3∈[−π3,2π3],所以,从而即f(x)∈[−√3+1,3] 8分(3)由知1 1 310分故在区间上的图象如图所示:21.试题分析(1)函数,,,得;即,由题意得,得,所以函数的单调递增区间为T n−nS n=2n2+4n≥6.(2)由题意得,所以有,又由得,解得,即,,故所有根之和为0≤m≤2.22.解:(1),由于的最大值为2且A>0,所以即A=2得,又函数的图象过点(1,2)则…4分(2)由(1)知且周期为4,2010=4×502+2………6分故8分(3) 由在区间[1,4]上恰有一个零点知:函数的图象与直线恰有一个交点。
高中数学(必修1)全套教材含答案(超好)

特别说明:《高中数学教材》是根据最新课程标准,参考独家内部资料,结合自己颇具特色的教学实践和卓有成效的综合辅导经验精心编辑而成;本套资料分必修系列和选修系列及部分选修4系列。
欢迎使用本资料!本套资料所诉求的数学理念是:(1)解题活动是高中数学教与学的核心环节,(2)精选的优秀试题兼有巩固所学知识和检测知识点缺漏的两项重大功能。
本套资料按照必修系列和选修系列及部分选修4系列的章节编写,每章或节分三个等级:[基础训练A组],[综合训练B组],[提高训练C组]目录:数学1(必修)数学1(必修)第一章:(上)集合[训练A、B、C]数学1(必修)第一章:(中)函数及其表[训练A、B、C]数学1(必修)第一章:(下)函数的基本性质[训练A、B、C] 数学1(必修)第二章:基本初等函数(I)[基础训练A组] 数学1(必修)第二章:基本初等函数(I)[综合训练B组]数学1(必修)第二章:基本初等函数(I)[提高训练C组]数学1(必修)第三章:函数的应用[基础训练A组]数学1(必修)第三章:函数的应用[综合训练B组]数学1(必修)第三章:函数的应用[提高训练C组](数学1必修)第一章(上) 集合[基础训练A 组]一、选择题1.下列各项中,不可以组成集合的是( ) A .所有的正数 B .等于2的数 C .接近于0的数 D .不等于0的偶数 2.下列四个集合中,是空集的是( )A .}33|{=+x xB .},,|),{(22R y x x y y x ∈-= C .}0|{2≤x x D .},01|{2R x x x x ∈=+- 3.下列表示图形中的阴影部分的是( )A .()()A CBC U I UB .()()A B AC U I U C .()()A B B C U I UD .()A B C U I4.下面有四个命题:(1)集合N 中最小的数是1;(2)若a -不属于N ,则a 属于N ; (3)若,,N b N a ∈∈则b a +的最小值为2;(4)x x 212=+的解可表示为{}1,1; 其中正确命题的个数为( )A .0个B .1个C .2个D .3个 5.若集合{},,M a b c =中的元素是△ABC 的三边长, 则△ABC 一定不是( )A .锐角三角形B .直角三角形C .钝角三角形D .等腰三角形6.若全集{}{}0,1,2,32U U C A ==且,则集合A 的真子集共有( ) A .3个 B .5个 C .7个 D .8个二、填空题1.用符号“∈”或“∉”填空 (1)0______N , 5______N , 16______N(2)1______,_______,______2R Q Q e C Q π-(e 是个无理数) (3{}|,,x x a a Q b Q =+∈∈A B C2. 若集合{}|6,A x x x N =≤∈,{|}B x x =是非质数,C A B =I ,则C 的非空子集的个数为 。
【整合&免费】高中人教版数学 Ⅰ 课本练习必修1 2 3 4 5 答案

4、程序:
INPUT “Please input a year:;y ” b=y MOD 4 c=y MOD 100 d=y MOD 400 IF b=0 AND c<>0 THEN PRINT “Leap year.” ELSE IF d=0 THEN PRINT “Leap year.” ELSE PRINT “Not leap year.” END IF END IF END
2
第三步,得到圆的面积 S . 2、算法步骤:第一步,给定一个大于 1 的正整数 n . 第二步,令 i 1 . 第三步,用 i 除 n ,等到余数 r . 第四步,判断“ r 0 ”是否成立. 若是,则 i 是 n 的因数;否则, i 不是 n 的因数. 第五步,使 i 的值增加 1,仍用 i 表示. 第六步,判断“ i n ”是否成立. 若是,则结束算法;否则,返回第三 步. 练习(P19)
-
7 左
整合
第一章 算法初步 1.1 算法与程序框图 练习(P5) 1、算法步骤:第一步,给定一个正实数 r . 第二步,计算以 r 为半径的圆的面积 S r .
INPUT “a,b,c=” ;a,b,c p=(a+b+c)/2 s=SQR(p*(p-a) *(p-b) *(p-c)) PRINT “s=” ;s END
程序: 4、
INPUT “a,b,c=” ;a,b,c sum=10.4*a+15.6*b+25.2*c PRINT “sum =” ;sum END
高三理科党整合, 仅供高三复习全部书参考,以及高一二订正,不建议直接抄袭。 只要努力 一切来得及 在高考吧 里 零基础 学生 逆袭高考 仅一年时间 考上一本 重点 的例子不少。 课本 是一切知识的基础, 万变不离其宗! 望广大学子加油 考上自己理想的大学!
高中数学(人教A版)必修一课后习题:三角函数的概念(课后习题)【含答案及解析】

三角函数的概念三角函数的概念课后篇巩固提升合格考达标练1.(2021河北唐山高一期末)sin(-1 080°)=()A.-12B.1C.0D.-1-1 080°)=-sin(3×360°+0°)=0.故选C.2.点A(x,y)是60°角的终边与单位圆的交点,则yx的值为()A.√3B.-√3C.√33D.-√33由三角函数定义知yx=tan 60°=√3. 3.代数式sin(-330°)cos 390°的值为()A.-34B.√34C.-32D.14,sin(-330°)cos 390°=sin 30°×cos 30°=12×√32=√34.4.tan(-356π)的值等于()A.√33B.-√33C.12D.√3(-356π)=tan(-3×2π+π6)=tanπ6=√33.5.已知角α的终边与单位圆交于点P-12,y,则cos α=()A.-√33B.-12C.-√32D.±12解析角α的终边与单位圆交于点P-12,y,∴cos α=-12.6.已知角α的终边经过点P (x ,-6),且tan α=-35,则x 的值为 .,得tan α=y x =-35,即-6x =-35,解得x=10.7.(2020浙江丽水高一检测)在平面直角坐标系中,角α的顶点与原点重合,始边与x 轴的非负半轴重合,终边过点P (-√3,-1),则tan α= ;cos α-sin α= .1-√32角α终边过点P (-√3,-1),|OP|=2,∴tan α=-√3=√33,sin α=-12,cos α=-√32, ∴cos α-sin α=1-√32.8.求下列各式的值:(1)sin (-15π4)+tan 25π3;(2)sin(-1 380°)cos 1 110°+tan 405°.原式=sin (-4π+π4)+tan (8π+π3) =sin π4+tan π3=√22+√3.(2)原式=sin(-4×360°+60°)cos(3×360°+30°)+tan(360°+45°)=sin 60°cos 30°+tan 45°=√32×√32+1=74. 等级考提升练9.在△ABC 中,若sin A cos B tan C<0,则△ABC 是( ) A.锐角三角形B.直角三角形C.钝角三角形D.锐角三角形或钝角三角形sin A>0,所以cos B ,tan C 中一定有一个小于0,即B ,C 中一定有一个钝角,故△ABC 是钝角三角形.10.设α是第二象限角,且|cos α2|=-cos α2,则α2是 ( )A.第一象限角B.第二象限角C.第三象限角D.第四象限角α是第二象限角,∴α2为第一或第三象限角.又|cosα2|=-cosα2,∴cosα2<0.∴α2是第三象限角.11.(2021江苏南京高一期末)若角α的终边经过点P(3,a)(a≠0),则()A.sin α>0B.sin α<0C.cos α>0D.cos α<0角α的终边经过点P(3,a)(a≠0),∴由三角函数的定义可知sin α=√3+a2符号不确定,故A,B均错误;cos α=√3+a2>0,故C正确,D错误.故选C.12.在平面直角坐标系中,已知角α的终边经过点P(a,a-3),且cos α=√55,则a等于()A.1B.92C.1或92D.1或-3由题意得√a2+(a-3)=√55,化简得a2+2a-3=0,解得a=-3或1,当a=-3时,点P(-3,-6)在第三象限,cosα<0,与题意不符,舍去,选A.13.(多选题)(2020山东聊城高一期末)已知x∈{x|x≠kπ2,k∈Z},则函数y=sinx|sinx|+cosx|cosx|−tanx|tanx|的值可能为()A.3B.-3C.1D.-1x∈{x|x≠kπ2,k∈Z},当x在第一象限时,y=sinx|sinx|+cosx|cosx|−tanx|tanx|=1+1-1=1;当x在第二象限时,y=sinx|sinx|+cosx|cosx|−tanx|tanx|=1-1+1=1;当x在第三象限时,y=sinx|sinx|+cosx|cosx|−tanx|tanx|=-1-1-1=-3;当x 在第四象限时,y=sinx |sinx |+cosx |cosx |−tanx |tanx |=-1+1+1=1. 14.角α的终边过点P (-3a ,4a )(a ≠0),则cos α= . -35或35|OP|=√(-3a )2+(4a )2=5|a|,且a ≠0.当a>0时,|OP|=5a ,则cos α=-3a 5a =-35.当a<0时,|OP|=-5a ,则cos α=-3a -5a =35.15.sin(-1 740°)cos 1 470°+cos(-660°)sin 750°+tan 405°= .=sin(60°-5×360°)cos(30°+4×360°)+cos(60°-2×360°)sin(30°+2×360°)+tan(45°+360°)=sin 60°cos 30°+cos 60°sin 30°+tan 45°=√32×√32+12×12+1=2.16.已知1|sinα|=-1sinα,且lg cos α有意义.(1)试判断角α的终边所在的象限;(2)若角α的终边上一点M (35,m),且|OM|=1(O 为坐标原点),求m 的值及sin α的值.由1|sinα|=-1sinα,可知sin α<0.由lg cos α有意义,可知cos α>0,∴角α的终边在第四象限.(2)∵|OM|=1, ∴(35)2+m 2=1,解得m=±45.又α是第四象限角,故m<0,从而m=-45.由正弦函数的定义可知sin α=y r =m|OM |=-451=-45. 新情境创新练17.已知角α的终边在直线y=-3x 上,求10sin α+3cosα的值.α的终边上任一点为P (k ,-3k )(k ≠0),则x=k ,y=-3k ,r=√k 2+(-3k )2=√10|k|.当k>0时,r=√10k ,α是第四象限角, sin α=y r =√10k =-3√1010, 1cosα=r x =√10k k =√10,所以10sin α+3cosα=10×(-3√1010)+3√10=-3√10+3√10=0; 当k<0时,r=-√10k ,α为第二象限角, sin α=y r =-√10k =3√1010, 1cosα=r x =-√10k k=-√10, 所以10sin α+3cosα=10×3√1010+3×(-√10)=3√10-3√10=0. 综上,10sin α+3cosα=0.。
高中数学(人教A版)必修一课后习题:三角恒等变换的应用(课后习题)【含答案及解析】

三角恒等变换的应用课后篇巩固提升合格考达标练1.(2021济宁高一期末)若tan α=2,则sin2α1+cos 2α=( )A.16 B .13C .23D .1tan α=2,则sin2α1+cos 2α=2sinαcosα2cos 2α+sin 2α=2tanα2+tan 2α=2×22+22=23.故选C .2.化简sin α2+cos α22+2sin 2π4−α2得( )A.2+sin α B .2+√2sin α-π4 C .2 D .2+√2sin α+π4解析原式=1+2sin α2cos α2+1-cos 2π4−α2=2+sin α-cos π2-α=2+sin α-sin α=2. 3.函数f (x )=sin x cos x+cos 2x-1的值域为( ) A.[-√2+12,√2-12] B.[√2-12,√2+12] C.[-1,0] D.[0,12](x )=sin x cos x+cos 2x-1=12sin 2x+1+cos2x 2-1=12sin 2x+12cos 2x-12=√22sin (2x +π4)−12, 因为-1≤sin (2x +π4)≤1,所以y ∈[-√2+12,√2-12].4.函数f (x )=sin 2x-π4-2√2sin 2x 的最小正周期是 .解析f (x )=√22sin 2x-√22cos 2x-√2(1-cos 2x )=√22sin 2x+√22cos 2x-√2=sin 2x+π4-√2,所以T=2π2=π. 5.若3sin x-√3cos x=2√3sin(x+φ),φ∈(-π,π),则φ= . -π6解析因为3sin x-√3cos x=2√3√32sin x-12cos x =2√3sin x-π6,因为φ∈(-π,π),所以φ=-π6. 6.化简:sin4x 1+cos4x ·cos2x 1+cos2x ·cosx1+cosx = .tan x2=2sin2xcos2x 2cos 22x ·cos2x 1+cos2x ·cosx1+cosx=sin2x 1+cos2x ·cosx1+cosx=2sinxcosx 2cos 2x ·cosx1+cosx=sinx 1+cosx =tan x2. 7.已知函数f (x )=4cos 4x -2cos2x -1sin (π4+x )sin (π4-x ). (1)求f (-11π12)的值; (2)当x ∈[0,π4)时,求函数g (x )=12f (x )+sin 2x 的最大值和最小值.f (x )=(1+cos2x )2-2cos2x -1sin (π4+x )sin (π4-x )=cos 22xsin (π4+x )cos (π4+x )=2cos 22x sin (π2+2x )=2cos 22xcos2x=2cos 2x , 所以f (-11π12)=2cos (-11π6)=2cos π6=√3.(2)g (x )=cos 2x+sin 2x=√2sin (2x +π4).因为x ∈[0,π4),所以2x+π4∈[π4,3π4), 所以当x=π8时,g (x )max =√2, 当x=0时,g (x )min =1.等级考提升练8.已知α满足sin α=13,则cos (π4+α)cos (π4-α)= ( )A.718B.2518C.-718D.-2518解析cos (π4+α)cos (π4-α)=cosπ2-π4-α·cosπ4-α=sinπ4-αcosπ4-α=12sinπ2-2α=12cos 2α=12(1-2sin 2α)=12(1-2×19)=718,故选A .9.(2021黑龙江哈尔滨道里高一期末)已知函数f (x )=sin 2x+2√3sin x cos x-cos 2x ,x ∈R ,则( ) A.f (x )的最大值为1B .f (x )在区间(0,π)上只有1个零点C .f (x )的最小正周期为π2 D .x=π3为f (x )图象的一条对称轴 解析函数f (x )=sin 2x+2√3sin x cos x-cos 2x=√3sin 2x-cos 2x=2√32sin 2x-12cos 2x =2sin 2x-π6,可得f (x )的最大值为2,最小正周期为T=2π2=π,故A,C 错误;由f (x )=0,可得2x-π6=k π,k ∈Z ,即为x=kπ2+π12,k ∈Z ,可得f (x )在(0,π)内的零点为π12,7π12,故B 错误;由fπ3=2sin2π3−π6=2,可得x=π3为f (x )图象的一条对称轴,故D 正确.故选D .10.设a=2sin 13°cos 13°,b=2tan13°1+tan 213°,c=√1-cos50°2,则有( )A.c<a<bB.a<b<cC.b<c<aD.a<c<ba=2sin 13°cos 13°=sin 26°,b=2tan13°1+tan 213°=tan 26°,c=√1-cos50°2=sin 25°,且正弦函数y=sin x 在区间[0,π2]上单调递增,所以a>c ;在区间[0,π2]上tan α>sin α,所以b>a ,所以c<a<b ,故选A . 11.已知函数f (x )=sin x+λcos x 的图象的一个对称中心是点(π3,0),则函数g (x )=λsin x cos x+sin 2x 的图象的一条对称轴是直线( ) A.x=5π6B.x=4π3C.x=π3D.x=-π3f (x )=sin x+λcos x 的图象的一个对称中心是点(π3,0),所以f (π3)=0,即sin π3+λcos π3=0,解得λ=-√3,故g (x )=-√3sin x cos x+sin 2x ,整理得g (x )=-sin (2x +π6)+12,所以对称轴直线方程为2x+π6=k π+π2(k ∈Z ),当k=-1时,一条对称轴是直线x=-π3.12.(多选题)(2020福建福州一中高一期末)以下函数在区间0,π2上单调递增的有( ) A.y=sin x+cos x B.y=sin x-cos x C .y=sin x cos xD .y=sinxcosx解析对于A 选项,y=sin x+cos x=√2sin x+π4,当x ∈0,π2时,x+π4∈π4,3π4,所以函数在区间0,π2上不单调;对于B 选项,y=sin x-cos x=√2sin x-π4,当x ∈0,π2时,x-π4∈-π4,π4,所以函数在区间0,π2上单调递增;对于C 选项,y=sin x cos x=12sin 2x ,当x ∈0,π2时,2x ∈(0,π),所以函数在区间0,π2上不单调;对于D 选项,当x ∈0,π2时,y=sinxcosx=tan x ,所以函数在区间0,π2上单调递增.13.(多选题)(2020山东枣庄高一期末)设函数f (x )=sin 2x+π4+cos 2x+π4,则f (x )( ) A.是偶函数B.在区间0,π2单调递减 C .最大值为2D .其图象关于直线x=π2对称解析f (x )=sin 2x+π4+cos 2x+π4=√2sin 2x+π4+π4=√2cos 2x.f (-x )=√2cos(-2x )=√2cos 2x=f (x ),故f (x )是偶函数,A 正确;∵x ∈0,π2,所以2x ∈(0,π),因此f (x )在区间0,π2上单调递减,B 正确;f (x )=√2cos 2x 的最大值为√2,C 不正确;当x=π2时,f (x )=√2cos 2×π2=-√2,因此当x=π2时,函数有最小值,因此函数图象关于x=π2对称,D 正确.14.已知cos θ=-725,θ∈(π,2π),则sin θ2+cos θ2的值为 .解析因为θ∈(π,2π),所以θ2∈π2,π,所以sin θ2=√1-cosθ2=45,cos θ2=-√1+cosθ2=-35, 所以sin θ2+cos θ2=15.15.化简:tan 70°cos 10°(√3tan 20°-1)= .1 解析原式=sin70°cos70°·cos 10°·√3sin20°cos20°-1=sin70°cos70°·cos 10°·√3sin20°-cos20°cos20°=sin70°cos70°·cos 10°·2sin (-10°)cos20°=-sin70°cos70°·sin20°cos20°=-1. 16.已知函数f (x )=4tan x sin (π2-x)cos (x -π3)−√3.(1)求f (x )的定义域与最小正周期; (2)讨论f (x )在区间[-π4,π4]上的单调性.f (x )的定义域为{x |x ≠π2+kπ,k ∈Z}.f (x )=4tan x cos x cos (x -π3)−√3 =4sin x cos (x -π3)−√3 =4sin x (12cosx +√32sinx)−√3 =2sin x cos x+2√3sin 2x-√3=sin 2x+√3(1-cos 2x )-√3 =sin 2x-√3cos 2x=2sin (2x -π3). 所以f (x )的最小正周期T=2π2=π.(2)令z=2x-π3,函数y=2sin z 的单调递增区间是[-π2+2kπ,π2+2kπ],k ∈Z .由-π2+2k π≤2x-π3≤π2+2k π,k ∈Z ,得-π12+k π≤x ≤5π12+k π,k ∈Z . 设A=[-π4,π4],B=x -π12+k π≤x ≤5π12+k π,k ∈Z ,易知A ∩B=[-π12,π4].所以,当x ∈[-π4,π4]时,f (x )在区间[-π12,π4]上单调递增,在区间[-π4,-π12]上单调递减.新情境创新练17.如图,某污水处理厂要在一个矩形ABCD 的池底水平铺设污水净化管道(Rt △EFG ,E 是直角顶点)来处理污水,管道越长,污水净化效果越好,设计要求管道的接口E 是AB 的中点,F ,G 分别落在AD ,BC 上,且AB=20 m,AD=10√3 m,设∠GEB=θ.(1)试将污水管道的长度l 表示成θ的函数,并写出定义域; (2)当θ为何值时,污水净化效果最好,并求此时管道的长度.由题意,∠GEB=θ,∠GEF=90°,则∠AEF=90°-θ.∵E 是AB 的中点,AB=20 m,AD=10√3 m . ∴EG=10cosθ,EF=10cos (90°-θ)=10sinθ. ∴FG=√EG 2+EF 2=10cosθsinθ. 则l=10sinθ+10cosθ+10sinθcosθ,定义域θ∈π6,π3.(2)由(1)可知,l=10sinθ+10cosθ+10sinθcosθ,θ∈π6,π3.化简可得l=10(sinθ+cosθ)+10sinθcosθ.令t=sin θ+cos θ=√2sin θ+π4.∵θ∈π6,π3,∴θ+π4∈5π12,7π12,可得sin θ+π4∈√6+√24,1,则t ∈√3+12,√2.可得sin θcos θ=t 2-12,且t ≠1, 那么l=10+10t t 2-12=20(1+t )t 2-1=20t -1. 当t=√3+12时,l 取得最大值为20(1+√3).此时t=√2sin θ+π4=√3+12,即θ+π4=5π12或7π12,∴θ=π6或π3.故当θ=π6或π3时,污水净化效果最好,此时管道的长度为20(1+√3)m .。
高中数学(人教A版)必修一课后习题:幂函数(课后习题)【含答案及解析】

幂函数课后篇巩固提升合格考达标练1.(2021山西运城高一期中)下列函数既是幂函数又是偶函数的是( )A.f (x )=3x 2B.f (x )=√xC.f (x )=1x 4 D.f (x )=x -3f (x )=3x 2,不是幂函数;函数f (x )=√x ,定义域是[0,+∞),是幂函数,但不是偶函数;函数f (x )=1x4=x -4是幂函数,也是定义域(-∞,0)∪(0,+∞)上的偶函数;函数f (x )=x -3是幂函数,但不是偶函数.故选C .2.(2021河北唐山高一期末)已知幂函数y=f (x )的图象过点(2,√2),则下列关于f (x )的说法正确的是( ) A.奇函数 B.偶函数C.定义域为(0,+∞)D.在(0,+∞)上单调递增f (x )=x α(α为常数),∵幂函数y=f (x )图象过点(2,√2),∴2α=√2,∴α=12,∴幂函数f (x )=x 12.∵12>0,∴幂函数f (x )在(0,+∞)上单调递增,所以选项D 正确;∵幂函数f (x )=x 12的定义域为[0,+∞),不关于原点对称,∴幂函数f (x )既不是奇函数也不是偶函数,所以选项A,B,C 错误,故选D . 3.已知a=1.212,b=0.9-12,c=√1.1,则()A.c<b<aB.c<a<bC.b<a<cD.a<c<b0.9-12=(910)-12=(109)12,c=√1.1=1.112,∵12>0,且1.2>109>1.1,∴1.212>(109)12>1.112,即a>b>c.4.若(a+1)13<(3-2a )13,则a 的取值范围是 .-∞,23)f (x )=x 13的定义域为R ,且为增函数,所以由不等式可得a+1<3-2a ,解得a<23.5.为了保证信息的安全传输,有一种密钥密码系统,其加密、解密原理为:发送方由明文到密文(加密),接收方由密文到明文(解密).现在加密密钥为y=x α(α为常数),如“4”通过加密后得到密文“2”.若接收方接到密文“3”,则解密后得到的明文是 .y=x α(α是常数)是一个幂函数模型,所以要想求得解密后得到的明文,就必须先求出α的值.由题意,得2=4α,解得α=12,则y=x 12.由x 12=3,得x=9,即明文是9. 6.已知幂函数f (x )=(2m 2-6m+5)x m+1为偶函数. (1)求f (x )的解析式;(2)若函数y=f (x )-2(a-1)x+1在区间(2,3)上为单调函数,求实数a 的取值范围.由f (x )为幂函数知2m 2-6m+5=1,即m 2-3m+2=0,得m=1或m=2,当m=1时,f (x )=x 2,是偶函数,符合题意;当m=2时,f (x )=x 3,为奇函数,不合题意,舍去.故f (x )=x 2.(2)由(1)得y=x 2-2(a-1)x+1,函数的对称轴为x=a-1,由题意知函数在区间(2,3)上为单调函数, ∴a-1≤2或a-1≥3,相应解得a ≤3或a ≥4. 故实数a 的取值范围为(-∞,3]∪[4,+∞).等级考提升练7.(2021四川成都七中高一期中)若幂函数f (x )=(m 2-2m-2)·x m 在(0,+∞)上单调递减,则f (2)=( )A.8B.3C.-1D.12f (x )=(m 2-2m-2)x m 为幂函数,则m 2-2m-2=1,解得m=-1或m=3.当m=-1时,f (x )=x -1,在(0,+∞)上单调递减,满足题意,当m=3时,f (x )=x 3,在(0,+∞)上单调递增,不满足题意,所以m=-1,所以f (x )=1x ,所以f (2)=12,故选D .8.(2021吉林延边高一期末)已知幂函数f (x )=x 12,若f (a-1)<f (14-2a ),则a 的取值范围是( ) A.[-1,3) B.(-∞,5) C.[1,5) D.(5,+∞)f (x )=x 12,若f (a-1)<f (14-2a ),可得√a -1<√14-2a ,即{a -1≥0,14-2a ≥0,a -1<14-2a ,得1≤a<5.所以a 的取值范围为[1,5).9.已知幂函数g (x )=(2a-1)x a+2的图象过函数f (x )=32x+b 的图象所经过的定点,则b 的值等于( ) A.-2 B.1 C.2 D.4g (x )=(2a-1)x a+2为幂函数,则2a-1=1,∴a=1,函数的解析式为g (x )=x 3,幂函数过定点(1,1),在函数f (x )=32x+b 中,当2x+b=0时,函数过定点(-b 2,1),据此可得-b2=1,故b=-2.故选A . 10.函数f (x )=(m 2-m-1)x m2+m -3是幂函数,对任意x 1,x 2∈(0,+∞),且x 1≠x 2,满足f (x 1)-f (x 2)x 1-x 2>0,若a ,b ∈R ,且a+b>0,ab<0,则f (a )+f (b )的值 ( )A.恒大于0B.恒小于0C.等于0D.无法判断f (x )=(m 2-m-1)x m2+m -3是幂函数,可得m 2-m-1=1,解得m=2或m=-1,当m=2时,f (x )=x 3,当m=-1时,f (x )=x -3,对任意的x 1,x 2∈(0,+∞),且x 1≠x 2,满足f (x 1)-f (x 2)x 1-x 2>0,函数在(0,+∞)上单调递增,所以m=2,此时f (x )=x 3.又a+b>0,ab<0,可知a ,b 异号,且正数的绝对值大于负数的绝对值,则f (a )+f (b )恒大于0,故选A .11.(多选题)(2020江苏常州高级中学高一期末)下列说法正确的是( ) A.若幂函数的图象经过点(18,2),则解析式为y=x -3B.若函数f (x )=x -45,则f (x )在区间(-∞,0)上单调递减C.幂函数y=x α(α>0)始终经过点(0,0)和(1,1)D.若函数f (x )=√x ,则对于任意的x 1,x 2∈[0,+∞)有f (x 1)+f (x 2)2≤f (x 1+x22)(18,2),则解析式为y=x-13,故A 错误;函数f (x )=x-45是偶函数且在(0,+∞)上单调递减,故在(-∞,0)上单调递增,故B 错误;幂函数y=x α(α>0)始终经过点(0,0)和(1,1),故C 正确;任意的x 1,x 2∈[0,+∞),要证f (x 1)+f (x 2)2≤f (x 1+x 22),即√x 1+√x 22≤√x 1+x22,即x 1+x 2+2√x 1x 24≤x 1+x 22,即(√x 1−√x 2)2≥0,易知成立,故D 正确.12.(多选题)(2021广东佛山南海高一期中)已知幂函数y=x α(α∈R )的图象过点(3,27),下列说法正确的是( )A.函数y=x α的图象过原点B.函数y=x α是偶函数C.函数y=x α是减函数D.函数y=x α的值域为R(3,27),则有27=3α,所以α=3,即y=x 3.故函数是奇函数,图象过原点,函数在R 上单调递增,值域是R ,故A,D 正确,B,C 错误.故选AD . 13.(2021广东深圳宝安高一期末)幂函数f (x )=x m 2-5m+4(m ∈Z )为偶函数且在区间(0,+∞)上单调递减,则m= ,f 12= .或3 4y=x m2-5m+4为偶函数,且在(0,+∞)上单调递减,∴m 2-5m+4<0,且m 2-5m+4是偶数,由m 2-5m+4<0得1<m<4. 由题知m 是整数,故m 的值可能为2或3,验证知m=2或3时,均符合题意,故m=2或3,此时f (x )=x -2,则f 12=4. 14.已知幂函数f (x )=(m-1)2x m 2-4m+2在区间(0,+∞)上单调递增,函数g (x )=2x -k.(1)求实数m 的值;(2)当x ∈(1,2]时,记ƒ(x ),g (x )的值域分别为集合A ,B ,若A ∪B=A ,求实数k 的取值范围.依题意得(m-1)2=1.∴m=0或m=2.当m=2时,f (x )=x -2在区间(0,+∞)上单调递减,与题设矛盾,舍去.当m=0时,f (x )=x 2,符合题设,故m=0.(2)由(1)可知f (x )=x 2,当x ∈(1,2]时,函数f (x )和g (x )均单调递增.∴集合A=(1,4],B=(2-k ,4-k ]. ∵A ∪B=A ,∴B ⊆A.∴{2-k ≥1,4-k ≤4.∴0≤k ≤1.∴实数k 的取值范围是[0,1].新情境创新练15.(2020青海高一期末)已知函数f (x )=(m 2-2m+2)x 1-3m 是幂函数. (1)求函数f (x )的解析式;(2)判断函数f (x )的奇偶性,并证明你的结论;(3)判断函数f (x )在区间(0,+∞)上的单调性,并证明你的结论.提示:若m ∈N *,则x -m =1x m.∵函数f (x )=(m 2-2m+2)x 1-3m 是幂函数,∴m 2-2m+2=1,解得m=1, 故f (x )=x -2(x ≠0).(2)函数f (x )=x -2为偶函数.证明如下:由(1)知f (x )=x -2,其定义域为{x|x ≠0},关于原点对称,∵对于定义域内的任意x ,都有f (-x )=(-x )-2=1(-x )2=1x2=x -2=f (x ),故函数f (x )=x -2为偶函数.(3)f (x )在区间(0,+∞)上单调递减.证明如下:在区间(0,+∞)上任取x 1,x 2,不妨设0<x 1<x 2,则f (x 1)-f (x 2)=x 1-2−x 2-2=1x 12−1x 22 =x 22-x 12x 12x 22=(x 2-x 1)(x 2+x 1)x 12x 22, ∵x 1,x 2∈(0,+∞)且x 1<x 2,∴x 2-x 1>0,x 2+x 1>0,x 12x 22>0,∴f (x 1)>f (x 2).∴f (x )在区间(0,+∞)上单调递减.。
高中数学(人教A版)必修一课后习题:集合的表示方法(课后习题)【含答案及解析】

集合的表示方法课后篇巩固提升合格考达标练1.用描述法表示右图所示阴影部分的点(包括边界上的点)的坐标的集合是()A.{-2≤x≤0,且-2≤y≤0}B.{(x,y)|-2≤x≤0,且-2≤y≤0}C.{(x,y)|-2≤x≤0,且-2≤y<0}D.{(x,y)|-2≤x≤0,或-2≤y≤0},阴影部分的点的横坐标满足-2≤x≤0,纵坐标满足-2≤y≤0,所以所表示的集合为{(x,y)|-2≤x≤0,且-2≤y≤0}.2.在直角坐标系中,坐标轴上的点构成的集合可表示为()A.{(x,y)|y=0,x∈R}B.{(x,y)|x2+y2=0}C.{(x,y)|xy=0}D.{(x,y)|x2+y2≠0}在x轴上的点(x,y)满足y=0,在y轴上的点(x,y)满足x=0,∴坐标轴上的点(x,y)满足xy=0, ∴坐标轴上的点构成的集合可表示为{(x,y)|xy=0}.故选C.3.集合{3,52,73,94,…}用描述法可表示为()A.{x|x=2n+12n,n∈N*}B.{x|x=2n+3n,n∈N*}C.{x|x=2n-1n,n∈N*}D.{x|x=2n+1n,n∈N*}3,5 2,73,94,即31,52,73,94,从中发现规律,x=2n+1n,n∈N*,故可用描述法表示为{x|x=2n+1n,n∈N*}.4.已知集合A=m y=4m∈N,m∈N,用列举法表示集合A=.解析∵集合A=m y=4m∈N,m∈N,∴A={1,2,4}.5.已知集合A={x|-2<x<2,x∈Z},B={y|y=x2+1,x∈A},则集合B用列举法表示是.A={-1,0,1},而B={y|y=x2+1,x∈A},所以B={1,2}.6.用适当的方法表示下列集合:(1)大于2且小于5的有理数组成的集合;(2)24的所有正因数组成的集合;(3)平面直角坐标系内与坐标轴的距离相等的点组成的集合.用描述法表示为{x|2<x<5,且x∈Q}.(2)用列举法表示为{1,2,3,4,6,8,12,24}.(3)在平面直角坐标系内,点(x,y)到x轴的距离为|y|,到y轴的距离为|x|,所以该集合用描述法表示为{(x,y)||y|=|x|}.等级考提升练7.(2021山东临沂高一期中)已知b是正数,且集合{x|x2-ax+16=0}={b},则a-b=()A.0B.2C.4D.8x2-ax+16=0有两个相等的正实根,故Δ=a2-64=0.又方程两根之和为正数,即a>0,所以a=8,因此方程变为x2-8x+16=0,且根为4,故b=4,所以a-b=8-4=4.故选C.8.(2021江西临川一中高一月考)设集合A=2,3,a2-3a,a+2a+7,B={|a-2|,0}.已知4∈A且4∉B,则实数a的取值集合为()A.{-1,-2}B.{-1,2}C.{-2,4}D.{4}①当a2-3a=4且|a-2|≠4时,解得a=-1或4;a=-1时,集合A={2,3,4,4}不满足集合的互异性,故a≠-1;a=4时,集合A=2,3,4,232,集合B={2,0},符合题意.②当a+2a+7=4且|a-2|≠4时,解得a=-1,由①可得不符合题意.综上,实数a 的取值集合为{4}.故选D .9.(2020江西高一月考)定义集合运算:A ☆B={z|z=x 2-y 2,x ∈A ,y ∈B }.设集合A={1,√2},B={-1,0},则集合A ☆B 中的所有元素之和为( )A.2B.1C.3D.4A ☆B={0,1,2},所以A ☆B 中所有元素之和为0+1+2=3.10.(多选题)方程组{x +y =3,x -y =1的解集可表示为( ) A.{(x ,y )|{x +y =3,x -y =1} B.{(x ,y )|{x =2,y =1} C.(1,2)D.{(2,1)}{x +y =3,x -y =1只有一个解,解为{x =2,y =1, 所以方程组{x +y =3,x -y =1的解集中只有一个元素,且此元素是有序数对,所以A,B,D 都符合题意. 11.定义运算A-B={x|x ∈A ,且x ∉B },若A={-1,1,3,5,7,9},B={-1,5,7},则A-B= .定义运算A-B={x|x ∈A ,且x ∉B },A={-1,1,3,5,7,9},B={-1,5,7},∴A-B={1,3,9}.12.若集合A={a-3,2a-1,a 2-4}且-3∈A ,则实数a= .或1若a-3=-3,则a=0,此时A={-3,-1,-4},符合题意.(2)若2a-1=-3,则a=-1,此时A={-4,-3,-3},不满足元素的互异性.(3)若a 2-4=-3,则a=±1,当a=1时,A={-2,1,-3},符合题意;当a=-1时,由(2)知不合题意.综上可知,a=0或a=1.13.若一数集的任一元素的倒数仍在该集合中,则称该数集为“可倒数集”.(1)判断集合A={-1,1,2}是否为可倒数集;(2)试写出一个含3个元素的可倒数集.由于2的倒数为12不在集合A 中,故集合A 不是可倒数集.(2)若a ∈A ,则必有1a ∈A ,现已知集合A 中含有3个元素,故必有一个元素有a=1a ,即a=±1,故可以取集合A=1,2,12或-1,2,12或1,3,13. 新情境创新练14.设S={x|x=m+√2n,m,n∈Z}.(1)若a∈Z,则a是否是集合S中的元素?(2)对S中的任意两个x1,x2,则x1+x2,x1x2是否属于S?∵S={x|x=m+√2n,m,n∈Z},a∈Z,∴a=a+0×√2∈S.∴a是集合S的元素.(2)不妨设x1=m+√2n,x2=p+√2q,m,n,p,q∈Z,则x1+x2=(m+√2n)+(p+√2q)=(m+p)+√2(n+q).∵m,n,p,q∈Z.∴m+p∈Z,n+q∈Z.∴x1+x2∈S.x1·x2=(m+√2n)·(p+√2q)=(mp+2nq)+√2(mq+np),m,n,p,q∈Z.故mp+2nq∈Z,mq+np∈Z.∴x1·x2∈S.综上,x1+x2,x1·x2都属于S.。