高考数学真题汇编集合

合集下载

高考数学题汇编(集合函数不等式充分必要条件)

高考数学题汇编(集合函数不等式充分必要条件)

高考题汇编一.集合1、已知集合A={x|x <1},B={x|3x <1},则( )A 、A∩B={x|x <0}B 、A ∪B=RC 、A ∪B={x|x >1}D 、A∩B=∅2、设集合A={1,2,4},B={x|x 2﹣4x+m=0}.若A∩B={1},则B=( ) A 、{1,﹣3}B 、{1,0}C 、{1,3}D 、{1,5}3、已知集合A={(x ,y )|x 2+y 2=1},B={(x ,y )|y=x},则A∩B 中元素的个数为( ) A 、3 B 、2 C 、1 D 、04.设集合A={1,2,6},B={2,4},C={x ∈R|﹣1≤x≤5},则(A ∪B )∩C=( ) A 、{2} B 、{1,2,4} C 、{1,2,4,5} D 、{x ∈R|﹣1≤x≤5}5.已知集合P={x|﹣1<x <1},Q={x|0<x <2},那么P ∪Q=( ) A 、(﹣1,2)B 、(0,1)C 、(﹣1,0)D 、(1,2) 二.充分必要条件1.设函数f (x )=cos x +b sin x (b 为常数),则“b =0”是“f (x )为偶函数”的A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件 2.若0,0ab >>,则“4a b +≤”是 “4ab ≤”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件 3.已知R a ∈,则“1a >”是“11a<”的( ) A .充分非必要条件B .必要非充分条件C .充要条件 D .既非充分又非必要条件 4.设,,则“”是“”的A .充要条件B .充分而不必要条件C .必要而不充分条件D .既不充分也不必要条件 5.已知函数f(x)=x 2+bx ,则“b <0”是“f(f(x))的最小值与f(x)的最小值相等”的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件 6.设,都是不等于的正数,则“”是“”的( )A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件三.求函数值,计算7.设()(),0121,1x x f x x x ⎧<<⎪=⎨-≥⎪⎩,若()()1f a f a =+,则1f a ⎛⎫= ⎪⎝⎭( ) A .2 B .4C .6D .88.已知函数的定义域为.当时,;当时,;当时,.则( )A .B .C .D .9.设函数211log (2),1,()2,1,x x x f x x -+-<⎧=⎨≥⎩,2(2)(log 12)f f -+=( )A .3B .6C .9D .1210.设函数3,1(){2,1x x b x f x x -<=≥,若5(())46f f =,则b =( )A .1B .78C .34D .1211..12.若函数f (x )是定义在R 上的周期为2的奇函数,当0<x<1时,f (x )=,则f ()+f (2)= .13.设()f x 是定义在R 上且周期为2的函数,在区间[1,1-)上,,10,(){2,01,5x a x f x x x +-≤<=-≤<其中.a R ∈若,则(5)f a 的值是 .14.已知()f x 是奇函数,且当0x <时,()e ax f x =-.若(ln 2)8f =,则a =__________.15.2019年1月3日嫦娥四号探测器成功实现人类历史上首次月球背面软着陆,我国航天事业取得又一重大成就,实现月球背面软着陆需要解决的一个关键技术问题是地面与探测器的通讯联系.为解决这个问题,发射了嫦娥四号中继星“鹊桥”,鹊桥沿着围绕地月拉格朗日2L 点的轨道运行.2L 点是平衡点,位于地月连线的延长线上.设地球质量为M 1,月球质量为M 2,地月距离为R ,2L 点到月球的距离为r ,根据牛顿运动定律和万有引力定律,r 满足方程:121223()()M M M R r R r r R +=++.设r Rα=,由于α的值很小,因此在近似计算中34532333(1)ααααα++≈+,则r 的近似值为A 21M R M B 212M R M C 2313M R M D 2313MR M 16.根据有关资料,围棋状态空间复杂度的上限M 约为3361,而可观测宇宙中普通物质的原子总数N 约为1080.则下列各数中与MN最接近的是(参考数据:lg3≈0.48) A .1033 B .1053 C .1073 D .109317.已知常数0a >,函数()22xx f x ax=+的图象经过点65P p ,⎛⎫ ⎪⎝⎭,15Q q ⎛⎫- ⎪⎝⎭,.若236p q pq +=,则a =______. 18.下列函数中,其图像与函数ln y x =的图像关于直线1x =对称的是 A .ln(1)y x =-B .ln(2)y x =-C .ln(1)y x =+D .ln(2)y x =+19.设f (x )为奇函数,且当x ≥0时,f (x )=e 1x-则当x <0时,f (x )=A .e 1x --B .e 1x -+C .e 1x ---D .e 1x --+四.函数的图像20.函数f (x )=2sin cos x xx x++在[—π,π]的图像大致为 A .B .C .D .21.函数2sin 1xy x x =++的部分图像大致为( ) A . B .C .D .22.如图,长方形的边AB=2,BC=1,O 是AB 的中点,点P 沿着边BC,CD 与DA 运动,记BOP x ∠=,将动点P 到A,B 两点距离之和表示为x 的函数()f x ,则函数的图像大致为( )A .B .C .D .23.函数()()2ax bf x x c +=+的图象如图所示,则下列结论成立的是( )A .0a >,0b >,0c <B .0a <,0b >,0c >C .0a <,0b >,0c <D .0a <,0b <,0c <五.函数的性质24.已知函数1()3()3x xf x =-,则()f xA .是奇函数,且在R 上是增函数B .是偶函数,且在R 上是增函数C .是奇函数,且在R 上是减函数D .是偶函数,且在R 上是减函数25.已知函数()ln ln(2)f x x x =+-,则 A .()f x 在(0,2)单调递增 B .()f x 在(0,2)单调递减C .()y =f x 的图像关于直线x=1对称D .()y =f x 的图像关于点(1,0)对称26.已知函数f (x )(x ∈R )满足f (x )=f (2−x ),若函数 y=|x 2−2x−3|与y=f (x )图像的交点为(x 1,y 1),(x 2,y 2),…,(x m ,y m ),则1=mi i x =∑ A .0B .mC .2mD .4m27.已知函数满足,若函数与图像的交点为则( )A .0 B .C .D .28.设、、是定义域为的三个函数,对于命题:①若、、均为增函数,则、、中至少有一个增函数;②若、、均是以为周期的函数,则、、均是以为周期的函数,下列判断正确的是( ) A .①和②均为真命题B .①和②均为假命题C .①为真命题,②为假命题D .①为假命题,②为真命题29.已知符号函数1,0,sgn {0,0,1,0.x x x x >==-< ()f x 是R 上的增函数,()()()(1)g x f x f ax a =->,则( )A .sgn[()]sgn g x x =B .sgn[()]sgn g x x =-C .sgn[()]sgn[()]g x f x =D .sgn[()]sgn[()]g x f x =-30.已知112112322α⎧⎫∈---⎨⎬⎩⎭,,,,,,,若幂函数()a f x x =为奇函数,且在()0+∞,上递减,则a =____. 31.已知函数()()2ln11f x x x =++,()4f a =,则()f a -=________.32.若函数2()ln()f x x x a x =+为偶函数,则a = . 33.若函数()2()x af x a R -=∈满足(1)(1)f x f x +=-,且()f x 在[,)m +∞单调递增,则实数m 的最小值等于_______.34.若函数()6,23log ,2a x x f x x x -+≤⎧=⎨+>⎩(0a >且1a ≠)的值域是[)4,+∞,则实数a 的取值范围是__________.35.已知函数()(0,1)x f x a b a a =+>≠的定义域和值域都是[]1,0-,则a b += . 六.均值不等式36.若实数,a b 满足12ab a b+=,则ab 的最小值为( ) A .2B .2C .22D .437.设()ln ,0f x x a b =<<,若()p f ab =,()2a b q f +=,1(()())2r f a f b =+,则下列关系式中正确的是A .q r p =<B .q r p =>C .p r q =< D .p r q =>38.设0,0,25x y x y >>+=,则(1)(21)x y xy++的最小值为______.39.已知,R a b ∈,且360a b -+=,则128ab+的最小值为_____________. 40.若,a b ∈R ,0ab >,则4441a b ab++的最小值为___________.41.已知0,0,8,a b ab >>=则当a 的值为 时()22log log 2a b ⋅取得最大值. 七.不等式问题42.(2019·青冈县第一中学校高二期末(文))设函数()2010x x f x x -⎧≤=⎨>⎩,,,则满足()()12f x f x +<的x 的取值范围是( )A .(]1-∞-,B .()0+∞,C .()10-,D .()0-∞, 43.如图,函数()f x 的图象为折线ACB ,则不等式()()2log 1f x x ≥+的解集是( ) A .{}|10x x -<≤ B .{}|11x x -≤≤ C .{}|11x x -<≤ D .{}|12x x -<≤44.若函数是奇函数,则使成立的的取值范围为( ) A .() B .(-1,0) C .D .45.已知是定义在上的偶函数,且在区间上单调递增,若实数满足,则的取值范围是( )A . B . C . D .46.设函数()()21ln 11f x x x=+-+,则使()()21f x f x >-成立的x 的取值范围是( ) A .1,13⎛⎫ ⎪⎝⎭ B .()1,1,3⎛⎫-∞⋃+∞ ⎪⎝⎭C .11,33⎛⎫- ⎪⎝⎭D .11,,33⎛⎫⎛⎫-∞⋃+∞ ⎪ ⎪⎝⎭⎝⎭47.已知函数23,1,()2, 1.x x x f x x x x ⎧-+≤⎪=⎨+>⎪⎩设a R ∈,若关于x 的不等式()||2x f x a ≥+在R 上恒成立,则a 的取值范围是( )A .47[,2]16-B .4739[,]1616-C .[23,2]-D .39[23,]16- 48.设函数()f x 的定义域为R ,满足(1) 2 ()f x f x +=,且当(0,1]x ∈时,()(1)f x x x =-.若对任意(,]x m ∈-∞,都有8()9f x ≥-,则m 的取值范围是( )A .9,4⎛⎤-∞ ⎥⎝⎦ B .7,3⎛⎤-∞ ⎥⎝⎦ C .5,2⎛⎤-∞ ⎥⎝⎦ D .8,3⎛⎤-∞ ⎥⎝⎦49.某公司为激励创新,计划逐年加大研发奖金投入,若该公司2015年全年投入研发奖金130万元,在此基础上,每年投入的研发奖金比上一年增长12%,则该公司全年投入的研发奖金开始超过200万元的年份是( )(参考数据:lg1.120.05=,lg1.30.11=,lg 20.30=) A .2018年B .2019年C .2020年D .2021年50.已知f (x )是定义在R 上的偶函数,且在区间(−∞,0)上单调递增.若实数a 满足f (2|a-1|)>f (2-),则a 的取值范围是______.51.能够说明“设,,a b c 是任意实数,若a b c >>,则a b c +>”是假命题的一组整数,,a b c 的值依次为__________. 52.能说明“若f (x )>f (0)对任意的x ∈(0,2]都成立,则f (x )在[0,2]上是增函数”为假命题的一个函数是__________. 53.设函数10()20xx x f x x +≤⎧=⎨>⎩,,,,则满足1()()12f x f x +->的x 的取值范围是____________. 八.比较大小55.已知2log 7a =,3log 8b =,0.20.3c =,则,,a b c 的大小关系为 A .c b a <<B .a b c <<C .b c a <<D .c a b <<56.已知5log 2a =,0.5log 0.2b =,0.20.5c =,则,,a b c 的大小关系为( ) A .a c b <<B .a b c <<C .b c a << D .c a b <<57.若a >b ,则( )A .ln(a −b )>0B .3a <3bC .a 3−b 3>0D .│a │>│b │ 60.已知13313711log ,(),log 245a b c ===,则,,a b c 的大小关系为A .a b c >>B .b a c >>C .c b a >>D .c a b >>61.已知,则 A .B .C .D .62.已知,x y R ∈,且0x y >>,则A .110x y ->B .sin sin 0x y ->C .11()()022x y-< D .ln ln 0x y +>63.已知函数()f x 满足:()f x x ≥且()2,xf x x ≥∈R .A .若()f a b ≤,则a b ≤B .若()2bf a ≤,则a b ≤ C .若()f a b≥,则a b ≥ D .若()2b f a ≥,则a b ≥64.已知定义在R 上的函数()21()x mf x m -=-为实数为偶函数,记0.5(log 3),af 2b (log 5),c(2)f f m ,则,,a b c ,的大小关系为( ).a b c << B .c a b << C .a c b <<D .c b a <<65.已知奇函数()f x 在R 上是增函数,若21log 5a f ⎛⎫=- ⎪⎝⎭,()2log 4.1b f =,()0.82c f =,则,,a b c 的大小关系为( ) A .a b c <<B .b a c <<C .c b a <<D .c a b <<66.设()f x 是定义域为R 的偶函数,且在()0,∞+单调递减,则( )A .233231log 224f f f --⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭B .233231log 224f f f --⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭C .23332122log 4f f f --⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭D .23323122log 4f f f --⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭67.设0.2log 0.3a =,2log 0.3b =,则( )A .0a b ab +<<B .0ab a b <+<C .0a b ab +<<D .0ab a b <<+ 68.若a>b>0,且ab=1,则下列不等式成立的是( )A .21log ()2a ba ab b +<<+ B .21log ()2ab a b a b<+<+ C . 21log ()2a ba ab b +<+<D . 21log ()2a ba b a b +<+<69.已知奇函数()f x ,且()()g x xf x =在[0,)+∞上是增函数.若2(log 5.1)a g =-,0.8(2)b g =,(3)c g =,则a ,b ,c 的大小关系为( ) A .a b c << B .c b a << C .b a c << D .b c a <<70.设x 、y 、z 为正数,且235x y z ==,则 A .2x <3y <5zB .5z <2x <3yC .3y <5z <2xD .3y <2x <5z71.若a >b >0,0<c <1,则 A .log a c <log b c B .log c a <log c b C .a c <b cD .c a >c b72.若,,则( ) A .B .C .D .73.已知a ,b >0,且a≠1,b≠1.若log >1a b ,则A .(1)(1)0a b --<B .(1)()0a a b -->C .D .(1)()0b b a -->。

集合-【2023高考必备】2013-2022十年全国高考数学真题分类汇编(全国通用版)(解析版)

 集合-【2023高考必备】2013-2022十年全国高考数学真题分类汇编(全国通用版)(解析版)
【题目栏目】集合\集合的基本运算
【题目来源】2021年新高考全国Ⅱ卷·第2题
6.(2021年新高考Ⅰ卷·第1题)设集合 , ,则 ()
A. B. C. D.
【答案】B
解析:由题设有 ,故选B.
【题目栏目】集合\集合的基本运算
【题目来源】2021年新高考Ⅰ卷·第1题
7.(2020年新高考I卷(山东卷)·第1题)设集合A={x|1≤x≤3},B={x|2<x<4},则A∪B=()
【解析】 或 , ,
故 ,故选A.
【点评】本题主要考查一元二次不等式,一元二次不等式的解法,集合的运算,属于基础题.
本题考点为集合的运算,为基础题目,难度偏易.不能领会交集的含义易致误,区分交集与并集的不同,交集取公共部分,并集包括二者部分.
【题目栏目】集合\集合的基本运算
【题目来源】2019年高考数学课标全国Ⅱ卷理科·第1题
【题目栏目】集合\集合的基本运算
【题目来源】2021年高考全国甲卷理科·第1题
11.(2020年高考数学课标Ⅰ卷理科·第2题)设集合A={x|x2–4≤0},B={x|2x+a≤0},且A∩B={x|–2≤x≤1},则a=()
A.–4B.–2C.2D.4
【答案】B
【解析】求解二次不等式 可得: ,
求解一次不等式 可得: .
A.{−2,3}B.{−2,2,3}C.{−2,−1,0,3}D.{−2,−1,0,2,3}
【答案】A
解析:由题意可得: ,则 .
故选:A
【点睛】本题主要考查并集、补集的定义与应用,属于基础题.
【题目栏目】集合\集合的基本运算
【题目来源】2020年高考数学课标Ⅱ卷理科·第1题
13.(2020年高考数学课标Ⅲ卷理科·第1题)已知集合 , ,则 中元素的个数为()

2012-2021高考真题分类汇编1.集合(解析PDF)

2012-2021高考真题分类汇编1.集合(解析PDF)
10.(2018 年高考数学课标Ⅱ卷(理))已知集合 A = ( x ,y) x2 + y2≤3,x Z ,y Z ,则 A 中元素的个数

A.9
B.8
【答案】A
C.5
() D.4
解析: A = ( x,y) x2 + y2≤3,x Z,y Z = (−1, −1),(−1,0),(−1,1),(0, −1),(0,0),(0,1),(1, −1),(1,0),(−1,1) ,故
【答案】B
【解析】求解二次不等式 x2 − 4 0 可得: A = x | −2 x 2 ,
求解一次不等式
2
x
+
a
0
可得:
B
=
x
|
x

a 2

由于 A B = x | −2 x 1 ,故: − a = 1,解得: a = −2 .
2
故选:B.
1
【点睛】本题主要考查交集的运算,不等式的解法等知识,意在考查学生的转化能力和计算求解能力.
M
N
=
x|
1 3
x
4 ,
故选:B.
【点睛】本题考查集合的运算,属基础题,在高考中要求不高,掌握集合的交并补的基本概念即可求
解.
3.(2020 年高考数学课标Ⅰ卷理科)设集合 A={x|x2–4≤0},B={x|2x+a≤0},且 A∩B={x|–2≤x≤1},则 a=
()
A.–4
B.–2
C.2
D.4BBiblioteka 中的元素满足xy +
y
x =
8
,且
x,
y
N
*

2024全国高考真题数学汇编:平面向量及其应用章节综合

2024全国高考真题数学汇编:平面向量及其应用章节综合

2024全国高考真题数学汇编平面向量及其应用章节综合一、单选题1.(2024全国高考真题)已知向量,a b满足1,22a a b ,且2b a b ,则b ()A .12B C .2D .12.(2024全国高考真题)已知向量(0,1),(2,)a b x ,若(4)b b a,则x ()A .2B .1C .1D .23.(2024全国高考真题)设向量 1,,,2a x x b x,则()A .“3x ”是“a b”的必要条件B .“3x ”是“//a b”的必要条件C .“0x ”是“a b”的充分条件D .“1x ”是“//a b”的充分条件4.(2024全国高考真题)在ABC 中,内角,,A B C 所对的边分别为,,a b c ,若π3B ,294b ac ,则sin sin A C ()A .13B .13C .2D .135.(2024北京高考真题)设a ,b 是向量,则“·0a b a b”是“a b 或a b ”的().A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件二、填空题6.(2024上海高考真题)已知 ,2,5,6,k a b k R ,且//a b ,则k 的值为.7.(2024天津高考真题)在边长为1的正方形ABCD 中,点E 为线段CD 的三等分点,1,2CE DE BE BA BC u u r u u r u u u r ,则;F 为线段BE 上的动点,G 为AF 中点,则AF DG的最小值为.三、解答题8.(2024天津高考真题)在ABC 中,角,,A B C 所对的边分别为,,a b c ,已知92cos 5163a Bbc ,.(1)求a ;(2)求sin A ;(3)求 cos 2B A 的值.9.(2024全国高考真题)记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知sin 2A A .(1)求A .(2)若2asin sin 2C c B ,求ABC 的周长.10.(2024北京高考真题)在ABC 中,内角,,A B C 的对边分别为,,a b c ,A 为钝角,7a ,sin 2cos B B .(1)求A ;(2)从条件①、条件②、条件③这三个条件中选择一个作为已知,使得ABC 存在,求ABC 的面积.条件①:7b ;条件②:13cos 14B;条件③:sin c A 注:如果选择的条件不符合要求,第(2)问得0分;如果选择多个符合要求的条件分别解答,按第一个解答计分.11.(2024全国高考真题)记ABC 的内角A 、B 、C 的对边分别为a ,b ,c ,已知sin C B ,222a b c (1)求B ;(2)若ABC 的面积为3c .参考答案1.B【分析】由2b a b 得22b a b,结合1,22a a b ,得22144164a b b b ,由此即可得解.【详解】因为 2b a b ,所以20b a b ,即22b a b,又因为1,22a a b ,所以22144164a b b b ,从而2b .故选:B.2.D【分析】根据向量垂直的坐标运算可求x 的值.【详解】因为 4b b a ,所以40b b a,所以240b a b即2440x x ,故2x ,故选:D.3.C【分析】根据向量垂直和平行的坐标表示即可得到方程,解出即可.【详解】对A ,当a b 时,则0a b,所以(1)20x x x ,解得0x 或3,即必要性不成立,故A 错误;对C ,当0x 时, 1,0,0,2a b ,故0a b,所以a b,即充分性成立,故C 正确;对B ,当//a b时,则22(1)x x ,解得1x ,即必要性不成立,故B 错误;对D ,当1x 时,不满足22(1)x x ,所以//a b不成立,即充分性不立,故D 错误.故选:C.4.C【分析】利用正弦定理得1sin sin 3A C ,再利用余弦定理有22134a c ac ,由正弦定理得到22sin sin A C 的值,最后代入计算即可.【详解】因为29,34B b ac,则由正弦定理得241sin sin sin 93A C B .由余弦定理可得:22294b ac ac ac ,即:22134a c ac,根据正弦定理得221313sin sin sin sin 412A C A C ,所以2227(sin sin )sin sin 2sin sin 4A C A C A C,因为,A C 为三角形内角,则sin sin 0A C ,则sin sin A C .故选:C.5.B【分析】根据向量数量积分析可知0a b a b 等价于a b,结合充分、必要条件分析判断.【详解】因为220a b a b a b ,可得22a b ,即a b ,可知0a b a b 等价于a b ,若a b 或a b ,可得a b ,即0a b a b,可知必要性成立;若0a b a b ,即a b,无法得出a b 或a b ,例如 1,0,0,1a b,满足a b ,但a b 且a b ,可知充分性不成立;综上所述,“0a b a b”是“a b 且a b ”的必要不充分条件.故选:B.6.15【分析】根据向量平行的坐标表示得到方程,解出即可.【详解】//a b ,256k ,解得15k .故答案为:15.7.43518【分析】解法一:以,BA BC 为基底向量,根据向量的线性运算求BE,即可得 ,设BF BE k u u u r u u r ,求,AF DG u u u r u u u r ,结合数量积的运算律求AF DG 的最小值;解法二:建系标点,根据向量的坐标运算求BE,即可得 ,设 1,3,,03F a a a,求,AF DG u u u r u u u r ,结合数量积的坐标运算求AF DG 的最小值.【详解】解法一:因为12CE DE ,即13CE BA ,则13BE BC CE BA BC u u u r u u r u u u u r r u u u r ,可得1,13,所以43;由题意可知:1,0BC BA BA BC,因为F 为线段BE 上的动点,设 1,0,13BF k BE k BA k BC k,则113AF AB BF AB k BE k BA k BC,又因为G 为AF 中点,则1111112232DG DA AG BC AF k BA k BC,可得11111113232AF DG k BA k BC k BA k BC22111563112329510k k k k,又因为 0,1k ,可知:当1k 时,AF DG 取到最小值518;解法二:以B为坐标原点建立平面直角坐标系,如图所示,则 11,0,0,0,0,1,1,1,,13A B C D E,可得 11,0,0,1,,13BA BC BE,因为 ,BE BA BC 131,所以43 ;因为点F 在线段1:3,,03BE y x x 上,设 1,3,,03F a a a,且G 为AF 中点,则13,22a G a ,可得 131,3,,122a AF a a DG a,则 22132331522510a AF DG a a a,且1,03a,所以当13a 时,AF DG 取到最小值为518 ;故答案为:43;518 .8.(1)4(3)5764【分析】(1)2,3a t c t ,利用余弦定理即可得到方程,解出即可;(2)法一:求出sin B ,再利用正弦定理即可;法二:利用余弦定理求出cos A ,则得到sin A ;(3)法一:根据大边对大角确定A 为锐角,则得到cos A ,再利用二倍角公式和两角差的余弦公式即可;法二:直接利用二倍角公式和两角差的余弦公式即可.【详解】(1)设2,3a t c t ,0t ,则根据余弦定理得2222cos b a c ac B ,即229254922316t t t t ,解得2t (负舍);则4,6a c .(2)法一:因为B 为三角形内角,所以sin 16B ,再根据正弦定理得sin sin a b A B ,即4sin A sin 4A ,法二:由余弦定理得2222225643cos 22564b c a A bc ,因为 0,πA ,则sin 4A(3)法一:因为9cos 016B ,且 0,πB ,所以π0,2B,由(2)法一知sin 16B,因为a b ,则A B ,所以3cos 4A ,则3sin 22sin cos 24A A A2231cos 22cos 12148A A9157cos 2cos cos 2sin sin 216816864B A B A B A.法二:3sin 22sin cos 24A A A,则2231cos 22cos 12148A A,因为B 为三角形内角,所以sin 16B,所以 9157cos 2cos cos 2sin sin 216864B A B A B A9.(1)π6A(2)2【分析】(1)根据辅助角公式对条件sin 2A A 进行化简处理即可求解,常规方法还可利用同角三角函数的关系解方程组,亦可利用导数,向量数量积公式,万能公式解决;(2)先根据正弦定理边角互化算出B ,然后根据正弦定理算出,b c 即可得出周长.【详解】(1)方法一:常规方法(辅助角公式)由sin 2A A 可得1sin 122A A ,即sin()1π3A ,由于ππ4π(0,π)(,)333A A ,故ππ32A ,解得π6A方法二:常规方法(同角三角函数的基本关系)由sin 2A A ,又22sin cos 1A A ,消去sin A 得到:224cos 30(2cos 0A A A ,解得cos 2A,又(0,π)A ,故π6A方法三:利用极值点求解设()sin (0π)f x x x x ,则π()2sin (0π)3f x x x,显然π6x时,max ()2f x ,注意到π()sin 22sin(3f A A A A ,max ()()f x f A ,在开区间(0,π)上取到最大值,于是x A 必定是极值点,即()0cos sin f A A A ,即tan 3A ,又(0,π)A ,故π6A方法四:利用向量数量积公式(柯西不等式)设(sin ,cos )a b A A ,由题意,sin 2a b A A,根据向量的数量积公式,cos ,2cos ,a b a b a b a b,则2cos ,2cos ,1a b a b ,此时,0a b,即,a b 同向共线,根据向量共线条件,1cos sin tan A A A 又(0,π)A ,故π6A方法五:利用万能公式求解设tan 2A t,根据万能公式,22sin 21t A A t整理可得,2222(2(20((2t t t ,解得tan22A t 223tan 13t A t ,又(0,π)A ,故π6A(2)由题设条件和正弦定理sin sin 2sin 2sin sin cos C c B B C C B B ,又,(0,π)B C ,则sin sin 0B C,进而cos 2B ,得到π4B ,于是7ππ12C A B,26sin sin(π)sin()sin cos sin cos 4C A B A B A B B A,由正弦定理可得,sin sin sin a b cA B C ,即2ππ7πsin sin sin6412bc,解得b c 故ABC的周长为2 10.(1)2π3A;(2)选择①无解;选择②和③△ABC【分析】(1)利用正弦定理即可求出答案;(2)选择①,利用正弦定理得3B,结合(1)问答案即可排除;选择②,首先求出sin B 式子得3b ,再利用两角和的正弦公式即可求出sin C ,最后利用三角形面积公式即可;选择③,首先得到5c,再利用正弦定理得到sin Csin B ,最后利用三角形面积公式即可;【详解】(1)由题意得2sin cos cos B B B,因为A 为钝角,则cos 0B,则2sin B,则7sin sin sin b a BA A,解得sin A ,因为A 为钝角,则2π3A.(2)选择①7b ,则333sin 714142B,因为2π3A ,则B 为锐角,则3B ,此时πA B ,不合题意,舍弃;选择②13cos 14B ,因为B 为三角形内角,则sin B ,则代入2sin 7B得2147,解得3b , 2π2π2πsin sin sin sin cos cos sin 333C A B B B B3131335321421414,则1153153sin 7322144ABC S ab C.选择③sin c Ac 5c ,则由正弦定理得sin sin a c A C 5sin C ,解得sin C ,因为C 为三角形内角,则11cos 14C ,则 2π2π2πsin sin sin sin cos cos sin 333B A C C C C3111533321421414,则11sin 7522144ABC S ac B △11.(1)π3B (2)【分析】(1)由余弦定理、平方关系依次求出cos ,sin C C ,最后结合已知sin C B 得cos B 的值即可;(2)首先求出,,A B C ,然后由正弦定理可将,a b 均用含有c 的式子表示,结合三角形面积公式即可列方程求解.【详解】(1)由余弦定理有2222cos a b c ab C ,对比已知222a b c ,可得222cos 222a b c C ab ab,因为 0,πC ,所以sin 0C ,从而sin2C ,又因为sin C B,即1cos2B ,注意到0,πB ,所以π3B .(2)由(1)可得π3B,cos2C ,0,πC ,从而π4C ,ππ5ππ3412A ,而5πππ1sin sin sin12462A,由正弦定理有5πππsin sin sin1234a b c,从而,a b,由三角形面积公式可知,ABC的面积可表示为21113sin222228ABCS ab C c c,由已知ABC的面积为323338c所以c。

历年(2019-2023)高考数学真题分类(集合、常用逻辑用语与不等式)练习(附答案)

历年(2019-2023)高考数学真题分类(集合、常用逻辑用语与不等式)练习(附答案)

[答案解析]因为
1 ,所以

|
2
C. |3

16
|0

16 ;因为
4 ,所以
}.所以 ∩
|
A.
1 ,2
|0
B. 1 ,2

1|
1 ,得 1
2 ,所以 ∩
9. [2022 北京,4 分]已知全集
1 ,则∁
A.
2,1
16
|3
| |
1|
(B)
[答案解析]由|
历年(2019-2023)高考数学真题分类(集合、常用逻辑用语与不等式)练习
考点: 集合
一、选择题
2 , 1 ,0,1,2 ,
1. [2023 新高考卷Ⅰ,5 分]已知集合
6
A.
0 ,则 ∩

(C)
2 , 1 ,0,1
B. 0 ,1,2
2
C.
|
[答案解析]解法一因为

|

6
0
1 ,3 ,
1 ,2,4 ,则
C. 1 ,2,4
D. 1 ,2,4,5
1 ,2,4 ,所以∁
3 ,5 ,又
1 ,3 ,
1 ,3,5 .故选A .
4. [2023 全国卷甲,5 分]设全集

0 .当
(A)
A. 1 ,3,5
|
2
1 ,0,1 ,满足 ⊆ .所以
3. [2023 天津,5 分]已知集合
2 ,故选A .
2 ,4,6 ,则 ∪
B. 1 ,2
C. 2 ,4,6
[答案解析]由集合并集的定义,得 ∪
7. [2022 新高考卷Ⅰ,5 分]若集合

高考数学试题140道及答案

高考数学试题140道及答案

高考数学试题140道及答案一、选择题(本题共8小题,每小题5分,共40分)1. 若函数f(x) = x^2 - 4x + 3的零点为x1和x2,则x1 + x2的值为:A. 2B. 3C. 4D. 5答案:B2. 已知向量a = (3, -1),向量b = (2, 2),则向量a与向量b的点积为:A. 4B. 5C. 6D. 7答案:A3. 若sin(α) = 1/2,则cos(2α)的值为:A. 1/2B. -1/2C. 0D. -1答案:B4. 已知数列{an}为等差数列,且a1 = 2,a3 = 6,则数列的公差d为:A. 1B. 2C. 3D. 4答案:B5. 函数y = ln(x)的导数为:A. 1/xB. xC. x^2D. 1/x^2答案:A6. 已知抛物线y = x^2 - 4x + 4的顶点坐标为:A. (2, 0)B. (-2, 0)C. (2, 4)D. (-2, 4)答案:A7. 已知双曲线x^2/a^2 - y^2/b^2 = 1的焦点在x轴上,且a = 2,则b的值为:A. 2B. 3C. 4D. 5答案:B8. 已知圆的方程为(x - 1)^2 + (y - 2)^2 = 9,圆心到直线x + y - 3 = 0的距离为:A. 1B. 2C. 3D. 4答案:C二、填空题(本题共6小题,每小题5分,共30分)9. 已知函数f(x) = x^3 - 3x^2 + 2,求f'(x) = _______。

答案:3x^2 - 6x10. 已知三角形ABC的边长分别为a = 3,b = 4,c = 5,求三角形的面积S = _______。

答案:611. 已知等比数列{bn}的首项b1 = 2,公比q = 3,求第n项bn = _______。

答案:2 * 3^(n-1)12. 已知直线l的方程为y = 2x + 1,求直线l与x轴的交点坐标为(_______,_______)。

近五年(2017-2021)高考数学真题分类汇编试卷含答案( 集合)

近五年(2017-2021)高考数学真题分类汇编试卷含答案( 集合)

B.{0,1}
C.{1,1, 2}
D.{1, 2}
10.(2020·海南)设集合 A={x|1≤x≤3},B={x|2<x<4},则 A∪B=( )
A.{x|2<x≤3}
B.{x|2≤x≤3}
C.{x|1≤x<4}
D.{x|1<x<4}
11.(2020·浙江)已知集合 P={x |1 x 4}, Q {x | 2 x 3} ,则 P Q=( )
A. 7, 9
B. 5, 7, 9
C. 3, 5, 7, 9
D. 1, 3, 5, 7, 9
3.(2021·全国(理))设集合 M
x 0 x4
,N
x
1 3
x
5
,则
M
N (

A.
x
0
x
1 3
C.x 4 x 5
B.
x
1 3
x
4
D.x 0 x 5
4.(2021·全国(理))已知集合 S s s 2n 1, n Z ,T t t 4n 1, n Z ,
A {1,0,1, 2}, B {3,0, 2,3},则 A ðU B ( )
A.{3,3}
B.{0, 2}
C.{1,1}
D.{3, 2, 1,1,3}
9.(2020·北京)已知集合 A {1, 0,1, 2} , B {x | 0 x 3},则 A B ( ).
A.{1, 0,1}
机调查了 100 学生,其中阅读过《西游记》或《红楼梦》的学生共有 90 位,阅读过《红
楼梦》的学生共有 80 位,阅读过《西游记》且阅读过《红楼梦》的学生共有 60 位,则

2024全国高考真题数学汇编:集合

2024全国高考真题数学汇编:集合

2024全国高考真题数学汇编集合一、单选题1.(2024全国高考真题)已知集合{}355,{3,1,0,2,3}A x x B =-<<=--∣,则A B = ()A .{1,0}-B .{2,3}C .{3,1,0}--D .{1,0,2}-2.(2024天津高考真题)集合{}1,2,3,4A =,{}2,3,4,5B =,则A B = ()A .{}1,2,3,4B .{}2,3,4C .{}2,4D .{}13.(2024全国高考真题)若集合{}1,2,3,4,5,9A =,{}1B x x A =+∈,则A B = ()A .{}1,3,4B .{}2,3,4C .{}1,2,3,4D .{}0,1,2,3,4,94.(2024北京高考真题)已知集合{|31}M x x =-<<,{|14}N x x =-≤<,则M N ⋃=()A .{}11x x -≤<B .{}3x x >-C .{}|34x x -<<D .{}4x x <5.(2024全国高考真题)已知集合{}{}1,2,3,4,5,9,A B A ==,则()A A B ⋂=ð()A .{}1,4,9B .{}3,4,9C .{}1,2,3D .{}2,3,5参考答案1.A【分析】化简集合A ,由交集的概念即可得解.【详解】因为{{}|,3,1,0,2,3A x x B =<=--,且注意到12<<,从而A B = {}1,0-.故选:A.2.B【分析】根据集合交集的概念直接求解即可.【详解】因为集合{}1,2,3,4A =,{}2,3,4,5B =,所以{}2,3,4A B = ,故选:B3.C【分析】根据集合B 的定义先算出具体含有的元素,然后根据交集的定义计算.【详解】依题意得,对于集合B 中的元素x ,满足11,2,3,4,5,9x +=,则x 可能的取值为0,1,2,3,4,8,即{0,1,2,3,4,8}B =,于是{1,2,3,4}A B ⋂=.故选:C4.C【分析】直接根据并集含义即可得到答案.【详解】由题意得{}|34M x x N ⋃=-<<.故选:C.5.D【分析】由集合B 的定义求出B ,结合交集与补集运算即可求解.【详解】因为{}{}1,2,3,4,5,9,A B A ==,所以{}1,4,9,16,25,81B =,则{}1,4,9A B = ,(){}2,3,5A A B = ð故选:D。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

矿产资源开发利用方案编写内容要求及审查大纲
矿产资源开发利用方案编写内容要求及《矿产资源开发利用方案》审查大纲一、概述
㈠矿区位置、隶属关系和企业性质。

如为改扩建矿山, 应说明矿山现状、
特点及存在的主要问题。

㈡编制依据
(1简述项目前期工作进展情况及与有关方面对项目的意向性协议情况。

(2 列出开发利用方案编制所依据的主要基础性资料的名称。

如经储量管理部门认定的矿区地质勘探报告、选矿试验报告、加工利用试验报告、工程地质初评资料、矿区水文资料和供水资料等。

对改、扩建矿山应有生产实际资料, 如矿山总平面现状图、矿床开拓系统图、采场现状图和主要采选设备清单等。

二、矿产品需求现状和预测
㈠该矿产在国内需求情况和市场供应情况
1、矿产品现状及加工利用趋向。

2、国内近、远期的需求量及主要销向预测。

㈡产品价格分析
1、国内矿产品价格现状。

2、矿产品价格稳定性及变化趋势。

三、矿产资源概况
㈠矿区总体概况
1、矿区总体规划情况。

2、矿区矿产资源概况。

3、该设计与矿区总体开发的关系。

㈡该设计项目的资源概况
1、矿床地质及构造特征。

2、矿床开采技术条件及水文地质条件。

相关文档
最新文档